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ABSTRACT

Recently researchers have demonstrated that Transformers can be trained to learn
symbolic tasks such as solving integration and differential equations in an end-to-
end fashion. In these setups, for an input symbolic expression, the Transformer
predicts the final solution in a single step. Since such tasks may consist of a se-
quence of logical steps, question remains whether such networks have understood
and learnt individual steps to reach the solution. To take a deeper look, we con-
sider the task of polynomial simplification. Polynomials can be written in a simple
normal form as a sum of monomials which are ordered in a lexicographic order.
For a polynomial which is not necessarily in this normal form, a sequence of sim-
plification steps is applied to reach the fully simplified (i.e., in the normal form)
polynomial. For this task, we describe a synthetic Polynomial dataset generation
algorithm which generates polynomials with unique proof steps. Then, we con-
duct an extensive analysis of the Transformer’s abilities to learn the polynomial
simplification task along different dimensions.

1 INTRODUCTION

With the state-of-the-art performance of Deep Neural Nets (DNNs) in perceptual tasks, researchers
have started to explore their logical reasoning capabilities, in particular within the domain of Auto-
mated Theorem Proving (ATP). In these domains (LEAN (de Moura et al., 2015), HOL Light and
Mizar (miz, 2020)), many recent works (Paliwal et al., 2020; Aygün et al., 2020; Hahn et al., 2020)
have shown that Graph Neural Networks (Gori et al., 2005; Veličković et al., 2018) and Transform-
ers (Vaswani et al., 2017) can be trained to perform impressively on the theorem-proving task as part
of a neuro-symbolic system.

In a related but different development, recently Lample & Charton (2019) showed that for symbolic
integration and differential equations, a large amount of synthetic end-to-end examples can be gen-
erated using symbolic systems. In these tasks, the authors show that Transformer networks can be
trained to produce the final solution from an input integral (or differential equation) in a single step.
This points to the exciting possibility of using deep neural nets to learn end-to-end theorem provers,
and can be beneficial for formal mathematics (Szegedy, 2020). However, the setup combines mul-
tiple reasoning steps in a single shot. Additionally, integration (or differential equation solving) is
a complex task requiring understanding of the integral symbols, functions, variables, and the ba-
sic concepts of arithmetic. As the system in Lample & Charton (2019) is simply trained to output
the top solution(s) and a corresponding confidence score(s), it is unclear what internal mechanisms
enable these models to solve these problems. This lack of transparency has been noted in this con-
text (Davis, 2019). An earlier work by Piotrowski et al. (2019) showed similar results for certain
symbolic manipulation tasks and their work shares the same limitation.

In this paper we ask if instead of only producing the end-result of symbolic manipulation or integral,
can we have the model produce a human-readable proof as well. While we do not know if these
models reason in the way humans do, one way to produce proofs would be to “extract” a proof from
the models of the above type by “probing” them in some mannner. The problem of unraveling the
inner workings of Transformers by probing is an active area of research; however, at present our
understanding is still evolving (Rogers et al., 2020). Hence taking a detour, we instead train the
model to produce the full proof.

1



Under review as a conference paper at ICLR 2021

Inspired by Piotrowski et al. (2019), we explore a novel but simpler setting of polynomial simpli-
fication. We illustrate the task with an example. We begin with a polynomial which is a sum of
product of factors, where each factor is again a sum of monomials (including constants), as shown
below:

P0 = (2 ∗ x2
2) ∗

factor︷ ︸︸ ︷
(3 ∗ x1

2︸ ︷︷ ︸
term

+4) +

product︷ ︸︸ ︷
(5 ∗ x2

1 + x1
1 ∗ x1

2) ∗ (3 ∗ x1
1) ∗ (2), /* Initial */

To construct unique simplification steps, first each term in a factor is simplified. Once all factors
are simplified (facstep); then within a product, all factors are multiplied (mulstep). Lastly
simplified products are summed (sumstep).

