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Abstract

A longstanding focus in the causal learning literature has been on inferring causal

relations from contingencies, where these abstract away from time by collating independent

instances or by aggregating over regularly demarcated trials. In contrast, individual causal

learners encounter events in their daily lives that occur in a continuous temporal flow with

no such demarcation. Consequently, the process of learning causal relationships in

naturalistic environments is comparatively less understood. In this paper, we lay out a

rational framework that foregrounds the role of time in causal learning. We work within

the Bayesian rational analysis tradition, starting by considering how causal relations induce

dependence between events in continuous time and how this can be modeled by stochastic

processes from the Poisson–Gamma distribution family. We derive the qualitative

signatures of causal influence, and the general computations needed to infer structure from

temporal patterns. We show that this rational account can parsimoniously explain the

human preference for causal models that invoke shorter, more reliable and more predictable

causal influences. Furthermore, we show this provides a unifying explanation for human

judgments across a wide variety of tasks in reanalysis of seven experimental datasets. We

anticipate the framework will help researchers better understand the many manifestations

of continuous-time causal learning across human cognition and the tasks that probe it,

from explicit causal structure induction settings to implicit associative or reinforcement

learning settings.

Keywords: causal induction; causal inference; continuous time; learning; Bayesian

models
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Rational causal induction from events in time

Time is inherent to our understanding of the world, shaping how we link the things1

that happen around us and the actions we take. We might judge that a backfiring car2

startled some birds, suspect that a new food gave us indigestion, infer from a boiling kettle3

that someone was recently in the kitchen, predict that we will be sore the day after the4

gym, or anticipate that a storm will follow a pink sunrise. All these inferences leverage5

causal models linking events in virtue of their experienced and historical temporal6

proximity through the lens of our intuitive causal theories.7

The successes of everyday cognition, as well as the successes of our scientific theories8

and the technologies they support, suggest that people are capable of representing entities,9

properties, relations, events, states, and data defined in terms of time. This has been10

recognized since the earliest attempts by philosophers to define what it means to form11

beliefs about the external world (Hume, 1740). Time’s arrow continues to be a core feature12

of philosophical discussion around the metaphysics of causality (Cartwright, 1994; Ross,13

2024; Woodward, 2021), the acquisition of knowledge (Gettier, 1963; Goodman, 1983), and14

the functioning of intentional and volitional control (Dennett, 1971; Libet, 2009). It is not15

surprising then, that the study of human and animal learning has grown out of basic16

notions of association and reinforcement whereby the closeness of actions and events in17

time governs how we come to relate them in our minds (Gallistel et al., 2019; Gallistel &18

Gibbon, 2000; Garcia et al., 1966; Gershman, 2015; Hamou et al., 2025; Mnih et al., 2015;19

Rescorla & Wagner, 1972; Schultz et al., 1997; Tarpy & Sawabini, 1974).20

In recent decades, cognitive psychologists used the approach of rational analysis21

(Anderson, 1990) to study how people learn causal structure from different kinds of22

environmental data (Griffiths & Tenenbaum, 2009). However, accounts of human causal23

learning have predominantly focused on inferences from contingency data. In these24

settings, evidence is provided helpfully “prepackaged” in the form of multiple (typically25

independent) trials or observations in which causal variables take different states (Allan,26
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1980; Anderson & Sheu, 1995; Cheng, 1997; Griffiths & Tenenbaum, 2005; Rescorla &27

Wagner, 1972). Consequently, the causal beliefs that emerge concern the probabilistic28

dependence between the states of causes and the states of effects, on average, without any29

representation of time. One common paradigm involves presenting participants with a set30

of independent samples in which putative causes and effects are either present or absent.31

Cover stories have been used to contextualize this as data arising from experimental32

research in biology (Buehner et al., 2003; Lu et al., 2008), physics (Coenen et al., 2015;33

Lagnado & Sloman, 2004), and psychology (Rottman & Keil, 2012), since multiple34

independent trials are often the data that scientists collect under laboratory conditions. A35

minimal example of this kind of task might involve pairs of patient outcomes (e.g., sick or36

not) under different treatment assignments (e.g., vaccinated or unvaccinated). Having seen37

some evidence, participants are asked to judge whether or to what extent the treatment38

causally affected the outcome (Buehner et al., 2003; Stephan et al., 2021). A 2-by-239

contingency table can capture the prevalence of different combinations of putative cause40

and effect states (Allan, 1980; Cheng, 1997), and where this indicates dependence there is41

evidence for some form of causal relation. Researchers have proposed a variety of42

approaches for drawing causal inferences from this sort of data and integrating new43

evidence with prior expectations (see Perales & Shanks, 2007, for a review) and44

distinguishing sharply between naturally observed and experimentally manipulated states45

(Lagnado & Sloman, 2002).46

While these settings put timing considerations to one side, they do not eliminate47

them. Researchers in causal learning (Gong & Bramley, 2024; Greville & Buehner, 2007;48

Lagnado & Speekenbrink, 2010; Pacer, 2016) and associative learning (Gallistel et al., 2014;49

Gallistel & Gibbon, 2000; Hamou et al., 2025) have both recognized the problem of using50

“trials” as the basic unit of measurement. Fundamental questions remain as to how to51

determine an appropriate time window to measure outcomes, and how to ensure the52

observations are sufficiently independent to be aggregated. Without supporting knowledge53
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about the relevant causal mechanisms, waiting too short a time before measuring an effect54

may not allow the influence to propagate or become apparent (e.g., the vaccine may not55

have taken effect yet), while waiting too long will tend to introduce confounding factors56

(e.g., the infection running its course, or the patient dying from natural causes). Equally,57

we need to determine the timing of interventions since some time-dependent factors (e.g.,58

age) may also mediate the relationships between variables (Gong et al., 2023; Rottman,59

2016). In order to curate scenarios and aggregate data into these simple contrasts, one60

must already draw on sophisticated prior causal beliefs about the relevant mechanisms and61

their temporal properties. Without this one could not be confident that an experimental62

protocol truly licenses abstraction to the level of contingency data. In short, time is integral63

to any general account of how we induce and represent causal models of our environment.64

In this paper, we present a rational framework for causal induction from time. We65

lay out a computational-level treatment of the problem (Marr, 1982), building this up from66

basic principles of statistical dependence between events in time to formalize a grammar67

for continuous-time causal theories and a calculus for generating and comparing them with68

data. Our framework unifies the formalisms laid out in Griffiths and Tenenbaum (2009)69

and Pacer and Griffiths (2012, 2015) with those used in Bramley, Gerstenberg, Mayrhofer70

et al. (2018, 2019), Gong and Bramley (2023), Gong et al. (2023) (see also Bramley,71

Mayrhofer et al., 2017; Gong & Bramley, 2020, 2022; Stephan et al., 2020; Valentin et al.,72

2020, 2022). Many of the formal elements we use here appear in one or several of these73

papers. However, none of these papers unpack this into a general theory, nor generalize74

their modeling across a wide class of time-based causal inference settings. We here75

synthesize those works and for the first time formalize a general framework, demonstrating76

its underlying rationale, the derivation of core principles, and showcasing its broad scope77

and fit to behavioral data in a diverse array of tasks.78

We situate our analysis within the Bayesian rational analysis tradition (Anderson,79

1990), as this has proven very successful in developing a rational account of atemporal80
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causal induction settings (Griffiths & Tenenbaum, 2005, 2009; Pearl, 2000; Rottman &81

Hastie, 2014). The main difference from these is that we link causal influence with82

dependence between events in continuous time, rather than their coincidence in83

independent trials (i.e., contingency). We show that this formalism anticipates and grounds84

the foundational principles of causal induction laid out by Hume (Hume, 1740) and85

enshrined in theories of associative learning (Gallistel et al., 2019; Gallistel & Gibbon,86

2000; Rescorla, 1968). We show there is a natural bridge between the time-dependence and87

contingency level focus of established tools for causal inference (Bramley et al., 2015; Pearl,88

2000).89

As a rational, computational-level model, the computations involved demand90

assume accurate perception, infinite memory and computational resources. While91

assumptions are not aligned with the limitations of human learners they serve to describe92

the normative problem that heuristics and approximations should approximate (Anderson,93

1990; Griffiths, 2020; Simon, 1982). We show how the normative analysis anticipates the94

ceteris paribus human preference for causal explanations that connect events via shorter,95

more reliable and more predictable causal influences. Furthermore, we present the first96

computational model that can provide a unifying explanation for human judgments across97

seven experimental datasets from the temporal causal learning literature.98

Our analysis has deep connections with theories of time, rate, and conditioning,99

foundational to the animal learning literature (cf. Gallistel & Gibbon, 2000; Hamou et al.,100

2025). We will highlight connections with these throughout the paper, but here highlight a101

few ways in which we think our Bayesian treatment offers a novel and uniquely general102

perspective on these basic learning phenomena. Associative and reinforcement learning103

(whether model free or model based) are ultimately models of behavior, while Bayesian104

models describe the interplay of inductive biases and evidence in the formation of beliefs.105

Since causal models are by design, use-case-agnostic models of an agent’s environment106

(Craik, 1967), it feels natural to conceptually separate the analysis of how agents form107
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models, from analysis of how these models guide behavior, even if the conceptual108

distinction is often blurred in cognitive processing. An often implicit assumption of109

associative learning models is that we can rely on local link-by-link learning to build a110

global understanding. However this is in general a heuristic that will lead to causal111

misattributions (Btesh et al., in press; Fernbach & Sloman, 2009). By modeling causal112

structure induction at the rational level as selecting the globally most probable causal113

model, we can identify and explain these mistakes and biases as consequences of114

approximations rather than risking treating them as the right answer to the wrong115

question (Bramley, Dayan et al., 2017; Fernbach & Sloman, 2009; Griffiths & Tenenbaum,116

2005, 2009; Pearl, 2000). Modeling structure induction as a model selection problem also117

helps in thinking about the imputation of hidden causes (Gershman et al., 2010; Gershman118

et al., 2015; Valentin et al., 2020). Bayesian learning models are also effective in describing119

setting in which people make choices across a much larger hypothesis space (Bramley,120

Dayan et al., 2017; Bramley & Xu, 2023; Griffiths & Tenenbaum, 2009); incorporating121

structured priors, including domain-specific causal theories and mechanistic knowledge of122

various kinds (Lu et al., 2008; Yeung & Griffiths, 2015); being sensitive to sample size123

(Griffiths & Tenenbaum, 2005); and providing uncertainty or confidence estimates124

(Kolvoort et al., 2025; O’Neill et al., 2022; O’Neill et al., 2024). We here focus on125

incorporating temporal information into the Bayesian framework, but readers may refer to126

the extensive body of previous research comparing Bayesian models with associative and127

reinforcement learning models more broadly (e.g., Courville et al., 2006; Fernando, 2013;128

Griffiths & Tenenbaum, 2005, 2009; Lake et al., 2017; Perales & Shanks, 2007; Tenenbaum129

et al., 2006) and recent work about how the languages of Bayesian models and model-based130

reinforcement learning models could relate to one another (e.g., Eckstein & Collins, 2020;131

Gershman, 2015, 2017; Wang, 2021). Nevertheless, the Bayesian approach is not the only132

method, in principle, that can provide predictions for temporal causal learning tasks. Many133

of the high-level ideas in this paper are aligned with those championed by associative134
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Evidence:

TimeE1 E2 E3 E4 E5C1 C3C2

E1 E2 E3 E4 E5C1 C3C2

E1 E2 E3 E4 E5C1 C3C2

E1 E2 E3 E4 E5C1 C3C2

C ¬ C
E 1 2

¬ E 2 0

C ¬ C
E 0 5

¬ E 3 4

C ¬ C
E 2 1

¬ E 1 0

i.

ii.

iii.

i.

ii.

iii.

Segmentation:

?

?

?

Day 0 Day 1 Day 2 Day 3
 Day 4 Day 5
1 C E
2 C E
3 C E
4 C E
5 C E

a) Continuous timeline

b) Episodic evidence (Greville & Buehner, 2007)

Day 0 Day 1 Day 2 Day 3
 Day 4 Day 5
6 E
7 E
8
9 E

10

Experimental Group Control Group

Figure 1
Continuous time evidence. a) Examples of the overly arbitrary decisions one could make
when segmenting continuous timeline evidence into contingency evidence, along with the
corresponding contingency tables. b) Examples of episodic evidence adapted from Greville
and Buehner (2007). In the experiment, participants assessed the impact of a treatment
(C) on the survival of bacterial cultures, considering culture death as the outcome (E).

learning literature, particularly Gallistel (Gallistel et al., 2014, 2019; Gallistel & Gibbon,135

2000; Gallistel & Shahan, 2024; Gallistel & Wilkes, 2016) and Rescorla’s earlier work136

(Rescorla, 1968). Their models stem from animal associative learning paradigms, which are137

not identical to human causal structure learning tasks. For example, all causal learning138

studies we review in this paper ask participants to report their inner beliefs, rather than139

analyzing beliefs indirectly through actions. As such, we mainly highlight the higher-level140

similarities in the text while making a more detailed comparison between our Bayesian141

account and temporal associative learning models (Gallistel et al., 2014; Gallistel &142

Gibbon, 2000; Rescorla, 1968; Schultz et al., 1997) in the General Discussion.143
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Desiderata for a Rational Theory of Causal Induction from Time144

We demonstrate here four key desiderata for a rational model of causal induction145

from time: 1) providing predictions outside trial-based data settings; 2) capturing146

reasoning about dynamics and feedback; 3) grounding our core temporal-causal intuitions;147

4) generalizing across a wide range of temporal causal learning tasks.148

Going beyond trials and contingencies149

We experience our environment in a single continuous timeline, making timing150

considerations a ubiquitous aspect of inference. Data arriving in continuous time will151

generally involve causes and effects that occur neither simultaneously, nor sufficiently152

separated to allow for any principled segmentation into “independent, identically153

distributed” (i.i.d.) scientific samples. This implies we must be able to litigate between154

competing causal explanations linking multiple events, even as they occur and recur within155

a single ongoing data-stream. For example, an everyday causal inference problem is trying156

to identify the cause of a recurring stomach ache. As shown in Figure 1a, because any157

decision about how to cluster and aggregate over potential trigger events and sickness158

episodes is arbitrary, there is no unique or fully principled encoding of this continuous-time159

data into a contingency table. An analogous problem in associative learning would be the160

difficulty of scoring the trials when more than one unconditioned stimulus (the effect)161

occurs, or determining the boundary of trials when neither the conditioned stimulus nor162

the unconditioned stimulus occurs (Gallistel, 2021; Gallistel et al., 2014). This brings home163

that any analysis that focuses exclusively on a discretized trial structure cannot take full164

advantage of the available metric information about the continuous time that has passed.165

Worse, such a representation can result in different conclusions depending on one’s choice166

of measurement window.167

The key to dealing with this problem is not to create pseudo-trials, but rather to168

shift the representational focus to explicitly model causal influences, in terms of how they169

shape the delays between particular causal events and, relatedly, how they shape the rates170
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at which events of different types occur (Gallistel & Gibbon, 2000).171

Reasoning about dynamics and feedback172

Many causal processes in the natural world are cyclic (Malthus, 1872), and people173

frequently report causal beliefs that include feedback loops when allowed to do so in174

experiments (Kim & Ahn, 2002; Nikolic & Lagnado, 2015; Rehder, 2017; Sloman et al.,175

1998).1 Cyclic systems can involve both excitatory or inhibitory feedback, which can result176

in complex, periodic and chaotic behavior (Davis et al., 2020). For example, a cyclic177

system might exhibit events occurring in a repeated alternating fashion: e.g., a178

bidirectional relationship A↔ B could generate a sequence of events A,B,A,B,A, ..., while179

the same system plus an output component A↔ B → C could produce a variety of180

temporal patterns depending on the relative delays and reliabilities of the individual181

connections (A, B, C, A, B, C, ..., but also A, C, B, A, C, B, ..., or A, C, B, A, B, C, ...).182

Recognizing, predicting, explaining or controlling the behavior of such cyclic causal systems183

is only possible if one properly represents the temporal dimension. Contingency data, at184

best, blurs this dimension and the Bayesian network formalism typically recruited for185

causal analyses represents causal structure as inherently acyclic (DAGs; Griffiths &186

