Are AlphaZero-like Agents Robust to Adversarial Perturbations?

Li-Cheng Lan1 Huan Zhang2 Ti-Rong Wu3
Meng-Yu Tsai4 I-Chen Wu3,4 Cho-Jui Hsieh1

1UCLA 2CMU 3Academia Sinica, Taiwan 4NYCU
lclan@cs.ucla.edu huan@huan-zhang.com tirongwu@iis.sinica.edu.tw
adam0923686343@gmail.com icwu@cs.nctu.edu.tw chohsieh@cs.ucla.edu

Abstract

The success of AlphaZero (AZ) has demonstrated that neural-network-based Go AIs can surpass human performance by a large margin. Given that the state space of Go is extremely large and a human player can play the game from any legal state, we ask whether adversarial states exist for Go AIs that may lead them to play surprisingly wrong actions. In this paper, we first extend the concept of adversarial examples to the game of Go: we generate perturbed states that are “semantically” equivalent to the original state by adding meaningless moves to the game, and an adversarial state is a perturbed state leading to an undoubtedly inferior action that is obvious even for Go beginners. However, searching the adversarial state is challenging due to the large, discrete, and non-differentiable search space. To tackle this challenge, we develop the first adversarial attack on Go AIs that can efficiently search for adversarial states by strategically reducing the search space. This method can also be extended to other board games such as NoGo. Experimentally, we show that the actions taken by both Policy-Value neural network (PV-NN) and Monte Carlo tree search (MCTS) can be misled by adding one or two meaningless stones; for example, on 58% of the AlphaGo Zero self-play games, our method can make the widely used KataGo agent with 50 simulations of MCTS plays a losing action by adding two meaningless stones. We additionally evaluated the adversarial examples found by our algorithm with amateur human Go players and 90% of examples indeed lead the Go agent to play an obviously inferior action.

1 Introduction

AlphaZero (AZ) [1] like algorithms have achieved state-of-the-art in Go – one of the most challenging games for artificial intelligence. One of the main reasons is that they well-train their Policy-Value Neural Network (PV-NN) with reinforcement learning (RL) and then use it to guide the Monte Carlo tree search (MCTS) [2,3]. According to [4], PV-NN can achieve human professional level (Elo 3055) even without any lookahead. Nowadays, even professional players trust AI agents and endeavor to memorize their strategies. However, are these AIs always better than humans?

Idealistically, if a superhuman AI agent is generalized enough, it should not make a beginner’s mistake on any state in Go, especially for states close to a real game. However, despite their significant impact, the limitations of AZ agents and their PV-NN network are under-explored. Recently, it has been observed that many deep neural network models can be easily fooled by “adversarial examples”, which are created by adding small and semantically invariant perturbations to nature examples [5,6]. But, it is still unknown whether there exist “adversarial examples” for AZ agents and how easily we
can find them. Although adversarial attack algorithms have been developed for computer vision [6], NLP [7,8], and reinforcement learning [9,10,11,12], none of the existing methods can be directly applied to attack Go AIs due to the difficulties of defining “semantically invariant perturbation” in discrete games like Go.

In this paper, we proposed a novel method to systematically find perturbed states that the AZ agents have worse performance than humans. Instead of directly manipulating states, we use at most two actions as perturbations. We carefully designed the constraints of those actions so that the perturbed states can be “semantically invariant” to the original states. Moreover, those perturbed states are easy enough for human players to verify the correct answer. Hence, it will be surprising if superhuman agents can not find the answer. Finally, we test AZ agents with thousands of these perturbed states to see how often the agents make low-level mistakes. Fig. [1b] shows one of the perturbed states that AZ agents will fail. B19 and P1 (marked as 1 and 2) are the two “meaningless” actions we added as perturbations. We call those actions “meaningless” since adding them won’t change the best action and the win rate of the turn player. However, those actions can let KataGo, a well-known Go AI with 50 simulations, “forget” to kill the white stones marked with squares (action A) and instead want to save the black stones marked with triangles (action B), even if doing so will lose the game. This mistake is so simple that even amateur human players will not make it.

The contributions of this paper can be summarized below:

- For the first time, we reveal the vulnerability of both PV-NN and AZ agents. With the proposed “action perturbation”, the adversarial examples we found (e.g., Fig. [1b]) are semantically equivalent to a natural state while leading to catastrophic behavior of the target agent. Such examples may be explored during large-scale MCTS and end up misleading the search.
- We design an efficient method to speed up the search. Our algorithm is usually more than 100 times faster than brute force search in the experiments.
- We conduct a comprehensive study on four state-of-the-art public AZ agents with six different datasets to reveal their robustness in the game of Go. The results demonstrate that all these agents with a small number of simulations are vulnerable. In particular, by adding two meaningless moves, our attack can consistently achieve ≥ 90% success rates on the PV-NNs and achieve ≥ 58% on MCTS Agents with 50 simulations, which is the exact simulation count used by MuZero [14]. Moreover, our method can also find bugs in AZ agents in other games since every game’s state can be modified by actions. For example, in our NoGo [15] experiment, adversarial examples are found on 50% of data.
2 Background and Related Works

Terminology Games like Go can be described as a two-player zero-sum deterministic game \[16\] and can be defined as a tuple \(\langle S, A, T, R \rangle\), where \(S\) is the state space, \(A\) is the action space, \(T : S \times A \to S\) is the transition function and \(R : S \to \{0, 1, -1\}\) is the reward. Each game starts from an initial state \(s_0 \in S\) (empty board) at time 0. At the current state \(s_t\), the turn-player, defined as \(s_t, c\), can play an action \(a_t \in A(s_t)\). In Go, players take turns placing a stone of their color on the board. Therefore, all actions are composed of a color \(c\) and a position \(p\), indicating placing a \(c\) stone on \(p\). The only exception is the pass move \(v_{\text{pass}}\), which means the turn-player does not place any stone (gives up on his turn). After playing action \(a_t\) on state \(s_t\), we can get the next state by \(s_{t+1} = T(s_t, a_t)\). The game ends when reaching a terminal state \(s_T\), where we can determine who wins the game and each player receives a reward. Since the games are zero-sum, the reward of the opponent player is \(-R(s)\). For the non-terminal states, there will be no reward \(R(s) = 0\) for any player.

