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Abstract

Sequential recommender systems, which lever-001
age historical interactions to deliver targeted002
recommendations, have been significantly ad-003
vanced by large language models (LLMs).004
However, LLM-based generative sequential005
recommendation often faces two key chal-006
lenges: the lack of collaborative knowledge007
and the limited controllability over the gener-008
ated content. In this paper, we propose a simple009
Bi-Tuning framework with collaborative infor-010
mation for controllable Large Language Model-011
based Sequential Recommendation (Laser).012
Specifically, Bi-Tuning works through incor-013
porating learnable virtual tokens at both the014
prefix and suffix of the input text, where the015
prefix tokens enable the adaptation of LLMs016
with collaborative information, while the suffix017
token transforms the LLM output into item/user018
embeddings for similarity comparison, thereby019
facilitating controllable recommendations. Fur-020
thermore, we introduce an MoE-based query-021
ing transformer that selectively activates ex-022
perts to extract relevant information from vary-023
ing collaborative signals of frozen ID-based024
recommenders into the prefix, coupled with a025
multi-task loss function incorporating the MoE026
load-balancing objective. Finally, a two-phase027
training strategy is employed to progressively028
obtain high-quality item and user embeddings029
through the learnable suffix. Experiments on030
real-world datasets show that Laser effectively031
adapts LLMs for sequential recommendation,032
outperforming state-of-the-art baselines.033

1 Introduction034

Sequential recommender systems have become es-035

sential across various applications, aiming to pre-036

dict users’ future preferences based on their past037

behaviors. While early works primarily relied on038

item ID sequences to capture the dynamic nature of039

user preferences (He and McAuley, 2016; Hidasi040

et al., 2016; Li et al., 2017; Tang and Wang, 2018),041

recent studies have incorporated item textual in- 042

formation (e.g., item titles, categories, and brands) 043

based on pre-trained language models (PLMs) to 044

enrich item sequence representations and enhance 045

recommendation performance (Hou et al., 2022; Li 046

et al., 2023). 047

Recently, the emergence of large language mod- 048

els (LLMs) has triggered a significant revolution in 049

the research community (Lin et al., 2024; Wang 050

et al., 2024a). With the powerful instruction- 051

following capability, LLMs can effectively gen- 052

erate personalized recommendations based on rec- 053

ommendation instructions containing user interac- 054

tion history and candidate item information (Bao 055

et al., 2023; Hou et al., 2024). However, despite 056

their potential, LLM-based recommendation sys- 057

tems primarily rely on text semantics, inherently 058

overlooking collaborative signals. As a result, for 059

the same user, items with similar textual descrip- 060

tions may be recommended in a similar manner, 061

even if their user interaction patterns differ sig- 062

nificantly (Chen et al., 2023; Zhang et al., 2024). 063

While some efforts, such as using multilayer per- 064

ceptrons (MLPs) to map collaborative embeddings 065

encoded by traditional ID-based collaborative mod- 066

els into the LLM semantic space (Yang et al., 2023; 067

Zhang et al., 2023b), have been explored, the inte- 068

gration of collaborative knowledge with LLMs still 069

remains an open challenge. 070

Furthermore, generative sequential recom- 071

mender systems based on LLMs may suffer from 072

the limited controllability over the generated con- 073

tent (Lu et al., 2024). These models, typically 074

trained to generate recommended items through the 075

next-token prediction loss (Qiu et al., 2023; Kim 076

et al., 2024), may introduce domain-specific for- 077

matting errors, such as irrelevant or repeated items. 078

To address these issues, additional alignment strate- 079

gies, such as auxiliary supervised learning tasks 080

(Zhang et al., 2023a; Zheng et al., 2024) or rein- 081

forcement learning tasks (Lu et al., 2024), are of- 082
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ten required, which, however, introduce increased083