Tenenbaum, 2009; Pearl, 2000; Rottman & Hastie, 2014).2 In order to study how people187

reason about real time causal systems, we need a framework that is able to represent these188

dynamic and continuous features.189

1 Formally, a causal mechanism is cyclic if it contains a feedback loop such that a causal variable in the
system has itself as a descendant (Pearl, 2000).
2 Workarounds are sometimes used to model dynamic and cyclic structure with existing tools. For example,
the dynamic Bayesian network “unrolls” a repeated temporal structure over equally spaced time steps
(Dean & Kanazawa, 1989; Rottman & Keil, 2012; Valentin et al., 2022), where a chain graph can be used
to model cyclic substructures with undirected edges in an otherwise directed causal network (Lauritzen &
Richardson, 2002). However, these approaches impose significant constraints on representation. The former
constrains the expression of temporal information to equally spaced discrete time points, allowing each
type of event to occur only once at each time point, and implicitly modeling all causal influences as having
the same latencies. Chain graphs do not represent dynamics of the causal feedback but only their
equilibrium distribution. These limitations do not seem well matched to everyday causal reasoning where
we may think that effects can occur at any moment, be separated by intervals of arbitrary and often
variable length, and where the ability to anticipate when something will happen is likely to be important.
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Grounding our core causal intuitions190

There are many empirical findings regarding how people process temporal191

information to learn causal relationships. We here summarize common intuitions regarding192

delay information that people adopt when making causal judgments: short delays, reliable193

delays, and delay expectations. One of our goals in this paper is to explain these three194

intuitions from a rational perspective.195

Intuition 1: “Contiguity” – (Relatively) shorter delays are more likely to be196

causal197

Perhaps the most foundational result in human and animal learning is that strength198

of association between events depends on the delay between their presentations. This is the199

contiguity effect in associative learning in human and animals, where the association200

formed between two events decreases as the delay increases (see Gallistel et al., 2019;201

Schultz, 2015; Tarpy & Sawabini, 1974, for reviews). Similarly, people tend to make202

stronger causal attributions between events that occur close together than far apart,203

especially when they don’t have specific knowledge of the mechanisms involved (Buehner &204

McGregor, 2006; Greville & Buehner, 2007, 2010, 2016; Lagnado & Sloman, 2006; Shanks205

& Dickinson, 1991; Shanks et al., 1989).206

This effect shows up when different cause candidates are studied under a shared207

context. For example, it could be when there are competing causes in a system, people208

tend to attribute an effect to the cause more closely preceding the effect. Lagnado and209

Sloman (2006) found that when participants frequently observed events in the order210

A− C −B, they were more likely to consider C to be the cause of B rather than A, even211

though in some cases A and B co-occurred without C (see our later analysis of this212

dataset; see also Bramley, Gerstenberg, Mayrhofer et al., 2018). It could also be that when213

causes are learned in different trials, people give higher causal ratings in trials where they214

observe shorter inter-event delays (“fast causes”) compared to trials with longer delays215

(“slow causes”; Buehner & May, 2003; Greville & Buehner, 2010, 2016; Shanks &216
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Dickinson, 1991; Shanks et al., 1989). Although short- and long-delay causes are presented217

in separate trials, typically some context was shared across trials making “slow causes”218

slower in a relative as well as an absolute sense. For example, researchers used the same219

observation duration for both short- and long-delay conditions and included the same220

density of baserate effect events (Greville & Buehner, 2010, 2016; Shanks et al., 1989).221

When the shared context is reduced, the contiguity effect may disappear. This has been222

named as a time-scale invariance property in animal learning research by Gallistel and223

colleagues (Gallistel & Gibbon, 2000; Gallistel & Shahan, 2024; Gallistel & Wilkes, 2016;224

Kalmbach et al., 2019). For example, in Gallistel and Shahan (2024), rats learned225

associations with delays up to 16 minutes, as long as the training was also scaled to be226

longer. Lagnado and Speekenbrink (2010), whose findings we will model later, also found227

that human participants drew similar conclusions about short- and long-delay causes when228

the total observation time of a trial was scaled to match the causal delays (i.e., the229

observation period for long-delay trials was proportionally longer than that of short-delay230

trials; see also Zhang & Rottman, 2024) and the baserate was matched accordingly (i.e.,231

the baserate was lower for long-delay trials; see later analysis).3232

Researchers have used process-level factors to explain the short-delay intuition, such233

as the idea that the longer the delay, the harder it is for the cause to be sustained in234

working memory long enough to become associated (Ahn et al., 1995; Buehner & May,235

2003; Einhorn & Hogarth, 1986). However, this explanation does not reconcile the236

contiguity results with the time-scale invariance results, which can instead be naturally237

3 There are confounds in early studies to be considered when interpreting the contiguity results. For
example, a free-operant procedure was often used where learners could decide when and how often to press
a button to activate the cause. Participants were found to press less often when the causal delay was long
(Buehner & May, 2003; Shanks & Dickinson, 1991; Shanks et al., 1989) (controlled in Greville and Buehner
(2010) where a similar number of presses was found across conditions), which meant that participants
tended to amass less evidence for long-delay causes. In some earlier studies, effects of later interventions
were be masked if the effect of an early intervention had not yet been revealed (e.g., Shanks et al., 1989)
(controlled in Buehner and May (2003) and Greville and Buehner (2010) where effects would never be
masked), which would significantly impact the empirical causal strength of long-delay causes, as more
ineffective interventions could have been made during a long intervention-effect interval.
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reconciled within a rational Bayesian framework. In a later section, we will show that the238

short-delay intuition is rational when short- and long-delay causes are learned with shared239

contexts, i.e., when (1) causes compete within the same causal system; or (2) causes are240

learned in different systems with the same observation duration and baserate. We will also241

explain how the time-scale invariance property emerges when the shared context is242

eliminated.243

Intuition 2: Reliable delays are more likely to be causal244

People tend to make stronger causal attributions when the delays between a245

putative cause and effect are similar across repeated observations (Bramley, Gerstenberg,246

Mayrhofer et al., 2018; Gong et al., 2023; Greville & Buehner, 2010, 2016; Lagnado &247

Speekenbrink, 2010). Greville and Buehner (2010) provides an anecdote that can serve as248

an intuitive thought experiment: suppose you always encounter traffic lights that take a249

very long time to change during your commute to work. You’ve heard a rumor that250

flashing your car’s headlamps might help because the traffic lights would respond to the251

flashing lights of emergency vehicles. Now, suppose you try this, and the traffic lights do252

indeed change after a consistent delay of around 10 seconds. Compare this to a situation253

where sometimes the lights change very quickly after your headlamp flash, while at other254

times they take much longer. In which situation would you be more likely to believe that255

flashing the headlamps actually causes the lights to change? Greville and Buehner (2010)256

indeed found that people give stronger causal ratings when the delays between a putative257

cause and effect are drawn from a narrower distribution (e.g., 4.5-7.5 s), as opposed to a258

wider distribution (e.g., 3-9 s) even when the average delay length is the same (i.e., 6 s).259

Bramley, Gerstenberg, Mayrhofer et al. (2018) asked participants to select between two260

causal structures based on episodic evidence with three types of event occurring in a261

consistent orders (e.g., A−B − C) but variable temporal delays. They found that people262

favored the “Chain” structure (A→ B → C) when the delay between A and C was263

variable but the delay between B and C was more reliable, and preferred the “Fork”264
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structure (B ← A→ C) when the delay between A and C was reliable but the delay265

between B and C was variable (see later analysis for this dataset).266

Although a preference for reliable delays seems intuitive, it is challenging to explain267

under associative or reinforcement learning theories. For example, Greville and Buehner268

(2010) demonstrated that, under the assumption of temporal-discounting reinforcement269

learning (Chung, 1965; Myerson & Green, 1995), the expected sum of rewards for two270

varied action-reward pairs should be greater than that for two unvaried action-reward271

pairs, which, counterintuitively, would lead to a preference for unreliable delays. The272

reliable-delay intuition also cannot be explained by a simple difference in the learning rate273

or the time required to reach the asymptote, as empirically, the preference for reliable274

delays remains regardless of whether participants learned for 2 minutes or 4 minutes275

(Greville & Buehner, 2010). In contrast, we will demonstrate that our Bayesian model276

naturally captures this intuition, as well as its stability to data exposure manipulations.277

Intuition 3: Delays that match causal expectations are more likely to be278

causal279

People also tend to make stronger causal attributions when the delay between a280

putative cause and effect is consistent with their causal–mechanistic understanding of the281

situation at hand (Bramley, Gerstenberg, Mayrhofer et al., 2018; Buehner & McGregor,282

2006; Gong & Bramley, 2023; Hagmayer & Waldmann, 2002; Stephan et al., 2020). For283

example, Buehner and McGregor (2006) found that participants assigned higher causal284

judgments to the insertion of a ball that turned on a light on a physical apparatus when285

the light came on after a few seconds, rather than instantly, if they were aware that it286

would take time for the ball to roll through the apparatus and reach the light switch (see287

also Buehner & May, 2004). Similar results were found in 4-7-year old children (Mendelson288

& Shultz, 1976; Schlottmann et al., 2013). Hagmayer and Waldmann (2002) found289

participants judged whether an insecticide prevents mosquitoes by comparing prevalence of290

mosquitoes in fields with and without the insecticide, but judged whether planting flowers291
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Table 1
Dataset features.

Name Reference Base
Rate

Prevention Cycle Delay
Prior

Continuous timeline, effect specified:
Earthquake Lagnado and Speekenbrink (2010) ✔ ✗ ✗ ✗
Device: Prevention Gong and Bramley (2023) ✔ ✔ ✗ ✔
Continuous timeline, effect unspecified:
Device: Active Learning Gong et al. (2023) ✗ ✗ ✔ ✔
Episodic evidence, effect specified:
Bacteria Greville and Buehner (2007) ✔ ✔ ✗ ✗
Future Bacteria Gong and Bramley (2024) ✔ ✔ ✗ ✗
Episodic evidence, effect unspecified:
Computer Virus Lagnado and Sloman (2006) ✗ ✗ ✔ ✗
Device: Chain or Fork Bramley, Gerstenberg, Mayrhofer

et al. (2018)
✗ ✗ ✗ ✗

Note: Human data are from Experiment 2 in Lagnado and Speekenbrink (2010), Experiment 1a in Gong
and Bramley (2023), Experiment 1 in Gong et al. (2023), Experiment 1 in Greville and Buehner (2007),
Experiment 1 in Gong and Bramley (2024), Experiment 1 in Lagnado and Sloman (2006), and Experiment 3
and 4 in Bramley, Gerstenberg, Mayrhofer et al. (2018).

prevents mosquitoes based on whether the prevalence of mosquitoes was affected the year292

after the flowers were planted, presumably expecting that flowers would take longer to293

influence the insect population than insecticide. We will show how this influence of294

expectations fits neatly in the Bayesian rational analysis.295

Providing causal judgment predictions for various learning tasks296

The final desideratum for a rational theory is that it should be able to offer297

quantitative causal judgment predictions for a wide variety of temporal causal learning298

tasks. Across the literature, different tasks have manipulated a wide variety of dimensions299

from the number and nature of the causal events, how they are spaced, and what300

participants have to infer. In these tasks, judgment patterns cannot simply be accounted301

by one or two of the intuitions we highlight but require the complete set. One reason for302

the variety of causal learning tasks is that temporal evidence can be accumulated in303

different ways, depending on the context. Evidence might be collected within a single304

extended encounter with a causal system, where all events occur within a single timeline,305

as depicted in Figure 1a. For instance, in Lagnado and Speekenbrink (2010), participants306



RATIONAL CAUSAL INDUCTION FROM TIME 17

observed a geological system for several minutes, tracking the occurrence of “seismic wave”307

events (potential causes) and earthquake events (the effect) unfolding over time.308

Alternatively, evidence might also be gathered from multiple independent causal systems of309

the same type, as shown in Figure 1b. For example, in the research conducted by Greville310

and Buehner (2007), participants observed the timing of the death of multiple separate311

bacteria culture samples (the effect) after receiving a particular treatment (the potential312

cause). Instead of having multiple cause and effect events within a single timeline, there is313

one cause event and one effect event each with its own timeline, with these independent314

samples aligned by their cause or treatment time. In the rest of the paper, we refer to the315

former situation as “continuous timeline”, while the latter is termed “episodic evidence”.316

There is also a distinction based on whether the effect variables are specified. In317

some cases, the effect variables are specified, and participants are asked to diagnose which318

of several candidate variables are causing them. This is similar to the traditional319

associative learning task, in which different cues have different (positive or negative)320

associations with the target reward, and animals learn to assigns credit accordingly321

(Gallistel et al., 2019; Rescorla & Wagner, 1972). In other cases, participants are tasked322

with determining the existence of a connection between two or more variables and the323

causal direction of these connections.324

We will model seven human datasets that we categorized into four groups based on325

the nature of the evidence (continuous or episodic) and whether the effect variables are326

specified, as shown in Table 1. These datasets also vary in other task dimensions,327

including: (1) base rate: whether the effect occurred without any endogenous causes; (2)328

prevention: whether preventative causal relationships were involved in the response329

options; (3) cycles: whether feedback loop relationships were involved in the response330

options; and (4) delay expectations: whether participants were informed or pre-trained331

about causal delays prior to the task. We will show that lay people’s judgments332

consistently align with the rational framework in these tasks in later modeling sections.333
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A Rational Model of Causal Induction from Time334

We lay out our theory in two steps. The first step demonstrates the qualitative335

differences in temporal patterns when two variables are related versus when they are336

unrelated to each other. The second step demonstrates how we can quantitatively infer337

causal structures using temporal information. This logic is very similar to the theory of338

Causal Bayesian Networks (Pearl, 2000, see below) for atemporal causal induction, which339

specifies both how statistical independence serves as a qualitative way to determine which340

variables are related, and how parameterized graphical models and interventional calculus341

further assist in causal structure learning and downstream inference. To streamline the342

descriptions, we provide equations for generative causal induction in the main text, while343

equations incorporating preventative causation are largely relegated to Appendix A.344

Independence in time345

In grounding causal induction from contingencies, Pearl (2000) starts from a346

principle of statistical independence. If A and B are perfectly independent, that is if347

P (B|A) = P (B), Pearl argues this is nearest we get to confidence that there is no causal348

relation between A and B.4 If A and B are dependent, that is if P (B|A) ̸= P (B), it follows349

that there must be some causal explanation for this dependence. It could be because A350

causes B, because B causes A, or because A and B share a (potentially distant) common351

causal ancestor. Interventions allow one to rule between these possibilities, by statistically352

disconnecting the intervened-on variable from its normal causes, such that if B depends on353

the intervened-on occurrences of A, that is if P (B|do(A)) ̸= P (B), or354

P (B|do(A)) ̸= P (B|do(¬A)) we can be confident that A is genuine causal parent or355

ancestor of B. By combining data from a series of interventions one can thus identify356

causal structure among a set of relata (Eberhardt et al., 2012; Steyvers et al., 2003). In357

associative learning, Gallistel et al. (2014) has also argued that any effective cause should358

4 This is known as the assumption of faithfulness (Scheines, 1997), meaning roughly the assumption that
there are no additional statistically invisible causal relationships.
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Figure 2
Causal dependence in time. a) The exponential distribution and constant rate are used to
represent the base rate of B events. The same exponential distribution can be used to
represent the delay between A and its next B when A and B have no relation. b) Different
causal dynamics occur when the occurrence of A would generate either one extra B event
(top) or a cluster of B events (bottom). c) How the data patterns differ when A causes B
(A→ B) versus when A is not a cause of B (A∅B).

provide more information about the effect’s occurrence compared to a random time point.359

We will see later that our demonstration, especially under the special setting of an360

uninformative base rate (represented by exponential distributions), echoes this point.361

Similar to Pearl (2000), we ground the temporal causal induction problem by first362

articulating the principle of independence with respect to temporal position before363

identifying causality with departures from independence. However, rather than having a364

simple probability of occurrence P (B), we need to consider the pattern of B events365

occurring in time.5 Without a model of its causes, a class of events might occur at366

subjectively unpredictable moments (e.g., receiving an email) or with some regularity or367

periodicity (e.g., receiving a repeat subscription delivery from Amazon). We here focus on368

the fully unpredictable cases for mathematical convenience, while our quantitative model is369

able to deal with periodic and otherwise more predictable event patterns (see our later370

