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Abstract

We investigate popular resampling methods for es-
timating the uncertainty of statistical models, such
as subsampling, bootstrap and the jackknife, and
their performance in high-dimensional supervised
regression tasks. We provide a tight asymptotic
description of the biases and variances estimated
by these methods in the context of generalized lin-
ear models, such as ridge and logistic regression,
taking the limit where the number of samples and
dimension of the covariates grow at a comparable
fixed rate. Our findings are three-fold: i) resam-
pling methods are fraught with problems in high
dimensions and exhibit the double-descent-like be-
havior typical of these situations; ii) only when
the sampling ratio is large enough do they provide
consistent and reliable error estimations (we give
convergence rates); iii) in the over-parametrized
regime relevant to modern machine learning prac-
tice, their predictions are not consistent, even with
optimal regularization.

1 INTRODUCTION

Estimating and quantifying errors is a central aspect of sta-
tistical practice. Nevertheless, a solid understanding of how
uncertainty can be reliably quantified in modern machine
learning practice is largely missing, despite being a key
endeavor towards a reliable use of these methods across
sensitive applications. This paper delves into a compre-
hensive mathematical analysis of conventional resampling
methods to estimate uncertainty, such as subsampling, the
bootstrap and the jackknife, specifically in the context of
high-dimensional regression and classification tasks.

Let Z1, · · · , Zn ∼ pθ denote n independent samples from a
parametric probability distribution. Given an estimator θ̂ of
θ (e.g. the maximum likelihood estimator), one is interested

not only in the absolute performance of θ̂ but also in estimat-
ing how reliable it is, e.g. error bars. In particular, even if
the estimator is consistent, i.e. θ̂→θ when n→∞, having
access only to a finite amount of data n introduces uncer-
tainty in our estimation θ. A central question in statistics is
how to quantify this uncertainty [Wasserman, 2004].

A classical family of non-parametric methods developed
to address this question are resampling methods [Tibshi-
rani and Efron, 1993, James et al., 2023], which consist
in estimating the statistics of interest from the empirical
distribution pn = 1/n

∑n
i=1 δZi

. Our goal is to investigate
the statistical properties of three popular resampling meth-
ods in the context of the most widespread machine learning
task: supervised learning. Here the samples are given by
pairs Zi = (xi, yi) from a joint distribution pθ(x, y), with
xi ∈ Rd being the covariates and yi ∈ Y ⊂ R the labels.
Given the parameter θ̂ learned by a fitting model, say ridge
or logistic regression, the goal is to estimate the actual bias
and variance of θ̂.

We focus on the high-dimensional regime, where both the
number of samples n and their dimension d are compara-
tively large, with a fixed ratio α = n/d. We provide a tight
asymptotic description of the biases and variances estimated
by resampling methods for generalized linear models, such
as ridge and logistic regression or any M-estimator. We
show that resampling methods are fraught with problems
in high-dimensions, either overestimating or underestimat-
ing the mean and variances. Reliable error estimation can
only be reached in the regime when α ≫ 1, for which
we provide asymptotic rates of convergences. However, in
the overparametrized regime α < 1, relevant to modern
machine learning practice, the predictions of resampling
methods are clearly off, even when optimally regularizing.

2 SETTING & MOTIVATION

We consider the class of generalized linear estimation prob-
lems, where the goal is to estimate a parameter θ⋆ ∈ Rd
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from n independent samples D = {(xi, yi)i∈[n]} drawn
from the following distribution:

yi ∼ p(·|θ⊤
⋆ xi), xi ∼ N (0, 1/dId) (1)

for a general likelihood p(y|z). Therefore, in this case, the
joint distribution reads pθ⋆

(x, y) = p(y|θ⊤
⋆ x)p(x). For

concreteness, we assume θ⋆ ∼ N (0, Id). In the following,
we focus on the (regularized) maximum likelihood estima-
tor:

θ̂λ(D) = argmin
θ∈Rd

n∑
i=1

− log p
(
yi|θ⊤xi

)
+

λ

2
∥θ∥22 (2)

also known as empirical risk minimizer in the context
of supervised machine learning, where the loss func-
tion coincides with minus the empirical log-likelihood:
ℓ(y, z) = − log p(y|z). When it is clear from the context,
we omit the training data dependence D in the MLE estima-
tor and write θ̂λ.

We will focus on two particular examples of generalized
linear estimation: ridge and logistic regression. Ridge re-
gression is a regression problem Y = R, which corresponds
to the Gaussian likelihood p(y|z) = N (y|z,∆) of mean
z and variance ∆ (or equivalently the square loss function
ℓ(y, z) = 1

2∆ (y − z)2) for ∆ > 0. Instead, logistic re-
gression is a binary classification problem Y = {−1,+1}
which corresponds to a logit likelihood p(y|z) = σ(yz)
for σ(t) = (1 + e−t)−1 the logistic function (this cor-
responds to the logistic or cross-entropy loss function
ℓ(y, z) = log(1 + e−yz)).

Note that the estimation problem introduced above is well-
specified, and therefore enjoys strong mathematical guar-
antees in the classical statistical regime where n → ∞ at
fixed d. For instance, a well-known result is the asymptotic
normality of the MLE for λ = 0 [Wasserman, 2004]:

√
n
(
θ̂0 − θ⋆

)
(d)→ N (0, I−1), n → ∞ (3)

where I ∈ Rd×d is the Fisher information matrix, in partic-
ular implying consistency and calibration of the maximum
likelihood estimator. However, those guarantees break down
when the number of samples is comparable with the di-
mension of the covariates n = Θ(d). This is precisely the
regime of interest in our work, and applying it to resampling
methods will be our goal in the following.

2.1 WHAT STATISTICIANS WANT

“Bias” and “variance” depend on the underlying data sam-
pling process, and therefore, different notions co-exist,
whether one takes, for instance, a frequentist or Bayesian
viewpoint. Below, we define these different quantities,
which resampling methods try to approximate.

Frequentist bias and variance — In the classical fre-
quentist approach, the statistician seeks to estimate the bias
and variance with respect to the data sampling process. This
induces the classical bias-variance decomposition of the
mean squared error for the estimator θ̂λ:

MSE(θ̂λ)=
1

d
ED,θ⋆

[
∥θ̂λ − θ⋆∥2

]
=Bias2D(θ̂λ)+VarD(θ̂λ)

with:

Bias2D(θ̂λ) =
1

d

∥∥∥ED,θ⋆

[
θ̂λ

]
− θ⋆

∥∥∥2 (4)

VarD(θ̂λ) =
1

d
ED,θ⋆

[∥∥∥θ̂λ − ED,θ⋆

[
θ̂λ

]∥∥∥2] . (5)

We emphasize that in this case, the expectations are
taken with respect to sampling of the full data set
D = {(xi, yi)i∈[n]} ∼ p⊗n

θ⋆
.

Conditional bias and variance — Alternatively, in a
supervised learning setting one can define the bias and
variance only with respect to the sampling of the labels
yi ∼ p(·|x⊤

i θ⋆), i.e. conditionally on the covariates xi.
This is known as a fixed design analysis. We will refer to the
corresponding notions as conditional bias and variance:

Bias2D|X(θ̂λ) =
1

d

∥∥∥ED[θ̂λ|X]− θ⋆

∥∥∥2 (6)

VarD|X(θ̂λ) =
1

d
ED

∥∥∥θ̂λ − E[θ̂λ|X]
∥∥∥2 , (7)

where for convenience we defined the covariate matrix X ∈
Rn×d with rows given by the covariates xi ∈ Rd.

Bayesian estimator and variance — Finally, it is natural
to compare the maximum likelihood estimator above with
the best estimator (in mean squared error) conditioned on
the full training data D, also known as the Bayes-optimal
estimator. It requires, however, the knowledge of the a priori
distribution of the “true” weights.

θ̂bo = argmin
θ̂∈Rd

E
[
∥θ̂ − θ⋆∥2

]
= E[θ|D] (8)

where the conditional expectation is taken with respect to
the posterior distribution:

p(θ|D) ∝ N (θ|0, Id)

n∏
i=1

p(yi|θ⊤xi) (9)

Note that, by definition, θ̂bo is an unbiased and calibrated
estimator of θ⋆ [Clarté et al., 2023b]. Nevertheless, it cap-
tures the irreducible variance due to the fact we have a finite
sample D of the population distribution:

Varbo =
1

d
E
[
∥θ − θbo∥2 |D

]
(10)

where, again, the expectation is taken over the posterior
distribution p(θ|D).
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2.2 RESAMPLING ESTIMATES

A central problem in statistics is the estimation of the
biases (4) & (6) and variances (5) & (7), which involve
population expectations, from a finite number of samples
D = {(xi, yi)i∈[n]}. Resampling methods are a popular
class of statistical procedures that fit a family of B estima-
tors θ̂b ≡ θ̂λ(D⋆

b ) from resampled data D⋆
b generated from

the original samples D = {(xi, yi)i∈[n]}, and from which
the bias and variance of θ̂λ can be estimated:

B̂ias
2
=

1

d

∥∥∥∥∥ 1

B

B∑
b=1

θ̂b − θ̂λ

∥∥∥∥∥
2

, (11)

V̂ar =
1

dB

B∑
b=1

∥∥∥∥∥θ̂b −
1

B

B∑
b=1

θ̂b

∥∥∥∥∥
2

(12)

In this work, we will focus on the following methods:

- Pair bootstrap: Consists in resampling D⋆
b from D

with sample replacements, or in other words, sampling
D⋆

b = {(x⋆
b,i, y

⋆
b,i)i∈[n]} ∼ p⊗n

n from the empirical distri-
bution.
- Residual bootstrap: Akin to the pair bootstrap method,
but for the conditional distribution p(y|z). In practice, one
first fits an estimator θ̂λ(D) on the original samples (the
MLE (2) in our setting), and given a statistical model for
p̂(y|z), one resamples only the labels from p̂(y|θ̂λ(D)⊤xi),
generating new datasets D⋆

b = {xi, y
⋆
b,i}ni=1. This allows

for the estimation of conditional statistical errors.
- Subsampling: Consists of generating new datasets D⋆

b of
a smaller size ⌊rn⌋ by subsampling D without replacement,
where r ∈ (0, 1). While bootstrap creates datasets of the
right size but from the wrong distribution (as elements of
D are duplicated), subsampling relies on data of the wrong
size but from the right distribution.1

- Jackknife: Consists of creating B = n datasets D⋆
b =

{(xi, yi)i ̸=b}, each of which leaves a single sample out.
Note that when n→∞, as in our high-dimensional regime,
this is equivalent to subsampling with r→1.

For notational convenience, we will refer to these statistics
as B̂ias2t , V̂art with t ∈ {pb, rb, ss, jk} for pair (pb) and
residual bootstrap (rb), subsampling (ss) and jackknife (jk).

3 CONTRIBUTIONS & RELATED WORK

The resampling methods above have been widely studied
in the classical statistical literature, with whole books dedi-
cated to proving their mathematical soundness [Efron, 1979,
Efron and Tibshirani, 1986, Davison and Hinkley, 1997].
However, as discussed in Section 2 most of the classical
guarantees hold in the regime where the quantity of data

1Since the D⋆
b ’s are independent conditionally on D.

n available to the statistician is large in comparison with
data dimension d — a regime that falls short in the context
of modern machine learning practice. Of particular impor-
tance was the work of Karoui and Purdom [2018] who have
pointed out the lack of consistency of the bootstrap method
for unregularized least squares, in the underparametrized
regime n > d. One of our goals in this manuscript is to fill
the gap, providing a complete evaluation of the aforemen-
tioned methods (beyond bootstrap), including the effect of
regularization and over-parametrization.

More precisely, our main contributions are:

• We provide a closed-form expression for the biases and
variances in the proportional high-dimensional limit where
n, d → ∞ at fixed rate α = n/d for all the cases discussed
in Section 2: the pair and residual biases and variances
and their bootstrap, subsample, and jackknife estimates. Our
result holds for generic log-concave likelihoods (correspond-
ing to convex losses) and convex regularizers.
• Our formulas are derived from mapping to a Generalized
Approximate Message Passing (GAMP) scheme admitting a
rigorous asymptotic characterization in terms of state evolu-
tion equations [Bayati and Montanari, 2011a,b, Javanmard
and Montanari, 2014, Emami et al., 2020, Loureiro et al.,
2021]. We believe this derivation has an interest on its own,
as we show how simultaneously tracking coupled GAMP
trajectories provides the biases and variances for all the re-
sampling methods. Our construction is quite generic and
can be extended to other variants of interest.
• Our examination into the effectiveness and limitations of
these methods yields three key insights. Firstly, we demon-
strate that resampling techniques face significant challenges
in high-dimensional contexts, resulting in a double-descent
behavior typical of such scenarios. Secondly, we find that
these methods yield consistent and reliable error estimates
only when the ratio α is sufficiently large, for which we also
present convergence rates. Thirdly, in the overparametrized
regime where α < 1, the predictions remain inconsistent
despite optimal regularization.

