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ABSTRACT

In many real-world scenarios, teams of agents must coordinate their actions while
competing against opponents. Traditional multi-agent reinforcement learning
(MARL) approaches often treat opponents as part of the environment, causing
controlled agents to overlook the impact of their adversaries. Opponent model-
ing can enhance an agent’s decision-making by constructing predictive models of
other agents. However, existing approaches typically rely on centralized learning
with access to opponent data, and the process of extracting decentralized poli-
cies becomes impractical with larger teams. To address this issue, we propose
the Distributional Speculative Opponent-aided MIXing framework (DSOMIX), a
novel value-based speculative opponent modeling algorithm that relies solely on
local information—namely the agent’s own observations, actions, and rewards.
DSOMIX uses speculative beliefs to predict the behaviors of unseen opponents,
enabling agents to make decisions based on local observations. Additionally, it
incorporates distributional value decomposition models to capture a more granu-
lar representation of the agent’s return distribution, improving the training process
for the speculative opponent models. We formally derive a value-based theorem
that underpins the training process. Extensive experiments across four challeng-
ing MARL benchmarks from MPE and Pommerman, demonstrate that DSOMIX
outperforms state-of-the-art methods with superior performance and convergence.

1 INTRODUCTION

Multi-agent reinforcement learning (MARL) holds considerable promise to help address a vari-
ety of cooperative multi-agent problems, including cooperation, competition, and a mix of both
(Hernandez-Leal et al., 2019; Zhang et al., 2021). In these dynamic environments, decision-making
becomes increasingly complex, particularly when agents must account for interactions with other
agents, both cooperative and adversarial. Among these, opponents—adversarial agents that hinder
the controlled agents’ objectives—play a crucial role, as their behaviors directly affect the transition
dynamics experienced by the controlled agents. Many existing works normally regard the opponents
(if exist) as a part of the environment and only use the controlled agents’ information during train-
ing, such as MADDPG (Lowe et al., 2017), COMA (Foerster et al., 2018b), QMIX (Rashid et al.,
2018) and soft Q learning (Wei et al., 2018), which results in the policy tending to be sub-optimal.

Some researchers argue that controlled agents should explicitly model the unknown goals and behav-
iors of opponents, rather than treating them as part of the environment, to enhance decision-making.
This has led to the development of opponent modeling (Albrecht & Stone, 2018), where agents con-
struct models to predict the behavior of other agents. However, many of these methods assume free
access to opponents’ information during training, including their observations and actions, which
serve as ground truth (He et al., 2016; Foerster et al., 2018a; Raileanu et al., 2018; Tian et al., 2019;
Papoudakis et al., 2021). However, obtaining the actual observations and actions of opponents may
be impractical or expensive in many scenarios, such as poker (Papoudakis et al., 2020) and hidden
and seek (Kamal et al., 2023). Even with complete knowledge of opponents’ configurations, col-
lecting detailed data on their observations, actions, and rewards becomes increasingly costly as the
number of agents and task complexity grows. Consequently, controlled agents often need to rely
solely on their own local information—such as their observations, actions, and rewards—to model
opponents. Recent works have employed encoder-decoder architectures to extract representations
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from this local information (Papoudakis et al., 2020; 2021), but they still rely on opponents’ true
data as the ground truth during training.

To address this issue, we propose a value-based adversary modeling framework for opponents, called
the Distributional Speculative Opponent-aided MIXing framework (DSOMIX). This framework pre-
dicts opponents’ actions using local observations while maximizing the agent’s utility. Specifically,
at each time step, these speculative opponent models—so named because they do not rely on direct
training signals from actual opponent behaviors—use the agent’s observations as input to estimate
the opponents’ action distributions. The agent then samples multiple possible joint actions for the
opponents, each of which is considered in the agent’s decision-making process. The final action-
value function is derived by incorporating these estimated opponent behaviors, allowing the agent
to take the best possible response. To enhance the reliability of these speculative models, the quality
of the agent’s action-value function can be used as feedback during training. To further increase
feedback, we employ a distributional decomposition module (Bellemare et al., 2017; Dabney et al.,
2018b) to model the return distribution of the agent’s action-value function. This approach provides
richer information than a simple expected return, improving the agent’s decision-making process.

In summary, the key contributions of this work is outlined as follows: (i) We introduce a speculative
opponent model-aided value function factorization framework that leverages local information to
infer unknown opponent behaviors. (ii) To the best of our knowledge, we are the first to utilize
distributional value function factorization to guide the training of opponent models, providing a
novel approach that could inspire future research. Additionally, we present a formal derivation,
grounded in the value decomposition theorem, that supports the joint training of both the agent
and speculative opponent models, strengthening the theoretical foundation of our approach. (iii)
We empirically demonstrate that the proposed DSOMIX outperforms state-of-the-art methods on
four challenging multi-agent tasks from the MPE (Lowe et al., 2017) and Pommerman (Resnick
et al., 2018) environments. Our extensive experiments confirm that DSOMIX successfully learns
reliable opponent models without access to opponents’ true information, achieving superior task
performance and faster convergence compared to baseline methods.

2 PRELIMINARIES

2.1 PARTIALLY OBSERVABLE MARKOV GAMES.

A partially observable Markov game (POMG) Lowe et al. (2017) of n agents is formulated as a
tuple M = ⟨S,O,O,A, T ,R, γ⟩. S is a set of states describing the possible configuration of all
agents and the external environment. Also, each agent i has its own observation space Oi ∈ O. Due
to the partial observability, in every state s ∈ S, each agent i gets a correlated observation oi based
on its observation function Oi : S → Oi where Oi ∈ O. The agent i selects an action ai ∈ Ai
from its own action space Ai ∈ A at each time step, giving rise to a joint action [a1, · · · , an] ∈
A1 ×A2 × · · · ×An. The joint action then produces the next state by following the state transition
function T : S×Ai×· · ·×An → S. R = {ri} is the set of reward functions. After each transition,
agent i receives a new observation and obtains a scalar reward as a function of the state and its action
ri : S × Ai → R. The initial state s ∈ S is determined by some prior distribution p : S → [0, 1].
Each agent i aims to maximize its own total expected returnRi = Ert∼ri(st,ati),(st,ati)∼τ

∑T
t=0 γ

trt,
where γ is the discount factor, rt is its sampled reward at time step t, τ is the trajectory distribution
induced by the joint policy of all agents, and T is the time horizon. Without loss of generality, we
assume that the n agents can be divided into |M | ≤ n teams, and each team has q agents with
1 ≤ q ≤ n. We consider the other teams as opponent agents which are controlled by a set of fixed
policies. Note that a single agent can also form a team. In this paper, we assume agents from the
same team fully cooperate and thus share the same reward function.