method complexity and computational overhead.084

In this paper, we propose a simple Bi-Tuning085

framework with collaborative information for con-086

trollable Large Language Model-based Sequential087

Recommendation (Laser). In Bi-Tuning, we adapt088

LLMs for sequential recommendation by optimiz-089

ing learnable virtual tokens inserted at both the090

prefix and suffix of the input text in a parameter-091

efficient manner. Specifically, the prefix tokens are092

responsible for adapting LLMs with collaborative093

information, while the suffix token transforms the094

LLM output from the language space to the recom-095

mendation space, generating item/user embeddings096

used for similarity comparison, thereby facilitating097

controllable next-item recommendation. Further-098

more, to integrate collaborative knowledge into099

the prefix, we propose M-Former, a lightweight100

Mixture-of-Experts (MoE)-based querying trans-101

former that selectively activates different experts to102

extract relevant information from varying collab-103

orative signals of frozen ID-based recommenders104

into the prefix. Additionally, to ensure balanced ex-105

pert utilization in M-Former, we introduce a multi-106

task loss that simultaneously optimizes both the107

recommendation and load-balancing objectives. Fi-108

nally, we adopt a two-phase training strategy to109

progressively obtaining high-quality item and user110

embeddings through the learnable suffix. Experi-111

mental results on real-world datasets across various112

domains show that our method significantly outper-113

forms state-of-the-art baselines. In summary, our114

main contributions are as follows:115

1) We propose Laser, a simple but effective Bi-116

Tuning (through learnable prefix and suffix) frame-117

work with collaborative information for control-118

lable LLM-based sequential recommendation.119

2) We introduce M-Former that selectively acti-120

vates different experts to extract relevant informa-121

tion from varying collaborative signals of frozen122

ID-based recommenders into the prefix, paired with123

a multi-task loss considering the load-balancing ob-124

jective. Additionally, a two-phase training strategy125

is employed to progressively obtain high-quality126

item and user embeddings through the learnable127

suffix.128

3) Extensive experiments on real-world datasets129

show that Laser1 effectively adapts LLMs for se-130

quential recommendation, significantly outperform-131

1Our code is available at:
https://anonymous.4open.science/r/Laser-main-B1A5.

ing state-of-the-art baselines. 132

2 Related Work 133

2.1 Sequential Recommendation 134

Sequential recommendation infers users’ prefer- 135

ences from past interactions ordered by times- 136

tamps, with traditional methods typically repre- 137

senting items using unique IDs. To effectively cap- 138

ture user preferences based on the IDs, a variety 139

of methods have been employed. For instance, 140

GRU4Rec (Chung et al., 2014) models sequen- 141

tial patterns with GRUs, while Caser (Tang and 142

Wang, 2018) embeds the sequence of recent items 143

into an “image” and learn sequential patterns us- 144

ing convolutional filters. Methods like SR-GNN 145

(Wu et al., 2019), GCE-GNN (Wang et al., 2020), 146

and SURGE (Chang et al., 2021) capture long- 147

term user preferences through multi-layer message 148

passing, and self-attention models have also been 149

widely adopted (Kang and McAuley, 2018; Sun 150

et al., 2019; Li et al., 2020). Although these ID- 151

based methods show promise, they fail to incorpo- 152

rate semantic information from item descriptions, 153

resulting in suboptimal performance. Recently, re- 154

searchers have explored using PLMs to encode item 155

textual information, enriching item sequence repre- 156

sentations and improving recommendation perfor- 157

mance (Hou et al., 2022; Li et al., 2023), though 158

most efforts have focused on smaller language mod- 159

els. 160

2.2 LLMs in Recommender Systems 161

Due to the powerful instruction-following capa- 162

bility of LLMs, an increasing number of works 163

have attempted to express users’ past interactions 164

along with candidate item information as natural 165

language instructions, enabling LLMs to generate 166

tailored recommendations (Bao et al., 2023; Zhang 167

et al., 2023a; Hou et al., 2024). However, LLM- 168

based generative sequential recommender systems 169

often face two challenges. First, they primarily rely 170

on text semantics, representing users and items as 171

textual tokens rather than leveraging explicit inter- 172

action patterns. As a result, they inherently over- 173

look collaborative signals embedded in user-item 174

co-occurrences, leading to suboptimal performance 175

(Chen et al., 2023; Zhang et al., 2024). While 176

efforts have been made to address this, such as 177

mapping collaborative embeddings through MLPs 178

(Chen et al., 2023; Zhang et al., 2024) or incor- 179

porating collaborative information into the LLM 180
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Figure 1: The overview of our proposed Laser.