Further related work — Resampling methods are a clas-
sical topic in statistics. The jackknife method was introduced
in Quenouille [1956], refined by Tukey [1958] and analysed
by Efron and Stein [1981]. Bootstrap was introduced by
Efron [1979], and studied in the context of least squares
estimation in Freedman [1981], Wu [1986].

The asymptotic theory of high-dimensional statistical gen-
eralized linear problems has witnessed a burst of activity
over the last decades. Pioneered by the statistical physics
community in the late 80s [Gardner and Derrida, 1989,
Opper et al., 1990, Krogh and Hertz, 1991, Seung et al.,
1992, Kabashima and Shinomoto, 1992], it is now an es-
tablished field of research encompassing applications to
machine learning, statistics, and signal processing among
others [Bayati and Montanari, 2011b, El Karoui et al., 2013,
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Donoho and Montanari, 2016, Thrampoulidis et al., 2015,
2018, Dobriban and Wager, 2018, Sur and Candès, 2019,
2020, Gerbelot et al., 2020, Takahashi and Kabashima, 2022,
Loureiro et al., 2021, 2022, Bellec and Zhang, 2023, Bellec,
2023]. Bayes-optimal generalization guarantees for general-
ized linear models were established by Donoho et al. [2013],
Krzakala et al. [2012], Barbier et al. [2019], Maillard et al.
[2020]. Sur and Candès [2020] have shown that, besides not
being well-defined when n < d, the unregularized maxi-
mum likelihood estimator is biased [El Karoui et al., 2013,
Karoui, 2013, Bean et al., 2013, Sur and Candès, 2019, Bel-
lec et al., 2022] for n > d. One consequence is that the
variance of the MLE underestimates the true variance of θ⋆,
leading to an overconfident prediction [Bai et al., 2021a,b,
Clarté et al., 2023b]. Indeed, Clarté et al. [2023b,a] high-
lighted the importance of properly regularizing the MLE in
the high-dimensional regime, showing that cross-validation
over λ can mitigate some of these issues. Clarté et al. [2023]
showed that post-training temperature scaling can mitigate
overconfidence, regardless of the regularization used.

Bagging (the combination of subsampling with ensembling)
has been studied in the high-dimensional regime by [Sollich
and Krogh, 1995, Krogh and Sollich, 1997, LeJeune et al.,
2020, Patil et al., 2023, Du et al., 2023, Chen et al., 2023,
Ando and Komaki, 2023, Patil and LeJeune, 2023]. Ensem-
bling has also been investigated in the context of the random
features model as a tool to decouple the different sources
of randomness [D’Ascoli et al., 2020, Lin and Dobriban,
2021, Adlam and Pennington, 2020, Loureiro et al., 2023].
The performance of bootstrap averaging has been studied
in the context of Gaussian Processes and Support Vector
Machines using the replica method by Malzahn and Opper
[2002, 2003]. A replicated AMP algorithm for computing
bootstrap averages of GLMs was proposed by Takahashi
and Kabashima [2019] and studied in the context of LASSO
[Obuchi and Kabashima, 2019] and Elastic Net [Takahashi,
2023].

Finally, we note that resampling methods in the context of
generalized linear models are not just theoretical abstrac-
tions but are actually used in machine learning practice. For
instance, Musil et al. [2019] use subsampling to estimate the
uncertainty in kernel regression for the energy of molecular
compounds. Their observation that subsampling yields a
better uncertainty estimation than Bootstrap or Gaussian
processes is one motivation for the present work.

4 MAIN TECHNICAL RESULTS

The key observation in the results that follow is that in
order to asymptotically characterize the biases and variances
associated with any of the resampling methods in Section 2,
it is sufficient to characterize only a few correlations. For

example, the resampling variance (12):

V̂ar =
1

d

 1

B

B∑
k=1

∥θ̂k∥2−
1

B2

B∑
k,k′=1

θ̂
⊤
k θ̂k′

 . (13)

Assuming the data sets D⋆
k are independently resampled

from D, it is then enough to characterize the norm of θ̂1

and the correlation between two independent (conditionally

on D) resampled estimators θ̂
⊤
1 θ̂2 - with all the rest being

statistically similar. The results that follow precisely charac-
terize these quantities asymptotically. Finally, the methods
defined in Section 2 naturally divide into two categories:
estimators for the statistics of the joint distribution pθ⋆(x, y)
(we refer to them as pair resampling) and for the conditional
distribution p(y|θ⊤

⋆ x) (we refer to them as conditional or
residual resampling). Below, we start by discussing our
results for the former.

4.1 PAIR RESAMPLING

The key idea is to reframe the regularized MLE problem (2)
as a weighted empirical risk minimization (wERM) problem:

θ̂λ (D,p) = arg min
θ∈Rd

n∑
i=1

−pi log p
(
yi|θ⊤xi

)
+ λ/2∥θ∥2

(14)
where for each sample (xi, yi) ∈ D, we have introduced
a sample weight pi. When pi = 1 for all i ∈ [n], this
reduces to standard MLE (2), which we sometimes refer to
as full resampling (abbreviated fr). However, by taking the
pi’s at random from a judiciously chosen distribution, we
can asymptotically cover all pair resampling methods from
Section 2.

Indeed, it is immediate to see that by choosing pi ∈ {0, 1}
at random from a Bernoulli distribution with probability
r ∈ (0, 1], the wERM (14) asymptotically corresponds to
doing subsampling. Intuitively, this can be seen as throwing
a coin for each sample i ∈ [n] in order to decide whether to
include it in the subsampled batch D⋆

ss, which on average
will contain precisely r samples. The jackknife estimator
can then be obtained as the r → 1− limit of subsampling.

Similarly, pair bootstrap is asymptotically equivalent to tak-
ing pi ∼ Pois(1) independently. Indeed, for finite n, pair
bootstrap exactly corresponds to taking p ∈ Rn from the
multinomial distribution Multinomial(n, 1/n). As n → ∞,
this is marginally equivalent to choosing pi ∼ Pois(1) inde-
pendently [Karoui and Purdom, 2018, Section 3.1].

To summarize, each resampling method can be thought of
as applying sampling weights which are i.i.d., with distribu-
tions defined as{

µpb(p) := 1
ep!

µss(r)(p) := rp(1− r)1−p for r ∈ (0, 1).
(15)
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Figure 1: Variances for ridge regression at λ = 10−2 (Top) and λ = 1 (Bottom). Left: variance of pair resampling methods
and of Bayes-posterior. Middle: variance of conditional resampling and residual bootstrap. Right: difference between the
true variances VarD(θ̂λ), VarD|X(θ̂λ) and their estimation. Dots are simulations done at d = 200, with B = 10 resamples
for bootstrap and subsampling.

We note that a key assumption which permits to retrieve
our result is that for a particular resampling method, the
sample weights pi, i ∈ [n] are i.i.d.. We are now ready
to state our first two results for pair resampling. For the
sake of clarity, we state our results for ridge regression and
refer to Appendix A for the derivation of our results and a
statement for general convex loss and penalties.

In the following, the asymptotic values of correlations
needed to compute biases and variances will be referred
to as overlaps. For t∈{pb, ss, jk}, these overlaps read:



Qt
11 := limn,d→∞ Eθ⋆,D,p

[
∥θ̂λ(D,p)∥2

]
Qt

12 := limn,d→∞ Eθ⋆,D

[
∥Ep[θ̂λ(D,p)]∥2

]
Qfr

11 := limn,d→∞ Eθ⋆,D

[
∥θ̂λ(D)∥2

]
Qfr

12 := limn,d→∞ Eθ⋆

[
∥ED[θ̂λ(D)]∥2

]
Qfr,t

12 := limn,d→∞ Eθ⋆,D,p

[
θ̂λ(D)⊤θ̂λ(D,p)

]
mt

1 := limn,d→∞ Eθ⋆,D,p

[
θ̂λ(D,p)⊤θ⋆

]
mfr

1 := limn,d→∞ Eθ⋆,D

[
θ̂λ(D)⊤θ⋆

]
, (16)

where p = (p1, . . . , pn)
i.i.d.∼ µt and fr refers to full resam-

pling. In what follows, these overlaps will be written in a

matrix and vector form

Qt =

[
Qt

11 Qt
12

Qt
12 Qt

11

]

Qfr,t =

[
Qfr

11 Qfr,t
12

Qfr,t
12 Qt

11

]

Qfr =

[
Qfr

11 Qfr
12

Qfr
12 Qfr

11

]
mt = [mt

1,m
t
1]

⊤

mfr,t =
[
mfr

1 ,m
t
1

]⊤

(17)

Intuitively, for t∈{pb, ss, jk} the matrix Qt ∈ R2×2 rep-
resents the Gram matrix of two estimators trained on two
independent resamples of the same training data D. Simi-
larly, Qfr is a Gram matrix between two estimators trained
two datasets sampled independently from the same teacher
θ⋆. Moreover, the vector mt contains the correlation be-
tween estimators trained with method t and θ⋆. Our main
technical result is a characterization of these quantities in
the high-dimensional limit.

Theorem 4.1 (Biases and Variances for pair resampling in
ridge regression). Let D = {(xi, yi)i∈[n]} denote n inde-
pendent samples drawn from model (1) with log-concave
likelihood p(y|z). In the high-dimensional proportional
regime n, d → ∞ with n/d = α, the overlaps of in-
terest (17) are given by the unique solution m ∈ R2,
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Figure 2: Bias of ridge regression and its estimation using pair bootstrap and subsampling at λ = 10−2 (Top) and λ = 1
(Bottom). Left: bias of pair resampling methods. Middle: conditional bias and bias of residual bootstrap. Right: difference
between the various biases.

Q ∈ R2×2,V ∈ R2 to the following set of self-consistent
equations:

m =
(
λI2 + V̂

)−1

m̂

Q =
(
λI2 + V̂

)−1 (
m̂m̂⊤ + Q̂

)(
λI2 + V̂

)−1⊤

V =
(
λI2 + V̂

)−1

(18)
m̂ = αEp [G(p)]12

Q̂ = αEp

[
G(p)

(
(v⋆ +∆)12×2 +BQB⊤

)
G(p)⊤

]
V̂ = αEp [G(p)]

(19)

for a careful choice of the joint distribution of p = (p1, p2).
In the above, G(p) = (I2 + PV )−1P with P =
Diag(p), B = 12m

⊤Q−1−I2 and v⋆ = 1−m⊤Q−1m.

Then, the following holds:

• the variance of resampling method t ∈ {pb, ss, jk} is
given by

V̂art = Qt
11 −Qt

12, (20)

where overlaps with superscript t are obtained by solv-
ing (18), (19) using joint distribution µ(p1, p2) = µt(p1) ·
µt(p2).

• the true variance is given by

VarD(θ̂λ) = Qfr
11 −Qfr

12, (21)

where overlaps with superscript fr (indicating full resam-
pling) are obtained by solving (18), (19) using joint distri-
bution

µ(p1, p2) = (1(p1 = 0, p2 = 1) + 1(p1 = 1, p2 = 0)).

• the squared bias of resampling method t is given by

B̂ias2t = Qfr
11 +Qt

12 − 2Qfr,t
12 , (22)

where overlaps with superscript t, fr are obtained by solv-
ing (18), (19) using distribution µ(p1, p2) = µt(p1) ·
1{p2 = 1} for p1, p2.
• the true squared bias is given by

Bias2D(θ̂λ) = 1− 2mfr
1 +Qfr

12. (23)

The details for the derivations of Theorem 4.1 are shown
in Appendix A.2.

The specific case of subsampling To make Theorem 4.1
more concrete, we consider in this paragraph the particular
case of subsampling, for which Equations (18) and (19) can
be written in a more succint form. Indeed, for subsampling
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with ratio r, the overlaps mss
1 , Qss

11 and Qss
12 are given by

mss
1 = 1− λv

Qss
11 = (mss

1 )
2 · αr+1+∆−2mss

1

αr−(mss
1 )2

Qss
12 = (mss

1 )
2 · α+1+∆−2mss

1

α−(mss
1 )2

, (24)

where v =
1−λ−αr+

√
(αr+λ−1)2+4λ

2λ , as detailed in Ap-
pendix C.1.3. With this representation, the dependency of
the overlaps on the different parameters such as α and on the
subsampling ratio r becomes much more explicit. We note
in particular that the overlap Qss

11 of one of the subsampling
estimator with itself, depends only on the subsampled data
it has seen, explaining the dependency on αr. On the other
hand, the overlap Qss

12 involves both subsampling estimators,
so that a dependency on α also appears since all samples
are considered.