Policy Value Neural Network (PV-NN) and Policy Value MCTS (PV-MCTS) PV-NN is proposed in AlphaGo Zero paper \[4\]. PV-NN takes a state \(s\) as input and outputs a value \(v(s)\) and a policy \(p(s)\). Value \(0 \leq v(s) \leq 1\) is a scalar from 0 to 1 that indicates the estimated win-rate of current state. For example, \(v(s) < 0.5\) means that PV-NN believes the turn-player of state \(s\) is losing. Note that if the value output range is \(-1 \leq v(s) \leq 1\), the win-rate can be calculated by \((v(s) + 1)/2\). Policy \(p(s)\) is a vector that indicates each action \(a\)'s probability \(0 \leq p(a|s) \leq 1\). A high probability for an action, e.g., \(p(a|s) > 0.9\), indicates that the the PV-NN highly recommends action \(a\) at state \(s\). Besides PV-NN, AlphaGo Zero \[4\] also adopted Policy Value MCTS (PV-MCTS) to choose the best action. Different from MCTS, PV-MCTS uses the value output of PV-NN instead of Monte Carlo simulation to evaluate the selected states value. Moreover, PV-MCTS utilized the policy of PV-NN to narrow down the search space with the PUCT algorithm \[17\]. The search efficiency of PUCT highly depends on the prior probability \(P(s, a^*)\) of best action \(a^*\). Therefore, if the root's prior policy is incorrect, the search efficiency will drop dramatically. Take Fig. \[11\] as an example; even after 50 simulations, KataGo still couldn’t explore action \(A\) because the prior probability of action \(A\) is too small. As more states have been evaluated by PV-NN, PV-MCTS can provide stronger policy \(\pi(s)\), value \(V(s)\), and action values \(Q(s, a)\) of a given root state \(s\).

Adversarial Example It has been observed that many neural networks used in computer vision, NLP, and reinforcement learning are vulnerable to adversarial examples \[5,18,9\]. Traditionally, an adversarial example, created by minimally modifying a natural example, is semantically equivalent to the original natural example for humans but can make the target model produce a totally different output. Note that the perturbed state should also look natural \[19\]. To define an adversarial example for a particular task, one has to define a reasonable perturbation set around original examples and design an algorithm to find an example within the set that leads to incorrect behavior of the model (e.g., misclassification). In computer vision, the perturbation set is usually defined as a small \(l_p\) norm ball, as small perturbations to images are usually imperceptible to humans. And due to the continuous search space, existing image attacks often rely on gradient-based optimization to find adversarial examples \[20,21,22,23\].

On the other hand, for discrete models like text, there exists multiple definitions for the perturbation set such as synonym substitution \[24,25\], edit distance \[26\], or language model-based scores \[27\]. For example, if the maximum edit distance is one, given a natural sentence, "This movie had terrible acting," an adversarial example can be "This movie had awful acting." where we only change one word in the sentence to its synonym. Note that such examples are not humanly imperceptible, and the synonyms are defined by humans. Due to the discrete nature of the text domain, finding an adversarial example leads to a combinatorial search problem, and several attacks have been proposed for this \[28,29,24\]. However, none of these attack methods can be directly applied to attack AZ agents for the following reason: 1) Unlike the image or NLP domain, the semantically invariant perturbation in Go is difficult to define (see Sec. \[31\]). 2) Unlike other applications, the AI’s ability is much stronger than humans in Go, so it is non-obvious how to find adversarial examples that can be understood by humans. Although some recent works have studied perturbations to states \[12\], actions \[30\], observations \[9,10,31,32\] or rewards \[33\] in the reinforcement learning setting, none of them consider discrete input domains with a combinatorial large search space like Go or against planning based agent like AZ agents.
3 Method

Given a state \(s \), a target agent (e.g., PV-NN or AZ agents), and a much weaker verifier (e.g., humans), our goal is to find an adversarial example \(s' \) that satisfies the following conditions:

\[
\begin{align*}
C_1 \quad & \text{The perturbed state } s' \text{ is very close to the original state } s \text{ in terms of } \ell_0 \text{ distance.} \\
C_2 \quad & \text{The perturbed state } s' \text{ is semantically equivalent to } s, \text{ and the verifier can verify that.} \\
C_3 \quad & \text{The target agent performs correctly on } s \text{ but wrongly on } s', \text{ and the verifier can identify that.}
\end{align*}
\]

Both \(C_1 \) and \(C_2 \) define a set of perturbed states, \(B(s) \), for a given natural state \(s \). The problem of finding adversarial examples is then equivalent to finding a \(s' \in B(s) \) that satisfies the success criterion \((C_3) \). In previous image attacks, \(B(s) \) is a small \(\ell_p \) ball \([6, 20] \) and in text attacks \(B(s) \) is usually defined by word substitutions with synonyms \([24] \). However, in our case, the definition of \(B(s) \) is much more sophisticated and computationally expensive to check.

The existence of a much weaker verifier is to define the adversarial examples we want to find. We hope that the target agent’s mistake on the adversarial examples is verifiable to the verifier. Hence, the playing strength of the verifier determines the difficulty of finding adversarial examples. The weaker the verifier is, the harder it is to find an example.

In addition, our method finds the \(s' \) without the help of verifiers since verifiers, like humans, are hard to include in an automatic process. Therefore, we need to carefully design the \(B(s) \) and the success criterion so that the \(s' \) satisfies the conditions automatically. In the following, we will discuss how to define \(B(s) \) and the success criterion in Subsections 3.1 and 3.2, respectively. A search algorithm will then be introduced in Subsection 3.3 to speed up the search.