P0 = (2 ∗ x2
2) ∗ (3 ∗ x1

2 + 4) + (5 ∗ x2
1 + x1

1 ∗ x1
2) ∗ (3 ∗ x1

1) ∗ (2), /* FACSTEP */

= (2 ∗ x2
2) ∗ (3 ∗ x2 + 4) + (5 ∗ x2

1 + x1
1 ∗ x1

2) ∗ (3 ∗ x1
1) ∗ (2), (P1), /* FACSTEP */

= (2 ∗ x2
2) ∗ (3 ∗ x2 + 4) + (5 ∗ x2

1 + x1 ∗ x2) ∗ (3 ∗ x1) ∗ (2), (P2), /* MULSTEP */

= (6 ∗ x3
2 + 8 ∗ x2

2) + (5 ∗ x2
1 + x1 ∗ x2) ∗ (3 ∗ x1) ∗ (2), (P3), /* MULSTEP */

= (6 ∗ x3
2 + 8 ∗ x2

2) + (30 ∗ x3
1 + 6 ∗ x2

1 ∗ x2), (P4), /* SUMSTEP */

= 30 ∗ x3
1 + 6 ∗ x3

2 + 6 ∗ x2
1 ∗ x2 + 8 ∗ x2

2. (P5), /* ENDPOINT */.

Piotrowski et al. (2019) explores the task of learning symbolic re-write of an entire expression. In
contrast, in our setting, for step-wise prediction, at each step the system needs to find the candidate
sub-expression and a relevant simplification type to perform the simplification. This setup resembles
the traditional ATP setup where a system needs to learn and execute symbolic steps to reach a final
solution. But it is simpler as for each step only one type of simplification is applicable. By proof
for an initial polynomial (P0) we mean the sequence of simplification steps (P1 to P5). A model
trained on step-wise prediction task, can be used to generate a full proof. Essentially, we start with an
initial polynomial, and recursively feed the model output to itself, till it generates the final simplified
polynomial (in normal form). A proof is correct when all steps are correct.

In the above setting (termed COARSE), all terms in a factor are simplified at once in a facstep, and
similarly all factors in a product are simplified at once in a mulstep. Additionally, we define an-
other setting FINER, where a facstep involves simplification of a single term, and a mulstep in-
volves multiplications of only two factors at once, illustrated below with an example (for facstep):

P0 = (5 ∗ x2
1 + x1

1 ∗ x1
2) ∗ (3 ∗ x1

1) ∗ (2), /* FACSTEP */

= (5 ∗ x2
1 + x1 ∗ x2) ∗ (3 ∗ x1

1) ∗ (2), /* FACSTEP */

= (5 ∗ x2
1 + x1 ∗ x2) ∗ (3 ∗ x1) ∗ (2).

As a state-of-the-art model, we explore Transformers. While both Graph Neural Networks and
Transformers have been used for single-step representation learning of symbolic theorems and single
step goal-theorem scoring, Transformer-based sequence-to-sequence networks have shown superior-
ity in end-to-end tasks in integration, differential equations (Lample & Charton, 2019) and temporal
logic (Hahn et al., 2020) domains. Hence for the aforementioned tasks of step-wise polynomial
simplification, we explore the Transformer’s ability along several dimensions. Our contributions are
the following: 1) we propose polynomial simplification tasks requiring multiple steps of symbolic
manipulation, 2) we show how datasets of different configurations can be generated synthetically
for the task, 3) we propose an array of metrics to dissect the performance of Transformers, and
4) lastly through extensive experiments we show the performance of the Transformer on this task,
establishing a strong baseline for future endeavors.

Results Summary By varying over coefficient size, proof granularity and input representation
(in Tables 1, 2, Appendix Table 6) we observe that 1) full proof accuracy is only slightly lower
than single-shot endpoint prediction accuracy in many 1-variable configurations, 2) coarse granular
proofs help learn somewhat more accurate proofs, 3) prefix representation helps in most cases but
infix sometimes provides higher accuracy. More than 80% errors (Tab. 7 and 8 in Appendix) occur
in multiplication steps, and we observe (through independent experiments) Transformer’s struggle
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to learn how to multiply numeric coefficients. By letting the system annotate the candidate sub-
expression, we observe that the system can understand candidate sub-expressions and which next
step to perform explicitly (Tables 3, and Appendix Tables 9, 10, 11). Also, through visualization we
observe similar effects (Figures 1, 2 Appendix). We see systems trained for 2-variable outperform
corresponding 1-variable systems on 1-variable test sets. For 1 variable, we observe steady and
significant higher gains (till 10% for full proof) using curriculum learning (Table 17 Appendix).

2 RELATED WORK AND DISCUSSION

Unlike the problems dealt with by the aforementioned automatic theorem provers and related neural-
based systems, polynomial simplification does not involve any search. Our problem is simpler and
tests a specific ability, namely certain kinds of symbol manipulations. This simplicity affords certain
advantages (shared by Piotrowski et al. (2019) and Lample & Charton (2019)): (1) We can generate
artificial data to train models without limitations on the size. (2) It is easier to test the abilities of the
models more thoroughly along multiple axes. (3) Accuracy achieved is much higher than for harder
tasks, suggesting that fully solving such tasks may be possible in the near future.