5 We restrict our focus to the problem of inferring models relating events discretized as occurring at a point
in continuous time. That is, we assume the learner starts having already processed their experience into
point events that they are able to locate precisely in an experienced timeline. We discuss the relationships
with other representations in the General Discussion.
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analysis of the dataset from Gong & Bramley, 2023). If a type of events B occur371

completely unpredictably, i.e., the timing of the most recent B event provides no372

information about the timing of the next B event, it means the delay between any two373

adjacent B events will follow an exponential distribution (see Figure 2a, top panel).374

Exponential distributions are “memoryless” — their expectation is constant, and so does375

not depend on how much time has already elapsed (Gallistel & Wilkes, 2016; Gong, 2023;376

Grabenhorst et al., 2019; Pishro-Nik, 2014).6 Under the exponential distribution, the377

expected delay Pd(.) from the present moment until the next event is always:378

Pd(t|λ) = λe−λt (1)

The exponential distributions contain a rate parameter λ indicating how many B events379

one expects to observe on average; the delay between two adjacent B events is therefore 1
λ

380

on average.381

When the occurrence of a type of events follows an exponential distribution, the382

observed rate follows a Poisson process (see Figure 2a, bottom panel; Pishro-Nik, 2014). A383

Poisson process models the probability Pr(k|λ) of observing a particular quantity k of such384

independent events in a fixed time unit given a presumed rate λ:385

Pr(k|λ) = λke−λ

k! (2)

Here, λ is the same parameter shaping the delays between individual events in Equation 1.386

When delays are generated unpredictably at a constant rate λ, the Poisson process is387

homogeneous. The Poisson process, along with its corresponding exponential waiting time,388

has been widely used to model the arrival of events in previous cognitive research (Clarke,389

1946; Gallistel & Wilkes, 2016; Grabenhorst et al., 2021; Grabenhorst et al., 2019; Griffiths390

6 Mathematically, this means if we expect to wait an average of x minutes for an event to occur, but we
have already waited for a couple of minutes and the event as not happened yet, the expected wait time is
still x minutes (see p.77 in Gong, 2023, for a proof).
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& Tenenbaum, 2007). As we will see, maintaining these two representational perspectives391

(delays vs. rates) is very useful since the causal influence of events can be conceptualized392

as acting at either level, which can have subtle metaphysical and mechanistic consequences.393

So far we have focused on the behavior of B while unperturbed by causal influences,394

i.e., the statistical patterns we expect to see between independent events. If A and B are395

independent (and do not share even a distant common cause), the occurrence of A cannot396

carry any information about the occurrence of B, so any inclusion of A in our model of B397

is predictively impotent. Instead of having a simple contingent probability of P (B|A), we398

here need to specify the pattern of B conditioned on the occurrence(s) of A: if A has no399

influence on B, measuring the time from the occurrence of A until B occurs is equivalent to400

measuring from any other arbitrary moment before the next B event. Due to the401

memoryless feature, the delay from As occurrence to the next B will follow the same402

exponential distribution with the same parameter λ as that between one occurrence of B403

and the next (Figure 2a, 2c, top panel).7 More intuitively, the rate of B occurrences after a404

causally impotent A will remain the same as the base rate (Figure 2a, 2c, bottom panel).405

A qualitative understanding: Causal departures from independence406

With a definition of independence in hand, we can start to articulate departures407

from independence and how they reveal causal structure. More specifically, we consider408

how the statistical pattern would look different, if occurrences of one type of event A are409

able to generate occurrences of another type of event B.410

We here illustrate two different generative processes: one-cause–one-effect and411

one-cause–many-effects (cf. Gallistel & Wilkes, 2016), using a simple example in Figure 3.412

Suppose a fictional substance called 5-HTP is used to treat insomnia. Consuming a 5-HTP413

capsule can cause a person to sleep, resulting in a one-cause–one-effect scenario. Here,414

7 This may seem counter-intuitive: the fact that any A event inevitably occurs between two B events
seems to suggest that the A−B delay would be shorter than B −B delay on average. However, to help
build intuition, note that as long as A events are distributed independently from B, they are more likely to
fall in a larger gap between successive B events, because these “take up more space” in the timeline.
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Figure 3
Examples of two types of function that could be used to model cause-effect delays and causal
influences, respectively. Illustrative example relates a drug “5-HTP” and sleep. (a) A
gamma probability density function capturing the delay between taking a drug and falling
asleep and (b) scaled gamma density function capturing the rate of melatonin production
after drug is administered. Different distributions demonstrate the functions’ ability to
capture various temporal dynamics. The orange distribution is the ground truth generative
distribution. The orange effects in the timeline are those in fact generated by the drug while
the gray effects are the base rate effects.

temporal information is embedded within the delay between the causal event of pill415

consumption and its effect event of falling asleep. The causal delay can vary across416

different mechanisms (see Figure 3a), analogous to our anticipation of certain medications417

(e.g., Adrenaline) taking effect rapidly and precisely, while others (e.g., painkillers) exhibit418

a delayed onset with some degree of variability. The gamma distribution can help us419

describe a variety of shapes and capture quick or slow temporal mechanisms. It is a420

generalization of the exponential distribution. It can be codified with a shape parameter α421

along with the rate parameter β:422

Pd(t|α, β) = βα

Γ(α)tα−1e−βt (3)

With α = 1 we recover the exponential, independent setting but with α > 1, the gamma423
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distribution becomes increasingly peaked and increasingly normally distributed around its424

mean, or expected delay (Figure 3a).8 The expectation µ and the variance σ2 of a gamma425

distribution follow µ = α
β

and σ2 = α
β2 .426

It is also possible that one cause could generate many effects, for example, we might427

think the same scenario more granularly in terms of a pill’s production of Melatonin428

particles over time (Figure 3b). One-cause–many-effect scenarios are prevalent in429

epidemiology. For example, a single water pollution event might cause many individuals to430

fall ill at different points in time (Griffiths & Tenenbaum, 2007). In this case, effects are431

generated at a rate level, which specify how many additional effect events we expect to be432

generated by the cause per time unit, and how this rate change is, itself, spread over time.433

This includes a functional form of the event’s causal influence on the effect’s rate over time,434

which may include an incubation period, peak, and a decay process (see Figure 3b).435

Concretely we can also use a scaled gamma function to capture the fluctuation in the rate436

of the effect, as a function of the time t since the cause happens and the peak rate λ1 of the437

particular causal influence: f(λ1, t). This is done by scaling the Gamma density function438

via dividing by its mode, the density at (α− 1)/β:439

f(λ1, t|α, β) = λ1 ·
Pd(t|α, β)

Pd(α−1
β
|α, β) (4)

After scaling, the predicted value ranges from 0 to the peak rate λ1 (see Figure 3b).9440

8 To further build the intuition of what a gamma distribution models, it can be helpful to think of it as a
sum of α exponential delays each of rate β. Here the role of β is equivalent to the rate parameter λ in the
exponential distribution. A classic example of an unpredictable event is a radioactive decay of the type
measured by a Geiger counter. If one estimated how long it would take a Geiger counter (placed near a
source of radiation) to reach a count of α, the resulting delay distribution would be gamma with a shape of
α and a β reflecting the average gap between each individual event. The larger α, the larger the mean but,
relatively speaking, the narrower the spread of expected waiting times around that mean. Thus, a highly
reliable delay is one that decomposes into a sum of many small independent unpredictable delays. This
works similarly to how a normal distribution can be conceptualized as the sum of many independent errors
with smaller errors producing a narrower distribution.
9 We assume this distribution for convenience, but in principle any function with (0,∞) support can play
this role. For instance, some causal influences might exhibit a step function, or remain at their peak level
for an extended period before decaying, or be succeeded by a rebound effect. We will discuss these kinds
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From a cognizer’s point of view, the temporal dynamics are liable to be variable and441

uncertain. This is an inevitable feature of any model that abstracts away some of the442

detail, leaving unmodeled noise and complexity in the generative or measurement443

processes. The gamma family here helps to capture how abstract subjective probability444

distributions encode causal-model-based expectations about inter-event delays or event445

rates, and how these distributions can be shaped and sharpened with evidence, which446

provides a solid foundation for a rational model of time-based causal induction.447

Figure 2b demonstrates three examples when the occurrence of A can result in448

either one (top panel) or multiple (bottom panel) events of B. In the single-effect scenario,449

the delay between A and its effect event B could follow a memoryless exponential450

distribution, a semi-reliable gamma distribution (with high variance), or a reliable gamma451

distribution (with low variance). Regardless of the situation, the delay between A and the452

next B would no longer resemble the scenario where A and B are independent, as depicted453

in Figure 2c. Similarly, in the multiple-effect scenario, the causal influence could manifest454

as an exponential shape (with no incubation time), a semi-accurate gamma shape (with a455

wide spread), or an accurate gamma shape (with a narrow spread). As shown in Figure 2c,456

the rate of B’s occurrence will deviate from the constant rate when A is a cause of B. As457

such, the deviation in data patterns could help the learner obtain a qualitative458

understanding of whether A causes B or not.459

A quantitative understanding: Structure inference from temporal information460

So far we have demonstrated, at a qualitative level, how we can expect the temporal461

pattern of events following a putative cause event A to differ depending on whether A is462

truly a cause of B. We introduced two causal generative processes (generating a463

single-effect or multiple-effects), which inspired two analysis approaches: one based on the464

situation in analyzing one of the datasets (Gong & Bramley, 2023). However, we believe utilizing the
gamma function as a generic basis for modeling temporal causal beliefs is a sensible default, capable of
capturing many scenarios from previous experiments (Gong et al., 2023; Greville & Buehner, 2007;
Lagnado & Sloman, 2006; Lagnado & Speekenbrink, 2010). In other contexts the functional form can be
derived from mechanism knowledge.
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delays between particular token cause and effect events (event-based scheme), and one465

based on fluctuations in the rate of occurrence of the effect depending on occurrence of the466

cause (rate-based scheme). We will further elaborate the similarities and differences467

between these in this section. We will also show that event-based and rate-based468

approaches are not necessarily tied to the generative processes that inspire them. Rather,469

they are better understood as two ways of thinking.470

A quantitative-level analysis is needed to formally infer causal structure. One can471

try to directly derive some indices from the qualitative patterns. Gallistel et al. (2014)472

pointed out the option of using the entropy between two effect distributions — measured473

from the previous cause event vs. any random point before (see Figure 2c) — to measure474

the associative strength. Although this seems sensible in pairwise association scenarios, it475

is not clear it can work for structure induction in general since it will change depending on476

the causal background, and because, unless it is an intervention, the information one477

variable carries about another can often be due to their sharing a common cause. We here478

follow the logic of inference to the most probable parameterized Causal Bayesian Network479

(Griffiths & Tenenbaum, 2005, 2009; Pearl, 2000; Rottman & Hastie, 2014) to build our480

quantitative approach, which will allow the model to both (1) infer the parameters481

capturing how a cause generates or prevents the effect in time; (2) deal with situations482

where multiple causes (or causes and base rates) combine with each other to influence the483

occurrences of an effect.484

Challenging our initial 5-HTP example, everyday continuous-time evidence is often485

more complicated: events can occur at any time point, and different potential causes can486

overlap in time leading to pervasive credit assignment questions. For instance, imagine that487

you are taking a pill for medical purposes but feel that you are frequently experiencing488

stomach discomfort afterward. You might wonder whether this discomfort is genuinely a489

side effect of the pill. We illustrate this evidence in Figure 4a: one might experience490

multiple stomach aches during the observation period both related and unrelated to the491



RATIONAL CAUSAL INDUCTION FROM TIME 26

medicine. Meanwhile, the pill may be consumed irregularly, and the stomach discomfort492

events caused by a pill, if they exist, could occur even after ingestion of a subsequent pill.493

Therefore, it is not possible to simply segment this kind of evidence into independent trials494

to compare candidate causal models.495

The causal question can be formalized as whether treating the pills as an additional496

cause of stomach aches provides a better overall account of the evidence than treating the497

stomach aches as happening spontaneously (i.e., due to unexamined causes). Two498

hypothetical structures S0 and S1 are illustrated in Figure 4b. In S0, only the base rate B499

causes the discomfort, while in S1, both the base rate B and the pill taking C cause the500

discomfort. However, various other factors can potentially complicate this picture. For501

example, if the learner suspects that something else, such as their diet, may be502

contributing to their stomach aches, there could be additional dietary events in the503

timeline and we could incorporate their potential causal influence into the model504

comparison. We can imagine other cases, such as if you recognizes that your pill-taking is505

influenced by your stomach aches (e.g., if you avoid taking the pill when you already have a506

stomach ache), if the two could have a potential common cause such as time of day, or if507

the stomach aches could have their own feedback cycle that makes them occur with508

regularity. All these will refine the causal structure induction problem in ways our model509

framework is equipped to handle.510

How can we address the structure selection question given temporal evidence?511

Three critical components have been highlighted for a rational account of causal induction512

(Griffiths & Tenenbaum, 2009): (1) an ontology that outlines the entities under513

investigation and their properties, (2) a set of plausible relations that suggest how entities514

may be connected, and (3) the functional form that determines how causes influence their515

effects under each type of relation. In the contingency setting, the ontology is a set of516

variables, the set of plausible relations is a hypothesis space of causal Bayesian networks517

and the functional form is often assumed to be noisy-OR combination of independent518
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generative or preventative influences. Despite differences in the data they operate over,519

temporal and atemporal causal induction share the same basic problem of articulating520

model selection within a hypothesis space of causal structures. The normative learner521

updates their prior belief over structures s in the hypothesis space S using the likelihood522

function P (d|s; w) to arrive at a posterior distribution P (s|d; w), given data d and a set of523

parameters w:10
524

P (s|d) ∝
∫

w
P (d|s; w) · P (s; w)dw (5)

In the remainder of this section, we address the question of what constitutes an525

appropriate ontology, set of relations and functional form for the likelihood of causal event526

data in time P (d|s; w). Similar to the rule of qualitative patterns, we will demonstrate two527

approaches, with an event-based scheme that analyzes evidence at the individual delay528

level while a rate-based scheme analyzes the evidence at the rate level.529

An event-based scheme530

The event-based scheme we propose uses the concept of token-level “actual531

causation” to map each event to its possible causes (Halpern, 2016), identifying which of532

several candidate events actually caused the observed outcome (Gerstenberg et al., 2021;533

Stephan et al., 2020). While we may have knowledge and expectations about the delay534

between a cause and its effect (i.e., its mean and variance parameters), to derive these535

empirically we have to also commit to a particular causal story about which cause event536

actually produced which effect event in order to apply those expectations. Under this537

scheme one can consider various possible causal pathways that could produce the observed538

events, depending on the underlying causal mechanisms (Bramley, Gerstenberg, Mayrhofer539

et al., 2018; Gong & Bramley, 2023; Hamou et al., 2025; Stephan et al., 2020; Valentin540

10 Here we foreground the problem of structure selection rather than parameter estimation conditioned on
a structure (Griffiths & Tenenbaum, 2005). That is, we assume that for each structure and functional form,
the relevant parameters are theoretically marginalized over their prior and support if they are unknown.
However the same mathematical formalism can straightforwardly be used for parameter estimation within
a causal model.
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Figure 4
Causal inferences based on continuous-time causal evidence. (a) Evidence as events of
stomach discomfort and pill taking unfolded in the timeline. (b) There are two causal
structures in the hypothesis space. (c) The event-based scheme lays out all possible
pathways (branches) that explain all effects under each hypothetical structure. (d) The
rate-based scheme model in what way the rate of effects are expected to change under each
hypothetical structure. (e) Episodic type of evidence where the cause and effect only happen
once in each individual observation. Cases illustrate the situation in Greville and Buehner
(2007) where the effect events across samples are assumed to follow exponential delays if
the evaluated cause does not work. Under this situation, the evidence can be collapsed
under the rate-based scheme.