attention weight calculation (Wang et al., 2024b),181

integrating collaborative knowledge with LLMs182

remains an open challenge. Second, generative183

recommendation systems often suffer from lim-184

ited controllability over the generated content (Lu185

et al., 2024). Previous works have introduced ad-186

ditional training tasks to regularize the LLM out-187

put, such as auxiliary supervised learning tasks188

(Zhang et al., 2023a; Zheng et al., 2024) or rein-189

forcement learning tasks (Lu et al., 2024). While190

these methods show promising results, they largely191

increase the model complexity and computational192

overhead. In this paper, we propose Laser, a simple193

Bi-Tuning framework with collaborative informa-194

tion for controllable large language model-based195

sequential recommendation, which adapts LLMs196

for sequential recommendation by optimizing learn-197

able virtual tokens at both the prefix and suffix in a198

parameter-efficient manner.199

3 Preliminaries200

In sequential recommendation, U denotes the set201

of users and I represents the set of items. Each202

user u ∈ U has a temporally ordered sequence203

of interacted items Su = {i1, i2, . . . , iN}, where204

N is the sequence length and i ∈ I. The goal205

is to predict the next item iN+1. In this work,206

we transform each user’s interaction history Su207

and the information of each item i into a natural208

language instruction using a pre-defined template209

(detailed in Section 4.1). The instruction repre-210

sented as T = {t1, t2, . . . , tW }, where W is the211

text length, prompts LLMs to generate user/item212

embeddings for similarity comparison and control-213

lable next-item recommendation.214

4 Method 215

In this section, we present our proposed Laser. 216

First, we explain how the Bi-Tuning frame- 217

work adapts LLM for sequential recommendation 218

through the learnable prefix and suffix. Next, we 219

describe how the M-Former activates different ex- 220

perts to extract relevant information from different 221

collaborative signals into the prefix. Then, we in- 222

troduce the multi-task loss function that balances 223

the recommendation and load-balancing objectives. 224

Finally, a two-phase training strategy is designed 225

to progressively obtain high-quality item/user em- 226

beddings. 227

4.1 Bi-Tuning for LLM-based Sequential 228

Recommendation 229

Inspired by previous works (Li and Liang, 2021; 230

Lester et al., 2021), we propose an innovative way 231

to adapt LLMs to the sequential recommendation 232

task by adding learnable virtual tokens to both the 233

prefix and suffix of the input text. Specifically, 234

given the input instruction T = {t1, t2, ..., tW }, it 235

is expanded with learnable prefix and suffix tokens: 236

T̃ = {p1, p2, ..., pL,︸ ︷︷ ︸
prefix

t1, t2, ..., tW ,︸ ︷︷ ︸
instruction

s︸︷︷︸
suffix

}, (1) 237

where P = {p1, p2, ..., pL} represents the prefix 238

containing L prepended virtual tokens, and s de- 239

notes the suffix, consisting of a single appended 240

virtual token. The virtual tokens serve as place- 241

holders for LLM fine-tuning, while the LLM’s pa- 242

rameters remain frozen. Specifically, the prefix is 243

responsible for adapting LLMs with collaborative 244

knowledge, which we will detail in Section 4.2 245

using the proposed M-Former. The suffix token 246
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is designed to capture the interaction history of a247

user u or the description of a single item i in the248

instruction T based on the following template:249

You are an intelligent recommendation assis-
tant. Please summarize the user’s characteris-
tics into a single token based on the interaction
history. In chronological order, the user has
interacted with the following items:
>> 1. Kaytee Aspen Bedding Bag (brand:
Kaytee, category: Kaytee)
>> 2. ...