2.2 VALUE-BASED METHODS

The value-based method only consists of a critic to represent the action-value function with a deep
neural network (Mnih et al., 2015). The Q function can be recursively rewritten as Qπ(s, a) =
Es′ [r(s, a) + γEa′∼π[Q

π
θ (s

′, a′)]]. The critic learns parameters θ by sampling batches from the
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replay memory and minimizing the TD error:

L(θ) = Es,a,r,s′ [(Q(s, a; θ)− y)2]

where y = r + γmaxa′ Q(s′, a′;ϕ′). θ′ are the parameters of a target network that are periodically
copied from θ and kept constant for a number of iterations. Although it can be directly applied to
multi-agent settings by having each agent learn an independently optimal function (Tan, 1993), this
approach does not adequately address the non-stationary engendered by the changing policies of
other learning agents. In contrast, value decomposition methods aim to learn a joint value function,
and the agents are trained in a centralized fashion and executed in a decentralized manner. To ensure
consistency, the joint value function Qjt needs to satisfy the Individual-GlobalMax (IGM) principle
(Rashid et al., 2018):

argmax
a

Qjt(o,a) =

 argmaxa1 Q1(o1, a1)
...

argmaxan Qn(on, an)

 , (1)

where o is a joint action observation and a is a joint action. This work considers a most widely
used value decomposition framework, called QMIX (Rashid et al., 2018), which incorporates a
parameterized mixing network to compute the joint Q-value predicated on each agent’s individual
state-action value function: Qjt(o,a) =M(Q1(o1, a1), · · · , Qn(on, an)), whereM is a monotonic
function that satisfies ∂M

∂Qn
≤ 0. QMIX is trained with the objective of minimizing the DQN loss.

2.3 DISTRIBUTIONAL REINFORCEMENT LEARNING.

Distributional reinforcement learning (Bellemare et al., 2017) explicitly models the random return
Zπ(s, a) instead of its expectation. The distributional Bellman equation can be defined as,

Z(s, a)
D
= r(s, a) + γPπZ(s, a), (2)

where D= means the two sides of the equation are distributed according to the same law, PπZ(s, a) D=
Z(s′, a′) and s′ ∼ P (·|s, a), a′ ∼ π(·|S′). The distributional Bellman optimality operator is defined
as: T ∗Z(s, a) :

D
= r(s, a) + γZ(s′, argmaxa′ E[Z(s′, a′)]).

Given some initial distribution Z0, Z converges to the return distribution Zπ under π, contracting
in terms of p-Wasserstein distance for all p ∈ [1,∞) under π; while Z alternates between the set of
optimal return distributions Z∗ := {Zπ∗ : π∗ ∈ Π∗}, where Π∗ denotes the set of optimal policies.
The p-Wasserstein distance between the probability distributions of random variables X , Y can
be calculated by Wp(X,Y ) = (

∫ 1

0
|F−1
X (ω) − F−1

Y (ω)|pdω)1/p, where (F−1
X , F−1

Y ) are quantile
functions of (X,Y ). The relationship between the cumulative distribution function (CDF) FX and
the quantile function F−1

X (the generalized inverse CDF) of X is formulated as F−1
X (ω) = inf{x ∈

R : ω ≤ FX(x)},∀ω ∈ [0, 1], where ω represents the quantile. The expectation of X expressed in
terms of F−1

X (ω) is defined as E[X] =
∫ 1

0
F−1
x (ω)dω. In (Dabney et al., 2018b), the value function

can be modeled as quantile function F−1(o, a|ω). Then, a pair-wise sampled TD error δ for two
quantile samples ω, ω′ ∼ U([0, 1]) can be defined as,

δω,ω
′

t = r + γF−1(o′, a′|ω′)− F−1(o, a|ω). (3)

The pair-wise loss ρκω is then defined based on the Huber quantile regression loss Lκ (Dabney et al.,
2018b) with threshold κ = 1, and can be formulated as,

ρκω(δ
ω,ω′

) = |ω − I{δω,ω
′
< 0}|Lκ(δ

ω,ω′
)

κ
, (4)

where the Huber loss Lκ(δω,ω
′
) = 1

2 (δ
ω,ω′

)2 when |δω,ω′ | ≤ κ, otherwise, Lκ(δω,ω
′
) = κ(|δω,ω′ |−

1
2κ). Given K quantile sample [ωi]

K
i=1 to be optimized with regard to K ′ target quantile samples

[ωj ]
K′

j=1, the loss L(o, a, r, o′) is defined as the sum of the pair-wise losses:

L(o, a, r, o′) = 1

K ′

K∑
i=1

K′∑
j=1

ρκωi
(δω,ω

′
j ). (5)
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3 METHODOLOGY

In this section, we introduce the proposed Distributional Speculative Opponent-aided MIXing
method (DSOMIX). We first describe the overall framework of DSOMIX in section 3.1. Then
we provide details and the theoretical foundation of the proposed method in section 3.2. Finally, a
practical implementation of DSOMIX is presented in Section 3.3.