et al., 2022). For example, in a causal structure s that includes an endogenous cause C, a541

hidden background cause B, and an effect E, each effect event could be caused by either C542

or B, resulting in a pathway set Zs that contains a total of 2k possible pathways (where k543

is the number of effects). The event-based scheme allows for specific mechanistic544

constraints to be integrated into pathway construction. For instance, if we observe a545



RATIONAL CAUSAL INDUCTION FROM TIME 29

sequence of events, such as {C1, E1, E2}, and also believe that this is the kind of system546

within which one C event can only cause one E event (Ross, 2024), we can rule out the547

pathway that assumes both E1 and E2 were caused by C1.548

Given that conditional on a structural hypothesis, the potential actual causal549

pathways are mutually exclusive and exhaustive, it follows that the overall likelihood of550

each structure hypothesis is the sum of the individual likelihood of these pathways:551

P (d|s; w) =
∑

z∈Zs

P (z|s; w) (6)

To determine the likelihood of a specific actual pathway given a hypothesized type552

level causal structure P (z|s; w), we compute the likelihood of both observed effect events e553

and unobserved but predicted events h. For each observed effect e, we evaluate the554

probability that it was caused by its presumed generative cause event g (denoted g → e).555

Hidden (expected to be generated by a g but unobserved, denoted g → h) effects556

contribute to the likelihood wherever we do not observe the expected effect of a generative557

cause. This could be due to (1) the generative cause failing to produce the effect or (2) the558

effect not having occurred yet:559

P (z|s; w) =
∏

g→e∈z
wg · Pd(te − tg|α, β)︸ ︷︷ ︸

Observed effects must have been generated

×
∏

g→h∈z
(1− wg) + wg · Pd(th > tend|α, β)︸ ︷︷ ︸

Unobserved expected effects must have failed or be still-to-occur

(7)

In Figure 4c, the event-based scheme generates pathways for explaining stomach560

discomfort under different structure hypotheses. For S0, all effect events are attributed to561

the base rate. For S1, any effect event could be attributed to the base rate or to cause562

events that occurred previously.563
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A rate-based scheme564

The rate-based scheme models causes that temporarily affect the rate of occurrence565

of some effect. For a generative cause like 5-HTP, we expect the rate of its effect566

(melatonin) to temporarily increase from its base rate, and intuitively expect such rate567

increases to be additive (unless there are also interactions between the base rate causes and568

the focal cause). That is, an independent generative cause is something that adds extra569

events to the timeline without affecting those that would have been there anyway (Gallistel570

& Gibbon, 2000). For example, we might think of a large gathering causing rates of571

infection with the Covid-19 virus to spike by contributing additional infection events.572

The rate-based scheme employs a non-homogeneous Poisson process (Pacer &573

Griffiths, 2012, 2015) to capture the likelihood of events in a setting where cause574

temporarily affect the rate at which their effects occur. The likelihood depends on how the575

observed rates at each time bin are aligned with the expected rates:576

P (d|s; w) =
∏

t

Pr(dt|f(λ, t)) (8)

We may be able to treat the base rate of an effect as a constant λ0 if we have no577

information to suggest it is periodic or structured across time. For any generative cause,578

the causal influence can be modeled as modifying the effect’s rate in a continuous fashion579

f(λ1, t). For example, an incubation-decay process is shown in Figure 3b, captured by the580

influence function in Equation 4.581

Poisson processes have a desirable property known as “superposition”, where the582

union of two independent Poisson processes with rates λ and λ′ is still a Poisson process583

with rate λ + λ′. The superposition property not only give us a simple answer to the584

combination of a base rate and a (constant) causal influence, but also how a non-constant585

causal influence implies a fluctuating rate. Combining a set of generative causes g with a586

base rate of λ0, the total expected effect rate f(λ, t) at the time unit t can be represented587
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by accounting for superposition as follows:588

f(λ, t) = λ0 +
∑
i∈g

f(λi, t) (9)

This could be seen as a continuous-time version of the noisy-OR logic gate used in589

modeling contingency data (Cheng, 1997). Prevention can be similarly captured as filtering590

λ0 resulting in a proportional temporary rate decrease that can be seen as a591

continuous-time version of the noisy-AND-NOT logic gate (see Appendix A).592

Figure 4d illustrates how the rate-based scheme models causally-induced rate593

changes to explain stomach discomfort. In S0, the model assigns a constant base rate to594

account for the number of effect events per unit of time. In S1, the model incorporates the595

assumption that the effect rate dynamically changes following the occurrence of a cause596

event.597

Summary and comparisons of two schemes598

We have introduced two schemes for thinking about causal induction in continuous599

time. An event-based scheme involves reasoning at the level of individual events600

adjudicating whether the delays between putative cause–effect pairs are causal (Ei was601

actually caused by Ci) or coincidental (Ei was actually caused by an unobserved exogenous602

factor modeled by its base rate). The rate-based scheme involves modeling whether and603

how the rate of occurrence of an effect changes after a cause occurs. These schemes604

represent two different approaches to thinking about the temporal evidence, but there is a605

continuity between the two built on a shared mathematical foundation. As we will see606

below, there are cases where both perspectives coincide exactly or approximately in their607

predictions, regardless of the generative model of the evidence. Meanwhile, there are also608

cases where they differ in their predictions or computational cost. The event-based scheme609

can integrate detailed mechanistic knowledge, such as if cause produces exactly one effect,610

while it often demands a costly marginalization over different causal pathways consistent611
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with evidence. The rate-based scheme implicitly marginalizes over these possibilities612

allowing it to deal with larger event counts but as the cost of making it hard to613

accommodate certain mechanistic principles.614

Human Generic Delay Intuitions: Short, Reliable, and Expected615

We highlighted that people see short, predictable, and expected delays as cues to616

causal connection. We now demonstrate that these intuitions all fall out from a Bayesian617

analysis under our model framework. We first provide intuitive explanations for each618

phenomenon and then back each up with simulation results. Each intuition found in619

humans can manifest in two types of tasks: structure induction and causal diagnosis. For620

example, the preference for the reliable delay can refer to learners’ (1) higher causal ratings621

for an evaluated causal relation in trials where the delays are more consistent, compared to622

when they are less consistent, and (2) preference for Cause A over Cause B as an623

explanation for the effect in a single learning trial, when the delay between A and the effect624

is more consistent than the delay between B and the effect. This distinction matters more625

for the short-delay intuition than the other two, as we will discuss in the intuitive626

explanation section. In the simulation section, we primarily focus on structure induction627

and demonstrate how the same intuition readily applies to diagnostic causal reasoning.628

Intuitive explanations629

Delay length. In diagnostic causal reasoning (attributing the effect E to A over B630

in the single learning trial), even in the absence of specific causal delay expectations, a631

Bayesian learner has a preference for the diagnosis that implies shorter causal delays for at632

least two reasons. The first reason arises from the fact that causal delays can range from633

zero to infinity (with a limit on the lower side but not the upper side). As a result, any634

proper delay density will be right-skewed, inherently favoring smaller values. The second635

reason is that, when the learner don’t have a specific prior for the delay variance, the636

possible range of the delay variance becomes larger as the delay mean increases, making637

long delays ceteris paribus harder to predict accurately. Figure 5 provides an example of638
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Figure 5
Parameter posteriors and posterior predictions after observing a 20-time-unit inter-event
delay five times vs. 100-time-unit inter-event delay five times (a,b) and after observing a
60-time-unit inter-event delay five times vs. 20-, 40-, 60-, 80-, 100-time-unit inter-event
delays (c,d). (a and c) Parameter posteriors using the conjugate prior update process under
the assumption of an initially weak prior (s = 10−6, r = 10−6, p = 1, q = 1 for the
distribution conjugate to the gamma likelihood with an intractable normalization constant;
Fink, 1997). (b and d) The predicted density under sampled parameter combinations. Faint
colored lines represent densities under posterior α and β samples. Thick and dashed black
lines represent the marginal or posterior predictive distribution for future inter-event delays.

the posterior on parameters α and β (Figure 5a) and posterior predictive distribution after639

observing 20-time-unit delays five times vs. 100-time-unit delays five times (Figure 5b).11
640

This illustrates that the posteriors are tighter after observing delays of 20 vs. 100. The641

delay prediction (Figure 5b) is also sharper (more confident) after observing delays of 20,642

in contrast to that following delays of 100. It highlights that a causal model that connects643

a set of events via shorter causal delays will assign higher likelihood to data than an644

alternative causal model that connects those events with longer causal delays, even when645

those delays are perfectly reliable (Greville & Buehner, 2010).646

In structure induction (inferring the existence of short-delay or long-delay causes647

across different trials), the same preference appears because this comes down to a648

competition between the putative cause and the base rate to explain the effect’s649

occurrences. The likelihood of the data under the baserate-only hypothesis (S0 in650

Figure 4b) remains constant, while the likelihood the causal variable explains the651

occurrence depends on the length of the delays it implies, following the same logic652

11 We here used the analytical conjugate prior update process. In the rest of the paper, we will use simple
Monte-Carlo sampling since analytic methods are not feasible.
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mentioned in diagnostic causal reasoning. The posterior distribution between causal and653

baserate-only hypotheses, will differ accordingly. It is important to note though that if the654

base rate and causal delays are scaled up equally, and the prior on causal delays is655

uninformative, we will then have timescale invariance in the sense that a rational causal656

learner will favor the causal hypothesis equally in the “slow” and the “fast” dataset.12 A657

straightforward way to demonstrate this is to generate long-delay stimuli by scaling658

short-delay stimuli by a constant (Gallistel & Shahan, 2024).659

Delay reliability. The reliable-delay intuition can simply be explained by the660

likelihood calculation. If observed delays exhibit great variability, the resulting gamma661

distributions spread their expectations wider, resulting in a lower marginal likelihood662

compared to less variable delays. As in the delay length section, we provide an example in663

Figure 5 showing the parameter posteriors (Figure 5c) and delay predictions (Figure 5d)664

after observing a consistent 60-time-unit delay five times, versus observing a set of varied665

delays with a same average on 60 time units.666

Delay variance would naturally be scaled with the delay length in a time-scale667

invariant environment. Otherwise, if the researchers force the long delays (e.g., 6 s) and668

short delays (e.g., 3 s) to have the same absolute standard deviation (e.g., 0.1 s), the669

relative variance will be smaller for the long delay, providing an advantage in the670

long-delay condition. We will further demonstrate this in the simulation section and when671

analyzing Lagnado and Speekenbrink (2010).672

Delay expectation. The expected-delay principle can be understood as the673

influence of mechanistic knowledge or prior experience on people’s prior distribution674

regarding a causal delay. For instance, if individuals strongly believe that a genuine switch675

should take approximately 4 seconds to turn on a device, a switch that takes 2 or 6 seconds676

would have a lower prior probability and consequently a less good explanation for an effect677

12 However, a fully uniform prior over delays, e.g., exp( 1
∞ ), is improper because the range of possible

delays is infinite meaning the prior has zero density everywhere, necessitating use of Markov Chain
methods or weakly informative priors in practice.
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Table 2
Symbols used and their meanings under three contexts.

Synthetic data Event-based scheme Rate-based scheme

mu Mean of causal delays. – –
iu Half interval of causal delays. – –
kb Number of base rate effect events. – –
kc Number of cause events. – –
wc Cause’s success probability. Cause’s success probability. –
µ – Mean of causal delays. Mean of causal influence function.
σ2 – Variance of causal delays. Variance of causal influence function.
µb – Mean of base rate delays. –
σ2

b – Variance of base rate delays. –
λ0 – – Effect’s base rate.
λ1 – – Max generative causal influence.
ξ – – Max preventative causal influence.

Note: σ2
b is only used when modeling Gong and Bramley (2023) which included periodic

base rates. In other cases, the base rate delay was modeled using exponential distributions,
which only included one parameter.

compared to a switch that was pressed four second earlier. Correspondingly, a device678

activation 2 or 6 seconds after a switch press would be more likely to be caused by its base679

rate than a device activation 4 seconds after a switch press (Buehner & McGregor, 2006).680

Simulation681

To demonstrate that our account exhibits these features, we now simulate and682

model synthetic data. Given that most of the human empirical evidence was based on the683

one-cause–one-effect context, we focus on that context here. Note that the rate-based684

scheme generically assumes that a cause can produce multiple effect events and hence is685

slightly inconsistent with our simulation setting. Nevertheless we show that it still686

demonstrates a sensitivity to the change of delay lengths and delay variance. The meanings687

of symbols used in simulation and later dataset modeling are summarized in Table 2.688

To show that this framework can handle data that are not exclusively generated689

from gamma distributions (just like humans, Greville & Buehner, 2010), we generate690

synthetic delay stimuli using uniform distributions, denoted as U(l, u), with a lower bound691

l and an upper bound u. We used the following procedure:692
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1. Define each synthetic stimulus as lasting for 300 time units.693

2. Generate kb base rate effect events and place them at random times sampled from694

U(0, 300).695

3. Generate kc cause events, again placing these on the timeline by sampling from696

U(0, 300).697

4. Generate effect events given the assumption that each cause event has a probability698

wc of producing one effect event E with a delay sampled from U(mu− iu, mu + iu). In699

other words, the ground truth for the simulated data is always the structure that700

includes the causal link as well as the base rate.701

We then estimate the probability that there is a generative causal influence from C702

to E, i.e., judging the posterior probability of S1 over S0 in Figure 4b. The evidence that703

data d provide in favor of S1 over S0 can measured by the log-likelihood ratio:704

log P (d|S1; w)
P (d|S0; w) (10)

We assume that all parameters used for simulating data are unknown to the learner705

and hence the models marginalize over the parameters w. We achieve this via simple706

Monte Carlo integration drawing m = 10, 000 prior samples for all parameters. For the707

event-based scheme, we assume a uniform prior on causal strength, meaning that cause708

succeeds in producing its effect with a probability wc ∼ U(0, 1). We also assume weak709

priors on the parameters of the gamma causal delays between Cs and their effects E, such710

that they have mean µ ∼ U(0, 300) and variance σ2 ∼ U(0, µ2). This means the prior on711

the mean causal delay is equally likely to be anything between zero and the full length of712

the episode while the delay shape parameter (α = µ
σ2 ) can be anything between 1 and ∞.13

713

13 An alternative approach is to sample the mean (µ) and shape (α) parameters from very flat exponential
distribution (Bramley, Gerstenberg, Mayrhofer et al., 2018). This produces the same qualitative results.
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Figure 6
How log-likelihood ratio changes with the amount of cause events.

Similarly, the model assumes delays between base rate events follow an exponential714

distribution with mean µb ∼ U(0, 300).715

For the rate-based approach, we specify priors on the base rate λ0 ∼ 1/U(0, 300),716

the max causal influence λ1 ∼ U(0, 1). We assume causal influences dynamically inflate the717

rate according to a scaled gamma distribution with priors on the mean µ ∼ U(0, 300) and718

the variance σ2 ∼ U(0, µ2).719

Synthetic data720

We first implemented a sanity check task to make sure that the model’s preference721

for S1 over S0 (1) increases as the number of cause events in the synthetic data increases722

and (2) decreases as the base rate of effect events increases. Both of these properties are723

based on the principle of distinguishing the (causal) signal from the noise and have been724

demonstrated in the atemporal causal learning setting (Cheng, 1997; Griffiths &725

Tenenbaum, 2005; Wu & Cheng, 1999). We here use wc = 1, mu = 15, iu = 5, and consider726

different numbers for baserate events kb (kb = {1, 3, 5}). For the rate-based model, we727

consider numbers for cause events kc ranging from 1 to 20 (with a step of 1), while for the728

event-based model, we limit the range to 1 to 5 due to computational cost. Results are729

shown in Figure 6. In both cases, the log-likelihood ratio in favor of S1 increases as the730
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Figure 7
How log-likelihood ratio changes with the causal delays and delay ranges (and the
corresponding log-likelihood of S1). A ratio above zero indicates that the model favors S1
(the causal structure) over S0 (the base rate structure).

number of cause events increases. Both models perform better when the base rate is low.731

This reflects that the model’s basic ability to learn causal structure from temporal data.732

Compared to the event-based model, the rate-based model requires more cause events to733

favor S1 over S0, indicating a higher requirement for data points under the relaxed734

constraints assumed by the model (it does not require specifying how many effect events735

would be generated by one cause event). Accordingly, we will use kc = 5 for the736

event-based model and kc = 10 for the rate-based model in the later simulations.737

Delay length738

To illustrate the short-delay preference found in humans, we simulate stimuli739

arranged in a grid with wc = {0.6, 0.8, 1}, mu = {10, 15, 20, 25, 30}, iu = 1, and kb = 3.740

Note that a fixed baserate events kb over a fixed observation duration here is key to741

inducing this preference. Figure 7a demonstrates that the event-based model’s preference742

for S1 over S0 diminishes as the duration of the true causal delays increase. This743

observation supports the notion that causal attribution is stronger when the delay is shorter744
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Figure 8
How log-likelihood ratio changes under different delay prior.