Specifically, we treat a single item as a special case250

of user interaction history that contains only the251

item itself. In this way, a unified template can pro-252

cess both user and item information, minimizing its253

impact on the performance of LLMs (Lester et al.,254

2021; Liu et al., 2022).255

Then, the output embedding of the suffix token,256

based on the designed template, is used as the user257

embedding hu ∈ Rd or item embedding hi ∈ Rd258

for similarity comparison and next-item prediction,259

where d represents the LLM hidden size:260

s(u, i) = cos(hu,hi) =
h⊤
u hi

∥hu∥ ∥hi∥
, (2)261

î = argmaxi∈I (s(u, i)) . (3)262

Through this way, we mitigate the uncontrollability263

issue in generative recommendation.264

4.2 M-Former for Collaborative Information265

Integration266

To effectively integrate collaborative information267

into LLMs for more accurate recommendations,268

we propose M-Former, a lightweight MoE-based269

querying transformer. As shown in Figure 1, M-270

Former selectively activates different query experts271

to extract relevant collaborative information from272

frozen ID-based recommenders. The experts car-273

rying collaborative knowledge are then aggregated274

to form the prefix, which better adapts the LLMs275

with such collaborative information.276

Specifically, to provide LLMs with collabora-277

tive knowledge, following previous works (Yang278

et al., 2023; Zhang et al., 2023b), we employ a279

frozen ID-based sequential recommender to gen-280

erate collaborative embeddings C ∈ RN×dc based281

on the input item ID sequence, where N denotes282

the sequence length and dc is the hidden size of the283

recommender. The input to the ID-based recom-284

mender aligns with the input to the LLM. When285

encoding user embeddings, the recommender pro- 286

cesses the user’s historical interaction sequence 287

(N ≥ 1), and when encoding item embeddings, it 288

processes only the item’s ID (N = 1). 289

Given the collaborative embeddings C ∈ 290

RN×dc , M-Former selectively activates query ex- 291

perts via a router to extract collaborative infor- 292

mation through multiple transformer layers. M- 293

Former consists of K experts, each comprising 294

L learnable vectors of size dm, represented as 295

Q ∈ RL×dm . The router is a gating function with a 296

learnable weight matrix Wr ∈ RK×dc , responsible 297

for computing the probability distribution of expert 298

weights. Specifically, the weight for the j-th expert 299

is computed as: 300

wj =

∑
i softmax

(
CW⊤

r

)
ij

N
. (4) 301

Following standard MoE architectures, only the 302

top-k experts with the highest weights are activated. 303

This enables M-Former to dynamically leverage 304

different experts based on varying collaborative sig- 305

nals. The activated experts are then passed through 306

Z layers of transformer blocks, where they extract 307

the collaborative information contained in C using 308

cross-attention: 309

Q′ = softmax

(
QC′⊤
√
dm

)
C′, (5) 310

where Q ∈ RL×dm represents a selected query 311

expert, and C′ ∈ RN×dm is obtained by linearly 312

mapping C ∈ RN×dc . Finally, the experts are 313

aggregated using their respective weights computed 314

in Equation 4, and the aggregated result is then 315

linearly mapped to the LLM’s hidden size d to 316

form the prefix, which is used to adapt the LLM 317

with collaborative knowledge. 318

4.3 Model Learning 319

4.3.1 Loss Function 320

To ensure the balanced utilization of all experts in 321

M-Former, we adopt a multi-task loss that incorpo- 322

rates both the recommendation and load-balancing 323

objectives. 324

Specifically, the recommendation task is mod- 325

eled using the item-item contrastive (IIC) loss (Li 326

et al., 2023), which encourages the user and ground- 327

truth item embeddings to be closer while pushing 328

other irrelevant item embeddings further apart. The 329

IIC loss is defined as: 330
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LIIC = − log
ecos(hu,h+

i )/τ∑
i∈I e

cos(hu,hi)/τ
, (6)331

where hu and hi represent the embeddings of user332

u and item i, h+
i is the embedding of the ground-333

truth item, I represents the item set, and τ is a334

temperature hyperparameter.335

To ensure efficient usage of all experts in M-336

Former, we also incorporate a load-balancing loss.337

This loss, following previous works (Lepikhin et al.,338

2021; Fedus et al., 2022), is computed as:339

LLB = K

K∑
j=1

fjwj , (7)340

where K is the number of experts, wj is the weight341

for the j-th expert calculated in Equation 4, and fj342

is the fraction of items dispatched to the j-th expert343

by the router, calculated by:344

p = softmax
(

CW⊤
r

)
, (8)345

fj =
1

N

N∑
i=1

1{argmax pi = j}, (9)346

where C ∈ RN×dc represents the collaborative em-347

beddings of the input item ID sequence of length N ,348

Wr ∈ RK×dc is the weight matrix of the router, and349

p ∈ RN×K is the calculated score matrix, which350

represents the degree of correlation between the N351

items and the K query experts.352

Finally, the overall loss function is a weighted353

sum of the item-item contrastive loss and the load-354

balancing loss:355

L = LIIC + λLLB, (10)356

where λ is a hyper-parameter that balances the357

weight of different tasks.358

4.3.2 Two-Phase Training359

As shown in Equation 6, calculating the IIC loss360

requires the embeddings of all items in the item361

set I, which are determined by the current model362

parameters at each training step. However, updat-363

ing all item embeddings at each training step is364

computationally expensive and can lead to unstable365

supervision. Therefore, we introduce a two-phase366

training strategy. Specifically, in the first phase,367

item embeddings are updated only at the beginning368

of each epoch. The phase ends when optimal per-369

formance is achieved on the validation set. Then,370

the item embeddings from the epoch with the best371

Datasets #Users #Items #Inters. Avg. n Density

Scientific 11,041 5,327 76,896 6.96 1.3e-3
Arts 56,210 22,855 492,492 8.76 3.8e-4
Pet 47,569 37,970 420,662 8.84 2.3e-4
Games 11,036 15,402 100,255 9.08 5.9e-4

Table 1: Statistics of all datasets. Avg. n denotes the
average number of items in the user interaction history.