4.2 CONDITIONAL RESAMPLING

Similar to pair resampling, we leverage the fact that the
conditional bias and variance, together with the estimates
by residual bootstrap, can be written in terms of correla-
tions between estimators. The key difference here is that the
covariates x1, . . . ,xn remain constant, and only the labels
are resampled. Focusing on linear regression, in the case of
residual resampling (abbreviated rr), the labels are sampled
from the true distribution y⋆i ∼ N (θ⊤

⋆ xi,∆), whereas for
residual bootstrap, we use the ERM estimator to approx-

imate this distribution and y⋆i ∼ N (θ̂
⊤
λ xi, ∆̃) with ∆̃ an

estimator of ∆. Similarly to pair bootstrap, we now just
need the correlation between B estimators θ̂λ,b trained on
resampled datasets D⋆

b = {(xi, y
⋆
i,b)

n
i=1}. This can be done

by considering the minimization problem (26). Despite min-
imizing each θ̂λ,b independently, they see the same covari-
ates xi. In Appendix B.1, we discuss how this correlation
can be exactly captured by designing a particular approxi-
mate message passing, and also provide more details and an
extension to more generic losses. As in the previous section,
we first define the overlaps of interest

Qrb
11 := limn,d→∞ Eθ⋆,D

[
Ey⋆|D

[
∥θ̂λ(X,y⋆)∥2

]]
Qrb

12 := limn,d→∞ Eθ⋆,D

[
∥Ey⋆|D[θ̂λ(X,y⋆)]∥2

]
Qrr

11 := limn,d→∞ Eθ⋆,D

[
∥θ̂λ∥2|X

]
Qrr

12 := limn,d→∞ Eθ⋆

[
∥ED[θ̂λ|X]∥2

]
mrb

1 := limn,d→∞ Eθ⋆,D

[
θ̂λ(D)⊤Ey⋆|D

[
θ̂λ(X,y⋆)

]]
mrr

1 := limn,d→∞ Eθ⋆

[
ED

[
θ̂λ|X

]⊤
θ⋆

]
.

(25)

and the minimization problem for conditional resampling

θ̂λ,b = arg min
θ∈Rd

n∑
i=1

− log p(y⋆b,i|θ
⊤xi) + λ/2∥θ∥2, (26)

where b = 1, . . . , B.

Theorem 4.2 (Biases and Variances for conditional resam-
pling in ridge regression). Let D = {(xi, yi)i∈[n]} de-
note n independent samples drawn from model (1) with
log-concave likelihood p(y|z). In the high-dimensional pro-
portional regime n, d → ∞ with n/d = α, the overlaps of
interest (25) for t ∈ {rr, rb} are given by :


mt

1 = ρ̃(1− λv)

Qt
11 = (mt

1)
2 · αρ̃+ρ̃+∆̃−2mt

1

αρ̃2−(mt
1)

2

Qt
12 = (mt

1)
2 · αρ̃+ρ̃−2mt

1

αρ̃2−(mt
1)

2

(27)

where v =
1−λ−α+

√
(α+λ−1)2+4λ

2λ . The quantities ∆̃, ρ̃
take different values depending on whether bootstrap is
performed or not, as detailed below. Then, the following
holds:

• the variance of residual bootstrap is given by

V̂arrb = Qrb
11 −Qrb

12, (28)

where Qrr
11, Q

rr
12 are obtained by solving (27) using ρ̃ =

Qfr
11 and ∆̃ = (1 + ∆ − 2mfr

1 + Qfr
11)/(1 + V fr

11)
2. Note that the

overlaps with superscript fr are specified in Theorem 4.1.
• the true variance VarD|X(θ̂λ) is given by

VarD|X(θ̂λ) = Qrr
11 −Qrr

12, (29)

where Qrr
11, Q

rr
12 are obtained by solving (27) using ρ̃ =

1, ∆̃ = ∆.
• the squared bias of residual bootstrap

B̂ias2rb = Qfr
11 +Qrb

12 − 2mrb
1 (30)

• the true conditional squared bias is given by

Bias2D|X(θ̂λ) = 1− 2mrr
1 +Qrr

12. (31)

The details for the derivations of Theorem 4.2 are shown
in Appendix B and Appendix C. Compared to pair resam-
pling, residual resampling does not involve introducing sam-
ple weights, only the labels are resampled from a conditional
distribution. However, for residual bootstrap, the main idea
is that the target weights θ⋆ are replaced by θ̂λ. Moreover,
for ridge regression, we approximate the variance ∆ by the
averaged residual:

∆̃ =
1

n

n∑
i=1

(yi − θ̂
⊤
λ xi)

2 (32)

In the high-dimensional regime, the analytical expression of
this training error is given by the overlaps of state-evolution,
and ∆̃ = (1 + ∆ − 2mfr

1 + Qfr
11)/(1 + V fr

11)
2. The derivation of
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Pair resampling rates Residual resampling rates

Rate Error

VarD(θ̂λ) 1/α –
V̂arss 1/α 1/α

V̂arjk 1/α 1/α2

V̂arpb 1/α 1/α3

Bias2D(θ̂λ) 1/α2 –
B̂ias2ss 1/α2 1/α2

B̂ias2jk
1/α2 1/α3

B̂ias2pb
1/α4 1/α2

Rate Error

VarD|X(θ̂λ) 1/α –
V̂arrb 1/α 1/α2

Bias2D|X(θ̂λ) 1/α2 –
B̂ias2rb

1/α2 1/α3

Table 1: Summary of large α rates for ridge regression
(see Appendix C.2 for details).

this expression can be found in Loureiro et al. [2021]. We
end this section by observing that so far, we considered
only the variance on the weights. However, one could be
interested in other types of variances such as predictive
variance, which we discuss in Appendix D.

5 DISCUSSIONS AND MAIN FINDINGS

In this section we discuss the consequences of the techni-
cal results from Section 4 on the performance of resam-
pling methods, and compare with empirical values. We refer
to Appendix E for more details on the plots.

5.1 RIDGE REGRESSION

Variance – Figure 1 shows the different variances for
ridge regression. We consider two important choices of
regularization: λ = 10−2 to approximate the behavior of un-
penalized estimators, and λ = ∆ = 1 which is the optimal
value of λ: this regularization minimizes the generalization
error of θ̂λ and its test error is the same as the Bayes-optimal
estimator. As explained in Section 2.2, the variance of Jack-
knife is approximated by doing subsampling with r = 0.99.
Note that the subsampling variances with ratio r are rescaled
by a factor 1 − r. We compare our theoretical predictions
with numerical experiments on Gaussian data and observe
an excellent agreement. For λ = 10−2 in the regime where
n > d, our results are qualitatively consistent with Karoui
and Purdom [2018], who showed that pair (respectively
residual) bootstrap overestimates (resp. underestimates) the
variance. On the other hand, our results allow us to study
the variances at d > n. In this regime, we observe that both
pair and residual bootstrap suffer from under-coverage: for
residual bootstrap, it is easy to understand why, as without
regularization d > n the ERM interpolates the training data.
Thus, the residual is exactly 0, and the residual bootstrap
thus fatally underestimates the true level of noise in the data.
On the other hand, subsampling and Jackknife are closer to

VarD(θ̂λ) than pair bootstrap, and as is classically known
Efron and Stein [1981], the Jackknife estimate provides
an upper bound of the true variance. On the right panel,
we see that all variances converge to 0 with rate 1/α, and
pair bootstrap converges to VarD(θ̂λ) the fastest. On the
bottom row of Figure 1, we observe that optimal regulariza-
tion greatly mitigates the under-coverage of bootstrapping,
most notably for residual bootstrap. We thus conclude that
for small values n/d, bootstrap fails to accurately capture
the true variances, and appropriately regularizing partially
mitigates this issue.

Note that conditioned on D and if the data generating pro-
cess is known, the Bayes-optimal posterior variance Varbo
is the best estimation of uncertainty on the weights. As in
Theorem 4.1 and 4.2, this variance can be obtained by solv-
ing a corresponding set of self-consistent equations [Clarté
et al., 2023b]. We observe that at large α, all variances agree
with Varbo. However, at optimal λ and small n/d, resam-
pling will underestimate the actual posterior variance.

Bias – In Figure 2, we plot the bias of the different re-
sampling methods for ridge regression with regularization
λ ∈ {10−2, 1}. For the Jackknife and subsampling, the esti-
mation of the squared bias is rescaled by a factor (1− r)2.

We observe that as α → ∞, Bias2D(θ̂λ) and B̂ias2pb con-
verge to zero, as expected by the consistency of the MLE

estimator (3). However, B̂ias2pb converges as 1/α4, while
Bias2D(θ̂λ) ∼ 1/α2, and pair bootstrap underestimates the
true bias. We deduce that in our model, subsampling or
Jackknife should thus be preferred to estimate Bias2D(θ̂λ).

5.2 LOGISTIC REGRESSION

Our results extend beyond ridge regression, and the quan-
tities of interest can be computed for any convex loss. Fig-
ure 3 displays the true variances and their estimation for
regularized logistic regression with λ ∈ {10−2, 1}, simi-
larly to Figure 1. However, contrary to the ridge case, λ = 1
yields the maximum-a-posteriori estimator but does not min-
imize the misclassification error.

Qualitatively, we observe similar results as for ridge re-
gression : at large α, all methods consistently estimate the
true variance and the Jackknife provides an upper bound of
VarD(θ̂λ). Moreover, at low α, regularization improves the
estimation of the variance, even though λ is not optimal.

Finally, at λ = 0.01 for both ridge and logistic regression,
we observe a local maximum in the true and resampled bias
and variance around d = n. This behavior is reminiscent of
the double-descent behavior observed e.g. in random fea-
tures models or neural networks : the test error achieves
a local maximum at the interpolation threshold where the
model can perfectly fit the training data, then decreases with
the number of parameters. Moreover, we see that regulariza-
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Figure 3: Variance for logistic regression at λ = 10−2 (Top)
and λ = 1 (Bottom). Left: variance of full resampling, pair
bootstrap, subsampling. Right: variance of label resampling,
residual bootstrap. See Figure 1 for the legend.

tion can mitigate this “double-descent” phenomenon.

6 CONCLUSION & PERSPECTIVES

In this work, we have provided an exact asymptotic com-
parison of the uncertainty estimations provided by different
resampling methods, in the context of high-dimensional
regularized maximum likelihood with generalized linear
models.

Our results highlight the limitations of these methods in
the high-dimensional regime relevant to modern machine
learning practice and discuss how cross-validation can, to
some extent, mitigate some of these limitations.

Avenues for future work are manifold. For instance, how
would our results change in a misspecified scenario? Can
structure in the data help or hinder resampling methods?
These interesting questions are left for future investigation.
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A DERIVATION OF THE RESULTS FOR PAIR RESAMPLING

In this appendix we show how the self-consistent equations (18) and (19) can be derived from the state-evolution equation
of GAMP (Generalized Approximate Message Passing), and how to extend them to generic log-concave losses.

As stated in Section 4, the key observation is that in order to asymptotically characterize the biases and variances associated
with any of the resampling methods in Section 2, it is sufficient to characterize only the correlation θ̂λ(D⋆

b )
⊤θ̂λ(D⋆

b′)
between two resampled datasets D⋆

b ,D⋆
b′ . Indeed, the resampling variances can be written

V̂ar =
1

d

 1

B

B∑
b=1

∥θ̂b∥2−
1

B2

B∑
b,b′=1

θ̂
⊤
b θ̂b′

 . (33)

It is natural to study these variances in the limit B → ∞. In that limit, V̂ar converges to

V̂ar =
1

d
ED⋆

[
∥θ̂(D⋆)∥2

]
− 1

d
ED⋆,D⋆′

[
θ̂(D⋆)θ̂(D⋆′

)
]

where the expectations are over resampled dataset conditioned on D and where the resampling depends on the method
considered. In a similar way for the bias

B̂ias2 =
1

d

∥∥∥∥∥ 1

B

B∑
b=1

θ̂b − θ̂

∥∥∥∥∥
2

B→∞→ 1

d

(
∥θ̂∥2 +

∥∥∥ED⋆

[
θ̂(D⋆)

]∥∥∥2)

To do so, we observe that computing the ERM estimator on a resampled dataset D⋆ is equivalent to solving an wERM
problem Equation (14), where for each sample (xi, yi) ∈ D, we introduce a sample weight pi. The distribution on the
sample weights depends on the way D is resampled: for example, with pi = 1 for all i ∈ [n], this reduces to standard MLE
(2). On the other hand, by choosing pi ∈ {0, 1} at random from a Bernoulli distribution with probability r ∈ (0, 1], the
wERM (14) asymptotically corresponds to doing subsampling. Also, pair bootstrap is asymptotically equivalent to taking
pi ∼ Pois(1) independently. The problem is thus to compute the correlation between estimators θ̂λ(D,p) trained with
different, possibly correlated vectors p.