(a) Opponent model-aided value distribution  
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Figure 1: An illustration of our DSOMIX network architecture. (a) Speculative opponent models:
Each model contains p speculative opponent models, which take the local observation oi and oppo-
nent index k as inputs to predict the opponents’ actions. Then, the action value function network
takes the joint predicted action {âti} together with the oit and at−1

i as input, and outputs a distribution
over the agent i’s own actions, which is weighed according to the probabilities of predicted oppo-
nents’ actions. (b) The DSOMIX framework consists of a mixing network M(Q1, Q2, · · · , QN )
and a shape network Φ for decomposing the deterministic part Zmean (i.e., Qjt) and the stochastic
part Zshape of the total return distribution Zjt. (c) The shape network contains parameter networks
Λobs(o,a

t−1) and [Λn(o)]n∈N for generating Zobs(ot) and [βn(o
t)]n∈N.

3.1 THE OVERALL FRAMEWORK

Our training follows the CTDE setting, which grants access to the observations and actions of the
team under our control. Note that, however, we do not know the observation and actions of the
opposing team during training. Figure 1 depicts the overall framework of our DSOMIX algorithm.
For each agent, there is one agent network that represents its individual value function Zi(oti, a

t
i).

We first allocate a collection of speculative opponent models for each agent. For p opponents,
agent i employs p individualized conjectural opponent models, wherein each model is instantiated
as a distinct neural network. These models process the agent’s localized observational data oti and
sampled actions at each timestamp to ascertain the presumptive action distributions of the opponents.
Utilizing these distributions, we proceed to sample multiple opponent joint actions âti, each of which
is fed into the controlled agent. The controlled agent’s final value function, Z(oti, ·), is the weighted
sum of the agent’s outputs where each weight is the sampling probability of the corresponding
opponent’s joint action.

By this design, the decision-making process of the controlled agent is strongly intertwined with
its speculative opponent models. Specifically, the speculative opponent model aims to infer po-
tential joint actions, representing the agent’s conjectures concerning the opponents’ prospective
moves. The agent i’s own value function is subsequently determined as a composite function of
the outputs from the speculative opponent model and the observations, effectively assimilating the
agent’s tactical considerations with the inferences drawn from the opponent models by performing a
weighted aggregation. To enhance predictive precision, the agent samples multiple opponents’ joint
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actions. Intriguingly, the opponent models’ training regimen is predicated on the rewards obtained
by the agent’s action alone, eschewing reliance on the opponents’ genuine actions and underscoring
outcome-oriented feedback loops. Meanwhile, the agent value function role is to evaluate the return
distribution associated with the agent’s action, preferring a distributional perspective over singular
expected value estimations.

3.2 SPECULATIVE OPPONENT MODEL-AIDED VALUE FUNCTION FACTORIZATION

Suppose agent i has p opponents in the game, which are represented as p independent speculative
opponent models. As shown in Figure 1(a), there is one agent network that receives the current
individual observation oti and the last action at−1

i as inputs and outputs its individual value function.
Let µψik

be parameterized by trainable parameters ψik and ψi = {ψik} be the set of parameters of
all speculative opponent models maintained by agent i. Each speculative opponent model µψik

takes
as input the observations oti and the index of the opponent and outputs a probability distribution over
the opponent’s action space. From this distribution, the agent samples each opponent k’s action to
construct the joint predicted action âti = [âti1, . . . , â

t
ip]. After the agent in the controlled team sample

their actions, each controlled agent i’s value function network Zϕi,ψi takes the joint predicted action
together with the observation oti as input, and computes a return distribution Zϕi

(oti, ·|{âikl}). We
conduct the sampling process multiple times and aggregate the resulting return distribution into the
final individual return distribution Zϕ,ψ(oti, ·). Therefore, the return distribution with speculative
opponent models of agent i can be defined as:

Zϕi,ψi(o
t
i, ·) =

∑
l

Zϕi(o
t
i, ·|{âikl})

p∏
k=1

µψik
(âikl|oti). (6)

Since IGM is necessary for value function factorization, a distributional factorization that satisfies
IGM is required for factorizing stochastic value functions with speculative opponent models. We
then provide a theorem to show that the distributional factorization with speculative opponent model
is sufficient to guarantee the IGM condition. We noticed that a finite number of individual stochastic
utilities [Zϕi,ψi

(oi, ai)]i∈N satisfies the distributional version of IGM for a stochastic joint action
value function Zjt(o,a) under o, since [E[Zϕi,ψi

(oi, ai)]]i∈N satisfies IGM for E[Zjt(o,a)], that is:

argmax
a

E[Zjt(o,a)] =

 argmaxa1 E[Zϕ1,ψ1
(o1, a1)]

...
argmaxaN E[ZϕN ,ψN

(oN , aN )]

 . (7)

Next, we present the formal derivation of the speculative opponent model-aided value decomposition
theorem.
Theorem 3.1. Consider a deterministic joint action-value function Qjt, determined by a factoriza-
tion function M , a stochastic joint action-value function Zjt:

Qjt(o,a) =M(Q1(o1, a1), · · · , QN (oN , aN )),

such that [Qn]n∈N satisfy IGM for Qjt under o. The following distributional factorization:

Zjt(o,a) = E[Zjt(o,a)] + (Zjt(o,a)− E[Zjt(o,a)])
= Zmean(o,a) + Zshape(o,a)

= Qjt +Φ(Z1(o1, a1), · · · , ZN (oN , aN ))

(8)

is sufficient to guarantee that [Zn]n∈N satisfy IGM for Zjt under o, where E[Φ] = 0.

This theorem reveals that the choice of factorization function M determines whether IGM holds,
regardless of the choice of Φ, as long as E[Φ] = 0. Under this setting, any differentiable factorization
function of deterministic variables can be extended to a factorization stochastic value function with
speculative opponent model. We provide the proof of Theorem B.1 in the appendix.