To compare with symbolic manipulation systems we note that in more detail the ability tested by
our task is the following: the model must be able to identify smallest parts of the polynomial that
can be simplified: (1) simplification of a factor, (2) multiplication of two factors, (3) addition of
two sub-polynomials. Having identified what simplification to apply the model must produce a new
polynomial with just that simplification. This ability is not tested by previous neural-based symbolic
manipulation systems such as Piotrowski et al. (2019) and Lample & Charton (2019) and related
works such as Saxton et al. (2019) and Hahn et al. (2020). Several recent works have produced
synthetic datasets for theorem proving tasks (Aygün et al., 2020; Wu et al., 2020; Polu & Sutskever,
2020), however, their focus remains more on search-based proofs.

3 POLYNOMIAL SIMPLIFICATION DATASET

We proceed similarly to Lample & Charton (2019) to generate the symbolic polynomials and sim-
plified steps synthetically using the Sympy library of Python. To have a fine-grained control over
the generated polynomials and well-defined proof steps, we consider polynomials which are sums of
products1. We also note that symbolic generation using the Sympy library lets us ensure correctness
of each generated expressions and validity of each steps.

3.1 NOTATIONS

We start with the set of variables xP = {x1, . . . , xnvar}. We represent the starting point polynomial
P0 in xP as the sum of products of factors:

P0 = P1 + P2 + . . . + Pnprod,

Pi =

nfaci∏
j=1

fij ,
(1)

where each factor (fij) has the form f =
∑

k(ak ∗
∏

l x
dkl

kl ), where xkl ∈ xP (dropping i, j for
clarity). Here coefficients ak ∈ N+, and powers of the variables dkl ∈ N. nprod is the number of
products and nfaci denotes the number of factors in Pi.
We denote the set of factors as fP = {fij |∃i, Pi =

∏nfaci
j=1 fij}. The simplified endpoint polynomial

is of the form P̂ =
∑q

m=1 t̂m, where t̂m = âm ∗
∏

n xn
dmn , where xn ∈ xP . We use the symbol

P̂i to denote the simplified form of Pi. The functions terms(), vars(), coeffs() returns a list of terms,
variables, coefficients in the input expression. Our sampling algorithm guarantees that the generated
polynomial and its simplified endpoint abides by constraints on number of terms, products, factors
and variables; limit on degree and coefficient sizes. An example is nprod ∈ {2, . . . ,maxPP} (The
full list is provided in Appendix Table 4).

1The generation algorithm in Lample & Charton (2019) may generate nested sums and products. For such
polynomials, an unique proof sequence is hard to define which makes whole proof s harder to evaluate. Our
restriction over the form of the polynomial helps us generate unique proofs, which are easier to evaluate.
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3.2 BUILDING A POLYNOMIAL PROOF

Here, we briefly describe the starting polynomial generation process; detailed algorithm is in the
appendix. Any randomly sampled polynomial (represented as a sum of products) can be included
as a starting point in the dataset as long as the polynomial respects certain configuration parameters
(in Appendix Table 4). This is unlike Lample & Charton (2019), where many randomly generated
integrals (or differential equations) might not have a solution. Hence, we randomly sample the con-
straint parameters in a top-down manner; and then construct terms, factors and products in a bottom-
up manner using the parameters. We first sample the following 1) a set of participating variables (
xP ), 2) maximum degree for any monomial in the simplified polynomial (mdeg), and 3) the num-
ber of products in the starting polynomial (nprod). We then call the algorithm buildProduct
(Algorithm 1 in appendix) to create nprod individual products.

Building a Product In buildProduct (Algorithm 1 in Appendix), first we sample nfaci, the
maximum number of factors in the product (Pi). We then build factors sequentially. For each new
factor, we sample a subset of variables in a factor. We pass on product-level constraints such as
maximum degree in a product, maximum terms in a product, and maximum coefficient for a product
as rdegree, rterms and rcoeff respectively; and call the sub-routine buildFactor (Algorithm 2
to create a factor. After a factor is sampled, the constraints rdegree, rterms and rcoeff are updated.
buildFactor is used to create at most nfaci factors, that all abide by the above constraints and
stops if the limit of maximum degree in the product is reached. The terms in a factor are arranged in
a lexicographical order. Since, this sequential generation of factors may induce a certain pattern of
decreasing degrees and coefficients, we shuffle the factors to create the final product.