The use of GAMP for deriving high-dimensional asymptotics characterization is now a classic rigorous tool, that has been
used in many situations [Bayati and Montanari, 2011b, Javanmard and Montanari, 2014, Sur et al., 2019, Emami et al., 2020,
Loureiro et al., 2021, 2023, Gerbelot et al., 2022]. The idea is to proceed in two steps: i) to propose a GAMP algorithm
that solves the optimisation problem asymptotically, and ii) to use the fact that GAMP performance can be tracked with a
rigorous state evolution Bayati and Montanari [2011a], Gerbelot and Berthier [2023] . This was, to the best of our knwoldege,
introduced first in [Bayati and Montanari, 2011b] for studying the LASSO risk. We shall not repeat the proof technique, and
refer the reader to [Loureiro et al., 2021, 2023] for details with our current notation. Our results directly uses Thm. 1 in
[Loureiro et al., 2021] or Thm 2.1 in Loureiro et al. [2023].

The novelty of our approach consists in adapting these results to the bootstrap situation by introducing sample weights p
and studying the performance of GAMP for several estimators. The properties of the estimators are given by the distribution
on the weights p. All previous proof still trivially apply: indeed the state evolution theorems generalize to vector estimations
Javanmard and Montanari [2013], and, since GAMP is applied to two problems in parallel, the convergence guarantees still
independently apply to each of them. A similar strategy was used in Loureiro et al. [2023].

Consider a convex loss function ℓ and regularizer r, and the following empirical risk minimization problem

(θ̂1, . . . , θ̂B) = arg min
θ1,...,θB∈Rd

L (θ1, . . . ,θB) (34)

where

L (θ1, . . . ,θB) :=

n∑
µ=1

ℓp(yµ,θ
⊤
1 xµ, . . . ,θ

⊤
Bxµ) +

B∑
b=1

r(θb) (35)
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Algorithm 1 GAMP with sample weights

Input: X ∈ Rn×d, y ∈ Rn, and pµ ∈ RB for 1 ≤ µ ≤ n

Initialize: gout
(0)
µ = 0 for 1 ≤ µ ≤ n, A

(0)
i = IB for 1 ≤ i ≤ d

Initialize: θ̂
(1)

i ∈ RB and Ĉ
(1)

i ∈ RB×B for 1 ≤ i ≤ d
Repeat for t = 1, 2, . . . :

// Update of the means ωµ ∈ RB and covariances V µ ∈ S+
B for 1 ≤ µ ≤ n:

ω
(t)
µ =

∑d
i=1 Xµ,iθ̂

(t)

i −X2
µ,i

(
A

(t−1)
i

)−1

Ĉ
(t)

i A
(t−1)
i gout

(t−1)
µ | V (t)

µ =
∑d

i=1 X
2
µ,iĈ

(t)

i

// Update of goutµ and ∂ωgoutµ for 1 ≤ µ ≤ n :

gout
(t)
µ = gout

(
ω

(t)
µ , yµ,V

(t)
µ ,pµ

)
| ∂ωgout

(t)
µ = ∂ωgout

(
ω

(t)
µ , yµ,V

(t)
µ ,pµ

)
// Update of means bi ∈ RB and covariances Ai ∈ RB×B for 1 ≤ i ≤ d :

A
(t)
i = −

∑n
µ=1 X

2
µ,i∂ωgout

(t)
µ | b(t)i = A

(t)
i θ̂

(t)

i +
∑n

µ=1 Xµ,igout
(t)
µ

// Update of the estimated marginals θ̂i ∈ RB and Ĉi ∈ RB×B for 1 ≤ i ≤ d :

θ̂
(t+1)

i = fa(b
(t)
i ,A

(t)
i ) | Ĉ

(t+1)

i = ∂bfa(b
(t)
i ,A

(t)
i )

Until convergence
Output: θ̂1, . . . , θ̂d and Ĉ1, . . . , Ĉd

and

ℓp(y, z1, . . . , zB) :=

B∑
b=1

pbℓ(y, zb) (36)

We define a channel function associated to the function ℓ :

gout(y,ω,V ,p) = V −1
(
proxV ,ℓp(y,·)(ω)− ω

)
, (37)

where the proximal operator is

proxV ,ℓp(y,·)(ω) = arg min
z∈RB

(
1

2
(z − ω)⊤V −1(z − ω) + ℓp(y,z)

)
. (38)

Let us also define the denoising function associated to the regularizer r:

fa(b,A) = proxA−1,r(A
−1b) = arg min

z∈RB

(
1

2
(z −A−1b)⊤A(z −A−1b) + r(z)

)
. (39)

Using Algorithm 1 with this choice of channel and denoising functions returns a set of vectors θ̂1, · · · , θ̂d ∈ RB , where θ̂i

contains the B estimates for θ⋆i. Hence, these vectors allow to solve the minimization problem (34).

Intuition of GAMP algorithm We are interested in solving the minimization problem (34), which is equivalent to
sampling from the distribution

p(θ1, . . . ,θB) ∝ exp (−βL (θ1, . . . ,θB)) = exp

(
−β

(
n∑

µ=1

ℓp(yµ,θ
⊤
1 xµ, . . . ,θ

⊤
Bxµ) +

B∑
b=1

r(θb)

))
(40)

in the limit β → ∞. Sampling the distribution on a graphical model can be used with Belief Propagation, which iterates
messages between different nodes (here the coordinates θij for i ≤ B, j ≤ d). However in high dimensions, Belief
Propagation is intractable as it involves computing d-dimensional integrals. To alleviate this issue, GAMP only computes
the first two moments of the different messages. In the high-dimensional limit, the output of GAMP coincides with the true
minimizer of (34).

Similarly to our work, in Aubin et al. [2019], the authors introduce a GAMP algorithm for for a generic coupled system of
estimates. They provide a detailed analysis of GAMP and its state evolution to track its behaviour in the asymptotic limit.

14



A.1 STATE EVOLUTION EQUATIONS

In this section, we inspect the behavior of Algorithm 1 in the n, d → ∞ limit and derive the asymptotic distribution of
θ̂1, . . . , θ̂d. To do so, we start from the more convenient relaxed Belief Propagation (rBP) equations, which are very close to
GAMP. In the high-dimensional limit, rBP and GAMP are equivalent. The rBP equations are written,

ω
(t)
µ→i =

∑
j ̸=i Xµ,j θ̂

(t)

j→µ

V
(t)
µ→i =

∑
j ̸=i X

2
µ,jĈ

(t)

j→µ

,

{
gout

(t)
µ→i = gout(yµ,ω

(t)
µ→i,V

(t)
µ→i,pµ)

∂gout
(t)
µ→i = ∂ωgout(yµ,ω

(t)
µ→i,V

(t)
µ→i,pµ)

(41)

{
b
(t)
µ→i =

∑
ν ̸=µ Xν,ig

(t)
outν→i

A
(t)
µ→i = −

∑
ν ̸=µ X

2
ν,i∂g

(t)
outν→i

,

{
θ̂
(t)

i→µ = fa(b
(t)
i→µ,A

(t)
i→µ)

Ĉ
(t)

i→µ = ∂bfa(b
(t)
i→µ,A

(t)
i→µ).

(42)

It turns out that the average asymptotic behavior of these equations can be tracked with some overlap parameters defined as
follows:

m(t) ≡ lim
d→∞

1

d

d∑
i=1

θ̂
(t)

i θ⊤
⋆ , Q(t) ≡ lim

d→∞

1

d

d∑
i=1

θ̂
(t)

i θ̂
(t)⊤
i (43)

V (t) ≡ lim
d→∞

1

d

d∑
i=1

Ĉ
(t)

i , ρ = lim
d→∞

∥θ⋆∥2

d
. (44)

To derive the asymptotic behavior of these overlap parameters, we compute the overlap distributions starting from the rBP
equations above.

A.1.1 Messages Distribution

For convenience, let us define zµ ≡
∑d

i=1 Xµ,iθ⋆i = X⊤
µ θ⋆ and zµ→i ≡ 1

d

∑
j ̸=i Xµ,iθ⋆j .

Distribution of (zµ,ω
(t)
µ→i) By the Central Limit Theorem, since (zµ,ω

(t)
µ→i) are the sum of independent variables,

they follow Gaussian distributions in the d → ∞ limit. Therefore, we only need to compute their means, variances, and
cross-correlation. Recall that from our assumptions, the random variables Xµ,j are i.i.d. zero-mean Gaussian with variance
1/d. Hence, the first and second-order statistics read

E [zµ] = θ⊤
⋆ E[Xµ] = 0 (45)

E
[
z2µ
]
=

d∑
i,j=1

E[Xµ,iXµ,j ]θ⋆iθ⋆j =

d∑
i,j=1

1

d
δijθ⋆iθ⋆j =

∥θ⋆∥2

d

d→∞−→ ρ (46)

E
[
ω

(t)
µ→i

]
=
∑
j ̸=i

E[Xµ,j ]θ̂
(t)

j→µ = 0 (47)

E
[
ω

(t)
µ→i(ω

(t)
µ→i)

⊤
]
=

d∑
j ̸=i

d∑
k ̸=i

E[Xµ,jXµ,k]θ̂
(t)

j→µθ̂
(t)⊤
k→µ =

1

d

d∑
j ̸=i

θ̂
(t)

j→µθ̂
(t)⊤
k→µ (48)

=
1

d

d∑
j=1

θ̂
(t)

j→µθ̂
(t)⊤
j→µ − 1

d
θ̂
(t)

i→µθ̂
(t)⊤
i→µ

d→∞−→ Q(t) (49)

E
[
zµω

(t)
µ→i

]
=

d∑
j=1

d∑
k ̸=i

E[Xµ,jXµ,k]θ̂
(t)

k→µθ⋆j =
1

d

∑
j ̸=i

θ̂
(t)

j→µθ⋆ (50)

=
1

d

d∑
j=1

θ̂
(t)

j→µθ⋆ −
1

d
θ̂
(t)

i→µθ⋆
d→∞−→ m(t) (51)
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In summary, in the d → ∞ limit : (
zµ,ω

(t)
µ→i

)
∼ N

(
0,

[
ρ m(t)⊤

m(t) Q(t)

])
(52)

Concentration of V (t)
µ→i In the asymptotic limit, the variances V (t)

µ→i concentrate around their means, which equates

E
[
V

(t)
µ→i

]
=

d∑
j ̸=i

E
[
X2

µ,j

]
Ĉ

(t)
=

1

d

∑
j ̸=i

Ĉ
(t)

j =
1

d

d∑
j=1

Ĉ
(t)

j − 1

d
Ĉ

(t)

i
d→∞−→ V (t) (53)

Distribution of b(t)µ→i Recall from our setting that for a given input xµ, the corresponding label is distributed as yµ ∼
p(·|zµ). In fact, one can equivalently write yµ = φ0(zµ) for some (random) function φ0. For example, the choice
φ0(x) = x+

√
∆ξ corresponds to the linear regression, where ξ ∼ N (0, 1) is Gaussian noise scaled by a variance ∆ ≥ 0.