In this work, we employ an implicit quantile network (IQN) (Dabney et al., 2018a), which is an
effective way to learn an implicit representation of the return distribution, to approximate Zi. IQN is
a deterministic parametric function trained to parameterize samples from a quantile distribution ω ∼
U([0, 1]) to the respective quantile values of a target distribution. In execution, the action with the
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largest expected return Qi(oti, a
t
i) is chosen, where Qi(oti, a

t
i) can be approximated by calculating

the mean of the sampled return through N ′ quantile samples ωj ∼ U([0, 1]), ∀j ∈ [1, N ′]. The
expression is as follows:

Qi(o
t
i, a

t
i) ≈

1

N ′

N ′∑
j=1

Zji (o
t
i, a

t
i).

Therefore, we can obtain the agent return distribution Zi(oti, a
t
i) and respective agent value function

Qi(o
t
i, a

t
i). Then we construct the joint action return distribution by considering each agent’s indi-

vidual return distribution. To satisfy monotonicity, the joint action return distribution Zjt(ot,at)
should be decomposed into its deterministic part Zmean and stochastic part Zshape based on the
Mean-Shape decomposition (Sun et al., 2021). As shown in Figure 1(b), we approximate Zmean
by a factorization network M , and a shape network Φ was used to approximate Zshape. The fac-
torization function must accurately decompose the expectation of Zjt to adhere to monotonicity
constraints. On the other hand, the shape function is allowed to roughly factorize the shape of the
Zjt. Therefore, Zjt can be approximated by,

Zjt(o
t,at) =M(Q1, . . . , Qn) +

n∑
i=1

(Zi −Qi) =M(Q1, · · · , Qn) + Φ(Z1, · · · , ZN ). (9)

The factorization network can be trained end-to-end to minimize the DQN loss, which is defined as,

LDQN (θ) =

B∑
b=1

[(Ẑbmean − Zmean(o,a; θ))
2], (10)

where B is the batch size of transitions sampled from the replay buffer, and θ = (ϕ, ψ) are the
parameters of the agent network. Ẑmean = r + γmaxa′Zmean(o

′,a′; θ′) and θ′ are the parameters
of the target network. Then, the shape network Φ can be implemented by a large IQN composed of
multiple IQNs, optimized through the Quantile Huber loss, as defined in equation 5.

3.3 A PRACTICAL IMPLEMENTATION OF DSOMIX

In this section, we introduce the practical implementation of the proposed method. According to the
above analysis, computing the marginal distribution ρθi,ψi and final action return distribution Zϕ,ψ
can be exponentially costly concerning the dimensionality of the opponents’ action space. Formally,
each agent i’s opponent k has |Aik| actions. Then calculating Zϕ,ψ requires traversing |Ai1| ×
· · · × |Aip| combinations of opponents’ predicted actions, which quickly becomes intractable as p
increases. Therefore, we apply a sampling trick that samples a set of actions âik = (âik1, · · · , âikl)
from the output of the speculative opponent model µψik

for each opponent k, where l controls the
size of sampled actions. Thus the final agent return distribution can be approximated by:

Z̄ϕi,ψi
(oi, ai) =

∑
l

Zϕi
(ai|oi, {âikl})

p∏
k=1

µψik
(âikl|oi).

For the deterministic part Zmean, we introduce the mixing network, which is a feed-forward neu-
ral network taking the agent network outputs as input and mixes them monotonically, producing
the values of Zmean. For the stochastic part Zshape, we use the property of quantile mixture to
approximate the shape function Φ. The quantile function F−1

shape of Zshape can be approximated by:

F−1
shape(o,a|ω) = F−1

obs(o|ω) +
∑
n∈N

βn((F
−1
n (on, an|ω)−Qn(on, an))), (11)

where F−1
obs(o|ω) and [βn(o)]n∈N are respectively generated by function approximators Λobs(o|ω)

and [Λn(o)]n∈N, satisfying constraints βn(o) ≤ 0, ∀ n ∈ N and
∫ 1

0
F−1
obs(o|ω)dω = 0. The term

F−1
obs models the shape of an additional observation-dependent utility.

In practice, the algorithm initially generates training data utilizing the current DSOMIX. Subse-
quently, the objective of DSOMIX is computed from the generated data. Finally, the optimizer
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updates the parameters of the agent network accordingly. The updated agent network are then em-
ployed in the next training iteration. We parallelize the training, which is a common technique to
reduce the training time (Iqbal & Sha, 2019). In such cases, the training data is gathered from
all parallel environments, and actions are sampled and executed in respective environments concur-
rently. We summarize the training procedure in Algorithm 1.

4 EXPERIMENT

To comprehensively evaluate the proposed algorithm, we conduct experiments on two widely
adopted partially observable multi-agent environments with various settings and tasks, namely the
Predator-prey environment and the Pommerman environment, and compare with extensive base-
lines. From the experiments, we aim to answer the following questions: (1): Does the DSOMIX
yield superior performance than SOTA baseline methods (Figure 2(a), 2(b), 2(d), and 2(e) and Table
1)? (2): Are the main components of DSOMIX, i.e., the SOM and distribution value function, nec-
essary and effective (Figure 2(c), Figure 2(e), and Figure 3)? (3): What is the connections between
speculative opponent model (SOM) and distributional value function (Figure 4)?

4.1 THE ENVIRONMENT SETUP

Setup for the predator-prey environment. In predator-prey environment (Figure 5(a)), the player
controls multiple collaborating predators aiming to catch swifter preys within 500 iterations. Each
prey possesses a health value of 10. A predator moving within a given range of the prey lowers
the prey’s health by 1 point per time step. Lowering the prey’s health to 0 can kill the prey. If
at least one prey remains after 500 iterations, the prey team wins. All agents can select from five
distinct movement actions. At the start of the game, L gray landmarks are randomly placed in the
environment as obstacles to potentially impede the agents’ paths. Each predator receives the relative
positions and velocities of the agents, along with the landmarks’ positions as an observation. We
evaluate our method in two scenarios. The first scenario includes three predators and one prey,
which we denote as PP-3v1. Another scenario includes five predators and two preys, denoted as
PP-5v2. The number of landmarks is 2 in both settings.