Simplification Steps and Full Proof For both COARSE and FINER configurations, we build the
proof steps in the following way: 1) first we do a sequence of facsteps where terms get collected
within a factor (such as 2x + 3x to 5x, x1 and 1x becomes x); 2) then a sequence of mulsteps
are performed where simplified factors are multiplied out; and 3) lastly, in sumstep simplified
products are added together. As mentioned before, the sequence of simplification steps till the
endpoint constitute a full proof.

4 EXPERIMENTS

4.1 DATASET

We vary dataset configurations along the following dimensions:
• Number of Variables in polynomial, product and factor is varied between 1 and 2.
• Coefficients Size: Maximum coefficient in the polynomial, product and factor are gradually varied
from {60, 20, 5} (SMALL), to {120, 40, 8} (MEDIUM) and {300, 100, 10} (LARGE). DEFAULT is
{120, 40, 8}.
• Maximum degree in polynomial and a factor has two configurations: {6, 3} (DEFAULT), and
{12, 5} (MEDIUM DEGREE).
• Maximum number of terms in a simplified product and a factor has two configurations: {8, 3}
(DEFAULT), and {20, 4} (MEDIUM TERMS). For the latter, we also set maximum products in a sum
and maximum factors in a product as 5 and 4 respectively.
• No Backtrack: We also try a very large configuration (NO BACKTRACK) where maximum coeffi-
cients in polynomial, product and factor are {10125, 3375, 5}, maximum degree in polynomial and
factor are set to {9, 3}. Maximum terms in a product is set to 27. This is a configuration, where no
sampled factor, or product is ever rejected for violating any higher-level constraint.

Infix and Prefix We focus on exploring seq2seq networks for all our experiments. We consider the
prefix and infix traversals of the abstract syntax tree of the polynomial input as sequences. Lample
& Charton (2019) briefly touched upon the usefulness of the prefix notation over infix, but do not
provide any empirical evidence supporting the statement. Hence, in our experiments, we consider
both INFIX and PREFIX representations.
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4.2 TASKS AND METRICS

We identify two central tasks : 1) Step-wise prediction: where an input polynomial is provided and
the task is to perform the next proof step, and 2) Endpoint Prediction: where given a polynomial,
the task is to predict the fully simplified polynomial in a single step.
To compare with the Endpoint prediction task, we use the Step-wise prediction task to compute the
full proof accuracy as the percentage of proofs where all individual proof steps are accurate2. Apart
from the accuracy, we also compare the examples seen by the systems trained in the above two types
of tasks. For the Step-wise task, a training example corresponds to an individual simplification step;
whereas for the Endpoint task an example is a pair denoting the initial and the endpoint polyno-
mial. We also report the following: 1) error percentages grouped by each different types of steps
facstep, mulstep, and sumstep, 2) calibration scores of the systems based on a threshold.
To compute accuracy for an example (in both the tasks), we use the simplify method of Sympy
library and check symbolically whether the difference between the predicted expression and the
ground-truth expression is equal to zero.
Calibration: As end-to-end models grow more accurate and their usage increases, it’s important
that the users can trust such models. In addition to reporting each simplified step and a confidence
score, we also report calibration score computed from the ratio of the top two outputs predicted for
each step (using beam width 5). Using a Calibration constant threshold (usually 5), we report the
sure rate which is percentage of times when the ratio (in log scale with base e) exceeds the threshold.
We also report precision, recall and F-1 score for calibration.

4.3 MODEL

Adapting the experimental setup by Lample & Charton (2019)3, we train a seq2seq network to
predict the next proof step provided a polynomial as a sequence. For all the experiments, we train
a Transformer network (Vaswani et al., 2017) architecture with 4 attention heads, 4 encoder and
decoder layers with hidden embedding size of 256. We use an Adam optimizer (Kingma & Ba,
2014) with a learning rate of 10−4. We limit the maximum token length to 512 and use a batch size
of 32 polynomial pairs.

During training, we synthetically generate each batch of equations. To avoid collisions between
train and test sets, we first use a fixed seed to generate the test and the validation sets of polynomial
simplification full proofs and collect the simplified end-points. We make sure that the simplified
versions of the input polynomial in the training batches, do not collide with any endpoints in the the
test and validation set. Authors in Piotrowski et al. (2019) shows that probability of such collisions
in the generated integration dataset by Lample & Charton (2019) to be quite high, and urges to report
the test accuracy by accounting for such collisions explicitly.

During inference, we use beam-search with different beam widths (beam 1 and 5) to decode the
expressions. For our results, beam width 1 is used for proof accuracy. Calibration results are pro-
duced using beam 5 decoding. During decoding, if any malformed (prefix or infix) expressions are
generated, we report the percentage of such expressions4.