(i.e., structure induction). Additionally, the log-likelihood of S1 itself decreases as the delay745

length increases. This indicates that when faced with multiple potential cause candidates746

(i.e., diagnostic causal reasoning), the learner should tend to attribute the effect to the747

cause with the shortest delay. Similar patterns are replicated under the rate-based scheme748

(Figure 7b). We show in Appendix B how the time-scale invariance property would appear749

instead if we adapt the baserate and delay variance proportionally to the delay length.750

Delay variance751

To investigate the predictable-delay preference, we simulate stimuli arranged in a752

grid with mu = {10, 20, 30}, iu = {1, 3, 5, 7, 9}, wc = 1, kb = 3. As shown in Figure 7c, the753

event-based model’s preference for S1 over S0 diminishes as the range of delays increases. It754

reflects that causal attribution is stronger when the delays are reliable. Additionally, the755

log-likelihood of S1 decreases as the delay range expands, which suggests that when faced756

with multiple potential cause candidates, the learner should tend to attribute the effect to757

the cause with the most consistent or reliable delays. Similar results are observed in the758

rate-based scheme (Figure 7d). In Appendix C, we show how our model replicates the759

finding by Greville and Buehner (2010) that the effect of variance persists as the learning760

duration increases.761
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Delay expectation762

To investigate the influence of prior beliefs on causal judgments, we introduced two763

different delay prior conditions instead of using the above uniform delay priors. For the764

“short-delay prior”, we set µ to be sampled from a Gamma distribution with a mean of 10765

and a standard deviation of 1, resulting in an assumed delay expectation of 10±1.766

Conversely, for the “long-delay prior”, we assume µ is sampled from a Gamma distribution767

with a mean of 20 and a standard deviation of 1, representing an assumed delay768

expectation of around 20±1. Other model parameterizations remain the same as before.769

For the synthetic data, we constructed scenarios in which a slow cause always770

produced an effect with a delay sampled from mu = 20, iu = 1, while a fast cause always771

produced an effect with a delay sampled from mu = 10, iu = 1. We set wc = 1 and kb = 3772

when simulating the data. Figure 8 demonstrates that in the fast-cause scenarios, the773

preference for S1 in both event-based and rate-based models is stronger when one starts774

with a short-delay prior, while in the slow-cause scenarios, the preference for S1 is stronger775

when one starts with a long-delay prior. This confirms that the model will learn causal776

relations more quickly when their time course aligns with expectations. It is worth noting777

that the models’ tendency to favor the slow cause under the long-delay prior is not as778

strong as the tendency to favor the fast cause under the short-delay prior, highlighting the779

natural advantage of shorter delays.780

Human Performance in Learning from Continuous-time Evidence781

We now reanalyze seven previous datasets that contain human performance in a782

variety of temporal causal learning tasks, as shown in Table 1 (the corresponding783

hypothesis spaces of causal structures are summarized in Figure 9). We will demonstrate784

that our framework can accommodate all the variations across the scenarios probed across785

these tasks. Furthermore, we will demonstrate a robust alignment with participants’786

judgments and the predictions of the framework across these scenarios.787

It is worth noting that all the datasets we model contain “interventions” — most of788
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them provided as pre-set interventions, while Gong et al. (2023) allowed participants to789

intervene actively at moments of their choosing. The contingency-based learning literature790

emphasizes the differences between intervention and covariation-only data (Bramley et al.,791

2015; Lagnado & Sloman, 2002; Lagnado et al., 2007; Pearl, 2000; Sloman & Lagnado,792

2005; Waldmann & Hagmayer, 2005). In the contingency setting, interventions act as793

“graph surgery” making observationally equivalent (aka. Markov equivalent structures)794

distinguishable. For example, casual structures such as X → Y → Z, X ← Y ← Z, and795

X ← Y → Z have the same co-variation patterns (X and Y are always correlated, as are Y796

and Z, and X and Z are unconditionally correlated but become uncorrelated once Y is797

controlled for), under different parameterizations all three models are equally good798

accounts of contingency data with these independencies. People are able to select799

interventions that allow them to distinguish these structures in causal learning experiments800

(Bramley et al., 2015; Coenen et al., 2015). However, event timing can break the Markov801

equivalence deadlock in some cases (Lagnado et al., 2007). For example, the temporal802

pattern X − Y − Z is privileged under the first structure, Z − Y −X in the second, and803

Y −X − Z or Y − Z −X in the third structure (even though high base rates or804

preventative connections may complicate the pattern). Delay information will ultimately805

tend to support whatever causal hypothesis most parsimoniously links the events, assigning806

them the highest joint likelihood by implying the shorter, more reliable and expected causal807

connections. However, whether the observationally most likely model is truly causally808

correct, i.e., that the statistical pattern is not due to some unobserved or latent variable809

(cf. Valentin et al., 2022), can be confirmed definitively through the use of interventions.810

Continuous, effect specified811

Lagnado and Speekenbrink (2010). Our first case study revisits the812

“earthquake” experiment conducted by Lagnado and Speekenbrink (2010). Participants813

were asked to investigate the effects of three types of seismic waves (red, yellow, and green)814

on the occurrence of earthquakes. Unbeknownst to them, only one of the three types of815
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waves (referred to as the cause) actually made earthquakes occur, while the other two816

types (referred to as lures) had no effect on the earthquakes. In each trial, the cause wave817

occurred 10 times and had a probability of 80% of resulting in an earthquake. Two other818

lure causes also occurred 10 times each but had no effect on the earthquake. Two factors819

were manipulated across trials within subjects: the delay length — the time between a820

cause event and its effect event — could be either short (3±0.1 s) or long (6±0.1 s); the821

probability of intervening events — how often the two other lure causes occurred between a822

real cause and its effect — could be either high (65%) or low (35%). Four additional823

earthquake events were sampled at random time points to serve as the base rate. The trials824

lasted for an average duration of 169±84 s for the short-delay condition and 318±157 s for825

the long-delay condition. Since the lures occur in the interval between the cause and effect,826

a learner might mistake the lure for the true cause if they do not pay enough attention to827

temporal information. Lagnado and Speekenbrink (2010) showed participants’ ability to828
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figure out the genuine cause: they assigned higher ratings to the genuine cause compared829

to the two lures. Meanwhile, the judgments were influenced by the probability of830

intervening events rather than the mere length of delay (see Figure 10a).831

There was a mixed set of factors predicting whether a short-delay intuition should832

emerge. This study matched the base rate effect events (the long-delay condition had a833

lower base rate due to a fixed number of background effects over a longer observation834

period). However, the within-subject design provides a shared context liable to undermine835

the invariance in the minds of participants. Moreover, the long-cause and short-cause836

stimuli were created independently, rather than being directly scaled from one another.837

Notably, the standard deviations for the two conditions were identical (0.1 s), meaning the838

long-delay condition had a smaller relative variance than the short-delay condition, making839

the causal relationships easier to identify from a normative perspective. As such, a formal840

modeling procedure is necessary to determine the rationally predicted direction of the841

delay effect in this task.842

Participants were asked to provide both “absolute” and “comparative” ratings for843

the causal properties of each wave. The “absolute” rating allowed participants to844

independently rate each wave, while the “comparative” rating required participants to845

allocate ratings for the three waves such that their ratings summed up to 100. Both types846

of ratings revealed the same pattern with only a main effect of the probability of847

intervening events but not the delay length (see Figure 10a). Here we model the848

“comparative” rating, which can be interpreted as a comparison of the posteriors849

associated with three causal structures as shown in Figure 9 (assuming that they each have850

an equal prior). None of the delay or other parameters were explicitly disclosed to the851

participants in the instructions, and the task included abstract visualizations and852

gamification features, which might suggest to participants that it was more like a game853

than a real-world situation. Therefore, we here do not speculate the prior knowledge854

participants may use. We use the prior for parameters as follows: wc ∼ U(0, 1) for the855
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cause probability (and λ1 ∼ U(0, 1) for the rate-based model), µb ∼ U(0, 100) for the base856

rate mean (and λ0 ∼ 1/U(0, 100) for the rate-based model), µ ∼ U(0, 100) for the cause857

delay (or influence) mean, and σ2 ∼ U(0, µ2) for the cause delay (or influence) variance.858

We generated a simple Monte Carlo sample of size m = 100, 000 to approximate the859

Bayesian inference process. We will use m = 10, 000 for the remaining datasets (unless all860

parameters were assumed to be known to the model) because these datasets had either861

fewer unknown parameters or narrower parameter ranges compared to this study.14
862

As shown in Figure 10a, both event-based and rate-based schemes successfully863

identified the genuine cause in each condition, similar to the participants. Also consistent864

with participants’ responses, the models were more influenced by the probability of865

intervening events than by delay length. As mentioned above, a mixture of factors in the866

study could result in different predictions as to whether there should be a short-delay or867

long-delay preference. As a result, the rational model predicted similar strength judgments868

in both conditions, with a slight tendency to favor the long delay (Figure 10a). This is869

driven by the relatively smaller variance in the long-delay condition. Although this870

tendency did not manifest clearly in participants’ responses, we can see how helpful a871

rational model can be in isolating the influences of different factors, which is valuable for872

designing experiments and further developing process-level models to account for things873

like memory storage and perceptual noise. Further trial-level comparisons were not874

conducted with this dataset because of the lack of trial-level human judgments.875

Gong and Bramley (2023). A somewhat similar dataset was collected in Gong876

and Bramley (2023). Participants were presented with a causal device consisting of one877

target component (Effect E) and two control components (Cause A and B). The878

14 The rate-based scheme requires a decision on the time bin configuration. The bins should be fine enough
to satisfy that a cause should happen in a time bin before the time bins capturing most of its effects. Here
we used 1 second for Gong and Bramley (2023), Gong et al. (2023), Lagnado and Sloman (2006) and
Lagnado and Speekenbrink (2010) and 1 day for Gong and Bramley (2024) and Greville and Buehner
(2007). Both choices can be regarded as natural. We used 300 milliseconds for Bramley, Gerstenberg,
Mayrhofer et al. (2018) given that more coarse choices would compromise the accuracy.
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Aggregated results for six datasets. A temperature parameter of 15 was applied to Lagnado
and Speekenbrink (2010) for visualization. Only one of the lures was reported in the
original paper, presuming that the other lure could be calculated given the constraint in
comparative ratings (LureB = 100 - Cause - LureA). Horizontal dashed lines in Gong and
Bramley (2023) and Gong et al. (2023) indicate the chance-level performance. Ratings in
Greville and Buehner (2007) are reversed so that they are aligned with Gong and Bramley
(2024) where positive numbers indicated harmful influence and negative numbers indicated
beneficial influence. The shading corresponds to the percentage of link selection in Lagnado
and Sloman (2006); only links endorsed by more than 8 out of 24 participants or more than
50% chance by the models (after a softmax fitting) are shown; the occurrence orders were
A-B-D-C, A-D-C-B, and A-B-CD (with the latter two occurring simultaneously) in
Condition 2-4, respectively.



RATIONAL CAUSAL INDUCTION FROM TIME 46

relationships between each control component and the target component could be879

generative, non-causal, or preventative, resulting in 9 possible causal structures (see880

Figure 9). A generative cause event would always produce an effect event after a gamma881

distributed delay of 1.5±0.5 s. A preventative cause event would cancel any upcoming882

effect events during a subsequent gamma distributed prevention window of 3±0.5 s. The883

effect component could also activate spontaneously. Participants were randomly assigned884

to the regular base rate or the irregular base rate condition. Each base rate event occurred885

semi-periodically, with gamma distributed 5±0.5 s delays after the previous one in the886

regular condition, or unpredictably with exponentially distributed 5±5 s in the irregular887

condition. Participants watched the device being intervened on by an artificial agent for a888

total duration of 20 s during which there would always be three interventions on A and889

three on B.890

In the experiment we model here, participants were given video training to891

experience the delay parameters mentioned above. They were also explicitly told about the892

mean of the delays in the instruction. Therefore, we make the matching assumption that893

the model is also aware of these parameters. Specifically, for generative causes, we set894

wc = 1 (and λ1 = 1 for the rate-based model), the generative delay µ = 1.5 and σ2 = 0.25.895

Regarding the base rate, we assume a mean of µb = 5 (and λ0 = 1/5 for the rate-based896

model).897

In the case of preventative causes, the event-based scheme assumes the duration of898

preventative windows follow a gamma distribution with a mean of 3 and a variance of 0.25899

(Figure 11a). All events occurring within a prevention window are assumed to be canceled.900

The rate-based scheme models the dynamics of preventative influence. It should be noted901

that the actual preventative mechanism employed here does not involve an incubation or902

decay process. Rather, the preventative window stays at its maximum level, effectively903

canceling all effects, for a certain duration. As such, under the rate-based scheme we904

accommodate this mechanism by modeling the preventative causal influence using the905
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gamma cumulative density function, as illustrated in Figure 11b, and assuming a maximum906

level denoted as ξ = 1.907

The task instructions in Gong and Bramley (2023) imply three mechanistic features908

of the scenario that can be implemented in the event-based scheme but less easily under the909

rate-based. Firstly, a single generative cause event only produced one additional occurrence910

of the effect component, which is consistent with the setup of the earthquake experiment911

(Lagnado & Speekenbrink, 2010) described earlier. Secondly, in the regular condition, the912

base rate events occurred semi-periodically. Therefore, instead of utilizing a memoryless913

exponential distribution, the event-based model can employ a gamma distribution (with a914

mean of 5 and a variance of 0.25), to model the semi-predictable delay between consecutive915

base rate events. In contrast, since the rate-based model does not differentiate between916

effects generated by base rate events or generative causes, it is unable to leverage the917

regularity of the base rate and thus treats the regular and irregular conditions in the same918

manner. The third rule pertains to the preventative window. In the generative process, it919

was the case that within a fixed preventative window, all expected effects would be920

canceled, while any expected effects after the window would remain unaffected.921

Consequently, the size of the true preventative window has to be smaller than the interval922

between a preventative cause event and its nearest subsequent effect event E ′. The absence923

of an effect expected to occur after this E ′ can no longer be attributed to the preventative924

causal influence. On the other hand, the rate-based model represents prevention as a925

probabilistic influence, defining a soft window rather than a strict, deterministic one.926

As shown in Figure 10b, aggregately the event-based scheme has higher accuracy927

compared to the rate-based scheme in identifying the causal models in Gong and Bramley928

(2023). It also shows a similar pattern of performing better in the regular condition929

compared to the irregular condition, which aligns with human performance. In contrast,930

the rate-based scheme demonstrates a slight tendency to perform better in the irregular931

condition, potentially attributable to the alignment of the base rate mechanism with the932
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model’s assumptions.933

For this and the subsequent datasets, we measured two types of correlation between934

model judgments (the posterior probability of each answer) and human judgments (the935

proportion of participants providing each answer). The first type is the Pearson936

correlation, which incorporates a softmax parameter to account for the stochastic nature of937

judgments (Luce, 1959).15 We used a single parameter that we fit across all conditions for938

each dataset. The second type is the Spearman correlation, which assesses the ranking939

agreement between human and model judgments. This provides insight into how well the940

model captures the human dataset without introducing an additional free parameter. The941

results are depicted in Figure 12a and 13a. Both the event-based and rate-based schemes942

successfully captured human judgments, regardless of whether the conditions were regular943

or irregular. The event-based model demonstrated slightly superior correlations compared944

to the rate-based schemes, suggesting that participants may have taken into account at945

least some of the particular mechanistic constraints discussed above, during their reasoning946

process.947

We demonstrate here that people’s judgments reflect rational considerations.948

However, this does not mean the rational equations provide a good process-level account of949

how people make these judgments. It is plausible that people relied on other algorithms to950

approximate the rational solution. Gong and Bramley (2023) explored the types of951

approximation algorithms people may use to choose among nine causal hypotheses after952

observing a more-than-countable number of events short observation period. They found953

that a summary-statistics approach, based on structurally local computation using954

temporally local evidence, provided a better fit to participants’ judgments than the955