3.1 Defining the Perturbation Set

We define the perturbation set \(B(s) \) of a given state \(s \) based on conditions \(C_1 \) and \(C_2 \). For \(C_1 \), we use actions as perturbation and the number of actions we added as distance. In our experiments, we set distance \(\ell_0 \) as 2. Since each state in Go can be represented by its trajectory (a list of actions), the perturbed state \(s' \) can be presented as

\[
a_0, a_1, \ldots, a_{t-1}, b_0, b_1,
\]

where \(a_0, \ldots, a_{t-1} \) is the trajectory of \(s \) and \(b_0, b_1 \) are the extra actions. For 1STEP attack, one of the \(b_0, b_1 \) has to be the pass action (denoted as \(a_{\text{pass}} \)). This means we place an additional stone on the board without changing the turn player. On the other hand, for 2STEP attack, both \(b_0, b_1 \) are not the pass action, which means we add one black and one white stone on the board. We do not include states created by replacement like word substitution in text attacks since there are no similar actions in Games like Go.

For condition \(C_2 \), we aim to maintain the semantic meaning after perturbation. Since there is no ground truth in Go, we resort to an "examiner" agent to verify the equivalence of states. The examiner should be able to provide an accurate value \(V(s) \), the policy \(\pi(s) \), and the action values \(Q(s, a) \) for a given state \(s \). For example, the examiner we used is the strongest PV-MCTS agent that runs 800 simulations. To distinguish the output of the examiner and the target agent, we use \(v(s) \) and \(p(a|s) \) as the output of the target agent. With the examiner, we define two states \(s, s' \) are semantically equivalent if the two states have the same turn players and similar winrate according to the examiner, which is shown in the following equation.

\[
s.c = s'.c \text{ and } |V(s) - V(s')| \leq \eta_{\text{eq}}, \quad (1)
\]

where \(s.c \) denotes the turn player (c for color) of state \(s \) and \(\eta_{\text{eq}} \) is the threshold used to define that the win rate is close.
Although the examiner is normally better than the target agent, it is still not perfect. The examiner may also make a low-level mistake on \(s' \) since the PV-NN it uses is wrong on \(s' \). To improve the examiner on \(s' \), we provide it with its best action \(a_1^* \) on \(s \) as a hint. That is, we evaluate the examiner value of \(s' \) by forcing the examiner to evaluate the state \(T(s', a_1^*) \). Since \(T(s', a_1^*) \) has a different turn player, so the new \(V(s') \) is

\[
\max(V(s'), 1 - V(T(s', a_1^*))).
\]

(2)

Note that one can provide more hints to the examiner by forcing it to consider more actions or even paths that are reasonable in \(s \). This method makes it possible to find adversarial examples even if the target agent is the same as the examiner.

Besides ensuring \(s, s' \) to be semantically equivalent, such equivalence should be verifiable to the much weaker verifier like humans. Unlike standard image or text applications where humans are treated as oracles, the AI agents for Go are much more powerful than a human. When the game is too complicated, humans cannot even tell who has the advantage. Therefore, even though both states \(s \) and \(s' \) are semantically equivalent (Eq. 1) to the examiner, the verifier may not be able to tell.

Fortunately, we observe that humans can identify most of the “meaningless” actions which do not help their turn players to gain any benefits. Here, we define an action as meaningless if its effect on the winrate is equal to playing a pass action. The following is the formal definition:

\[
|V(s) - V(F(s, a))| \leq \eta_{eq},
\]

(3)

where \(F(s, a) : S \times A \mapsto S \) returns the state after playing action \(a \) on state \(s \) without changing the turn player by playing an additional pass action (Appendix F). Based on this definition, all the actions that satisfy Eq. 1 in the 1STEP attack are already “meaningless” since one of \(b_0, b_1 \) is a pass action. Therefore, humans can verify that \(s \) and \(s' \) are semantically equivalent in the 1STEP attack. For 2STEP attack, we require both \(b_0, b_1 \) to be meaningless (Eq. 1). In this way, humans can verify that \(s \) and \(s' \) are semantically equivalent by checking that both \(b_0 \) and \(b_1 \) are meaningless.

In addition, in the game of Go, we found that most meaningless actions are in one of the player’s territories (Appendix F). Also, humans can usually verify such actions faster. Therefore, in the experiments of Go, we further restrict the perturbation action’s position \(a.p \) within one of the territories \(a.p \in \text{Terr}_W \cup \text{Terr}_B \), where \(\text{Terr}_W \) and \(\text{Terr}_B \) is the territory of each color. The results show that we can find adversarial examples even with this stronger constraint. See Appendix D for the comparison without the territory constraint.

3.2 Success Criteria of Adversarial Attack

Next, we define our attack’s success criteria (C3). We consider two types of attacks: value attacks and policy attacks. For value attack, the goal is to change the prediction of the target agent’s value network. Therefore, we define the attack to be successful if

\[
|v(s) - V(s)| \leq \eta_{\text{correct}} \text{ and } |v(s') - V(s')| \geq \eta_{\text{adv}}.
\]

(4)

The first criterion ensures that the target agent produces the correct value on the original state \(s \), and the second criterion ensures that the target value network becomes incorrect after the perturbation. Note that we already enforce \(V(s) \approx V(s') \) in Subsection 3.1 so (4) implies that the perturbation will change the target agent’s value but not the examiner’s value. Constants \(\eta_{\text{correct}} \) and \(\eta_{\text{adv}} \) are the thresholds to define “correct” and “wrong” in C3. For example, if we want to find an example that PV-NN misclassified the winner of a state, we can set \(\eta_{\text{adv}} = 0.5 \). We can further increase \(\eta_{\text{adv}} \) if we want the target’s output to be wrong by a larger margin. In addition, the verifier can easily tell that target is wrong since \(s, s' \) are supposed to have the same winrate (C2) but \(v(s) \) and \(v(s') \) are different.