validation performance are used throughout the 372

second phase of training. During this phase, the 373

model parameters are optimized to make the user 374

embeddings closer to the fixed ground-truth item 375

embeddings via the contrastive loss LIIC. Through 376

this way, we reduce the computational cost and pro- 377

gressively optimize the item and user embeddings 378

across two phases. 379

5 Experiments 380

In this section, we conduct detailed experiments 381

to demonstrate the effectiveness of our proposed 382

Laser. 383

5.1 Experimental Settings 384

Datesets. We conduct experiments on four Ama- 385

zon review datasets: “Industrial and Scientific”, 386

“Arts, Crafts and Sewing”, “Pet Supplies”, and 387

“Video Games”. Following previous works (Li 388

et al., 2023; Hou et al., 2022), we use the five- 389

core version and exclude items without titles. We 390

collect user interactions and sort the items by times- 391

tamp. The statistics of the preprocessed datasets 392

are shown in Table 1. 393

Baselines. We compare our Laser to a number of 394

state-of-the-art baselines, including six traditional 395

methods: SASRec (Kang and McAuley, 2018), 396

BERT4Rec (Sun et al., 2019), RecGURU (Li et al., 397

2022), FDSA (Zhang et al., 2019), ZESRec (Ding 398

et al., 2021), RECFORMER (Li et al., 2023), and 399

three LLM-based methods: LLM4REC (Wang 400

et al., 2024b), KAR (Xi et al., 2023), and Lla- 401

maRec (Yue et al., 2023). We list the details of 402

these baselines in Appendix A. 403

Implementation Details. In this paper, we use 404

BERT4Rec (Sun et al., 2019) to provide collabora- 405

tive knowledge for LLMs and employ GPT2-Large 406

(Radford et al., 2019), ChatGLM2-6B (GLM et al., 407

2024), and Llama2-7B (Touvron et al., 2023) as 408

LLM backbones, which are also used in the three 409

LLM-based baselines. The corresponding Laser 410

5



Models Scientific Pet Arts Games

R@10 N@10 MRR R@10 N@10 MRR R@10 N@10 MRR R@10 N@10 MRR

Traditional Methods
SASRec 13.11 8.03 7.12 8.81 5.69 5.07 13.42 8.48 7.42 9.53 5.47 5.05
BERT4Rec 10.61 7.90 7.59 7.65 6.02 5.85 12.36 9.42 8.99 10.48 6.54 6.07
RecGURU 7.81 5.75 5.66 4.15 3.66 3.71 7.42 5.25 4.88 4.79 3.86 3.96
ZESRec 12.60 8.43 7.45 10.24 7.64 7.25 13.49 9.70 8.70 8.44 5.30 5.05
RECFORMER 11.14 7.22 6.50 9.05 7.93 7.74 12.98 10.24 9.80 8.61 5.72 5.22
FDSA 9.67 7.16 6.92 9.49 6.73 6.50 12.09 9.94 9.41 9.31 6.00 5.46

LLM-based Methods
Methods based on GPT2
LLM4REC 12.57 7.64 6.83 9.18 7.69 6.81 12.66 9.27 8.80 8.57 5.46 5.13
Laser-G 12.91 8.42 7.68 9.83 7.97 7.45 13.42 10.31 9.72 9.12 5.83 5.34
Methods based on ChatGLM2
KAR 12.65 8.94 8.13 9.42 7.24 6.77 13.57 9.17 8.18 9.44 5.82 5.26
Laser-C 14.06* 9.83 9.16 11.21 9.08* 8.61 14.92* 11.40* 11.14* 10.75 7.13 6.46
Methods based on Llama2
LlamaRec 12.75 8.57 7.93 9.61 7.54 7.11 13.68 8.60 7.94 9.58 5.79 5.41
Laser-L 13.87 9.84* 9.23* 11.67* 9.05 8.63* 14.53 10.96 10.81 10.91* 7.25* 6.58*

Improv. (%) 7.24 9.17 13.51 13.96 14.53 11.53 9.13 11.37 13.74 4.10 10.86 8.40

Table 2: Performance comparison of different methods (all results are scaled by a factor of 100). The best results for
Laser are marked in bold, and the best results for the baselines are underlined. Improv. indicates the improvements
between Laser’s and the baselines’ best results, while * denotes statistically significant improvements (t-test with
p-value < 0.05).

models based on these backbones are denoted as411

Laser-G, Laser-C, and Laser-L, respectively. Im-412

plementation details are provided in Appendix B.413

Evaluation Settings. Following previous works414

(Li et al., 2023; Yue et al., 2023; Wang et al.,415

2024b), we evaluate using three common metrics:416

Recall@N, NDCG@N, and MRR. For data split-417

ting, we apply the leave-one-out strategy (Kang418

and McAuley, 2018), where the most recent item419

in the interaction history is used for testing, the420

second for validation, and the rest for training. We421

report the average results on the test data.422

5.2 Overall Performance423

As shown in Table 2, Laser achieves substantial424

improvements across all metrics and datasets com-425

pared to all baselines. For instance, on the Pet426

and Arts datasets, Laser surpasses the best base-427

line in Recall@10 by 13.96% and 9.13%, respec-428

tively. Notably, Laser consistently outperforms429

LLM-based baselines using the same LLM back-430

bones, demonstrating the effectiveness of our pro-431

posed Bi-Tuning framework with M-Former in432

seamlessly integrating collaborative information433

into LLMs and adapting them for controllable se-434

quential recommendation.435

Additionally, we note that Laser’s performance436

improves as the LLM backbone scales. For ex-437

Recall@10 Recall@20
(1) Pet Dataset

0.00

0.01

0.02

0.03

0.04

Recall@10 Recall@20
(2) Games Dataset

0.00

0.01

0.02

0.03

0.04

BERT4Rec Laser-C

Figure 2: Performance comparison under the cold-start
settings on the Pet and Games datasets.

ample, on the Pet dataset, Laser-C (based on 438

ChatGLM2-6B) and Laser-L (based on Llama2- 439

7B) surpass Laser-G (based on GPT2-Large) in Re- 440

call@10 by 14.0% and 18.7%, respectively. This 441

suggests that our model can be further improved 442

with larger-scale LLM backbones. 443

5.3 Cold-Start Performance 444

To evaluate Laser’s performance in cold-start sce- 445

narios, we compare Laser-C with BERT4Rec on 446

the Pet and Games datasets. Following previous 447

work (Kim et al., 2024), an item is categorized 448

as “cold” if it falls within the bottom 35% of in- 449

teractions. As shown in Figure 2, there is a clear 450

performance gap between the two methods in both 451

datasets, with Laser-C significantly outperforming 452

BERT4Rec. This demonstrates that Laser effec- 453
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Figure 3: Performance comparison under the zero-shot
and low-resource settings on the Scientific dataset.