15 The softmax parameter θ was used to maximize the log-likelihood between models’ and participants’
choices in Gong and Bramley (2023), Gong et al. (2023) and Lagnado and Sloman (2006), where
participants’ answers were binary about whether each causal connection existed or not. The parameter was
used to maximize the linear correlation based on a non-linear transformation y = sign(x)|x|θ in Bramley,
Gerstenberg, Mayrhofer et al. (2018), Gong and Bramley (2024) and Greville and Buehner (2007) where
participants provided continuous ratings for how likely each connection existed or how strong each causal
strength was.
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Figure 11
The preventative windows and preventative influences used to model Gong and Bramley
(2023). a) The event-based scheme assumes the length of each preventative window is
sampled from a gamma density function. b) To approximate this within the assumptions of
the rate-based scheme, we assume the probability of prevention (what proportion of the
effects will be prevented) is an inverse cumulative gamma function, reflecting a decreasing
preventative influence over time.

normative model. Readers interested in further details are referred to Gong and Bramley956

(2023). We further discuss process-level models as the future steps in the General957

Discussion.958

Continuous, effect unspecified959

Gong et al. (2023). When the effect variables are left unspecified, the number of960

potential causal structures increases quickly in the number of relata. Even when961

considering only generative relationships, there are four possible relationships between two962

variables: one-directional, reverse one-directional, bidirectional, and unconnected.963

Consequently, for three variables, there are 64 potential structures, and for four variables,964

there are 4096 potential structures (refer to Figure 9). Gong et al. (2023) investigated how965

individuals learn about causal structures drawn from the large 3- and 4-variable hypothesis966

spaces by actively intervening in a causal system.967

Although this is an active learning task, we use this model to analyze participants’968

judgment patterns rather than their intervention patterns. The rational framework we969

present here is an inference model, so it makes no distinction between learning from one’s970

own interventions and learning from another person’s interventions (these distinctions971
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Figure 12
Pearson correlations between model and human judgments. Y-axes indicate the proportion
of human judgments in Gong and Bramley (2023), Gong et al. (2023), and Lagnado and
Sloman (2006). Error bars indicate 95% confidence intervals of human judgments in the
dataset whenever the raw data are available. Each individual point is the averaged response
for a particular stimulus.

could be probed with a process-level model; Markant & Gureckis, 2014). To further972

develop a rational account for how a learner should intervene to learn more effectively and973

efficiently, we need to combine the current inference model with preposterior calculations974

using information gain measures from information theory. Although this problem is beyond975

the scope of this paper, readers are further referred to Gong et al. (2023) which makes and976

tests proposals as to if and how people do this in continuous-time contexts.977

In the Gong et al. (2023) experiment, half of the ground truth structures contained978
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a cycle and half did not. Delay regularity was manipulated between participants. In each979

causal system, for causally related components, an activated component would980

probabilistically trigger the activation of each of its effect components once after a delay of981

1.5±0.1 s in the regular condition, or after a delay of 1.5±0.7 s in the irregular condition.982

All causal connections worked 90% of the time, and none of the components activated983

spontaneously (i.e., there were no base rate activations). Participants were provided with984

six opportunities to activate a component in the system during a 45-second interval.985

Considering the possible numerous connections and the cyclic structures, the number of986

events recorded in this dataset was also significantly higher compared to the987

aforementioned Gong and Bramley (2023).988

Participants in the study were pre-trained about the causal parameters with a989

similar procedure as in Gong and Bramley (2023), and we hence assume that models also990

know these parameters: wc = 0.9 (and λ1 = 0.9 for the rate-based model), µ = 1.5, and991

σ2 = 0.01 or σ2 = 0.49 depending on the specific regular or irregular condition. No base992

rate was assumed by either model.993

Human results showed a main effect of the structure cyclicity but no main effect of994

the delay regularity, probably due to that the difference between regular and irregular995

settings was not pronounced enough (Gong et al., 2023). Therefore, we here focus on the996

results based on the cyclicity factor alone. In contrast to humans who performed better in997

the acyclic condition than the cyclic condition, the event-based model demonstrates better998

performance in the cyclic condition compared to the acyclic condition (Figure 10c). This999

reflects the fact that the event-based model is able to leverage the larger amount of event1000

information available in the cyclic structures via the one-effect per cause mechanistic1001

constraint (Gong et al., 2023). Conversely, the rate-based model does not demonstrate the1002

same tendency. Due to not enumerating actual causation pathways, this model fails to1003

leverage the information available in abundance of cyclic events as effectively as the1004

event-based model does.1005
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In terms of both correlation measurements, the event-based model demonstrates1006

better performance in capturing human judgments in acyclic structures, while the1007

rate-based model performs better in capturing human judgments in cyclic structures (see1008

Figure 12b and 13b). This may suggest that as the number of events increases, the exact1009

enumeration computations become infeasible for people, necessitating the relaxation of the1010

one-cause–one-effect constraint within the event scheme to enable more efficient1011

approximations. The rate-based model’s capability to capture human cyclic judgments1012

highlights its ability to deal gracefully with larger number of events, providing a not perfect1013

but more efficient approach in such scenarios.1014

Once again, the analysis here demonstrated participants’ rational thinking in1015

solving the online causal structure learning problem, but this does not imply that1016

participants can perform exactly as the rational models do. As shown in Figure 10c,1017

participants’ accuracy was lower than that of the models, and their accuracy decreased1018

with the increasing number of events (Gong et al., 2023). This suggests that they may not1019

be able to store and utilize the temporal information of all observed events as effectively as1020

the rational framework.1021

Episodic, effect specified1022

Greville and Buehner (2007). We refer to “episodic evidence” as evidence1023

gathered from multiple independent causal systems of the same type, where each sample1024

has its own timeline. Episodic evidence can be seen as a combination of contingency and1025

temporal information (Greville & Buehner, 2007). It involves the observation of multiple1026

independent individuals, but with each observation lasting over a specific time period1027

(Figure 1b). Research on episodic evidence often focuses on cases in which each type of1028

event occurs at most once within the observed period (Bramley, Gerstenberg, Mayrhofer1029

et al., 2018; Gong & Bramley, 2024; Greville & Buehner, 2007; Lagnado & Sloman, 2006).1030

This means that the evidence within each individual’s experience may not be very1031

informative. However, by considering multiple cases, the reasoner can compensate for the1032
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Figure 13
Spearman correlations between model and human judgments. Axes are the ranks of
judgments.

limited information within each instance and make more informed conclusions about their1033

common causal structure.1034

In Greville and Buehner (2007), participants were asked to examine the influence of1035

a ray treatment on the survival of bacterial cultures. Bacterial cultures were randomly1036

assigned to the experimental group, which received a ray treatment at Day 0, or the1037

control group, which did not receive any treatment. Each group consisted of 40 samples.1038

Bacterial cultures were observed from Day 1 to Day 5. The number of new deaths1039

occurring each day was recorded.16 Participants were asked to rate whether they perceived1040

16 The data were displayed as tabular records indicating whether each culture was still alive or not in
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Figure 14
Short-delay and long-delay priors regarding the timing of when the cause will take effect on
average (Gong & Bramley, 2024; Greville & Buehner, 2007). The parameter µ is sampled
from different prior distributions to form different causal influence functions.

the treatment as harmful or beneficial based on the observed outcomes in both the1041

experimental and control conditions. The control condition always demonstrated a1042

relatively constant death rate over time (e.g., 8, 8, 8, 8, 8), while the daily death rate in the1043

experimental condition was manipulated to exhibit either a decreasing or an increasing1044

trend. Results showed, after controlling for the total number of deaths over the 5-day1045

period, participants judged the treatment as more harmful if there were more deaths right1046

after the treatment (a decreasing trend; e.g., 16, 12, 8, 4, 0), and more beneficial if there1047

were more deaths towards the end of the observation period (an increasing trend; e.g., 0, 4,1048

8, 12, 16). As such, this study demonstrated that people not only care about the overall1049

contingency data summarized from the entire observation period but also the detailed1050

temporal dynamics (at a day-to-day level here).1051

Greville and Buehner (2007), and as summarized counts of how many cultures died each day in the later
Gong and Bramley (2024). Given that the results of Gong and Bramley (2024) replicated the same
“finished” condition as in Greville and Buehner (2007), we do not discuss the potential influence of formats
here.
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Gong and Bramley (2024). While agreeing on the impact of temporal dynamics1052

on judgments, Gong and Bramley (2024) proposed that some settings could produce a1053

different pattern than the traditional notion of contiguity (Greville & Buehner, 2007). In1054

this task, if in some conditions learners tended to assume that the causal process may be1055

ongoing, an increasing trend might signal that the treatment will ultimately prove harmful.1056

Gong and Bramley (2024) presented participants with more such ambiguous data, where a1057

majority of the forty samples were still alive on Day 5 (e,g,. 0, 1, 1, 3, 5 in the1058

experimental condition and 1, 3, 2, 2, 2 in the control condition). Participants in the1059

“Unfinished” condition were informed that the observation had not yet concluded, while1060

participants in the “Finished” condition were told that the observation had finished (as in1061

Greville & Buehner, 2007). Results in the Finished condition replicated Greville and1062

Buehner (2007). However, in the Unfinished condition, participants interpreted an1063

increasing trend in deaths as indicative of harm caused by the treatment, and a decreasing1064

trend as indicative of benefit (see Figure 10e).1065

These findings highlight the influence of instructional cues on participants’ inductive1066

biases and how they interpret the observed data. To model the human judgments, we here1067

assume that instructions tend to influence the learner’s prior expectation about causal1068

delays as well the use of data. As shown in Figure 14, if participants are informed that the1069

experiment ends at Day 5, they may tend to form a prior belief that the relevant causal1070

influences are expected to occur within 5 days. When participants were led to believe that1071

the observation had not finished, they anticipated the possibility of longer causal delays.1072

Here we assume that, for the Finished instruction (Gong & Bramley, 2024; Greville &1073

Buehner, 2007), the causal delay (or the expected time of the influential function in the1074

rate-based context) µ is sampled from a gamma distribution with mean of 3 (days) and a1075

variance of 6. For the Unfinished instruction (Gong & Bramley, 2024), µ is sampled from a1076

gamma distribution with mean of 6 (days) and a variance of 6. While a range of values1077

might be reasonable, we chose these because range of 0 to 5 would cover most of the1078



RATIONAL CAUSAL INDUCTION FROM TIME 56

sampled µ under the Finished instruction (83%) while covering only a minority of the1079

sampled µ under the Unfinished instruction (38%, Figure 14).1080

The observed death of each bacteria culture in Greville and Buehner (2007) and1081

Gong and Bramley (2024) could result from either the treatment or natural death (i.e., the1082

base rate). Given that the cultures which died out in the same day were not1083

distinguishable from each other, we here focus on the rate-based scheme and consolidate1084

the data as shown in Figure 4e. Since the data were collapsed, the rate of how many events1085

happened per day depends on the total sample size (i.e., forty in both studies). We assume1086

that participants selected between the “harmful” and “beneficial” options by comparing the1087

likelihood between a generative structure and a preventative structure (see Figure 9). To1088

model the data, we set λ0 ∼ U(0, 40), λ1 ∼ U(0, 40) since there were at most forty cases in1089

each group. We set ξ ∼ U(0, 1) for the max level of preventative influence (i.e., the1090

beneficial influence). Similar to previous datasets, we set the variance σ2 ∼ U(0, µ2).1091

The aggregated results are shown in Figure 10d and 10e. Participants’ inclinations1092

in Greville and Buehner (2007) and Gong and Bramley (2024) were captured by the model.1093

Under the Finished instruction (Gong & Bramley, 2024; Greville & Buehner, 2007),1094

participants and the model both treated decreasing trends as more harmful than increasing1095

trends, lining up with the contiguity-driven explanation. Under the Unfinished instruction1096

(Gong & Bramley, 2024), participants and the model both treated increasing trends as1097

more harmful than decreasing trends, lining up with the sensitivity to trends. Nevertheless,1098

the model was less likely to demonstrate a cause as absolutely harmful (i.e., giving a rating1099

above 0). This could be due to the fact that Gong and Bramley (2024) handcrafted the1100

stimuli, where only a small number of bacterial cultures out of the sample (n=40) died1101

during the observation, and the overall death rates were similar between the experimental1102

and control groups (e.g., 3, 4, 2, 1, 0 in the experimental group and 2, 2, 1, 2, 3 in the1103

control group). An ideal learner would expect the experimental condition to still exhibit a1104

higher death rate towards the end of the observation if they were to claim a cause as an1105
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Figure 15
Pearson (r) and Spearman (ρ) correlations between model and human jugdments in
Greville and Buehner (2007) and Gong and Bramley (2024). Error bars indicate 95%
confidence intervals of human judgments in Gong and Bramley (2024).

absolute harm. Participants’ deviations from this prediction could have several1106

explanations. One speculation is that they did not simply represent harm as generative1107

(causative of death) and benefit as preventative, like the model. They may assess whether1108

a treatment is good or bad by also considering whether it advances or delays death, which1109

is a sensible interpretation, but falls outside the scope of our current model. We will return1110

to this point as a future direction in the General Discussion.1111

The trial-level results are shown in Figure 15. The rate-based model achieved a1112

good fit with human judgments at the trial level in Greville and Buehner (2007) and Gong1113

and Bramley (2024).1114

Episodic, effect unspecified1115

The final category we consider here is episodic evidence where the effect variable is1116

unspecified (i.e., accepting a wider range of hypothetical structures rather than focusing on1117

specifying one variable as the effect and finding its causes; Figure 9). The two datasets we1118

consider here both involve scenarios where each kind of event can only happen once in each1119

episode.1120

Lagnado and Sloman (2006). In Lagnado and Sloman (2006), participants were1121

asked to imagine a situation in which a computer virus can spread through a network and1122

told that the time at which a computer revealed its infection could occur after a variable1123

delay, so later than the time at which the computer became infected. Participants were1124
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told that each connection, if it existed, would spread the virus 80% of the time, and the1125

virus could not reach a computer unless it had been sent from another (e.g., no1126

spontaneous base rate infections would occur). Participants watched 100 clips, each1127

showing an event sequence in which the virus appeared in different computers, and were1128

asked to judge the existence of various potential causal links (i.e., directed network1129

connections) in the system (see Figure 9).1130

The experiment included four conditions (in Condition 1 all events happened1131

simultaneously so won’t be modeled here), but the underlying ground truth structure was1132

consistently: A was the cause of B, and B was the common cause of C and D. This meant1133

that in each condition, computers C or D would never become infected without computer1134

B being infected. Since the actual infection time was varied and unknown, the presumed1135

rational solution is to rely on the conditional probability. However, the timing of virus1136

appearance in each computer could be misleading. For example, in Condition 3 where 50%1137

of trials followed the order of A−D − C −B, participants tended to judge the links1138

A→ D, D → C, and C → B were more likely to exist than other links (see Figure 10f).1139

Their answers cannot explain the other 50% of trials when only AB, ABC or ABD1140

happened. This suggests that people’s reliance on temporal information is so strong that it1141

could not, in this case, be overshadowed by the contingency information. As such, in order1142

to capture human judgments, what we will model here is not the objective rational1143

solution, but the rational solution having disregarded the instruction that the temporal1144

information is irrelevant.17
1145

There was a one-second delay between events in subsequent time steps (t1, t2, t3, t4;1146

see Table 2 in Lagnado & Sloman, 2006). As such, each trial lasted 4 s. We model the1147

dataset using the parameters wc = 0.8 (and λ1 = 0.8 for the rate-based model) as in the1148

instruction, µ ∼ U(0, 10), σ2 ∼ U(0, µ2). The base rate is assumed to be zero. In this1149