For policy attack, we aim to fool the policy output. However, unlike normal classification, there is more than one best action for a state. Therefore, even when the perturbation can significantly change the output policy, it doesn’t mean the new policy is incorrect. We thus have to define the successfulness of the policy attack by checking whether the value (computed by the examiner) will be changed after playing the predicted action. With these in mind, we say the policy attack leads to a “wrong” move if

\[
|Q(s, a_1^*) - V(s)| \leq \eta_{\text{correct}} \text{ and } |Q(s', a_2^*) - V(s')| \geq \eta_{\text{adv}}
\]

(5)

where \(a_1^* = \arg\max_a(p(a|s)) \) and \(a_2^* = \arg\max_a(p(a|s')) \) are the target agent’s recommended actions on \(s \) and \(s' \). The first criterion in (5) ensures that the target agent can predict a proper
action for the original state s, and the second criterion checks whether the target agent will output a significantly worse action in the perturbed state s'. With Eq (5), although the examiner can verify that the target agent plays a losing action on the perturbed state, the verifier may be uncertain that the action a_\ast' is truly bad. Luckily, in our qualitative study, by providing a_\ast' to humans as a hint, humans can immediately tell that a_\ast' is much more important to play than a_\ast^* in the state s' and certify that the target agent is wrong on most pairs (s, s') we found. Hence, we add two more restrictions: $|Q(s, a_\ast^*) - V(s')| \leq \eta_{eq}$, and $|Q(s, a_\ast') - V(s)| \geq \eta_{adv}$. These restrictions ensure that a_\ast' is a good action and a_\ast^* is a bad action for both s and s', so that the verifier can use them as an anchor.

3.3 An Efficient Attack Algorithm

Like other adversarial attacks on reinforcement learning [9][10], we apply our attack to perturb a state in a given game since it only takes one mistake for an agent to lose a game. Formally, given a game $G = \{s_0, s_1, \ldots, s_T\}$, if we can find one pair of (s_i, s'_i), where s'_i is an adversarial example of s_i, then we have successfully attacked the agent on that game. We will first apply the 1STEP attack to a game, and if it fails, we then conduct the 2STEP attack.

Since the search space is countable, a naïve way to find an adversarial example is to conduct a brute-force search to check all states in the search space. However, this will lead to very high complexity, and the search cannot be finished in practice. Taking the 2STEP attack as an example, let $T \approx 300$ denote the game length, $N \approx 150$ denote the average number of actions for a state, and $M \geq 800$ denote the simulation count of the examiner. Then, we need $O(TNM)$ time to obtain the search space for all $B(s_i), i \in \{0, 1, \ldots, T\}$ by checking which actions are meaningless. Furthermore, assume that there are averagely \tilde{N} meaningless moves for each state. Then, we need $O(TN^2M)$ to check the success criteria of each perturbation. Note that in both stages, the running time of the examiner will dominate, as we need to run the examiner with much more MCTS steps. Hence, we propose the following two approaches to reduce the search complexity.

First, we reduce the time of finding meaningless actions by the following observation. If an action a is a meaningful action (not meaningless) of state s_i, then it is likely that a is also a meaningful action of state s_{i-1}. Intuitively, if an action a is a meaningful action at s_i, it means that a can occupy some extra territory that is not occupied at s_i. Hence, if a position is not occupied in s_i, it is likely that the position is not occupied in s_{i-1} and can be occupied by action a too. So action a is also a meaningful action for s_{i-1}. We formally prove this property under some assumptions in Appendix A. Based on this observation, we run the search in a backward manner from the final state s_T to the initial state s_1. Once an action is identified as meaningful at state s_t, we do not need to check it again on any state $\{s_i : i < t\}$. This will significantly save the computational time to enumerate $B(s)$. The details of getting meaningless actions are shown in Appendix C.

Second, for the part of checking the attack success criterion, we derive a bound to filter out unsuccessful perturbations quickly. Taking the value attack as an example, checking 1 and 4 requires running the examiner on the perturbed state s', which is the bottleneck of the algorithm. To reduce this cost, we show that the condition of 1 and 4 implies

$$v(s') - V(s) = |v(s') - V(s')| - |V(s) - V(s')|$$

$$\geq |v(s')| - |V(s) - V(s')| \geq \eta_{adv} - \eta_{eq}. \quad (6)$$

Since 5 only requires running examiner on the original state s instead of s', we can check 5 first before checking 1 and 4. We observe this step can filter out more than 99% of the s'.

Algorithm 1: Two-Step Value Attack

1. **Input:** a game s_1, s_2, \ldots, s_T, target agent t, examiner e
2. for $i = T$ to 0 do
3. if $|e.V(s_i) - \eta_{eq}| > \eta_{correct}$ then
4. continue
5. **cands = getMeaninglessActions** (e, s_i)
6. for b_0 in cands[0] do
7. for b_1 in cands[1] do
8. $s' = T(s_i, b_0), b_1)$
9. if $|t.v(s') - e.V(s_i)| \geq \eta_{adv} - \eta_{eq}$ then
10. if $|t.v(s') - e.V(s')| \geq \eta_{adv}$ and $|e.V(s) - e.V(s')| \leq \eta_{eq}$ then
11. return s'
12. return NULL
Table 1: Attack results on different agents with all datasets. EXECUTED NUM shows the average number of target and examiner calls for the attack, and SPEEDUP indicates the speedup of the proposed method over the brute-force search.

<table>
<thead>
<tr>
<th>AGENT</th>
<th>VALUE</th>
<th>POLICY</th>
<th>1STEP</th>
<th>2STEP</th>
<th>TARGET</th>
<th>EXAMINER</th>
<th>SPEEDUP</th>
</tr>
</thead>
<tbody>
<tr>
<td>KATAGO</td>
<td>0.5</td>
<td>POLICY</td>
<td>0.89</td>
<td>0.90</td>
<td>0.74</td>
<td>0.82</td>
<td>1.05</td>
</tr>
<tr>
<td>LEELA</td>
<td>0.5</td>
<td>POLICY</td>
<td>0.71</td>
<td>0.73</td>
<td>0.59</td>
<td>0.67</td>
<td>1.05</td>
</tr>
<tr>
<td>ELF</td>
<td>0.5</td>
<td>POLICY</td>
<td>0.65</td>
<td>0.63</td>
<td>0.58</td>
<td>0.64</td>
<td>1.04</td>
</tr>
<tr>
<td>CG1</td>
<td>0.5</td>
<td>POLICY</td>
<td>0.65</td>
<td>0.64</td>
<td>0.58</td>
<td>0.64</td>
<td>1.04</td>
</tr>
</tbody>
</table>

Table 2: Attack results on different datasets. EXECUTED NUM shows the average number of target and examiner calls for the attack. The first five datasets are described in experiment settings. FOX is the dataset of non-professional players.