Setup for the Pommerman environment. This environment involves four agents, and each agent
can either move in one of four directions, place a bomb, or do nothing. As shown in Figure 5(b),
a state is represented as an image consisting of three different square grids, i.e., empty, wooden,
or rigid. An empty grid permits any agent to enter it, while a wooden grid is inaccessible but
destructible by a bomb. In contrast, a rigid grid is unbreakable and impassable. When a bomb is
placed in a grid, it will explode after 10 time steps. The explosion will destroy any adjacent wooden
grids and kill any agents within 4-grids away from the bomb. If all agents belonging to one team
die, the team loses the game. The game will be terminated after 1000 steps no matter whether there
is a winner team or not. Agents get a +1 reward if their team wins and −1 reward otherwise. The
experiments are carried out in two different scenarios. The first scenario consists of four agents fight
against each other, which we denote as Pomm-FFA. The other scenario is a team match with two
teams of two agents, which we denote as Pomm-Team. The details of all the environments and
scenarios are provided in Appendix C.1.

4.2 BASELINES AND ALGORITHM CONFIGURATION.

Baselines. We compare DSOMIX with the most well-known value decomposition algorithms,
QMIX (Rashid et al., 2018). QMIX is aligned with our setting where opponents’ true information
is not available. In addition to the original QMIX algorithm, we further introduce two more base-
lines based on QMIX by integrating QMIX with our speculative opponent models and distributional
variant, respectively. In specific, let OMIX denote the baseline that combines QMIX with the spec-
ulative opponent model, while DMIX is the variant that combine QMIX with distributional value
decomposition. OMIX and DMIX allow us to evaluate the impact of speculative opponent models
and distributional critic, respectively. To comprehensively verify the performance of DSOMIX, we
also compare it with MAPPO (Yu et al., 2022), which has achieved state-of-the-art (SOTA) perfor-
mance in many environments. To evaluate the accuracy of learned speculative opponent model, we
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include an “upper-bound” (UB) baseline, which substitutes the actual opponent policy as the ground
truth of opponent models during training DSOMIX.

Algorithm configuration. For PP-3v1 and PP-5v2, we train the networks for E = 35600
episodes. Each agent adopts ϵ-greedy action selection strategy, with ϵ linearly from 1.0 to 0.05
over 100 episodes, keeping it constant for the rest of the learning. We set γ = 0.95 for all experi-
ments. All neural networks are trained using Adam optimizer (Kingma & Ba, 2015) with a learning
rate of 2.5e − 4. The replay buffer consists of the latest 100 episodes, from which we uniformly
sample a batch of size 32 for training. The target network is updated every 100 episodes. We have
conducted a study on the impact of sample size l. We observe that when l is small, increasing it
improves the performance obviously. However, a large sample size only brings marginal benefits
while requiring too much computation. Therefore, we set the sample size of PP-5v2 as l = 10.
The others follow the default setting of Pytorch (Paszke et al., 2017).

The configuration for Pomm-FFA and Pomm-Team is generally the same as that of the predator-
prey games. The learning rate for agent network is both 2.5e−5. We parallel 16 environments during
training and the number of forward step is Tf = 5, that is, we update the networks after collecting
5 steps of data from 16 environments at each iteration. The total number of training episodes is
E = 624, 000. We set the sample size l in Pomm-FFA and Pomm-Team as 80 and 25, respectively.
The details of the algorithm configurations are provided in the Appendix C.2. All experiments are
carried out in a machine with Intel Core i9-10940X CPU and a single Nvidia GeForce 2080Ti GPU.
We will make all our data and codes public after the work is accepted.

4.3 EXPERIMENT RESULTS

4.3.1 ANALYSIS OF THE AVERAGE RETURN.

We first compare the overall performance of DSOMIX with baselines in the four games, i.e.,
PP-3v1, PP-5v2, Pomm-FFA, and Pomm-Team. The results are summarized in Figure 2(a),
2(b), 2(d), and 2(e). We measure the performance in terms of the approximate expected return, and
each model is trained with 8 random seeds. Specifically, for PP-3v1 and PP-5v2, we evaluate all
the methods with 100 test episodes after every 100 iteration of training, and report the mean (solid
lines) and the standard deviation (shaded areas) of the average returns over eight seeds. Similarly, for
Pomm-FFA and Pomm-Team, all methods are evaluated with 200 test episodes after every 1, 000
training iteration. The experiment results demonstrate that our method not only obtains a higher
average return but also achieves a faster convergence speed than baseline methods. The comparative
analysis between DSOMIX and the baselines demonstrates the effectiveness of our speculative op-
ponent models in learning opponent models with only local information. The experimental results
reveal that the returns of DSOMIX are comparable to the upper bound (UB) and consistently outper-
form the four other baselines, with a faster convergence speed and lower variance. These findings
confirm that our method is an effective variant for addressing the challenges posed by POSG with-
out access to opponents’ information. It is important to note that QMIX treats opponents as a part
of the environment, while DSOMIX explicitly models the opponents and integrates them into its
agent decision-making process. Although the speculative opponent models are not reliable initially,
the reward signals train them to provide reliable information. As a result of providing supplemen-
tary information for decision-making, DSOMIX demonstrates superior performance compared to
QMIX. In addition, the performance of OMIX indicates that incorporating the speculative opponent
models can boost the performance of the QMIX. DMIX outperforming QMIX demonstrates that
turning the expected return estimation into a distributional value function also helps to make deci-
sions. These two results show that both the speculative opponent models and the distributional value
function have benefits for improving performance alone. Furthermore, when compared to MAPPO,
a state-of-the-art policy gradient algorithm, DSOMIX outshines in both sample efficiency and over-
all performance. This suggests that learning distinct return distributions and accurately anticipating
the actions of unknown opponents can indeed significantly elevate performance.