With this representation for yµ, we have

b
(t)
µ→i =

∑
ν ̸=µ

Xν,igout(φ0 (zν) ,ω
(t)
ν→i,V

(t)
ν→i,pν) (54)

=
∑
ν ̸=µ

Xν,igout(φ0 (zν→i + θ⋆iXν,i) ,ω
(t)
ν→i,V

(t)
ν→i,pν) (55)

=
∑
ν ̸=µ

Xν,igout(φ0 (zν→i) ,ω
(t)
ν→i,V

(t)
ν→i,pν) +X2

ν,iθ⋆i∂zgout(φ0 (zν→i) ,ω
(t)
ν→i,V

(t)
ν→i,pν) +O(d−3/2), (56)

where in the last equality we have expanded the denoising function at leading order. Taking expectation on both sides yields

E[b(t)µ→i] =
θ⋆i
d

∑
ν ̸=µ

∂zgout(φ0 (zν→i) ,ω
(t)
ν→i,V

(t)
ν→i,pν) +O(d−3/2) (57)

=
θ⋆i
d

n∑
ν=1

∂zgout(φ0 (zν→i) ,ω
(t)
ν→i,V

(t)
ν→i,pν)−

θ⋆i
d
∂zgout(φ0 (zµ→i) ,ω

(t)
µ→i,V

(t)
µ→i,pµ) +O(d−3/2),

(58)

Note that as d → ∞, it follows from our computations above that for all ν, (zν→i,ω
(t)
ν→i) are identically distributed

according to Equation (52). Consequently, by the Law of Large Numbers,

n

d
· 1
n

n∑
ν=1

∂zgout(φ0 (zν→i) ,ω
(t)
ν→i,V

(t)
ν→i,pν)

n,d→∞−→ αE(z,ω),p

[
∂zgout(φ0 (z) ,ω,V (t),p)

]
≡ m̂(t), (59)

from which we find that
E[b(t)µ→i]

n,d→∞−→ θ⋆im̂
(t). (60)

The second moment can be computed in a similar fashion:

E[b(t)µ→ib
(t)⊤
µ→i] =

∑
ν ̸=µ

∑
κ̸=µ

E[Xν,iXκ,i]gout(φ0 (zν) ,ω
(t)
ν→i,V

(t)
ν→i,pν)gout(φ0 (zκ) ,ω

(t)
κ→i,V

(t)
κ→i,pκ)

⊤ (61)

=
1

d

∑
ν ̸=µ

gout(φ0 (zν→i) ,ω
(t)
ν→i,V

(t)
ν→i,pν)gout(φ0 (zν→i) ,ω

(t)
ν→i,V

(t)
ν→i,pν)

⊤ +O(d−2) (62)

=
1

d

n∑
ν=1

gout(φ0 (zν→i) ,ω
(t)
ν→i,V

(t)
ν→i,pν)gout(φ0 (zν→i) ,ω

(t)
ν→i,V

(t)
ν→i,pν)

⊤ +O(d−2) (63)

n,d→∞−→ αE(z,ω(t)),p

[
gout(φ0 (z) ,ω

(t),V (t),p)gout(φ0 (z) ,ω
(t),V (t),p)⊤

]
≡ Q̂

(t)
. (64)

Hence, b(t)µ→i = θ⋆im̂
(t) +

(
Q̂

(t)
)1/2

ξ with ξ ∼ N (0, IB).
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Concentration of A(t)
µ→i It remains to show that the covariances A(t)

µ→i concentrate. We have

A
(t)
µ→i = −

∑
ν ̸=µ

X2
ν,i∂ωgout(yν ,ω

(t)
ν→i,V

(t)
ν→i,pν) (65)

= −
∑
ν ̸=µ

X2
ν,i∂ωgout(φ0(zν),ω

(t)
ν→i,V

(t)
ν→i,pν) (66)

= −
∑
ν ̸=µ

X2
ν,i∂ωgout(φ0(zν→i),ω

(t)
ν→i,V

(t)
ν→i,pν) +O(d−3/2). (67)

Taking the expectation gives

E[A(t)
µ→i] = −1

d

∑
ν ̸=µ

∂ωgout(φ0(zν→i),ω
(t)
ν→i,V

(t)
ν→i,pν) +O(d−3/2) (68)

= −1

d

n∑
ν=1

∂ωgout(φ0(zν→i),ω
(t)
ν→i,V

(t)
ν→i,pν)−

1

d
∂ωgout(φ0(zµ→i),ω

(t)
µ→i,V

(t)
µ→i,pµ) +O(d−3/2) (69)

n,d→∞−→ −αE(z,ω(t)),p

[
∂ωgout(φ0 (z) ,ω

(t),V (t),p)
]
≡ V̂

(t)
(70)

A.1.2 Summary

Having shown the distribution of messages and concentration, we are ready to characterize the asymptotic distribution of the
estimator:

θ̂i ∼ fa

(
θ⋆im̂

(t) +
(
Q̂

(t)
)1/2

ξ, V̂
(t)
)

∀i ∈ {1, . . . , d}, (71)

where ξ ∼ N (0, IB).

From that, the definitions of overlaps in Equation (43) at time t + 1, and the message distributions, we obtain the state-
evolution equations of the GAMP algorithm described in Algorithm 1:

m(t+1) = Eθ⋆,ξ

[
fa

(
m̂θ⋆ +

√
Q̂

(t)
ξ, V̂

(t)
)
θ⋆

]
Q(t+1) = Eθ⋆,ξ

[
fa

(
m̂θ⋆ +

√
Q̂

(t)
ξ, V̂

(t)
)
fa

(
m̂θ⋆ +

√
Q̂

(t)
ξ, V̂

(t)
)⊤]

V (t+1) = Eθ⋆,ξ

[
∂bfa

(
m̂θ⋆ +

√
Q̂

(t)
ξ, V̂

(t)
)] (72)

where ξ ∼ N (0, IB), and
m̂(t) = αE(z,ω(t)),p

[
∂zgout(φ0(z),ω

(t),V (t),p)
]

Q̂
(t)

= αE(z,ω(t)),p

[
gout(φ0(z),ω

(t),V (t),p)gout(φ0(z),ω
(t),V (t),p)⊤

]
V̂

(t)
= −αE(z,ω(t)),p

[
∂ωgout(φ0(z),ω

(t),V (t),p)
] , (73)

where
(
z,ω(t)

)
∼ N

(
0,

[
ρ m(t)⊤

m(t) Q(t)

])
.

Let us note that the overlaps m̂(t), Q̂
(t)
, V̂

(t)
can be written slightly differently. For that, first notice that since

(
z,ω(t)

)
is

Gaussian, so is z conditioned on ω(t), and in particular z|ω(t) ∼ N (µ⋆(ω
(t)), v⋆) with µ⋆(ω

(t)) = (m(t))⊤(Q(t))−1ω(t),
v⋆ = ρ − (m(t))⊤(Q(t))−1m(t). Moreover, using that p(y|z) = δ(y − φ0(z)), we have for an arbitrary function f :
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R× RB → RB that

E(z,ω(t))

[
f(φ0(z),ω

(t))
]
= Eω(t)

[
Ez|ω(t)

[
f(φ0(z),ω

(t))
]]

(74)

= Eω(t)

[∫
dzN (z|µ⋆(ω

(t)), v⋆)f(φ0(z),ω
(t))

]
(75)

= Eω(t)

[∫
dzN (z|µ⋆(ω

(t)), v⋆)

∫
dyp(y|z)f(y,ω(t))

]
(76)

= Eω(t)

[∫
dyZ0(y, µ⋆(ω

(t)), v⋆)f(y,ω
(t))

]
, (77)

where we have defined Z0(y, µ, v) ≡
∫
dzN (z|µ, v)p(y|z). Consequently, we can rewrite

m̂(t) = αEω(t),p

[∫
dy∂µZ0(y, µ⋆(ω

(t)), v⋆) · gout(y,ω
(t),V (t),p)

]
Q̂

(t)
= αEω(t),p

[∫
dyZ0(y, µ⋆(ω

(t)), v⋆) · gout(y,ω
(t),V (t),p)gout(y,ω

(t),V (t),p)⊤
]

V̂
(t)

= −αEω(t),p

[∫
dyZ0(y, µ⋆(ω

(t)), v⋆) · ∂ωgout(φ0(z),ω
(t),V (t),p)

] , (78)

where ω(t) ∼ N (0,Q(t)).

A.1.3 Self-Consistent Equations

In the limit t → ∞, the state-evolution equations derived above yield a set of self-consistent equations:



m = Eθ⋆,ξ

[
fa(m̂θ⋆ +

√
Q̂ξ, V̂ )θ⋆

]
Q = Eθ⋆,ξ

[[
faf

⊤
a

]
(m̂θ⋆ +

√
Q̂ξ, V̂ )

]
V = Eθ⋆,ξ

[
∂bfa(m̂θ⋆ +

√
Q̂ξ, V̂ )

] ,


m̂ = αEω,p

[∫
dy∂µZ0(y, µ⋆(ω), v⋆) · gout(y,ω,V ,p)

]
Q̂ = αEω,p

[∫
dyZ0(y, µ⋆(ω), v⋆) ·

[
goutg

⊤
out

]
(y,ω,V ,p)

]
V̂ = −αEω,p

[∫
dyZ0(y, µ⋆(ω), v⋆) · ∂ωgout(y,ω,V ,p)

]
(79)

where ξ ∼ N (0, IB), ω ∼ N (0,Q), and µ⋆(ω) = m⊤Q−1ω and v⋆ = ρ−m⊤Q−1m with ρ = 1/d∥θ⋆∥22.

A.1.4 Channels

Channel for square loss When the loss is the square loss ℓ(y, ω) = 1
2∆ (y − ω)2, we can conveniently write the proximal

in a matrix form

prox(y,ω,V ,p) = arg min
z∈RB

1

2
(z − ω)⊤V −1(z − ω) +

1

2∆
(z − 1By)

⊤P (z − 1By), (80)

where we have defined P = Diag(p). In that case, the vector z that cancels the derivative of the function to minimize is

z∗ =

(
V −1 +

P

∆

)−1(
V −1ω +

P

∆
1By

)
(81)

such that

gout(y,ω,V ,p) =

(
IB +

PV

∆

)−1
P

∆
(1By − ω) (82)

∂ωgout(y,ω,V ,p) = −
(
IB +

PV

∆

)−1
P

∆
(83)
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Channel for logistic loss In classification tasks one usually uses the logistic loss ℓ(y, z) = log (1 + e−z). We thus aim to
compute the proximal

proxℓ(y,·),V (ω) = arg min
z∈RB

B∑
b=1

pbℓ(y, zb) +
1

2
(z − ω)V −1(z − ω) (84)

We deduce the channel from it. On the other hand, to compute ∂ωgout, one needs to compute the Hessian of the loss
function:

∇2ℓ(y,z,p) = Diag (p1σ
′(yz1), . . . , pBσ

′(yzB)) (85)

A.1.5 Denoiser for ℓ2 regularization

In a similar way, the denoiser is written

fa(b,A) = (λIB +A)
−1

b (86)

∂bfa(b,A) = (λIB +A)
−1 (87)

A.2 RIDGE REGRESSION

Using the channel for square loss and the denoiser for ℓ2 regularization, we can compute the various overlaps for the ridge
regression. First, defining R(λ) ≡ (λIB + V̂ )−1, we find that

m = Eθ⋆,ξ

[
R(λ)

(
m̂θ⋆ +

√
Q̂ξ

)
θ⋆

]
= R(λ)m̂Eθ⋆

[
θ2⋆
]
= R(λ)m̂ρ (88)

Q = Eθ⋆,ξ

[
R(λ)

(
m̂θ⋆ +

√
Q̂ξ

)(
m̂θ⋆ +

√
Q̂ξ

)⊤

R(λ)⊤

]
= R(λ)

(
ρm̂m̂⊤ + Q̂

)
R(λ)⊤ (89)

V = Eθ⋆,ξ [R(λ)] = R(λ). (90)

In order to compute the other overlaps, we must first evaluate Z0(y, µ, v) ≡
∫
dzN (z|µ, v)p(y|z). Since p(y|z) =

N (y|z,∆) for ridge regression, Z0(y, µ, v) is simply the convolution of N (y|0,∆) and N (y|µ, v), from which we can
conclude Z0(y, µ, v) is equal to the density of N (0,∆)+N (µ, v) = N (µ⋆(ω), v⋆+∆). Hence, Z0(y, µ, v) = N (y|µ, v+
∆), and we also find that ∂µZ0(y, µ, v) =

y−µ
v+∆N (y|µ, v + ∆). Defining G(p) ≡ (I2 + PV )−1P with P = Diag(p),

the overlaps are given by

m̂ = αEω,p

[∫
dyN (y|µ⋆(ω), v⋆ +∆)

y − µ⋆(ω)

v⋆ +∆
G(p)(1By − ω)

]
(91)

= αEp [G(p)]Eω

[∫
dyN (y|µ⋆(ω), v⋆ +∆)

(
1B

y2

v⋆ +∆
− 1B

yµ⋆(ω)

v⋆ +∆
− y − µ⋆(ω)

v⋆ +∆
ω

)]
(92)

= αEp [G(p)]Eω

[(
1B

v⋆ +∆+ µ⋆(ω)2

v⋆ +∆
− 1B

µ⋆(ω)2

v⋆ +∆

)]
(93)

= αEp [G(p)]1B (94)

Q̂ = αEω,p

[∫
dyN (y|µ⋆(ω), v⋆ +∆)G(p)(1By − ω)(1By − ω)⊤G(p)⊤

]
(95)

= αEp

[
G(p)Eω

[
1B×B(v⋆ +∆+ µ⋆(ω)2)− 1Bµ⋆(ω)ω⊤ − ω1⊤

Bµ⋆(ω) + ωω⊤]G(p)⊤
]