<table>
<thead>
<tr>
<th>GAMES</th>
<th>VALUE</th>
<th>POLICY</th>
<th>1STEP</th>
<th>2STEP</th>
<th>TARGET</th>
<th>EXAMINER</th>
<th>SPEEDUP</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZZ</td>
<td>0.78</td>
<td>POLICY</td>
<td>0.78</td>
<td>0.78</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>ZM</td>
<td>0.78</td>
<td>POLICY</td>
<td>0.78</td>
<td>0.78</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>MH</td>
<td>0.78</td>
<td>POLICY</td>
<td>0.78</td>
<td>0.78</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>LG</td>
<td>0.78</td>
<td>POLICY</td>
<td>0.78</td>
<td>0.78</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>ATV</td>
<td>0.78</td>
<td>POLICY</td>
<td>0.78</td>
<td>0.78</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
</tbody>
</table>

The overall attack algorithm is presented in Algorithm 1. The input includes a game s_1, s_2, ..., s_T, a target agent t, and an examiner agent e. As mentioned before, the search is conducted in a backward manner from s_T back to s_1 (line 2). For each s_i, we first check whether s_i is too hard for the target (line 3). If so, we will skip this state (line 4). We then compute all the meaningless actions of state s_i using the examiner with the efficient implementation mentioned above and store the meaningless actions separately in $cands[i][0]$ and $cands[i][1]$ according to their color (line 5) as the candidates of perturbation. We then check whether each 2STEP perturbation will lead to a successful attack (lines 9-11). Note that line 9 is based on (6), and the examiner does not need to compute $e.V(s_i)$ again since it has evaluated it on line 3. For policy attack, we can skip all the states that are losing $V(s) < \eta_{adv}$ since for those states, there is no correct answer to attack. (More details are in Appendix B).

4 Experiments

Experiment Settings We evaluate our method on 19x19 Go with four GPUs (GTX 1080Ti). The four open-source programs we used are KataGo [13], Leela Zero [34], ELF OpenGo [35], and CGI [36]. The strengths of these AI agents are KataGo \gg Leela $>$ ELF = CGI, where KataGo has more than 99% winrate against Leela when both using 800 MCTS simulations. Since KataGo is the strongest agent, we use its 40 blocks PV-NN with 800 simulations as our examiner. For the thresholds, we set $\eta_{eq} = 0.1$, $\eta_{correct} = 0.15$, since after testing several different η_{eq} and $\eta_{correct}$ values, this pair leads to more human-understandable results. For the datasets, we selected 99 games from five different sources, which are AlphaGo Zero 40 blocks training self-play record (ZZ), AlphaGo Zero vs AlphaGo Master (ZM), AlphaGo Master vs Human champions (MH), the final games of LG Cup World Go Championship (2001-2020) (LG), and the final games of Asian TV Cup (2001-2020) (ATV). ZZ and ZM present the games of humans. Note that the thinking time for ATV Cup is much shorter than LG Cup, so we expect them to reflect human games with different strengths. All the datasets have 20 games, except ZZ has 19 games since the first game is played by two random agents. After removing states that are hard for the examiner’s PV-NN to verify ($e.V(s) - e.V(s_i) > \eta_{eq}$) and the meaningful actions, the average search space of each game contains about 600,000 states.

Results on Different PV-NNs We first evaluate the robustness of the four agents’ PV-NNs since PV-MCTS is much slower. The results are shown in Table 1 where we attack each agent’s PV-NN with both 1STEP and 2STEP attacks with various η_{adv}. We also present the average number of evaluations required for the target agent and the examiner agent to show the speedup. The first two groups in Table 1 demonstrate the robustness of these agents against the value attack. Group one ($\eta_{adv} = 0.5$) shows that even the 1STEP attack can achieve above 90% success rate on all agents and mostly achieve 100% on the 2STEP attack.

For those that have the same attack success rate, we can still compare the attack difficulties by the number of target evaluations. For example, although the 2STEP success rates of KataGo, ELF, and
Figure 2: The attack success rate of $\eta_{adv} = 0.7$ on datasets that are generated by KataGo 40 blocks with 800 simulations vs KataGo 20 blocks with different number of simulations.

CGI are all 100%, the number of states that they have visited is totally different. For CGI, we are able to find an adversarial example after visiting 40 states, while ELF requires visiting 11, 108 states. Hence, we conclude that Leela > ELF > KataGo > CGI in terms of their robustness against value attack when $\eta_{adv} = 0.5$ and $\eta_{adv} = 0.7$. Interestingly, this ranking does not match the playing strength of each agent.

The third and fourth groups of Table 1 show the results of the policy attacks. In general, we observe that it is harder to attack the policy than the value.

Interestingly, the ranking of four agents in terms of their policy’s robustness is KataGo \gg Leela $>$ ELF \approx CGI, which aligns with the playing strengths of those agents. In addition to Table 1 in order to check whether it is possible to change the PV-NN’s output catastrophically, we conduct an extreme experiment on KataGo with $\eta_{adv} = 0.9$. The result shows that the 2STEP success rates of value and policy attacks still have 62% and 48%, respectively.

In Table 1, we also demonstrate our algorithm’s speedup in the SPEEDUP column compared to the brute force algorithm. In the brute force algorithm, the examiner must evaluate all the states the target agent has evaluated. Hence, the speed up is almost equal to $(n_{target} \times n_{MCTS}) / (n_{target} + n_{examiner} \times n_{MCTS})$, where n_{target} and $n_{examiner}$ are the numbers of states that the target and the the examiner have executed. n_{MCTS} is the number of simulations that the examiner use for the PV-MCTS. The results show that the proposed efficient search method is usually more than a hundred times faster than a brute-force search, especially for harder problems that require the 2STEP attacks to succeed.