4.3.2 ABLATION STUDY

Throughout these ablation studies, we use game PP-5v2 as a demonstration. We first verify
that the speculative opponent models (SOM) truly help to make better decisions, and we per-
form a pair of experiments. The first one employs trained and fixed opponent models, named
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(a) Average return for PP-3v1.
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Figure 2: Results of performance evaluation and ablation studies in DSOMIX.

“Trained SOM”, while the second one uses randomly initialized, and fixed opponent models in-
stead, named “Non-trained SOM”. The average returns are plotted in Figure 3. It is obvious
that the DSOMIX with trained SOM learns faster than the version without trained models. It
can be indicated that the agent can infer the behaviors of its opponents and take advantage of
this prior knowledge to make better decisions, especially at the beginning stage of the learn-
ing procedure. It shows that SOM can provide reliable information for better decision-making.
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Figure 3: Study for trained SOM.

While the previous results show that SOM im-
proves the decision-making quality, one may won-
der whether the improvement really results from the
opponent action prediction output by the SOM. To
investigate whether arbitrary trainable SOM can in-
troduce improvement, we conduct an ablation study
for the SOM to see how it affects the training of
DSOMIX, and the results over 8 random seeds are
shown in Figure 2(c). We change the output dimen-
sion d of speculative opponent models to 3, 8, and
16 respectively while retaining other configurations.
Note that the opponent action space size is 5. There-
fore, the speculative opponent models in the three new settings output some conditional information
instead of opponent action predictions. We denote these setting as “3AS”, “8AS”, and “16AS” re-
spectively in Figure 2(c). It can be observed that the original DSOMIX exhibits superior learning
performance in terms of both speed and effectiveness when compared to the other variants.We also
notice that the performance of d = 3 and d = 8 are consistently better than that of d = 16 for
the entire training period. It implies that the speculative opponent model can infer more reliable
information when its output dimension is close to the opponent action space size.

Given the above results, a question arises in our mind is why the SOM perform the best when their
architectures are designed to output opponent action prediction? One potential reason is that the
opponents sometimes appear in the observations of the controlled agents and thus, the local ob-
servations can occasionally convey the state-changing information of the opponents. In this case,
the SOM that output opponent action prediction can indeed learn better from the received observa-
tions. To verify this hypothesis, we conduct another experiment where we mask out the opponent
information when the agent observes the opponents and retains the other configurations. The re-
sults are denoted as “X mask” where “X” means the original algorithm setting. Figure 2(f) shows
that when masking out the opponent information, the performance of all algorithms declines, which
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Figure 4: Impacts of the distributional value function for game PP-5v2.

means that the opponent model learning indeed benefits from the information contained in the lo-
cal observations. It shows that when masking out the opponent information, the performance of
“DSOMIX mask” is weak to “DSOMIX”, which means that DSOMIX indeed learns something
from the observations that contain the opponent information (i.e., the observed coordinate values in
our experiments). However, it still outperforms QMIX and “QMIX mask”, which shows that the
SOM helps to make better decisions in our method.

4.3.3 EXPOSING CONNECTIONS BETWEEN SOM AND DISTRIBUTIONAL VALUE FUNCTION.

To prove that the speculative opponent models are more accurate in predicting opponent actions with
a distributional value function, Two metrics were utilized to evaluate the improvement: : 1). We cal-
culate the average entropy of the predicted probability distribution over opponent actions, which
serves as an indicator of prediction confidence. Lower average entropy implies greater certainty on
the part of agents regarding the predicted opponent’s actions. 2). We compute the Kullback-Leibler
divergence (KLD) (Kullback & Leibler, 1951) between the predicted and the true probability distri-
bution over opponent actions. The KLD is the direct measure of the distance between the speculative
opponent models and the true opponent policies. A smaller KLD value signifies a higher degree of
similarity between the opponent models and the true policies. Note that we only use the true op-
ponent policies for evaluation. We do not use them to train DSOMIX. From Figures 4(a) and 4(b),
we conclude that the distributional value function can increase the training speed (faster descent)
and improve the reliability and confidence (lower KLD and entropy) of the opponent models. The
second argument, i.e., the distributional value function helps the agent to identify actions with more
rewards, is supported by the results in Figure 2, where the performance of DMIX is better than
QMIX. Note that the expected returns of DMIX are still lower than DSOMIX, which implies that
the integration of SOM and distributional value function is essential for our method. The ablation
studies, along with the OMIX and DMIX baselines, demonstrate that both speculative opponent
models and distributional value function play crucial roles in our algorithm. The distributional value
function contributes to the development of higher-quality speculative opponent models, which, in
turn, enhance the overall performance by facilitating better speculative opponent models.

5 CONCLUSION

This work proposes a distributional speculative opponent-aided mixing framework (DSOMIX), a
novel value-based speculative opponent modeling algorithm that relies solely on local information.
In our methods, the speculative opponent models receive as input the controlled agents’ local obser-
vations which predict the opponents’ unknown behaviors when opponents’ information is unavail-
able. With the guidance of the distributional value function, we manage to train the agent network
and speculative opponent models effectively. Extensive experiments demonstrate that our methods
not only obtain a higher average return but also achieve a faster convergence speed. The ablation
studies and the baselines prove that the SOM and distributional value function are both essential
parts for our algorithm. That is, the distributional value function leads to a higher-quality SOM
and in turn, the better SOM helps to improve the overall performance. However, our work assumes
opponents have fixed strategies in the environment. Further research on how such models could
be used for non-stationary opponents would be of interest. For future work, we will study how to
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model opponents with dynamic strategies only using the local information, which is more practical
and challenging in the real-world settings.
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A RELATED WORK

A.1 MULTI-AGENT REINFORCEMENT LEARNING

In recent years, numerous MARL algorithms have been developed, leveraging reinforcement learn-
ing techniques to jointly train agents within multi-agent systems (Hernandez-Leal et al., 2019).
Early research focused on independent learning (IL), where each agent learned in isolation, treating
other agents as part of the environment (Tan, 1993; Mnih et al., 2016; Schulman et al., 2017). How-
ever, this approach struggled with the non-stationarity introduced by interacting learning agents. In
contrast, centralized training with decentralized execution (CTDE) allows for information sharing
during training while maintaining policies conditioned only on local observations during execu-
tion (Lowe et al., 2017). Within CTDE, centralized policy gradient methods employ decentralized
actors and a centralized critic optimized through shared agent information (Lowe et al., 2017; Fo-
erster et al., 2018b; Yu et al., 2022). Another category, value decomposition methods, focuses on
decomposing joint state-action value functions into individual value functions (Sunehag et al., 2017;
Rashid et al., 2018). However, these methods often treat opponents as part of the environment,
neglecting their explicit influence and leading to sub-optimal learning outcomes.