17 Note that after personal contact, we learned that the condition-by-condition human judgments
published in Table 3 of Lagnado and Sloman (2006) were incorrect. Readers may refer to p.188 in Pacer
(2016) or the GitHub repository of this paper for the corrected table.
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dataset, the main difference between event-based and rate-based schemes is that the former1150

address the rule that an event can only occur once for a specific equipment, which is1151

consistent with the experimental design. Consequently, the event-based scheme1152

outperforms the rate-based scheme in accurately capturing human judgments, as shown in1153

Figure 12c and Figure 13c. Both models capture the aggregated human judgment patterns,1154

as shown in Figure 10f. This includes the Condition 3 mentioned above, despite the fact1155

that the models also tend to add A→ B and A→ C links which can help rationally1156

account for the trials when B and C happened without D. Our framework demonstrates1157

an ability to explain the phenomenon that temporal information can outweigh contingency1158

information in human causal judgments.1159

Bramley, Gerstenberg, Mayrhofer et al. (2018). Bramley, Gerstenberg,1160

Mayrhofer et al. (2018) tested whether people can differentiate between two causal1161

structures, chain and fork (see Figure 9), solely using delay information. Each trial1162

consisted of 12 episodes, wherein events always occurred in the order A−B − C. However,1163

there were variations in the delay variances between structures. In the chain structure1164

(A→ B → C), the delay variance between B and C was small, whereas the variance1165

between A and C was large, as it encompassed the variability across both causal1166

connections. Conversely, in the fork structure (B ← A→ C), the delay variance between A1167

and C was small, while the variance between B and C was large, as there was no direct1168

causal link between the two variables. Participants were asked to judge by distributing 1001169

percentage points across the two structures.1170

In contrast to previous datasets, we used the “independent delay” parameterization,1171

as described in the original paper (Bramley, Gerstenberg, Mayrhofer et al., 2018), which1172

allowed for there to be distinct delay distributions between different links in the causal1173

structure. This means that to choose between chain and fork, we only need to model the1174

delays between B and C in the chain hypothesis and the delays between A and C in the1175

fork hypothesis (since both hypotheses share the A→ B connection). Each episode lasted1176
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3 s. We assume wc = 1 (and λ1 = 1 for the rate-based model), µ ∼ U(0, 10), σ2 ∼ U(0, µ2),1177

and no base rate.1178

Results are shown in Figure 12d and 13d. Both models captured the general pattern1179

of human judgments. The rate-based model demonstrated a better fit to human judgment1180

compared to the event-based model. The event-based model showed a overall bias towards1181

chains (judging all chain devices as chains and also judging some forks structures as1182

chains). This is as expected and is due to the fact that A− C delays (calculated under the1183

fork hypothesis) were always longer than the B − C delays (calculated under the chain1184

hypothesis) in the stimuli. As a result, the ceteris paribus preference for the chain1185

structure can be interpreted as an example of favoring the relatively shorter delay. In1186

contrast, from the same evidence, the rate-based scheme, which assumes macro causal1187

dynamic changes, has a greater tolerance for delays of causal influence than the1188

event-based scheme. Participants may also have reasoned pragmatically that around half of1189

the ground truths would be fork structures and so shifted their response threshold to favor1190

the fork response more than the evidence supported.1191

We note here that the computational cost of the rate-based model is not always1192

lower than that of the event-based model. In the case of this dataset, the rate-based model1193

may actually be more computationally demanding depending on the granularity of the1194

time bins it uses. Conversely, the event-based model benefits from the fact that each type1195

of event occurs only once in each episode, resulting in a small number of causal pathways1196

to consider within each hypothesis.1197

General Discussion1198

In this paper, we developed a rational framework for the use of temporal1199

information in causal inference. The framework leverages stochastic processes from the1200

Poisson-Gamma family to model the (in)dependencies between events in time and drive1201

selection and parametrization of causal structure hypotheses. To achieve this, we extended1202

the causal graphical model formalism to incorporate likelihood functions for temporal1203
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dynamics, before inverting these likelihoods to derive structural conclusions from evidence.1204

We show how this general approach uncovers the underlying causal structure in all manner1205

of complex continuous-time datasets. The framework is applicable to a wide range of1206

temporal causal learning, associative and operant learning tasks, including scenarios where1207

evidence comes in a long continuous timeline or from many shorter independent timelines,1208

or when the causes can produce either one specific effect event or multiple effect events. As1209

we demonstrate in modeling existing datasets, the framework accommodates variations1210

such as the size of the hypothesis space, the involvement of background activity,1211

preventative connections, cyclic dynamics, and whatever other information learners have1212

about relevant causal delay distributions. To our knowledge, this is the first general1213

computational framework for learning causal structure from events unfolding in continuous1214

time.1215

The framework anticipates three intuitions that have been frequently observed in1216

human learning: causal attributions are, in general, stronger to the extent that the delays1217

between a putative cause and effect tend to be shorter, more consistent, and more in line1218

with preexisting mechanistic expectations. We demonstrate the rationale behind these1219

intuitions falls directly out of the Bayesian framework, explaining why it makes sense for1220

them to coexist and why a preference may fail to manifest itself under certain1221

circumstances. Additionally, we demonstrate that the framework helps explain behavioral1222

patterns across a range of learning tasks from the last 20 years. We find a high degree of1223

consistency between judgments derived from the rational framework and the aggregate1224

behavior of human participants. These analyses suggest that people are not only capable of1225

utilizing temporal information in diverse causal learning situations, but also that they do1226

so in systematic, predictable, and approximately rational ways. By providing a unified1227

computational framework, we are finally able to consolidate empirical studies spanning1228

many different tasks and better clarify these tasks’ relationship with widely studied1229

associative and reinforcement settings. This model offers a design space for locating1230
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different tasks within the temporal causal learning field and provides guidelines for further1231

investigation of causal cognition (Almaatouq et al., 2022).1232

In the remainder of the paper, we compare our model with previous temporal1233

associative learning models, discuss why we think the pluralistic “dual-aspect” view we1234

present here makes sense for describing human temporal causal learning, consider the1235

relationship between continuous and discrete value representations, and lay out several1236

future research directions.1237

A comparison to temporal associative learning models1238

We are not the first to point out the limitations of framing learning around1239

trial-based contingencies, and consider how inferences operate on continuous-time data1240

directly. This issue has been discussed in detail in the associative and animal learning1241

literature. In particular, Gallistel and colleagues (Gallistel, 2021; Gallistel et al., 2014,1242

2019; Gallistel & Gibbon, 2000; Gallistel & Wilkes, 2016) argue that the way in which time1243

is segmented into trials for analysis, as well as the duration considered as a single trial, can1244

dramatically alter the predictions from contingency-based associative learning models; if1245

researchers’ choices depart from whatever intuitive structure and discretizations their1246

subjects make in understanding their tasks, their models are doomed to lack the1247

representational expressivity needed to capture their subjects’ learning processes. Like us,1248

Gallistel et al. propose that learning depends on the rate at which the effect occurs after a1249

cause, or operant behavior, takes place (Gallistel, 2021; Gallistel & Gibbon, 2000; Rescorla,1250

1968). They further point out that temporal associative learning is not just determined by1251

the frequency of temporal pairings (i.e., how often a presumed effect follows its presumed1252

cause); it must also be sensitive to how often the effect occurs spontaneously without the1253

cause’s occurrence.1254

In their detailed experimental analyses, Gallistel et al. focus at the process-level on1255

the pairwise attribution problem. For instance, Gallistel and Gibbon (2000) show that a1256

response behavior is triggered when the ratio of rates with or without a stimulus exceeds a1257
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certain threshold. Gershman (2024) later suggest that a Rescorla-Wagner framework can1258

be used to update the weights of different associative causes, by shifting from predictions1259

about the presence or absence of effects to predictions about fluctuations in the rate of1260

effects. Gallistel et al. (2014) also demonstrate that association strength depends on how1261

much additional predictive information a presumed cause provides about its presumed1262

effect, having accounted for the effect’s base rate (Gallistel et al., 2014, 2019; Gallistel &1263

Wilkes, 2016). In this more recent treatment, the casual inference no longer relies on1264

detecting a rate change but instead on contrasting the random-timepoint → next-reward1265

delay distribution against a cue → next-reward delay distribution, and using the entropy1266

reduction between these distributions as a causal index.1267

There are obvious connections between Gallistel et al.’s theoretical ideas and ours:1268

both embrace rate representations and contrast causal against baseline effect patterns.1269

Their models, like our Bayesian approach, predict the phenomenon of time-scale invariance,1270

because the associative strength depends only on the relative, not absolute rates or delays1271

in situations with or without the cause (Gallistel et al., 2019; Gershman, 2024; Rescorla,1272

1968). However, apart from time-scale invariance, it is unclear whether an associative1273

model can explain why learners favor causal explanations that posit causal delay durations1274

which are relatively shorter, more in line with prior expectations, and more regularly timed.1275

One feature that differed across the experimental datasets was whether the effect1276

was pre-specified. When the effect is specified, the task is to identify the true (positive or1277

negative) causes of this effect (Gong & Bramley, 2023, 2024; Greville & Buehner, 2007;1278

Lagnado & Speekenbrink, 2010). This is similar to the credit assignment problem in1279

associative (or reinforcement) learning, where learners credit conditional stimuli (or1280

interventions) for a particular unconditional stimulus (or a kind of reward). Temporal1281

associative learning models can potentially provide predictions in these tasks. The1282

advantage of the Bayesian framework is that it applies equally to the open-ended1283

“structure learning” tasks, prototypical in the causal cognition literature, where nothing is1284
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a priori specified as a cause or an effect. These scenarios require more global reasoning (as1285

well as interventional data) to solve reliably and the Bayesian framework helps clarify the1286

circumstances where locally focused heuristics are or are not sufficient to arrive at the right1287

global model (Bramley, Dayan et al., 2017; Fernbach & Sloman, 2009).1288

Another characteristic of the Bayesian account is its flexibility to deal with varied1289

temporal dynamics. What it actually compares here is how well different causal1290

explanations fit. This can include explanations making different assumptions about1291

functional form as well as about structure. For instance, current temporal associative1292

learning models implicitly assume that if a cause produces multiple effects, it will produce1293

them at a constant rate during an effective time window with hard onset and offset1294

boundaries (Gallistel et al., 2019; Gallistel & Gibbon, 2000; Gallistel & Wilkes, 2016). In1295

contrast, we illustrate in this paper how the Bayesian approach can handle whatever1296

hypotheses are articulated. For example, we modeled a case where changes in the effect’s1297

rate followed a latent, peak, and decay process continuously, but could contrast this with a1298

uniform generation window or any other mechanistic hypothesis. Through the event-based1299

scheme, it also allows for the incorporation of other mechanistic constraints, such as the1300

case where a cause can generate only one effect, or the possibility that the where baseline1301

effects are not unpredictable, but periodic. In such a situation where the base rate itself is1302

a moving target, it is unclear whether a simple entropy reduction index (Gallistel et al.,1303

2014, 2019) would provide a generalizable index of the power or strength of causal or1304

relationship (cf. Cheng, 1997).1305

Note that all advantages we mention pertain to the flexibility of the model space1306

that Bayesian inference is defined over. This is wholly compatible with the idea that at the1307

process level, we rely on the mechanisms of pairwise association or reinforcement among1308

other pragmatic, resource sensitive heuristics and approximations. Nevertheless, we hope1309

this rational analysis is useful for mapping out the space of continuous-time learning1310

problems including those classically used in associative learning tasks.1311
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A pluralistic view1312

We presented two schemes, event-based and rate-based, in parallel throughout this1313

paper but introduced both as manifestations of a broader Poisson-Gamma framework for1314

conceptualizing interevent dynamics. The existence of a pluralistic view is not a new1315

concept in the field of causal cognition. For instance, in research on token-level causal1316

attribution, where individuals are asked to make judgments regarding what was responsible1317

for particular event rather than causative of a class of events in general (Halpern, 2016),1318

researchers have debated the relative importance of covariation versus process (Gerstenberg1319

et al., 2021; Lombrozo, 2010; Sloman, 2005; Wolff, 2007). The question arises whether1320

people prioritize imagining how the outcome would have changed if the cause had been1321

different (Icard et al., 2017; Sloman, 2005), or if they focus more on determining if there1322

was a genuine physical exchange between the cause and effect (Talmy, 1988; Wolff, 2007).1323

Instead of relying on a single level of abstraction, people are pluralist, considering both the1324

occurrence of the outcome and the manner in which it occurred (Gerstenberg et al., 2021).1325

This paper focuses on a type-level causal learning rather than token-level causal1326

attribution, meaning we can benchmark the quality of a judgment against the true causal1327

generative model that they are learning about. We next give two reasons why a pluralistic1328

perspective is also important in the domain of type-level causation, especially when it1329

comes to temporal evidence based learning.1330

Mechanistic concerns1331

Causal structure learning can be driven by different types of evidence at different1332

levels of abstraction. As we orient away from highly abstracted atemporal contingencies1333

toward “raw” spatiotemporal dynamics, the richness of the data increases. Atemporal1334

evidence discards a lot of information by discretizing into finite sets of categories and time1335

points(Allan, 1980; Cheng, 1997; Griffiths & Tenenbaum, 2005; Perales & Shanks, 2007).1336

For instance, researchers examined causal inference from continuous spatiotemporal1337

evidence when asking individuals to make causal inferences about objects in 2D physical1338



RATIONAL CAUSAL INDUCTION FROM TIME 66

scenes where it is unlikely that participants will ever see exactly the same thing happen1339

twice (Bass et al., 2021; Bramley, Gerstenberg, Tenenbaum et al., 2018; Ludwin-Peery1340

et al., 2021; Ullman et al., 2018). Due to the high dimensionality of the clips used in these1341

studies, it is crucial to leverage one’s pre-existing mechanistic theory (e.g., a familiarity1342

with everyday intuitive physical dynamics) to discover latent causal features such as1343

objects’ masses or force relations within the space of a short observation.1344

We argue that temporal evidence shares characteristics with both atemporal and1345

spatiotemporal evidence. Like atemporal data, temporal evidence permits some1346

discretization and aggregation, as effect events may occur multiple times without the1347

necessity of having individual identifications (e.g., the bacteria culture example in1348

Figure 1b; Gong & Bramley, 2024; Greville & Buehner, 2007; Griffiths & Tenenbaum,1349

2005; Pacer & Griffiths, 2012). This allows for type-level reasoning, about how the rate of1350

effect occurrence changes after a putative cause occurs (i.e., the rate-based scheme). At the1351

same time, temporal information also invites token-level reasoning. When one cause1352

produces a very limited number of effect events (e.g., only one per component), the precise1353

delays between each cause and effect and the prior expectations about causal and1354

non-causal delays becomes important. Type-level causal conclusions will arise from the1355

detailed inference about which specific occurrence of a cause was responsible for this1356

specific occurrence of the effect (i.e., the event-based scheme). As such, the general1357

Bayesian inference framework allows us to express whatever mechanistic or ontological1358

commitments we believe capture a particular causal inference domain.1359

Computational cost concerns1360

Continuous time allows for precise temporal information, with each event having its1361

unique time point and relationship with all other events. Events of different classes are1362

often intermingled, and events of the same class may occur many times within the same1363

observation. However, this precision and combinatorial credit assignment issue poses1364

computational challenges and becomes infeasible when there are many events under1365
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consideration. Strictly, observing a causal system in continuous time with uncertainty1366

about the true causal delays, any event could theoretically be the result of any event that1367

happened in the past. As a real-world example there are diseases, such as the bovine1368

variant of Creutzfeldt-Jakob disease, that have very long incubation periods. The cause of1369

a disease onset could be traced back to something eaten 15 years ago (Valleron et al.,1370