Results on Different Datasets\footnote{https://www.foxwq.com/} Besides the robustness of each agent, does the robustness vary between different types of game records? To answer this question, we consider the 5 datasets used in the previous subsection, plus an additional FOX dataset, which consists of games randomly selected from one of the most popular online Go playing platforms named FOX\footnote{https://www.foxwq.com/}. We add this dataset to represent amateur players and see if the games played by weaker players are harder to attack since those games are easier for humans to understand. The results in Table 2 show that PV-NNs are vulnerable to all levels of games, regardless of AI agents, professional players or non-professional players. Fig. 3 shows two of the examples. We observe that the AlphaGo Master vs Human champions (MH) dataset has the lowest success rate on both policy and value attacks compared to other datasets. We hypothesize that AlphaGo Master is much stronger than human champions (AlphaGo Master had played 60 games against human champions without losing any of them). When one player is much stronger than the other, the winner of the game may be too obvious and easy for agents to judge. Also, it is harder for the policy to be weak enough to lose the game. To support this hypothesis, we generate games of KataGo 40 blocks (K40) with 800 simulations vs KataGo 20 blocks (K20) with different simulations (20 games for each simulation) to simulate games played by players with different strengths. Note that K20 is much weaker than K40, even with the same amount of simulations. Therefore, when K20 uses fewer simulations, the gap between the two players is even larger. Fig. 3 shows the results of attacking KataGo’s PV-NN with those games and $\eta_{adv} = 0.7$.\footnote{https://www.foxwq.com/}

<table>
<thead>
<tr>
<th>SUCCESS RATE</th>
<th>EXECUTED NUM</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIM</td>
<td>1STEP</td>
</tr>
<tr>
<td>VALUE</td>
<td>1</td>
</tr>
<tr>
<td>$\eta_{adv} = 0.5$</td>
<td>0</td>
</tr>
<tr>
<td>POLICY</td>
<td>25</td>
</tr>
</tbody>
</table>

Table 2: KataGo with different simulations on ZZ dataset. EXECUTED NUM shows the average number of target and examiner calls for the attack.
For games that are generated by K20 only used 5 simulations, both the policy and value output of KataGo’s PV-NN are hard to attack. The 1STEP policy attack even fails for all of the 20 games as we increase the simulation count of K20, the success rates of all the attacks increase. This suggests that the playing strength between game players will likely affect the difficulty of finding adversarial examples.

Robustness of PV-MCTS In this paragraph, we investigate the robustness of PV-MCTS with different simulations. Since PV-MCTS is much slower than PV-NN, we only test KataGo on the AlphaGo Zero self-play (ZZ) dataset with $t_{adv} = 0.5$. The results are shown in Table 5. The first column is the simulation count of KataGo. When the simulation equals one, it is the same as using PV-NN directly. The first group shows the results of the value attack. Even with 25 simulations, the 2STEP success rate is still 89%. For group two, we observe that the policy of small simulations is even less robust than PV-NN’s policy. For example, when the simulations of KataGo is 10, the 1STEP success rate is 95%, while the policy of PV-NN is 84%. Therefore, we conclude that with a small number of MCTS simulations, the agent will not be able to recover from the bad PV-NN outputs and will still be fooled by adversarial examples. However, when using more MCTS simulations, the attack success rates will still drop since the agent has more chances to discover correct actions.

Quality of adversarial examples Although the AZ agents do make mistakes on the adversarial examples we found, we still need to make sure that those mistakes are so low-level that even humans can verify them. Hence, we randomly selected 100 examples from all the experiments and conducted the following two studies to see how many percent of mistakes are human verifiable mistakes. Fig. 3-4 show four examples that we samples, and more can be found in Appendix H.

In the first study, we examine whether humans can verify that perturbed state s' is semantically equal to the original state s. For each adversarial example, we present both the original board and the additional stones to 3 humans (with level 2k, 3d, 5d) who served as verifiers. For 90% of those perturbations, they can certify that the perturbations are meaningless with a short thinking time. Fig. 4 (right) shows one of the fail examples, where the meaningless action J3 seems meaningful to humans since it can capture the black stone J2. However, with a longer thinking time and discussion with each other, verifiers can understand that the rest 10% of actions are meaningless.

In the second study, we examine whether the “wrong” actions resulting from our policy attack can be verified by humans. Similar to the previous experiment, we present the original board, original action, perturbed board, and the action after perturbation to the examiners. When the target agent is a PV-NN, humans can identify 100% that the recommended actions after perturbation will change the result from winning to losing. However, for the adversarial examples where the target is PV-MCTS agents,
only 70% of the recommended actions after perturbation can be identified as wrong by humans. The main reason is that as PV-MCTS agents are able to lookahead, they tend to avoid actions that are clearly wrong, so the errors become more subtle to humans. Fig. 4 (left) shows one of the states, where the white should play at A to save the stones marked with squares, but with two meaningless moves added the PV-MCTS agent with 100 simulations will play at B. Although after playing B all the stones marked with squares will be dead, it is hard for humans to verify the outcome of this play.

Agents are sensitive to the ordering of actions in the trajectory Finally, after viewing those adversarial examples, we find that the policy attack succeeds often because the target agents are too reliant on the information of the last action. For example, if KataGo knows the last action of Fig. 1b besides the actions we add is white playing E3, even PV-NN knows that it needs to play E1. Based on this observation, we can improve the robustness of PV-NNs using the following method. Given a state s with trajectory a_0, a_1, \ldots, a_t, we define an augmented state \tilde{s} as $a_0, a_1, a_2, \ldots, a_{t-1}, a_t, a_{t-2}, a_{t-3}$. If \tilde{s} is a legal state, we can define a robust policy $p_r(a|s) = (p(a|s) + p(a|\tilde{s}))/2$. With this method, PV-NNs can evaluate the state s with different actions being the last one. We evaluated this method on the same setting as Table 3 (attacking KataGo’s PV-NN with ZZ dataset and $\eta_{adv} = 0.5$). The success rate of 1STEP and 2STEP policy attacks dropped to 58% and 89%, even better than the original PV-NN and PV-MCTS with 25 simulations.