tively leverages the language modeling and com-454

prehension capability of LLMs to assist in recom-455

mending cold items.456

5.4 Zero-Shot and Low-Resource457

Performance458

To further demonstrate Laser’s effectiveness, we459

conduct experiments in zero-shot and low-resource460

scenarios. Specifically, Laser-C, which com-461

bines semantic information with collaborative462

knowledge, is compared against two baselines:463

BERT4Rec (using only ID-based collaborative in-464

formation) and RECFORMER (using only seman-465

tic information). These models, except for ID-466

based BERT4Rec, are trained on the Pet dataset467

and tested on the Scientific dataset with limited or468

no training data.469

Figure 3 shows the results. We observe that: (1)470

Laser outperforms all baselines in the zero-shot sce-471

nario, achieving significantly better performance,472

despite seeing no data from the Scientific dataset.473

This performance is attributed to the Bi-Tuning474

framework, which fully leverages the generaliza-475

tion capabilities of LLMs for sequential recommen-476

dation. (2) Laser requires only 5% of the train-477

ing data to outperform both baselines using 100%478

of the data. As training data increases, Laser’s479

performance improves rapidly, demonstrating that480

minimal training data is sufficient for transferring481

Laser to an out-of-domain dataset, achieving better482

results than baselines requiring more data. This483

demonstrates the effectiveness of our framework in484

integrating collaborative knowledge into LLMs and485

adapting them for controllable and generalizable486

sequential recommender systems.487

5.5 Ablation Study488

To demonstrate the effectiveness of each module in489

Laser, we conduct comprehensive ablation studies490

on the Scientific dataset (Table 3) and Pet dataset491

Recall@10 NDCG@10 MRR

Laser-C 0.1406 0.0983 0.0916

Bi-Tuning
w/o prefix 0.1142 0.0716 0.0652
w/o suffix

w/ average pooling 0.0579 0.0425 0.0481
w/ [EOS] 0.1004 0.0725 0.0683

M-Former
w/o M-Former 0.1245 0.0844 0.0739
w/ one expert 0.1261 0.0889 0.0795

Model Learning
w/o load-balancing loss 0.1377 0.0893 0.0832
w/o training phase 1 0.0793 0.0571 0.0571
w/o training phase 2 0.1320 0.0891 0.0774

Table 3: Ablation study on the Scientific dataset. The
best results are in bold and the second are underlined.

(Appendix C). The results show that removing any 492

module leads to a significant decrease in Laser’s 493

performance. 494

First, both the learnable prefix and suffix are cru- 495

cial for adapting LLMs to sequential recommenda- 496

tion. Without the prefix, Recall@10, NDCG@10, 497

and MRR drop significantly by 18.77%, 27.16%, 498

and 28.82%, respectively, highlighting the prefix’s 499

role in adapting LLMs with collaborative infor- 500

mation. Besides, we compare the suffix with two 501

alternative strategies for generating item/user em- 502

beddings: (1) average pooling of all token embed- 503

dings from the LLM output and (2) replacing the 504

learnable virtual suffix with a hard [EOS] token. 505

Both variations result in noticeable performance 506

degradation, with Recall@10, NDCG@10, and 507

MRR decreasing by at least 28.6%, 26.2%, and 508

25.4%, respectively, demonstrating that the learn- 509

able suffix better converts the LLM output from 510

language space to recommendation space to obtain 511

high-quality item/user embeddings. 512

Second, the M-Former effectively integrates col- 513

laborative information into LLMs, significantly im- 514

proving recommendation accuracy. Without the 515

M-Former (where the prefix is randomly initial- 516

ized), Recall@10, NDCG@10, and MRR drop by 517

11.45%, 14.14%, and 19.32%, respectively. Fur- 518

thermore, with only one query expert, Recall@10, 519

NDCG@10, and MRR decrease by 10.31%, 9.56%, 520

and 13.21%, underscoring the importance of M- 521

Former’s adaptive expert utilization based on vary- 522

ing collaborative signals. 523

Finally, removing the load-balancing loss or ei- 524

ther training phase reduces Laser’s effectiveness, 525

highlighting the importance of efficient expert uti- 526

lization in M-Former and the necessity of two- 527

7



Figure 4: Comparison of different K, L, λ, and the number of suffix tokens on the validation set of the Scientific
dataset based on Laser-C.
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Figure 5: Performance comparison with different ID-
based sequential recommender systems.