(96)

= αEp

[
G(p)

(
1B×B(v⋆ +∆+m⊤Q−1m)−m1⊤

B − 1Bm
⊤ +Q

)
G(p)⊤

]
(97)

= αEp

[
G(p)

(
1B×B(v⋆ +∆) +BQB⊤

)
G(p)⊤

]
(98)

V̂ = −αEω,p

[∫
dyN (y|µ⋆(ω), v⋆ +∆)(−G(p))

]
= αEp [G(p)] , (99)

where B = 1Bm
⊤Q−1 − IB in Equation (98).
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A.2.1 Summary

Overall, the closed-form expressions for the state-evolution for ridge regression are
m̂ = αEp [G(p)]1B

Q̂ = αEp

[
G(p)

(
(v⋆ +∆)1B×B +BQB⊤

)
G(p)⊤

]
V̂ = αEp [G(p)]

,


m = ρR(λ)m̂

Q = R(λ)
(
ρm̂m̂⊤ + Q̂

)
R(λ)⊤

V = R(λ)

(100)

with G(p) = (IB + PV )−1P ,P = Diag(p), B = 1Bm
⊤Q−1 − IB , and R(λ) =

(
λIB + V̂

)−1

, and v⋆ =

ρ−m⊤Q−1m.
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B DERIVATION OF THE RESULTS FOR RESIDUAL RESAMPLING

As for pair resampling, one can consider the state-evolution equations of a well-chosen AMP algorithm to compute the
conditional bias / variance and the bias and variance of residual bootstrap. Indeed, as for pair resampling, we leverage the
fact that the conditional bias and variance, together with the estimates by residual bootstrap, can be written in terms of
correlations between estimators trained on different resampled datasets D⋆

b with same covariates X but resampled labels y⋆.
Introducing an augmented dataset D̃ = (xi,y

⋆
i = (y⋆b,i)

B
b=1)

n
i=1 where the labels are now B-dimensional vectors comprised

of the resampled labels, we see that Equation (26) is mathematically equivalent to the following minimization problem

(θ̂)Bb=1 = arg min
θ1,...,θB∈Rd

B∑
b=1

n∑
i=1

− log p(y⋆b,i|θ
⊤
b xi) +

λ

2
∥θb∥2 (101)

While Equation (101) is equivalent Equation (26), formulating it as a joint minimization over B estimators allow us to solve
it using a specific AMP algorithm. As for pair resampling, the state-evolution equations of AMP will yield the correlation
between two estimators ED⋆

b ,D
⋆
b′

[
θ̂(D⋆

b )
⊤θ̂(D⋆

b′)
]

in the high-dimensional limit. These correlations are sufficient to compute
the true variance and its estimation with the residual bootstrap, depending on the resampling process D⋆.

For residual bootstrap, the AMP algorithm is similar to Algorithm 1 to compute the estimators θ̂i. The main difference with
Algorithm 1 is the absence of sample weights pi, as all the covariates xi are resampled only once. Equivalently, we can
consider constant sample weights pi = 1 ∀i. Moreover, the labels are now B-dimensional.

The overlaps can be computed using the state evolution equations (79) of Algorithm 1, where the 2-dimensional channel
function is

gout(y,ω,V ) = arg min
z∈RB

1

2
(z − ω)⊤V −1(z − ω) +

B∑
b=1

ℓ(yb, zb) (102)

Note that here the channel function takes a vector label as input instead of scalar label. Moreover, the channel function does
not depend on any sample weight p. This yields the following equations:



m = Eθ⋆,ξ

[
fa(m̂θ⋆ +

√
Q̂ξ, V̂ )θ⋆

]
Q = Eθ⋆,ξ

[
fa(m̂θ⋆ +

√
Q̂ξ, V̂ )fa(m̂θ⋆ +

√
Q̂ξ, V̂ )⊤

]
V = Eθ⋆,ξ

[
∂bfa(m̂θ⋆ +

√
Q̂ξ, V̂ )

] (103)

with ξ ∼ N (0, IB) and
m̂ = αEω

[∫
dy∂µZ0(y, µ⋆(ω), v⋆) · gout(y,ω,V )

]
Q̂ = αEω

[∫
dyZ0(y, µ⋆(ω), v⋆) · gout(y,ω,V )gout(y,ω,V )⊤

]
V̂ = −αEω

[∫
dyZ0(y, µ⋆(ω), v⋆) · ∂ωgout(y,ω,V )

] , (104)

where ω ∼ N (0,Q). Now the integrals in Equation (104) carry over vector labels y and the teacher partition Z0 is

Z0(y, µ, v) =

∫
dzN (z|µ, v)

B∏
i=1

p(yi|z) (105)

In Equations (103) and (104), ρ is the squared norm 1/d∥θ⋆∥2 of the label-generating vector θ⋆. In the case of conditional
resampling, θ⋆ = 1 as for pair resampling. However, in the case of residual bootstrap, θ⋆ is replaced by the ERM estimator
θ̂λ, and ρ = 1/d∥θ̂λ∥2. In the high-dimensional limit, 1/d∥θ̂λ∥2 is obtained by running the equations (79) for full resampling,
and we have ρ = Qfr

11.

Ridge regression In the Ridge regression case, the state-evolution equations are given by
m̂ = αG1B

Q̂ = αG
(
v⋆1B×B +∆IB +BQB⊤

)
G⊤

V̂ = αG

,


m = ρR(λ)m̂

Q = R(λ)
(
ρm̂m̂⊤ + Q̂

)
R(λ)⊤

V = R(λ)

(106)
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with G = (IB + V )−1, B = 1Bm
⊤Q−1 − IB , and R(λ) =

(
λIB + V̂

)−1

, and v⋆ = ρ−m⊤Q−1m. Note that ∆ is
the variance of the Gaussian noise, which will be 1 for conditional resampling but not for residual bootstrap.

B.1 RESIDUAL BOOTSTRAP

In residual bootstrap, one uses the ERM estimator trained on the whole dataset D to sample new labels with fixed input
data X . Then, to compute the asymptotic behaviour of residual bootstrap, the idea is to solve Equations (103) and (104)
where θ⋆ is replaced by θ̂λ. Its squared norm ∥θ⋆∥22 will be replaced by ∥θ̂λ∥2 and, in the case of ridge regression, the noise
variance is generally replaced by the training square-loss

∆̂ =
1

n

n∑
i=1

(
yi − θ̂

⊤
λ xi

)2
(107)

Note that ∆̂ will typically underestimate ∆ as θ̂λ is correlated to xi. In practice, to compute the asymptotics of residual
bootstrap, we first run the state-evolution equations to compute the (scalar) overlaps mfr,Qfr,V fr for the ERM estimator.
We then plug these overlaps in Equations (103) and (104), yielding new update equations for m̂, Q̂, V̂ :

m̂ = αEω

[∫
dy∂ωZ0(y, µ⋆(ω), ṽ⋆) · gout(y,ω,V ))

]
Q̂ = αEω

[∫
dyZ0(y, µ⋆(ω), ṽ⋆) · gout(y,ω,V )gout(y,ω,V )⊤

]
V̂ = −αEω

[∫
dyZ0(y, µ⋆(ω), ṽ⋆) · ∂ωgout(y,ω,V )

] , (108)

where ω ∼ N (0,Q). Also note that here, ṽ⋆ = Qfr
11 −m⊤Q−1m as we replaced ρ by Qfr

11, and for ridge regression,

Z0(y, µ, v) =

∫
dzN (y|z, ∆̃)N (z|µ, v) = N (y|µ, ∆̃ + v) (109)

wherein high-dimensions, the ℓ2 loss of θ̂λ on the training set D is ∆̃ =
1+∆−2mfr

1 +Qfr
11

(1+V fr
1 )2

, see [Loureiro et al., 2021] for a
proof.
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C OVERLAPS AND RATES IN RIDGE REGRESSION

This section is devoted to the simplification of the system of equations in Equation (100). Indeed, while the GAMP algorithm
can be run with general B ≥ 1, we can in fact restrict ourselves to the case B = 2 without loss of generality. Since our main
goal is to compute the correlation between various independent bootstrap resamples and the resamples are i.i.d, the overlaps
will have a simple structure that does not depend on B. Once analytical expressions for the overlaps of interest are obtained,
the rates of various quantitie like bias and variance are computed in the regime α → ∞.

C.1 SOLUTION TO THE STATE-EVOLUTION EQUATIONS

Let us simplify the system of equations in Equation (100) assuming B = 2:

Overlaps V , V̂ Note that the matrices V and V̂ are diagonal, so that we can denote them as V = Diag(v1, v2) and
V̂ = Diag(v̂1, v̂2). This is due to the fact that the two estimators are independently computed. As such, combining the two
equations for V and V̂ in Equation (100), one can write

[
v1 0
0 v2

]
=

 1

λ+αEp1

[
p1

1+p1v1

] 0

0 1

λ+αEp2

[
p2

1+p2v2

]
 . (110)

Hence for i = 1, 2, the overlap vi is given by the fixed-point equation

vi =
1

λ+ αEpi

[
pi

1+pivi

] . (111)

Moreover, we have v̂i = αEpi

[
pi

1+pivi

]
= 1

vi
− λ.

Overlaps m, m̂ Next, we deduce m by combining the m and m̂ expressions from Equation (100):

[
m1

m2

]
= α

 ρ
λ+v̂1

Ep1

[
p1

1+p1v1

]
ρ

λ+v̂2
Ep2

[
p2

1+p2v2

] =

[
ρv̂1
λ+v̂1
ρv̂2
λ+v̂2

]
, (112)

so that mi =
ρv̂i
λ+v̂i

= ρ(1− λvi), for i = 1, 2. Moreover, m̂i = v̂i.

Overlaps Q, Q̂ One can leverage the fact that the matrices Q, Q̂ are symmetric. Using the notation

Q :=

[
q1 q1,2
q1,2 q2

]
, Q̂ :=

[
q̂1 q̂1,2
q̂1,2 q̂2

]
and Q−1 :=

[
q′1 q′1,2
q′1,2 q′2

]
(113)

one can rewrite the equation for Q from Equation (100) as

[
q1 q1,2
q1,2 q2

]
=

[
ρm̂2

1+q̂1
(λ+v̂1)2

ρm̂1m̂2+q̂1,2
(λ+v̂1)(λ+v̂2)

ρm̂1m̂2+q̂1,2
(λ+v̂1)(λ+v̂2)

ρm̂2
2+q̂2

(λ+v̂2)2

]
⇐⇒

{
qi =

ρm̂2
i+q̂i

(λ+v̂i)2
= 1

ρm
2
i + v2i q̂i, for i = 1, 2

q1,2 =
ρm̂1m̂2+q̂1,2
(λ+v̂1)(λ+v̂2)

= 1
ρm1m2 + v1v2q̂1,2

. (114)

The computations are slightly more involved for Q̂, but one can derive that

BQB⊤ = (m2
1q

′
1 + 2m1m2q

′
1,2 +m2

2q
′
2)12 +Q−

[
m⊤

m⊤

]
−
[
m m

]
and v⋆ = ρ− (m2

1q
′
1 + 2m1m2q

′
1,2 +m2

2q
′
2),

(115)
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and consequently the equation for Q̂ from Equation (100) reads[
q̂1 q̂1,2
q̂1,2 q̂2

]
= α

 Ep1

[
( p1

1+p1v1
)2
]
(ρ+∆− 2m1 + q1) Ep1,p2

[
p1

1+p1v1
· p2

1+p2v2

]
(ρ+∆−m1 −m2 + q1,2)

Ep1,p2

[
p1

1+p1v1
· p2

1+p2v2

]
(ρ+∆−m1 −m2 + q1,2) Ep2

[
( p2

1+p2v2
)2
]
(ρ+∆− 2m2 + q2)


(116)

⇐⇒

q̂i = αEpi

[(
pi

1+pivi

)2]
(ρ+∆− 2mi + qi), for i = 1, 2

q̂1,2 = αEp1,p2

[
p1

1+p1v1
· p2

1+p2v2

]
(ρ+∆−m1 −m2 + q1,2)

. (117)

Combining the equations for qi and q̂i just derived, one can compute qi as

qi =

1
ρm

2
i + αEpi

[(
pivi

1+pivi

)2]
(ρ+∆− 2mi)

1− αEpi

[(
pivi

1+pivi

)2] , for i = 1, 2 (118)

and similarly q1,2 is given by

q1,2 =

1
ρm1m2 + αEp1,p2

[
p1v1

1+p1v1
· p2v2
1+p2v2

]
(ρ+∆−m1 −m2)

1− αEp1,p2

[
p1v1

1+p1v1
· p2v2
1+p2v2

] . (119)

Let us collect these results in the following proposition:

Proposition C.1. Consider two ridge estimators with sampling weights specified by p1, p2. The set of self-consistent
equations in Equation (100) gives a characterization of their overlaps in vector/matrix form for pair resampling. Using the
notation

V = Diag(v1, v2), V̂ = Diag(v̂1, v̂2), Q =

[
q1 q1,2
q1,2 q2

]
, Q̂ =

[
q̂1 q̂1,2
q̂1,2 q̂2

]
, (120)

the overlaps of interest can be simplified as follows: each vi is the unique solution to the fixed-point equation

vi =
1

λ+ αEpi

[
pi

1+pivi

] , (121)

while

mi = ρ(1− λvi), (122)

qi =

1
ρm

2
i + αEpi

[(
pivi

1+pivi

)2]
(ρ+∆− 2mi)

1− αEpi

[(
pivi

1+pivi

)2] , (123)

q1,2 =

1
ρm1m2 + αEp1,p2

[
p1v1

1+p1v1
· p2v2
1+p2v2

]
(ρ+∆−m1 −m2)

1− αEp1,p2

[
p1v1

1+p1v1
· p2v2
1+p2v2

] , (124)

where ρ = 1/d∥θ⋆∥22 and ∆ > 0.