Experiments on the game of NoGo Our “action perturbation” method can also be used to find severe bugs automatically on other games by removing the territory constraint. We use the following 9x9 NoGo [15] experiments to demonstrate it. We use an AZ agent [27] with 800 simulations as the examiner and use its PV-NN as the target agent. Since NoGo is a game without any human experts, we use a traditional MCTS agent [38] with 1000 simulations as the weaker verifier. Note that the target agent has a 100% winrate against the verifier in 1000 games. Intuitively, the target network will not make a critical mistake that the verifier will not make. However, on 20 self-play games of the target network (the average search space is about 10000), 50% of the games exist adversarial policy examples with $\eta_{adv} = 0.5$ that the verifier can verify. Moreover, our proposed efficient search method based on Eq. 6 is 307x faster than the brute force search.

5 Conclusion and Future Works

In this paper, we first properly define the perturbation set $B(s)$ and the success criteria with the help of an examiner, which become even more reliable after giving it some hints. The adversarial examples we find are understandable to a much weaker verifier like amateur human players. We also proposed a new efficient search algorithm by reducing the usage of the examiner. Our experiments found that even the strongest AZ agent with a small number of simulations is vulnerable to our adversarial attack. We hope our work can raise the attention that even for AI agents that surpass humans by a large margin, they still can make simple mistakes that humans will not.

A limitation of this paper is that we are only able to identify adversarial states but haven’t been able to systematically guide the AZ agents to those states [12]. A naive way is training an agent with the game records of playing against the target agent instead of self-play records. However, additional training may be too time-consuming. Even if the agent can defeat the target agent, the target agent may easily change itself by continuing several runs of AZ training, and we need to retrain another adversary agent. Moreover, it does not answer our question: are AZ agents always better than humans? Since it is not guaranteed that the target agent will make low-level mistakes during the whole game.

Moreover, we hope our work can serve as a generalization benchmark for Go AI. If a Go AI is generalized enough, it should be able to provide a decent action on any state in Go, just like humans. One of the solutions is to use the numerous examples we found to train a better agent.

Acknowledgments and Disclosure of Funding

This work is supported in part by NSF under IIS-2008173, IIS-2048280, and by Army Research Laboratory under W911NF-20-2-0158.
References

A Proof of Meaningful Action

In this section, our goal is to prove that a meaningful action b_0 of the state s_t will also be the meaningful action of the state s_{t-1} under following two assumptions.

- a_1 Changing the order of the trajectory $a_0, a_1, \ldots, a_{t-1}$ of state s_t will not change the state s_t.
- a_2 The action a_{t-1} is the best action of both s_{t-1} and s'_{t-1}.
- a_3 Adding an extra action to the board will not reduce the winrate of the action’s color.

Both assumptions are true in the most states on Go and NoGo. For convenience, we assume the turn color is of s_t is black and b_0 is one of its meaningful action. We also define $V_B(s)$ as the state value of black for state s. Now our goal is to prove that b_0 is still meaningful action to s_{t-1}.

![Figure 5: Proof illustration](image)

Since adding an extra action will only benefit to the action’s player and the turn player of b_0 is black. According to Fig. 5, we just need to prove that

$$V_B(s_t) < V_B(s'_t),$$

Given $V_B(s_t) < V_B(s'_t)$, prove that $V_B(s_{t-1}) < V_B(s'_{t-1})$. \hspace{1cm} (7)

First since a_{t-1} is the best action of s_{t-1}, we have $V_B(s_t) = V_B(s_{t-1})$. Also, since a_{t-1} is the best action of s'_{t-1}, we have $V_B(s'_{t-1}) = V_B(s'')$.

Next, due to the a_3 assumption, we have $s'_{t} = s''$.

Finally, we have $V_B(s'_{t-1}) = V_B(s'') = V_B(s'_t) > V_B(s_t) = V_B(s_{t-1})$.
B Algorithm of the 2STEP Policy Attack

The algorithm is shown in algorithm 2.

Algorithm 2 Two-Step Policy Attack

1: Input: a seq states s_i, target agent t, examiner e
2: for $i = T$ to 0 do
3: $a_s = \arg\max_a (t.p(a|s))$
4: if $|e.Q(s_i, a_s) - e.V(s_i)| > \eta_{\text{correct}}$ or $e.V(s_i) < \eta_{\text{adv}}$ then
5: continue
6: actions = getMeaninglessActions(e, s_i)
7: for b_0 in actions[0] do
8: for b_1 in actions[1] do
9: $s' = T(T(s, b_0), b_1)$
10: $a_{s'} = \arg\max_a (t.p(a'|s'))$
11: if $|e.Q(s, a_{s'}) - e.V(s)| \geq \eta_{\text{adv}}$ then
12: if $|e.Q(s', a_{s'}) - e.V(s')| \geq \eta_{\text{adv}}$ and $|e.V(s) - e.V(s')| \leq \eta_{\text{eq}}$ and $|e.Q(s', a_{s'}) - e.V(s')| \leq \eta_{\text{correct}}$ then
13: return s'
14: return NULL

C Algorithm of Getting Meaningless Action

The algorithm is shown in algorithm 3.

Algorithm 3 Get Meaningless Actions

1: Member variable a set of actions that are meaningful $\text{meaningful_actions}$
2: Input: a state s_i, target agent t, examiner e
3: ret = [[]]
4: terr = e.get_territory(s_i)
5: $a_s = e$.get_best_action(s_i)
6: $V_{s'} = e$.get_value($T(s, a_s)$)
7: for a in $A(s_i) \cup A(T(s, a_{pass}))$ do
8: if $-0.8 \leq \text{terr}[a.p] \leq 0.8$ then
9: continue
10: if $a.c = = s_i.c$ then
11: $s'' = T(T(s, a_{pass}), a_s)$
12: else
13: $s'' = T(T(s, a_{pass}), a_s)$
14: $v_{s''} = e$.get_quick_value(s'')
15: if a in $\text{meaningful_actions}$ and $\text{isEq}(v_{s''}, V_{s''})$ then
16: if $\text{isEq}(e$.get_value(s''), $V_{s''}$) then
17: $\text{meaningful_actions}.\text{remove}(a)$
18: else if a not in $\text{meaningful_actions}$ and not $\text{isEq}(v_{s''}, V_{s''})$ then
19: if not $\text{isEq}(e$.get_value(s''), $V_{s''}$) then
20: $\text{meaningful_actions}.\text{add}(a)$
21: else a not in $\text{meaningful_actions}$ then
22: if $a.c = = s_i.c$ then
23: ret[0].add(a)
24: else
25: ret[1].add(a)
26: return ret
D The Input of PV-NN