A.2 LEARNING OPPONENT MODEL

To improve decision-making, researchers argue that controlled agents must infer the objectives and
actions of opponents, leading to the development of opponent modeling. Recent advances in deep
learning architectures have greatly accelerated progress in this field (Albrecht & Stone, 2018; He
et al., 2016; Hong et al., 2018; Raileanu et al., 2018; Albrecht & Stone, 2017; Rabinowitz et al.,
2018; Yang et al., 2019; Zheng et al., 2018; Wen et al., 2019; Zintgraf et al., 2021; Tian et al., 2019;
Liu et al., 2019). However, most of these approaches assume access to opponents’ observations
and actions during both training and execution. More recent studies (Papoudakis et al., 2020; 2021)
suggest that such access is often infeasible, particularly in large-scale applications. These works
propose learning opponent models based solely on the agent’s local information, eliminating the
need for opponent data during execution. However, these approaches still require opponents’ true
information during training. The challenge of modeling opponent behaviors when such information
is unavailable during training remains an open problem. To address this, we propose a specula-
tive opponent model-aided value function factorization framework that infers unknown opponent
behavior using local information during both training and execution.

A.3 DISTRIBUTIONAL REINFORCEMENT LEARNING

Distributional reinforcement learning (RL) models the return distributions rather than expected
returns, using these distributions to optimize policies (Bellemare et al., 2017; Dabney et al.,
2018a;b). Numerous studies have demonstrated that distributional RL outperforms classical RL
methods (Barth-Maron et al., 2018; Tessler et al., 2019; Singh et al., 2020; Yue et al., 2020). In-
spired by its success in single-agent scenarios, recent works (Lyu & Amato, 2020; Hu et al., 2020;
Sun et al., 2021) have extended distributional RL to multi-agent settings. Notably, DFAC (Sun
et al., 2021) bridges distributional RL and value function factorization, introducing the Mean-Shape
Decomposition and quantile mixture in value decomposition. This approach mitigates instability
arising from the exploration of learning agents during training. In this work, we propose a specula-
tive opponent model-based framework that integrates distributional value function factorization with
speculative opponent modeling. Our framework employs distributional RL to evaluate the quality
of the agent’s value function, guiding the training of speculative opponent models. Moreover, our
findings demonstrate the potential of distributional RL to inspire further developments in this field.

B SPECULATIVE OPPONENT MODEL-AIDED VALUE FUNCTION
FACTORIZATION THEOREM

In this part, we present the details of the speculative opponent model-aided value function factoriza-
tion theorem. We present proofs of our theorem introduced in the main text as follows.
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Theorem B.1. Consider a deterministic joint action-value function Qjt, determined by a factoriza-
tion function M , a stochastic joint action-value function Zjt:

Qjt(o,a) =M(Q1(o1, a1), · · · , QN (oN , aN )),

such that [Qn]n∈N satisfy IGM for Qjt under o. The following distributional factorization:

Zjt(o,a) = E[Zjt(o,a)] + (Zjt(o,a)− E[Zjt(o,a)])
= Zmean(o,a) + Zshape(o,a)

= Qjt +Φ(Z1(o1, a1), · · · , ZN (oN , aN ))

(12)

is sufficient to guarantee that [Zn]n∈N satisfy IGM for Zjt under o, where E[Φ] = 0.

Proof. For any given random variable Zjt, there exist a unique decomposition defined as

Zjt = E+ (Zjt − E[Z]) = Zmean + Zshape, (13)

where V ar(Zmean) = 0 and E(Zshape) = 0. Therefore, Zjt(o,a) can be written as:

argmax
a

{E[Zjt(o,a)]}

= argmax
a

{E[Zmean(o,a) + Zshape(o,a)]}

= argmax
a

{E[Zmean(o,a)] + E[Zshape(o,a)]}

= argmax
a

{E[M(Q1(o1, a1), QN (oN , aN ))] + E[Ψ(Z1(o1, a1), · · · , ZN (oN , aN ))]}

= argmax
a

{M(Q1(o1, a1), QN (oN , aN )) + 0}

= argmax
a

{M(Q1(o1, a1), QN (oN , aN ))}

=

 argmaxa1 Q1(o1, a1)
...

argmaxan Qn(on, an)



(14)

Therefore, we can obtain that

argmax
a

E[Zjt(o,a)] =

 argmaxa1 E[Zϕ1,ψ1(o1, a1)]
...

argmaxaN E[ZϕN ,ψN
(oN , aN )]

 . (15)

The above derivation demonstrates that Zϕi,ψi
(oi, ai)i∈N satisfy IGM for Zjt under observation o.

C EXPERIMENT

C.1 ENVIRONMENTAL SETTINGS

Predator-prey: The states, observations, actions, state transition function, and reward function of
each agent is formulated below by following the POMG convention.

• The states and observations. A grid world of size x× x, e.g. Figure 5(a) is a state of size
7×7 containing four predators and two preys. The observation of agent i is the coordinates
of its location, its ID, and the coordinates of the prey k relative to i in l×l view, if observed.