Remark C.2. When p1 and p2 are identically distributed according to some distribution µ, we get v1 = v2 ≡ v, m1 = m2 ≡
m, and q1 = q2 ≡ q, with 

v = 1

λ+αEp[ p
1+pv ]

m = ρ(1− λv)

q =
1
ρm

2+αEp

[
( pv

1+pv )
2
]
(ρ+∆−2m)

1−αEp

[
( pv

1+pv )
2
] ,

(125)

where p is a random variable distributed according to µ.
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Remark C.3. When p1, p2 are independent, the overlap q12 can be simplified to

q1,2 =

1
ρm1m2 + αEp1

[
p1v1

1+p1v1

]
· Ep2

[
p2v2

1+p2v2

]
(ρ+∆−m1 −m2)

1− αEp1

[
p1v1

1+p1v1

]
· Ep2

[
p2v2

1+p2v2

] =
m1m2(αρ+ ρ+∆−m1 −m2)

αρ2 −m1m2
. (126)

Residual Resampling The system of equations for residual resampling in Equation (106) is almost identical to Equa-
tion (100), and in fact simpler as it does not involve expectations. Hence, following the same approach and notation as
above, one can solve it to determine the overlaps of interests.

Proposition C.4. Consider two ridge estimators. The set of self-consistent equations in Equation (106) gives a characteri-
zation of their overlaps in vector/matrix form for residual resampling. Using the notation

V = Diag(v1, v2), V̂ = Diag(v̂1, v̂2), Q =

[
q1 q1,2
q1,2 q2

]
, Q̂ =

[
q̂1 q̂1,2
q̂1,2 q̂2

]
, (127)

the overlaps of interest are such that v ≡ v1 = v2, m ≡ m1 = m2, q ≡ q1 = q2. In particular, v is the unique solution to
the fixed-point equation

v =
1

λ+ α
1+v

, (128)

while

m = ρ(1− λv), (129)

q =

1
ρm

2 + α
(

v
1+v

)2
(ρ+∆− 2m)

1− α
(

v
1+v

)2 =
m2(αρ+ ρ+∆− 2m)

αρ2 −m2
, (130)

q1,2 =

1
ρm

2 + α
(

v
1+v

)2
(ρ− 2m)

1− α
(

v
1+v

)2 =
m2(αρ+ ρ− 2m)

αρ2 −m2
, (131)

where ρ = 1/d∥θ⋆∥22 and ∆ > 0.

C.1.1 Full Resampling Overlaps

To compute overlaps between two independent learners performing ERM on their own dataset, we consider a single dataset
of size 2n split evenly between the learners. This is achieved by using sampling weights p1, p2 with joint distribution given
by µ(p1, p2) =

1
21{p1 = 1, p2 = 0} + 1

21{p1 = 0, p2 = 1}. Since p1, p2 have the same marginals, Remark C.2 applies.
Note also that here we are in the high-dimensional regime with 2n/d → 2α. With this, the fixed-point equation for v becomes
v = 1

λ+ α
1+v

and can be solved exactly. Overall, the overlaps are given by
v =

1−λ−α+
√

(α+λ−1)2+4λ

2λ

m = ρ(1− λv)

q =
1
ρm

2+α( v
1+v )

2
(ρ+∆−2m)

1−α( v
1+v )

2 = m2(αρ+ρ+∆−2m)
αρ2−m2

q1,2 = m2

ρ

(132)

by Proposition C.1. In the following, we refer to these overlaps as vfri ,m
fr
i , q

fr
i and qfr1,2.

C.1.2 Residual Resampling Overlaps

The overlaps are given by Proposition C.4: 
v =

1−λ−α+
√

(α+λ−1)2+4λ

2λ

m = ρ(1− λv)

q = m2(αρ+ρ+∆−2m)
αρ2−m2

q1,2 = m2(αρ+ρ−2m)
αρ2−m2

(133)

25



In the following, we refer to these overlaps as vrri ,m
rr
i , q

rr
i and qrr1,2.

C.1.3 Subsampling Overlaps

To compute overlaps between two independent learners that perform subsampling at rate r1, r2 of the same dataset, we
must consider p1 ∼ Bern(r1) and p2 ∼ Bern(r2) with p1 independent of p2. The fixed-point equations for vi become

vi =
1

λ+
αri
1+vi

and can be solved exactly to yield vi =
1−λ−αri+

√
(αri+λ−1)2+4λ

2λ for i = 1, 2. Note also that Remark C.3

applies here. By Proposition C.1, we get

vi =
1−λ−αri+

√
(αri+λ−1)2+4λ

2λ

mi = ρ(1− λvi)

qi =
1
ρm

2
i+αri

(
vi

1+vi

)2
(ρ+∆−2m)

1−αri( v
1+v )

2 =
m2

i (αρri+ρ+∆−2mi)

αρ2ri−m2
i

q1,2 = m1m2(αρ+ρ+∆−m1−m2)
αρ2−m1m2

,

(134)

for i = 1, 2. In the following, we refer to these overlaps as vssi ,mss
i , q

ss
i and qss1,2.

C.1.4 Pairs Bootstrap Overlaps

To compute overlaps between two independent learners that perform pairs bootstrap resampling of the same dataset, we must
consider p1, p2

i.i.d.∼ Poi(1), so that Remark C.2 and Remark C.3 apply. By Proposition C.1, the overlaps are thus given by

v = 1

λ+αEp[ p
1+pv ]

m = ρ(1− λv)

q =
1
ρm

2+αEp

[
( pv

1+pv )
2
]
(ρ+∆−2m)

1−αEp

[
( pv

1+pv )
2
]

q1,2 = m2(αρ+ρ+∆−2m)
αρ2−m2 ,

(135)

with p ∼ Poi(1).

Remark C.5. For λ > 0, the variance is thus equal to

V̂arpb = q − q1,2 =

1
ρm

2 + αEp

[(
pv

1+pv

)2]
(ρ+∆− 2m)

1− αEp

[(
pv

1+pv

)2] − m2(αρ+ ρ+∆− 2m)

αρ2 −m2
, (136)

with v and m defined in Equation (135). Setting λ = 0 (which only makes sense for α > 1), the variance becomes

V̂arpb =

ρ+ αEp

[(
pv

1+pv

)2]
(∆− ρ)

1− αEp

[(
pv

1+pv

)2] − αρ− ρ+∆

α− 1
(137)

= ∆

 αEp

[(
pv

1+pv

)2]
1− αEp

[(
pv

1+pv

)2] − 1

α− 1

 (138)

= ∆

 1

1− αEp

[(
pv

1+pv

)2] − α

α− 1

 , (139)
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where v is the unique solution to the fixed point equation v = 1

αEp[ p
1+pv ]

. We thus recover Theorem 2 from Karoui and

Purdom [2018] since this is equivalent to writing

V̂arpb = ∆

(
κ

1− κ− f(κ)
− 1

1− κ

)
, (140)

where κ = 1
α , f(κ) := Ep

[
1

(1+pv)2

]
, and v is the unique solution of Ep

[
1

1+pv

]
= 1− κ.

In the following, we refer to the overlaps as vpbi ,mpb
i , qpbi and qpb1,2.

C.1.5 Residual Bootstrap Overlaps

To compute overlaps between two independent learners that perform bootstrap resampling, we follow the explanation
in Appendix B.1. It states that the overlaps for the residual bootstrap are given by those of the residual resampling, with ρ

replaced by ρ̃ = qfr and ∆ replaced by ∆̃ = ρ+∆−2mfr+qfr

(1+vfr)2
. Hence, Proposition C.4 gives

v =
1−λ−α+

√
(α+λ−1)2+4λ

2λ

m = ρ̃(1− λv)

q = m2(αρ̃+ρ̃+∆̃−2m)
αρ̃2−m2

q1,2 = m2(αρ̃+ρ̃−2m)
αρ̃2−m2 .

(141)

In the following, we refer to these overlaps as vrbi ,mrb
i , qrbi and qrb1,2.

C.1.6 Overlaps between Distinct Resampling Methods

Certain quantities of interest require to compute the correlation between two estimators which use different resampling
methods. In the high-dimensional regime, this corresponds to the overlap q1,2 where the sampling weights p1, p2 are
independent. In that case, Remark C.3 applies and Proposition C.1 yields

vi = 1

λ+αEpi

[
pi

1+pivi

]
mi = ρ(1− λvi)

q12 = m1m2(αρ+ρ+∆−m1−m2)
αρ2−m1m2

,

(142)

for i = 1, 2. In particular, the overlap between full resampling and pairs bootstrap is given by

qfr,pb1,2 :=
mfrmpb(αρ+ ρ+∆−mfr −mpb)

αρ2 −mfrmpb
, (143)

the overlap between full resampling and subsampling at rate r is given by

qfr,ss1,2 :=
mfrmss(αρ+ ρ+∆−mfr −mss)

αρ2 −mfrmss
. (144)

C.2 LARGE α RATES

In this section, we compute the rates of quantities of interest (variances, biases) in the α → ∞ limit, which are summarized
in Table 1. The approach is mathematically standard: for each overlap, we compute its series expansion at α → ∞ up to a
desired order. Let us illustrate this with an example.

Consider the full resampling overlap vfr computed in Appendix C.1.1:

vfr =
1− λ− α+

√
(α+ λ− 1)2 + 4λ

2λ
. (145)
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To compute its series expansion at α → ∞, we substitute α with 1/β in the equation above, and then compute its Taylor
series at β → 0. Letting

h(β) :=
1− λ− 1

β +
√
( 1β + λ− 1)2 + 4λ

2λ
, (146)

one can apply this strategy and determine the Taylor expansion up to order 2 for vfr by evaluating

lim
β→0

h(β) = lim
β→0

β(1− λ)− 1 +
√
(β(λ− 1) + 1)2 + 4λβ2

2λβ
= 0 (147)

lim
β→0

h′(β) = lim
β→0

1
β2 −

(( 1
β+λ−1) 1

β2√
( 1
β+λ−1)2+4λ

2λ
= 1 (148)

lim
β→0

h′′(β) = lim
β→0

− 2
β3 +

2( 1
β+λ−1)

β3

√
( 1

β+λ−1)
2
+4λ

+ 1

β4

√
( 1

β+λ−1)
2
+4λ

− ( 1
β+λ−1)

2

β4
(
( 1

β+λ−1)
2
+4λ

)3/2

2λ
= 2(1− λ), (149)

from which we conclude that for β → 0,

h(β) = h(β) + h′(β)β +
1

2
h′′(β)β2 +O(β3) = β + (1− λ)β2 +O(β3) (150)

or equivalently, substituting back α = 1/β,

vfr =
1

α
+

1− λ

α2
+O

(
1

α3

)
(151)

for α → ∞. The computation of all overlaps are carried out in the same fashion, and we use the Mathematica software [Wol-
fram Research] to automate these computations.