The inputs of PV-NN are not independent. Take AlphaGo Zero as an example, given a state \(s_t \) at step \(t \), it will generate 17 feature planes as the input of PV-NN. Each feature plane is a \(19 \times 19 \) binary 2D array that includes the information the latest eight states. For example, there are eight feature planes \(\{X_t, X_{t-1}, \ldots, X_{t-7}\} \) indicates the presence of the current player’s stones of \(s_t, s_{t-1}, \ldots, s_{t-7} \). If position \(p = (i, j) \) has current player’s stone at time \(t \), then \(X_t[i][j] = 1 \) else \(X_t[i][j] = 0 \). Since each player can only place on stone at a time, \(X_t \) will mostly be the same. Hence, the legal inputs feature are not independent. Additionally, most AIs have more complex feature planes as input, including the domain knowledge of Go. For example, a common feature is "liberty," which means how many additional enemy stones are needed to capture the position. This kind of input is also not independent to other feature planes.

E Territory

Starting from an empty board, one player places a stone on a vacant part of the board to surround more territory or defend our territory from being “captured” by the opponent’s stones. It is critical to select actions that can gain more territory. Normally, once a position belongs to a color, it is hard to change it. Hence, putting a stone in any color’s territory is usually wasting a turn.

Since territory is so important in Go, many agents’ PV-NNs ([13]) has an additional output to predict the territory. Given a state \(s \), the territory output \(\text{terr}(s) \) is a vector of scalar. Each element of the vector \(-1 \leq \text{terr}(s)[i] \leq 1\) shows how a position \(i \) is likely to belong to. For example, \(\text{terr}(s)[i] < -0.8 \) means that position \(i \) is likely belongs to the color white and \(\text{terr}(s)[i] > 0.8 \) means position \(i \) is likely belongs to the color black. In our experiment, we define the positions of meaningless actions should be one of the players’ territory. That is, we will not consider an action \(a \) as meaningless action if its position \(p \) is not one of the player’s territory \(-0.8 \leq \text{terr}(s)[i] \leq 0.8\).

F Formal Definition of the Skip Function

Function \(F(s, a) : S \times A \mapsto S \) will play the action \(a \) on state \(s \) without changing the turn player by skipping the opponent’s turn. Since action’s color \(a.c \) might not be the turn color of \(s \), in that case, we need to play action pass \(a_{\text{pass}} \) first. Finally, \(F \) is formulated as follow:

\[
F = \begin{cases}
T(T(s, a_{\text{pass}}), a) & s.c = a.c \\
T(T(s, a_{\text{pass}}), a) & s.c \neq a.c
\end{cases}
\]

where \(s.c, a.c \) are the color of the state and the action, \(a_{\text{pass}} \) is the pass action.
G Go Experiments without Territory

In this section, we attack KataGo’s PV-NN without using the territory constraint. The results are shown in Table 4 and can be compared with Table 5 which is the normal setting with territory. Without the territory constraint, it is easier for our method to attack the target model. For example, the 2STEP success rate on policy attack become 100% after removing the territory constraint. Another observation is that without the territory constraint, it is more likely to call the examiner. This might because the meaningless actions under territory constraint are more stable. Hence, if $v(s')$ is different from $V(s)$, it is more likely that it is and adversarial example, instead of s' is semantically different form s.

<table>
<thead>
<tr>
<th>Table 4: Attack KataGo’s PV-NN without territory constraint.</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUCCESS RATE</td>
</tr>
<tr>
<td>GAMES</td>
</tr>
<tr>
<td>VALUE $\eta_{adv} = 0.7$</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>POLICY $\eta_{adv} = 0.7$</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 5: Attack KataGo’s PV-NN with territory constraint.</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUCCESS RATE</td>
</tr>
<tr>
<td>GAMES</td>
</tr>
<tr>
<td>VALUE $\eta_{adv} = 0.7$</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>POLICY $\eta_{adv} = 0.7$</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

H Visualized Examples

Fig. 6 provides some examples we found on different agents and different types of games. The perturbation actions are marked as 1 and 2. If it is a policy attack, the best action of both s and s' is mark as A and the bad action that the target model want to play is marked as B. The subcaption of each examples first shows the which dataset it is form. For example, "FOX_12k" means that the game from dataset FOX and was generate from level 12k player. For another example, "ZZ_8" means the number 8 game of AlphaGo Zero self-play. Second, the subcaption describe the target model. If it is just PV-NN, we will present it using the first letter of the agent. For example, 'K' for KataGo, 'C' for CGI. On the other hand, if the target model is MCTS, we will add a 'M' and simulation count after the first letter of the model. For example, "KM25" means KataGo MCTS agent with 25 simulation. Finally, the third component of the subcaption show the type of attack and the threshold η_{adv}. For example, "P0.7" means policy attack and $\eta_{adv} = 0.7$.
Figure 6: Each subfigure presents an adversarial example. The subcaption provides the name of dataset, the program to be attacked (K = KataGo, L = Leela, E = Elf, C=CGI, KMXX = KataGo MCTS with XX simulations), and the policy attack (P) or value attack (V) concatenating with η_{adv}, separating by space. For example, in (a), "FOX_12k K P 0.9" represents a policy attack with $\eta_{adv} = 0.9$ on KataGo, where the game record is chosen from FOX dataset, and in (j) "ZZ_8 KM25 P0.7" means the attacking policy with $\eta_{adv} = 0.7$ KataGo MCTS with 25 simulation on ZZ dataset.