• Actions space. Any agent, either predators or preys, has five actions, i.e.
[up,down,left,right,no-op] where the first four actions means the agent moves
towards the corresponding direction by one step, and no-op indicates doing-nothing. All
agents move within the map and can not exceed the boundary.

• State transition T . The new state after the transition is the map with updated positions of
all agents due to agents moving in the grid world. The termination condition for this task
is when all preys are dead or for 100 steps.

15
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(a) (b)

Figure 5: State visualization of benchmark environments. (a) The state of a PP-5v2 game
is represented as a grid world, where blue vertices and red vertices denote predators and preys
respectively. (b) The image-based state for the Pommerman environment.

• Rewards R. All agents move within the map and can not exceed the boundary. Since the
predators cooperate with each other, they share the team reward. The predators share a
reward of 5 if two or more of them catch the prey simultaneously, while they are given a
negative reward of -0.5 if only one predator catches the prey.

Pommerman:

• The states and observations. At each time step, agents get local observations within their
field of view 5×5, which contains information (board, position,ammo) about the map. The
agent obtain the information of the Blast Strength, whether the agent can kick or not, the
ID of their teammate and enemies, as well as the agent’s current blast strength and bomb
life.

• Actions space. Any agent chooses from one of six actions, i.e.
[up,left,right,down,stop,bomb]. Each of the first four actions means mov-
ing towards the corresponding directions while stop means that this action is a pass, and
bomb means laying a bomb.

• Rewards R. In Pomm-Team, the game ends when both players on the same team have
been destroyed. It ends when at most one agent remains alive in Pomm-FFA. The winning
team is the one who has remaining members. Ties can happen when the game does not
end before the max steps or if the last agents are destroyed on the same turn. Agents in the
same team share a reward of 1 if the team wins the game, they are given a reward of -1 if
their team loses the game or the game is a tie (no teams win). They only get 0 reward when
the game is not finished.

C.2 ALGORITHM CONFIGURATION

For PP-3v1 and PP-5v2, the speculative opponent network is multi-layer perceptrons (MLP) with
3 hidden layers of dimensionality 64. In DSOMIX, the agent network of each controlled agent i is
a DRQN with a recurrent layer comprised of a GRU with a 64-dimensional hidden state, with a
fully-connected layer before and after. The factorization network is a feed-forward neural network
that takes the agent network outputs of Qi as input and mixes them monotonically, producing the
values of Zmean. The weights of the factorization network are produced by separate hypernetworks.
Each hypernetwork consists of a single linear layer, followed by an absolute activation function, to
ensure that the mixing network weights are non-negative. The shape network is implemented by a
large IQN composed of multiple IQNs. We optimize the IQNs with N = 32 quantile samples. The
final bias β is produced by a 2-layer hypernetwork with a ReLU non-linearity.
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Algorithm 1 General Training Procedure of DSOMIX
Require: A POMG environment env, a back-propagation optimizer Opt, number of episodes E.
Require: Initialize parameters of θ of the agent network, speculative opponent model, factorization network,
and shape network;
Require: Initialize parameters of θ of the target network of agent, speculative opponent model, factorization
network, and shape network;
Require:
Training phase:
1: for e =1, . . . , E do
2: t← 1; Reset env to obtain initial observations o1.
3: while env is not done do // Generate data
4: Sample actions at, where ati ∈ at follows ati ∼ Zθi,ψi(a

t
i|oti).

5: Execute at to obtain joint rewards rt and new observations ot+1.
6: Store transition data (ot,at, rt,ot+1).
7: for steps in training steps do // Update network
8: Sample a min-batch D′ from replay buffer D.
9: Calculate the distributional value function {Zi(oi, ai)}i∈N with collected data.

10: Updates the agent network by minimizing the TD loss (10) and QR loss (5).
11: Update θ̄: θ̄ ← θ;
12: end for
13: end while
14: end for

The configuration for Pomm-FFA and Pomm-Team is generally the same as that of the predator-
prey games. However, here the agent value function network is a convolutional neural network
(CNN) with 4 hidden layers, each of which has 64 filters of size 3 × 3, as the observations are
image-based. Between any two consecutive CNN layers, there is a two-layer MLP of dimension
128. The learning rate for Zϕi is both 2.5e− 5.

C.3 ANALYSIS OF THE LEARNING SPEED

To demonstrate the efficiency of our approach, we compare the relative learning speed of our meth-
ods and baselines with that of QMIX (without loss of generality). This evaluation is defined by the
formula LS = EPQMIX

/T , where PQMIX represents the optimal performance for QMIX (indi-
cated by the black dashed line in Figures 2(a), 2(b), 2(d), 2(e)) (in the main paper), and EPQMIX

denotes the episode count at which different methods reach this benchmark performance (including
QMIX, DMIX, OMIX, MAPPO, DSOMIX, and UB). To give an example, in the scenario PP5v2,
with a total of T = 356000 training episodes, DSOMIX achieves the same performance as PQMIX

at episode 10750, resulting in a relative learning speed of 30.2%. As summarized in Table 1, the
learning speed of DSOMIX consistently surpasses all other methods by a large margin over all the
tested scenarios. Furthermore, it is worth noting that DSOMIX exhibits a convergence speed com-
parable to UB (the baseline trained with ground-truth opponents’ information). The exceptional data
efficiency of DSOMIX can be attributed to the agent networks in effectively guiding the opponent
modelling process. Meanwhile, the speculative opponent model, in turn, aids the agent’s policy in
making more informed decisions.

Table 1: The learning speed of different methods.
QMIX DMIX OMIX MAPPO DSOMIX UB

PP3v1 70.3% 50.1% 49.2% 35.3% 30.5% 29.9%
PP5v2 73.1% 48.2% 42.8% 39.5% 30.2% 25.3%
FFA 71.2% 50.1% 49.4% 41.8% 28.1% 26.1%
Team 74.1% 42.7% 46.5% 37.9% 33.6% 27.4%
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