C.2.1 Full Resampling Rates

From the overlaps computed in Appendix C.1.1, we retrieve the limiting behaviors
vfr

α→∞≃ 1
α + 1−λ

α2 +O
(

1
α3

)
mfr α→∞≃ ρ− ρλ

α + ρλ(λ−1)
α2 +O

(
1
α3

)
qfr

α→∞≃ ρ+ ∆−2λρ
α + ∆(1−2λ)+ρλ(3λ−2)

α2 +O
(

1
α3

)
qfr1,2

α→∞≃ ρ− 2ρλ
α + ρλ(3λ−2)

α2 +O
(

1
α3

)
,

(152)

so that the variance is given by

VarD(θ̂λ) = qfr − qfr1,2
α→∞≃ ∆

α
+O

(
1

α2

)
(153)

and the bias is

Bias2D(θ̂λ) = ρ+ qfr1,2 − 2mfr α→∞≃ ρλ2

α2
+O

(
1

α3

)
. (154)

C.2.2 Residual Resampling Rates

From the overlaps computed in Appendix C.1.2, we retrieve the limiting behaviors
vrr

α→∞≃ 1
α + 1−λ

α2 +O
(

1
α3

)
mrr α→∞≃ ρ− ρλ

α + ρλ(λ−1)
α2 +O

(
1
α3

)
qrr

α→∞≃ ρ+ ∆−2ρλ
α + ∆(1−2λ)+λ(3λ−2)

α2 +O
(

1
α3

)
qrr1,2

α→∞≃ ρ− 2ρλ
α + ρλ(3λ−2)

α2 +O
(

1
α3

)
,

(155)
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so that the variance is given by

VarD|X(θ̂λ) = qrr − qrr1,2
α→∞≃ ∆

α
+O

(
1

α2

)
(156)

and the bias is

Bias2D|X(θ̂λ) = ρ+ qrr1,2 − 2mrr α→∞≃ ρλ2

α2
+O

(
1

α3

)
. (157)

C.2.3 Rates of Overlaps between Distinct Resampling Methods

From the overlaps computed in Appendix C.1.6, we retrieve the limiting behaviors{
qfr,ss1,2

α→∞≃ ρ+ r∆−ρλ(r+1)
rα + r2∆+ρλ(λ+r(λ+(λ−1)r)−1)−r∆λ(r+1)

r2α2 +O
(

1
α3

)
qfr,pb1,2

α→∞≃ ρ+ ∆−2λρ
α + ∆(1−2λ)+3ρλ(λ−1)

α2 +O
(

1
α3

)
.

(158)

C.2.4 Subsampling and Jackknife Rates

From the overlaps computed in Appendix C.1.3, we retrieve the limiting behaviors

vssi
α→∞≃ 1

riα
+ 1−λ

r2iα
2 +O

(
1
α3

)
mss

i

α→∞≃ ρ− ρλ
riα

+ ρλ(λ−1)
r2iα

2 +O
(

1
α3

)
qssi

α→∞≃ ρ+ ∆−2ρλ
riα

+ ∆(1−2λ)+ρλ(3λ−2)
r2iα

2 +O
(

1
α3

)
qss1,2

α→∞≃ ρ+ ∆r1r2r−2ρλ
r1r2α

+
∆+

(λ−1)λρ

r21
+

λ(λρ−∆r2)
r1r2

+
(λ−1)λρ

r22
−∆λ

r2

α2 +O
(

1
α3

)
,

(159)

so that the variance when subsampling at rate r1 = r2 ≡ r is given by

V̂arss =
qss − qss1,2
1− r

α→∞≃ ∆

αr
+O

(
1

α2

)
. (160)

and the bias is

B̂ias2ss =
qss1,2 + qfr − 2qfr,ss1,2

(1− r)2
α→∞≃ =

ρλ2

α2r2
+O

(
1

α3

)
. (161)

The Jackknife variances and biases are computed by taking the limit r → 1, and we get

V̂arjk = lim
r→1

qss − qss1,2
1− r

α→∞≃ ∆

α
+O

(
1

α2

)
. (162)

and

B̂ias2jk = lim
r→1

qss1,2 + qfr − 2qfr,ss1,2

(1− r)2
α→∞≃ =

ρλ2

α2
+O

(
1

α3

)
. (163)

C.2.5 Pairs Bootstrap Rates

The computation of rates in this case are less straightforward given that the overlaps depend on the evaluation of various
expectations (see Appendix C.1.4). Let us consider vpb first, which is given by the fixed-point equation

vpb =
1

λ+ αEp

[
p

1+pvpb

] . (164)

We use the Ansatz that vpb behaves as 1/α in the α → ∞ limit, and hence write it as vpb = ṽ
α . Since 1

1+x = 1− x+O(x2)

for x → 0+, we get

ṽ =
α

λ+ αEp

[
p

1+ pṽ
α

] ≈ α

λ+ αEp

[
p(1− pṽ

α )
] =

α

λ+ α− 2ṽ
. (165)

29



This can be solved exactly and

ṽ =
α+ λ−

√
(α+ λ)2 − 8α

4
⇒ vpb =

α+ λ−
√
(α+ λ)2 − 8α

4α

α→∞≃ 1

α
+

2− λ

α2
+O

(
1

α3

)
. (166)

Overlaps mpb and qpb1,2 are thus given by

mpb α→∞≃ ρ− ρλ

α
+

ρλ(λ− 2)

α2
+O

(
1

α3

)
(167)

qpb1,2
α→∞≃ ρ+

∆− 2ρλ

α
+

∆(1− 2λ) + ρλ(3λ− 4)

α2
+O

(
1

α3

)
. (168)

Overlap qpb involves the evaluation of Ep

[(
pvpb

1+pvpb

)2]
, which can be computed using the same approximation as in Equa-

tion (165):

Ep

[(
pvpb

1 + pvpb

)2
]
≈ Ep

[(
pvpb(1− pvpb)

)2]
(169)

= Ep

[
(pvpb)2 − 2(pvpb)3 + (pvpb)4

]
(170)

= 2(vpb)2 − 10(vpb)3 + 15(vpb)4, (171)

where the last equality is obtained since p ∼ Pois(1). This yields

qpb
α→∞≃ 1 +

2(∆− ρλ)

α
+

2∆(1− 2λ) + ρλ(3λ− 4)

α2
+O

(
1

α3

)
. (172)

so that the variance in the α → ∞ limit is thus given by

V̂arpb = qpb − qpb1,2
α→∞≃ ∆

α
+O

(
1

α2

)
(173)

and the bias is

B̂ias2pb = qpb1,2 + qfr − 2qfr,pb1,2

α→∞≃ =
ρλ2

α4
+O

(
1

α5

)
. (174)

C.2.6 Residual Bootstrap Rates

From the overlaps computed in Appendix C.1.5, we retrieve the limiting behaviors
vrb

α→∞≃ 1
α + 1−λ

α2 +O
(

1
α3

)
mrb α→∞≃ ρ+ ∆−3ρλ

α + ∆(1−3λ)+3ρλ(2λ−1)
α2 +O

(
1
α3

)
qrb

α→∞≃ ρ+ 2(∆−2λρ)
α + ∆(1−6λ)+2ρλ(5λ−2)

α2 +O
(

1
α3

)
qrb1,2

α→∞≃ ρ+ ∆−4ρλ
α + ∆(1−4λ)+2ρλ(5λ−2)

α2 +O
(

1
α3

)
,

(175)

so that the variance is

V̂arrb = qrb − qrb1,2
α→∞≃ ∆

α
+O

(
1

α2

)
(176)

and the bias is

B̂ias2rb = qrb1,2 + qfr − 2mrb α→∞≃ ρλ2

α2
+O

(
1

α3

)
. (177)
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C.2.7 Differences between Rates

Recall that pairs bootstrap and subsampling aim to estimate bias and variance with respect to the joint distribution pθ(y,x),
while residual bootstrap seeks to estimate the bias and variance with respect to the conditional distribution pθ(y|x). To
understand how good each estimate of the bias and variance is, we compute for each resampling method the difference
between their estimate and the true value. For the variances, this results in∣∣∣V̂arss −VarD(θ̂λ)

∣∣∣ α→∞≃ ∆(1− r)

αr
+

∆
(
(1− 2λ)(1− r2) + r

)
α2r2

+O

(
1

α3

)
∣∣∣V̂arjk −VarD(θ̂λ)

∣∣∣ α→∞≃ ∆

α2
+O

(
1

α3

)
∣∣∣V̂arpb −VarD(θ̂λ)

∣∣∣ α→∞≃ ∆(4λ+ 7)

α3
+O

(
1

α4

)
∣∣∣V̂arrb −VarD|X(θ̂λ)

∣∣∣ α→∞≃ ∆

α2
+O

(
1

α3

)
while the biases are given by∣∣∣B̂ias2ss − Bias2D(θ̂λ)

∣∣∣ α→∞≃ ρλ2(r2 − 1)

r2α2
+

λ2
(
ρ
(
2λ− 2(λ− 1)r3 − (3− 2λ)r − 2

)
−∆r

)
r3α3

+O

(
1

α4

)
∣∣∣B̂ias2jk − Bias2D(θ̂λ)

∣∣∣ α→∞≃ λ2(ρ(2λ− 3)−∆)

α3
+O

(
1

α4

)
∣∣∣B̂ias2pb − Bias2D(θ̂λ)

∣∣∣ α→∞≃ ρλ2

α2
+O

(
1

α3

)
∣∣∣B̂ias2rb − Bias2D|X(θ̂λ)

∣∣∣ α→∞≃ λ2(2λρ−∆)

α3
+O

(
1

α4

)
.
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D ASYMPTOTICS OF PREDICTION VARIANCE

The focus of our work is the variance of estimators with respect to the resampling of the training set. However, one can also
be interested in computing the prediction variance, often defined as

Varx,y (y − ŷ (x)) (178)

where now the training set is fixed, and the variance is taken with respect to the new test sample x, y. In a linear model

where ŷ = θ̂
⊤
λ x and in our setting defined in Equation (1), the prediction variance is equal to the test error of the ERM

estimator. Indeed :

Varx,y (y − ŷ (x) |D) = E
[
(y − θ̂

⊤
λ x)

2
]
+ E

[
(y − θ̂

⊤
λ x)

]2
(179)

= E
[
(y − θ̂

⊤
λ x)

2
]
= εg (180)

because E
[
(y − θ̂

⊤
λ x)

]2
= 0. In the case of Ridge regression,

εg = ρ− 2mfr +Qfr
11 + σ2. (181)

Note that at optimal λ = σ2 (λ = 1 in our case), the performance of the ERM estimator is equal the posterior variance of
the Bayes-optimal, as

Varbo = ρ− qbo (182)

= ρ− 2mbo + qbo (183)

= ρ− 2mfr +Qfr
11, (184)

where Equation (183) follows from the Nishimori condition mbo = qbo, and Equation (184) is due to the fact that
θ̂λ = E [θ|D] for optimal λ.

E ADDITIONAL DETAILS FOR NUMERICAL EXPERIMENTS

The state evolution equations for the resampling methods are written in the Julia language [Bezanson et al., 2017]
and are available on the Github repository https://github.com/SPOC-group/BootstrapAsymptotics
that also contains the code used to reproduce the plots. The code leverages libraries such as NLSolvers.jl
for optimization [Mogensen and Riseth, 2018], QuadGK.jl and HCubature.jl for integration [Johnson, 2013,
2017, Genz and Malik, 1980], MLJLinearModels.jl for estimation of GLMs [Jul, 2023a], as well as vari-
ous utilities for statistical functions [Jul, 2024b, 2023b], performance [Jul, 2024a] and plotting [Breloff, 2024].
The code to compute the posterior variance of the Bayes-optimal estimator is written in Rust and is available at
https://github.com/spoc-group/double_descent_uncertainty. All the experiments were run on a
computer with the following specifications: 16 GB RAM, Apple M1 Pro CPU.

E.1 EFFECTS OF FINITE B

In Section 5, we studied the behavior of resampling methods in the limit B → ∞. However, in practice B is usually not
very large, and the finiteness of B has an impact on the estimated bias and variances. Indeed :

V̂ar =
1

dB

B∑
b=1

∥∥∥∥∥θ̂b −
1

B

B∑
b=1

θ̂b

∥∥∥∥∥
2

=
1

dB

B∑
b=1

∥θ̂b − ED⋆

[
θ̂
]
∥2 + 1

d
∥ED⋆

[
θ̂
]
− 1

B

B∑
b=1

θ̂b∥2

where second term vanishes as B → ∞. Note that our framework allows us to compute the V̂ar(B) for a finite number of
Bootstrap resamples B, as we get asymptotically

V̂ar(B) =
B − 1

B
lim

B→∞
V̂ar
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where V̂ar is the variance plotted in Figure 1 and Figure 3.

Likewise, the estimator of the bias with finite B can be computed and equates

B̂ias(B) = B̂ias +
1

B
V̂ar

where 1
B V̂ar is due to finite sampling and vanishes as B → ∞. Note that the overlaps computed with our state-evolution

equations allow us to compute B̂ias(B) at any B.
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