2001), but so many candidate events will occur within this period that it is impossible to1371

consider them all. As such, a real cognizer should take seriously the trade-off between1372

cost-of-computation and accuracy when reasoning about causal structure in their1373

environment. The event-based and rate-based schemes we present here provide two levels1374

at which one can process the same evidence, with the former generally more costly in its1375

analysis of the micro-level delay details and the other a more abstracted and efficient way1376

to capture the macro-level rate changes. By considering both approaches, a learner could1377

flexibly choose or learn to represent a domain in a way that is sufficient and practical for1378

their purposes. A rate-based scheme is especially useful when dealing with a large number1379

of effects where it usually requires less computation. However, determining the appropriate1380

granularity for rate calculation introduces another cost-benefit trade off that needs to be1381

explored.1382

Abstraction and reduction: Moving between levels1383

We have focused on learning from events in continuous time, whereas other studies1384

have examined causal learning from interactions with or observations of continuous valued1385

variables varying in continuous time (Btesh et al., in press; Davis et al., 2020; Rehder1386

et al., 2022; Soo & Rottman, 2018; Zhang & Rottman, 2023). Rather than viewing these as1387

completely separate tasks, we think it is more fruitful to think of continuous and eventive1388

representations as complementary ways of modeling and explaining causal phenomena. To1389

illustrate this, consider the predator–prey relationship, such as that between lynx and1390

hares. At a low level, we might model individual events such as a individual lynx catching1391

and eating an individual hare. Abstracting this to a higher level, we might analyze how1392
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populations of lynx and hares change over time, based on their populations, or similarly on1393

their fluctuating birth and predation rates. At a higher level, we can investigate how each1394

species experiences cyclic patterns of population-scale events and shocks such as “bloom”1395

and “collapse”, and analyze the progression of these an event representation again. By1396

abstracting upwards or unpacking downwards, it seems that a flexible reasoner can cycle1397

unboundedly between representations in terms of continuous values and those in terms of1398

discretized events with the more appropriate choice determined by its utility in guiding1399

action rather than adherence to metaphysical reality.1400

Importantly, it is not necessary to limit causal reasoning to the level natively1401

provided by the data. When modeling data from Gong et al. (2023), we showed that the1402

rate-based model outperformed the event-based model in capturing human performance in1403

identifying cyclic structures, although the evidence was actually generated following an1404

event-based scheme. This kind of abstraction can be boundedly rational. People may1405

spontaneously abstract to a relatively continuous representation (i.e., the rate) when it1406

makes computational sense to do so even if this prohibits some subtler mechanistic1407

considerations. They might also do the reverse. Rehder et al. (2022) model structure1408

inference in a setting involving continuous variables varying in real time. Their modeling1409

suggests participants are overwhelmed by the full dynamics and rather abstract these into1410

a handful macro-scale “events” – essentially treating moments of dramatic increase or1411

decrease as events and performing token-level causal inference about relationships between1412

these. Taken together, this all suggests that people have the ability to adopt1413

computationally sensible representations. The layout of the event-based scheme in this1414

paper also suggests that, contrary to the common assumption in computer science and1415

other time-related cognitive models, the representation and operation of temporally1416

relevant data are not necessarily bound to the discretization of time into bins, which may1417

lead to inefficiency — representing numerous empty bins where no events occur — or1418

distortion due to inappropriate bin width, where multiple events per bin reduce temporal1419
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accuracy and obscure order information. Reasoning from temporal evidence introduces a1420

different and often more difficult computational challenge compared to the previously1421

studied atemporal learning setting. As such, it can serve as a useful setting for studying1422

the mechanisms that guide bounded rationality (Lieder & Griffiths, 2020; Simon, 1982).1423

Limitations and future directions1424

In the current paper, we treat events as instantaneous, occupying a single time1425

point on the timeline. This means that a generative cause will always produce an1426

observable effect even if that effect occurs close to another effect event. These point event1427

representations could be seen as simplifications of everyday events that ignore their1428

duration. Sometimes the duration of everyday events is too long to ignore: wet ground will1429

stay wet for some time, tanned skin will fade slowly. In these cases, generative events can1430

easily be overshadowed by already-occurring events (i.e., we might not notice that the1431

sprinkler system came on because it had also been raining). This results in more complex1432

causal inference scenarios such as preemption and over-determination (Gerstenberg et al.,1433

2021; Lombrozo, 2010). These sorts of situations can be handled by extensions to the1434

Poisson-Gamma framework, especially using event-based scheme, by incorporating the1435

relevant mechanistic knowledge to the model (cf. Bramley, Gerstenberg, Mayrhofer et al.,1436

2018). However, such situations are relatively unexplored in the temporal causal learning1437

setting. When events have richer internal structure, such as a gradual onset and offset, the1438

causal learning process becomes entangled with the question of people abstract continuous1439

input into events. Future research could explore the possibility of integrating causal1440

considerations with the theory of event segmentation (Altmann & Ekves, 2019) to build a1441

comprehensive model of how discretized representations arise form continuous inputs.1442

Causal cognition researchers have used linear regression (Rottman, 2016; Soo &1443

Rottman, 2018) and the Ornstein–Uhlenbeck (OU) process (Btesh et al., in press; Davis1444

et al., 2020; Gong & Bramley, 2022; Rehder et al., 2022; Uhlenbeck & Ornstein, 1930) to1445

generate continuous-variable, continuous-time dynamics and treated inference within the1446
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requisite model class as determining the normative solution to learn causal mechanisms.1447

Although our event-level framework does not extend to continuous variables, linking it to1448

this setting is a goal for future research. As an initial example, Gong and Bramley (2022)1449

used the OU process to construct and test human inferences about continuous causal1450

dynamics influences with a variety of properties. Similar to learning from event sequences,1451

participants made stronger more confident judgments when the lag between changes to1452

cause and effect variables’ values was shorter and when the changes were more dramatic.1453

This finding may suggest that combining the algorithms used in continuous-variable studies1454

with the current Poisson-Gamma framework can help us better understand how people1455

infer discrete event structure to explain continuous dynamics.1456

Although we focus on the role of time in causal reasoning, the causal relationships1457

we investigate in this paper still align with the primary focus of atemporal causal learning1458

literature: generation and prevention. In fact, causal relationships can be much richer once1459

the time dimension is taken into account. For example, a cause can be “zero sum”, in the1460

sense of merely altering the timing of subsequent effects without affecting their frequency1461

(Bennett, 1987). In other words, something might have a large causal effect on something1462

else, not because it generates or prevents events but instead modifies when those events1463

occur, by hastening or delaying them, or otherwise influencing their occurrence in time1464

(Greville et al., 2020). Hastening and delaying are two relationships that are less studied in1465

causal literature but extremely common in daily life; for example, we regularly experience1466

things like transport and logistics delays. This richer space of causal difference-making1467

could be studied from a signal detection perspective, by examining the conditions under1468

which people notice when an event has had a causal influence on the occurrence of another,1469

and when they can recognize what functional form that influence has taken. These kinds of1470

situations could also be studied from a causal language perspective (Beller & Gerstenberg,1471

in press; Wolff, 2007). For example, there might be important differences between someone1472

judging that a poison killed A than that it hastened A’s death. With the temporal1473
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dimension in play, further research can investigate detection and representation of a1474

broader range of causal influence patterns both empirically and computationally.1475

In this paper we showed that participants’ judgments across seen experiments can1476

be unified under a rational framework. This is just one part of the project of understanding1477

how people make these judgments. Humans have limited cognitive resources for receiving,1478

processing, and memorizing information. These constraints significantly impact temporal1479

causal learning, especially when the time gap between a cause and its effect is long. This1480

paper focuses on developing the computational-level account, while it is important not to1481

stop there but to use this to help investigate the process level (Marr, 1982). Some of the1482

shifting computational demands of causal inference show up as the normative account is1483

applied to different settings that scale differently in terms of the number of relevant events,1484

variables and constraints on their potential relationships and functional forms. We might1485

break process-level investigation into least two aspects. One aspect is understanding how1486

temporal evidence is processed and compressed under our memory and computational1487

constraints (Gallistel & Gibbon, 2000; Gong et al., 2023). The other aspect concerns how1488

the causal hypothesis space and priors are constructed and searched (Bramley & Xu, 2023;1489

Buchanan et al., 2010; Gong et al., 2024). This issue of understanding progressive search1490

over causal hypotheses is especially important in the temporal setting given the strong1491

now-or-never pressure on online computation relative to self-paced evidence setting. We1492

hope that future studies can use this rational analysis of temporal causal structure1493

induction to further explore human learning mechanisms, and how the computations1494

involved interact with temporal scale (second, hours, days; Willett & Rottman, 2021).1495

A final point why understanding temporal causal reasoning is vital is that it not1496

only drives the identification of causal mechanisms among known events but also1497

determines when and where we direct our attention. For example, we can actively1498

anticipate and look for events that are as yet unobserved but are predicted by the existence1499

of our causal theories. This is a critical part of scientific practice: with a good mechanistic1500
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model researchers can decide when to measure the outcomes of their experiments, such as1501

when a drug’s influence on a person should be most apparent. Making these choices in a1502

theory-guided way seems almost as important for causal discovery as the technique of1503

random-assignment experiments, yet has received far less attention. Future studies should1504

investigate how scientists and laypeople make observations or conduct experiments that1505

consider the information measurable from the intermediate processes, as well as from the1506

final outcome variables. By doing so, we can build a more comprehensive picture of1507

scientific discovery as well as everyday cognition.1508

Conclusion1509

We inhabit a complex environment filled with continuous spatiotemporal causal1510

dynamics. In order to form a practical causal understanding of this dynamic world, it1511

seems essential for our minds to process temporal information effectively and efficiently.1512

Despite fruitful empirical findings regarding how individuals behave in various time-based1513

causal learning tasks, there is a lack of a unified theoretical framework to integrate1514

behavioral predictions across all these tasks. In this paper, we present such a rational1515

framework for causal induction based on the Poisson-Gamma statistical distribution1516

families. We show how this framework aligns with human causal judgments. The1517

framework grounds the basic philosophical intuitions about causality, and captures core1518

qualitative empirical patterns that have long been seen in human learning studies.1519

Quantitatively, the model is a good fit with human judgments across seven very different1520

datasets. By laying out this framework, we take a key step towards understanding the1521

computational task faced by humans and other agents when inducing a model of their1522

environment. We hope the framework will serve as a benchmark for further investigation of1523

the cognitive processes involved in generating and adapting causal representations, as well1524

as how and why these may differ across different domains and timescales.1525
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Appendix A

Prevention Causation

The event-based scheme1860

Considering preventative causation generally increases the space of possible1861

explanations and would hence affect the likelihood calculation for specific actual pathways.1862

Concretely, for each observed effect e, we must jointly evaluate the probability that (1) it1863

was caused by its presumed generative cause event g as well as that (2) it was not1864

prevented by any of the set of presumed preventative cause events p. Hidden (expected but1865

unobserved) effects also contribute to the likelihood wherever we do not observe an1866

expected effect of a generative cause. This could be due to (1) the generative cause failing1867

to produce that effect, (2) that effect being prevented, or (3) that effect not having1868

occurred yet:1869

P (z|s; w) =
∏

g→e∈z
wg · Pd(te − tg|α, β) · (1− Pp(e))︸ ︷︷ ︸

Observed effects must have been generated and not prevented

×
∏

g→h∈z
(1− wg) + wg · Pd(th > tend|α, β) + wg · Pp(h)︸ ︷︷ ︸

Unobserved expected effects must have failed or been prevented, or be still-to-occur

(A1)

The event-based scheme provides also allows for flexibility in dealing with1870

preventative causation Pp(e) (the probability that e should have been prevented) based on1871

different mechanisms of prevention. For instance, a preventative cause might block an1872

effect from occurring at all for a specific time window. Alternatively, it might block the1873

subsequent N effects from occuring before being “used up”. A preventative cause might1874

block all effects indiscriminately (e.g., operate on the effect variable), or selectively block1875

effects from a particular cause (e.g., operate on the edge between two variables; Carroll &1876

Cheng, 2009; Gerstenberg & Stephan, 2021).1877
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The rate-based scheme1878

When a cause is generative, we expect the rate of its effect to temporarily increase,1879

whereas we expect preventative causes to temporarily decrease the rate of their effects.1880

Intuitively, a preventative causal influence can be thought of as defeating some of1881

the effects that would otherwise have occurred, meaning that it will have a proportional1882

effect on the rate. As such, we assume preventative causes decrease the effect rate by a1883

proportion ranging from 0 to a maximum level of ξ (0 < ξ < 1). A preventative influence1884

can also follow an incubation-decay process and be represented by a function of time1885

f(ξ, t) = ξ · Pd(t|α,β)
Pd( α−1

β
|α,β) .1886

This means preventative causation can be viewed as “thinning” processes that1887

selectively filter out some effect events with a probability of ξ′. This contrasts with the1888

natural way to think of generative causation as “superposition” where more events are1889

added to the timeline. Combining multiple causes with a base rate of λ0, the expected1890

effect rate f(λ, t) at the time unit t can be represented similar to the noisy-OR and1891

noisy-AND-NOT principles by accounting for superposition and thinning as follows:1892

f(λ, t) = (λ0 +
∑
i∈g

f(λi, t))
∏
j∈p

(1− f(ξj, t)) (A2)
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Appendix B

Time-scale Invariance Simulation

To demonstrate when the time-scale invariance property applies, we synthesize three1893

conditions, each with causal delays mu = {10, 12, 14, 16, 18}. The “no-match” condition1894

follows the procedure in main text to use a fixed observation duration of 300 time units,1895

with wc = 1, kb = 3, and iu = 1 (similar to the main text we apply the number of cause1896

events kc = 5 for the event-based model and kc = 10 for the rate-based model). In the1897

“baserate-match” condition, the observation duration is scaled according to the causal1898

delay. We retain 300 time units when mu = 10, but adjust to 360, 420, 480, and 540 time1899

units for the other delays, respectively. Causal events and base rate events are sampled1900

within these new observation durations, ensuring that each causal delay has the same1901

number of observed events (kc and kb), while the rate of background effect events scales1902

with the causal delay. Specifically, for mu = 10 the baserate is 3 per 300 time units (an1903

average delay between baserate effects of 75 time units), and for mu = 12 the baserate1904

adjusts to 3 per 360 time units (with an average delay between base rate effects of 90 time1905

units). The prior is also scaled accordingly. For example, if the observation duration is 360,1906

we use µ ∼ U(0, 360) and µb ∼ U(0, 360) instead. In the “all-match” condition, we further1907

scale the delay variance by setting iu = {1, 1.2, 1.4, 1.6, 1.8} for each causal delay1908

respectively.1909

As shown in Figure B1, the tendency to favor a causal structure can remain at the1910

same level even when the causal delay increases, as long as the environment is time-scale1911

invariant (i.e., the observation duration, the base rate, and the delay variance are all1912

scaled/matched according to the length of the causal delays). The tendency to favor the1913

causal hypothesis decreases as the causal delay increases if the contextual factors do not1914

scale, and it increases with the causal delay if the baserate-relevant factors are scaled but1915

the delay variance is not.1916

The other intuitive way to think why the time-scale invariance would exist is to1917
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think, if we change the length scale of an event sequences from minutes to hours (and then1918

the baserate will change from k per minute to k per hour). Accordingly, to create equally1919

weak priors, we can for example, apply a uniform prior from 0 to 100 minutes (assuming1920

the upper bound here is larger than the practically possible causal delay) in the short-delay1921

condition and from 0 to 100 hours in the long-delay condition. In this case, the time unit1922

becomes the only difference all calculations, but this does not matter because the time unit1923

is pre-set arbitrarily before any calculation.1924
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Figure B1
The log-likelihood ratio changes given the causal delays. A ratio above zero indicates that
the model favors S1 (the causal structure) over S0 (the base rate structure).
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Appendix C

The Persistent Effects of Delay Variance

Greville and Buehner (2010) found that the preference for unvaried delays persisted when1925

the learning duration was doubled from 2 min to 4 min, which cannot be well explained by1926

a difference in learning rates under the associative learning model (Chung, 1965; Rescorla,1927

1968). We here show that this result is easily captured by the Bayesian framework. We1928

simulate different learning durations [100, 150, 200] and set the cause events to occur every1929

25 time units on average, with baserate effect events occurring every 50 time units on1930

average. Each cause event generates an effect event with a delay sampled from1931

U(mu − iu, mu + iu) and a probability of wc. As shown in Figure C1, when the average1932

delay length mu and the causal probability wc are fixed, the effect of delay variance does1933

not decrease as the learning duration increases. It instead increases as the evidence1934

accumulates.1935
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Figure C1
The log-likelihood ratio changes given the learning duration. A ratio above zero indicates
that the model favors S1 (the causal structure) over S0 (the base rate structure).
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