phase training, where the first phase learns high-528

quality item embeddings and the second optimizes529

user embeddings for accurate recommendations.530

5.6 Further Discussion531

We further discuss Laser focusing on the impact of532

different ID-based sequential recommenders and533

hyper-parameter settings. We also analyze the ef-534

fects of various templates, with detailed results535

provided in Appendix D.536

5.6.1 ID-based Sequential Recommender537

We conduct additional experiments to study how538

the ID-based sequential recommender system in-539

fluences Laser’s performance. As shown in Figure540

5, Laser-C’s performance increases almost linearly541

with the performance of the employed ID-based542

recommender. For example, on the Pet dataset,543

Laser-C based on BERT4Rec surpasses Laser-C544

based on SASRec by 16.08%, while BERT4Rec545

outperforms SASRec by 15.38%. This indicates546

that Laser can be further improved by leveraging547

more powerful ID-based sequential recommender548

systems.549

5.6.2 Parameter Analysis550

We conduct a detailed parameter analysis, evaluat-551

ing the number of query experts (K), the number of552

expert virtual tokens (L), the loss balance factor (λ), 553

and the suffix token number. As shown in Figure 554

4, smaller values of K and L limit the M-Former’s 555

ability to extract collaborative information, while 556

larger values increase the training complexity and 557

reduce the model’s effectiveness. Besides, Laser 558

performs best with λ = 0.1, which balances the 559

IIC and load-balancing losses. Additionally, a sin- 560

gle suffix token performs best, as multiple tokens 561

(whose output embeddings are averaged to form 562

item/user embeddings) add complexity and reduce 563

effectiveness. Finally, the optimal configuration is 564

achieved with K = 8, L = 32, λ = 0.1, and a 565

single suffix token. 566

6 Conclusion 567

In this paper, we propose Laser, a simple yet effec- 568

tive Bi-Tuning framework with collaborative infor- 569

mation for controllable large language model-based 570

sequential recommendation. Paritcularly, we intro- 571

duce Bi-Tuning, an efficient fine-tuning method 572

that adapts LLMs to sequential recommendation 573

via a learnable prefix and suffix. The prefix effec- 574

tively incorporates collaborative information, while 575

the suffix transforms LLM output into item/user 576

embeddings for similarity comparison, enabling 577

controllable recommendations. To better integrate 578

ID-based collaborative information, we introduce a 579

lightweight MoE-based querying transformer that 580

activates different experts to extract relevant infor- 581

mation from varying collaborative signals of frozen 582

ID-based recommenders, paired with a multi-task 583

loss for load-balancing. Finally, a two-phase train- 584

ing strategy is used to progressively obtain high- 585

quality item and user embeddings through the learn- 586

able suffix. Extensive experiments on real-world 587

datasets show that Laser effectively adapts LLMs 588

to sequential recommendation tasks, substantially 589

outperforming state-of-the-art methods. 590
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7 Limitations591

In this work, we validate the effectiveness of Laser592

on current mainstream decoder-only LLMs, such593

as GPT2-Large, ChatGLM2-6B, and Llama2-7B.594

However, a limitation remains in that we do not ex-595

plore how Laser can be adapted to other LLM archi-596

tectures, such as encoder-decoder models, which597

may offer different benefits for sequential recom-598

mendation tasks. In future work, we plan to in-599

vestigate how Laser can be integrated with these600

alternative architectures to further enhance its per-601

formance and applicability.602
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Bowen Zheng, Yupeng Hou, Hongyu Lu, Yu Chen,809
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collaborative semantics for recommendation. In 40th812
IEEE International Conference on Data Engineering,813
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2024, pages 1435–1448. IEEE.815

A Baselines 816

To comprehensively evaluate the performance of 817

our proposed Laser, we compare it to state-of-the- 818

art baselines, including six traditional methods and 819

three LLM-based methods. 820

(1) Traditional Baselines: 821

• SASRec (Kang and McAuley, 2018) employs 822

a self-attention mechanism to capture the se- 823

mantic relevance between the user interaction 824

sequence and the candidate items. 825

• BERT4Rec (Sun et al., 2019) is a bidirec- 826

tional self-attentive model, employing the 827

cloze objective to model users’ dynamic pref- 828

erences from their historical behaviors. 829

• RecGURU (Li et al., 2022) introduces an ad- 830

versarial learning method to incorporate user 831

information across domains and obtain gen- 832

eralized user representations for sequential 833

recommendation. 834

• FDSA (Zhang et al., 2019) proposes a feature- 835

level self-attention network that integrates 836

different heterogeneous features of items 837

into feature sequences with different weights 838

through a vanilla attention mechanism. 839

• ZESRec (Ding et al., 2021) utilizes a pre- 840

trained language model to convert item de- 841

scriptions into feature representations. 842

• RECFORMER (Li et al., 2023) formulates 843

items as key-value attribute pairs and utilizes 844

pre-trained language models to encode them 845

for ID-free sequential recommendation. 846

(2) LLM-based Baselines: 847

• LLM4REC (Wang et al., 2024b) incorporates 848

collaborative information into the LLM’s at- 849

tention weight calculation. Besides, it adds 850

user and item IDs to the LLM’s vocabulary 851

for recommendation and defines a series of 852

pre-training and supervised fine-tuning tasks 853

to help the LLM learn the meanings of these 854

IDs in the context of recommendations. GPT2 855

(Radford et al., 2019) is used as the backbone. 856

• KAR (Xi et al., 2023) proposes a hybrid- 857

expert adapter that condenses LLM-generated 858

world knowledge to enhance the performance 859

of recommendation models. Following the 860
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original paper, we use ChatGLM2-6B (GLM861

et al., 2024) to provide the dense vector out-862

puts containing world knowledge.863

• LlamaRec (Yue et al., 2023) leverages a two-864

stage framework, where a traditional sequen-865

tial recommender model is first used for re-866

trieval, followed by ranking a small set of867

candidate items using Llama2-7B (Touvron868

et al., 2023).869

B Implementation Details870

In this work, we use a pre-trained BERT4Rec (Sun871

et al., 2019) to provide collaborative knowledge for872

the LLM, with the number of transformer blocks,873

attention heads, and the dimension of each attention874

headset to 2, 2, and 32, respectively. We employ875

GPT2-Large (Radford et al., 2019), ChatGLM2-6B876

(GLM et al., 2024), and Llama2-7B (Touvron et al.,877

2023) as LLM backbones, which are also used in878

the three LLM-based baselines. The M-Former879

consists of 12 transformer blocks, with alternate880

blocks performing cross-attention. The hidden size881

and number of attention heads are set to 768 and882

12, respectively. The expert number K is set to883

8, with only the top 3 experts activated, and the884

query token number L is set to 32. Additionally,885

the router is implemented as a fully connected layer,886

with input and output dimensions set to 64 and 8,887

respectively.888

During training, the BERT4Rec and LLM back-889

bones are frozen, while the other learnable modules890

are randomly initialized and trained in two phases891

(as described in Section 4.3.2). We set the batch892

size to 4, the learning rate to 1e-4, the loss weight893

hyperparameter λ to 0.01, and the temperature hy-894

perparameter τ to 0.05. The Adam optimizer is895

used, and the Laser is trained for 15 epochs in the896

first phase and 5 epochs in the second phase.897

C Ablation Study on the Pet Dataset898

As shown in Table 4, the ablation results on the899

Pet dataset indicate that removing any module sig-900

nificantly decreases Laser’s performance, which is901

consistent with the results on the Scientific dataset.902

D Influence of the Template903

In this work, we utilize a unified template to or-904

ganize both the user interaction history and the905

single item information, which is shown in Section906

4.1. The template instructs LLMs to summarize907

Recall@10 NDCG@10 MRR

Laser-C 0.1406 0.0983 0.0916

Bi-Tuning
w/o prefix 0.0875 0.0701 0.0653
w/o suffix

w/ average pooling 0.0470 0.0453 0.0477
w/ [EOS] 0.0758 0.0637 0.0645

M-Former
w/o M-Former 0.1049 0.0775 0.0721
w/ one expert 0.1056 0.0818 0.0763

Model Learning
w/o load-balancing loss 0.1088 0.0887 0.0809
w/o training phase 1 0.0531 0.0492 0.0418
w/o training phase 2 0.1091 0.0853 0.0812

Table 4: Ablation study on Pet dataset. The best results
are in bold and the second best results are underlined.

Templates Recall@10 NDCG@10 MRR

Laser-C 0.1406 0.0983 0.0916
w/o specified phrase 0.1081 0.0830 0.0795
w/o instruction 0.0993 0.0767 0.0654
w/ two instructions 0.0968 0.0640 0.0571

Table 5: Performance comparison under different hard
prompt templates on the Scientific dataset.

the semantic information into the suffix, which is 908

further used for recommendation. To ensure the 909

template’s plausibility, we compare it with three 910

other variants, including: (1) deleting the specified 911

phrase “into a single token”, (2) deleting the en- 912

tire instruction “You are an intelligent ... the user 913

has browsed the following items:”, (3) using a dif- 914

ferent instruction for item embedding generation, 915

“You are an intelligent recommendation assistant. 916

Please summarize the item characteristics into a 917

single token:”. As shown in Table 5, compared to 918

the other three variants, our prompt template can 919

significantly improve Recall@10, NDCG@10, and 920

MRR by more than 30.06%, 18.43%, and 15.22%, 921

respectively. This demonstrates the effectiveness 922

of our prompt template in harnessing the powerful 923

capabilities of LLMs with clear, consistent, and 924

appropriate instruction. 925

12


	Introduction
	Related Work
	Sequential Recommendation
	LLMs in Recommender Systems

	Preliminaries
	Method
	Bi-Tuning for LLM-based Sequential Recommendation
	M-Former for Collaborative Information Integration
	Model Learning
	Loss Function
	Two-Phase Training


	Experiments
	Experimental Settings
	Overall Performance
	Cold-Start Performance
	Zero-Shot and Low-Resource Performance
	Ablation Study
	Further Discussion
	ID-based Sequential Recommender
	Parameter Analysis


	Conclusion
	Limitations
	Baselines
	Implementation Details
	Ablation Study on the Pet Dataset
	Influence of the Template