4.4 EXPERIMENT ORGANIZATION

In the next sub-sections, we provide problem space-size estimate (§4.5) to understand if the accura-
cies are an effect of memorization. Then we vary the proof granularity, coefficient configurations and
input representation to test Transformers’ accuracy and errors in both tasks (§4.6). Next, to assess
whether Transformers can specifically predict candidate next sub-expression to be simplified, we try
an annotated proof setting (§4.6.1). To estimate the learning ability of addition and multiplication
on symbolic variables, we test a setting where the coefficients are also symbolic, thus bypassing the
need for the Transformer to do integer multiplication. Next, we discuss out-of-distribution general-

2We have also attempted recursive proof generation, where the output from the decoder is fed to the encoder
in the next step. It does not vary from the teacher-forcing since, if in any step the model is wrong, the model
does not recover after that.

3https://github.com/facebookresearch/SymbolicMathematics
4Similar to Lample & Charton (2019), we find that the percentage of malformed outputs was very low (<

0.5%). So we did not explicitly correct for it.
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ization ability of the systems (§4.7). We also explore several curriculum strategies to take advantage
of the well-defined sub-tasks and their varying complexities (§4.8). Lastly, we provide layer-wise
attention visualizations of a trained system in the Appendix (Figs. 1 & 2).

4.5 PROBLEM SPACE SIZE ESTIMATION

For smaller configurations, it is probable that eventually all simplified polynomials would be in-
cluded in the training data. To account for this, we estimate the problem space size for each configu-
ration and report the size of training data for comparison. We randomly generate two sets of starting
polynomials say S1 and S2, and check for collisions among them. Assuming the actual size is X
and uniform distribution over all starting polynomials, the expected number of collisions would be
R = S1∗S2

X . Using the above method, we estimate the number of un-simplified polynomials and
the number of unique endpoints, and report in Appendix Table 5. We observe that compared to the
number of training examples it took for the models to converge in both End-point and Step-wise
prediction tasks, the space of possible equations is often 25 (or more) times higher.

Sampled polynomials are not uniformly distributed as we assign an equal probability while sampling
polynomials of lower and higher degrees, say 3 and 6; whereas there are more polynomials of degree
6 than degree 3. For non-uniform distributions, we expect more collisions as higher probability
equations are more likely to occur in both S1 and S2. Moreover, since many equations may map to
the same endpoint, such collisions for endpoints are even more likely. Thus, our empirical estimate
of the population size provides a lower bound on the true value.

4.6 INPUT REPRESENTATION

We report the results for one and two variables, for all configurations in Tables 1 and 2. In Ta-
ble 1, we include results for both COARSE and FINER configurations. We observe that COARSE
proof-steps with PREFIX representation provides the best full proof accuracy for four out of six con-
figurations (especially for larger coefficient sizes). Across COARSE and FINER, in five out of six
configurations PREFIX representation increases the full proof accuracy over INFIX, while the im-
provement is not always substantial. In SMALL COEFF configuration, the FINER setting improves
over COARSE for full proof accuracy. From the calibration results, we see that the winning combi-
nations often provide the highest calibration F-1 score (more prominent for 2 variables), indicating
lesser ambiguity in the decision made. In Table 2, using PREFIX representation for two variables
provides 3 to 4% boosts in full proof accuracy for 4 out of 6 configurations. Since, FINER steps do
not improve full proof accuracy for two variables, we report the results in Table 6 in the appendix.
However, for NO BACKTRACK, the infix representation clocks a 9.5% improvement over prefix.
Comparing with Endpoint accuracy, as coefficient sizes grow from SMALL to NO BACKTRACK,
for 1 variable, the Endpoint accuracy is only slightly higher (1 to 2%) than the full proof accuracy.
However, for MEDIUM TERMS and MEDIUM DEGREE, the Endpoint accuracy shows a 3.6% and
13% improvement respectively. For 2 variables, Endpoint task accuracy is larger in most cases.

In Tables 7 and 8 (in Appendix) we show the model errors for each step type. We observe that more
than 80% of the model errors occur in the multiplication step. In the MEDIUM TERMS setting, factor
simplification causes 15-25% of the errors, possibly because of higher number of factors to simplify.
For 2 variable case, addition step accounts for 10-15% of the errors. In all other cases, both factor
simplification and addition cause close to 5% of the model errors each. As mentioned in §4.4, we
experimented with symbolic coefficients to mitigate the difficulties with integer multiplication. This
however didn’t give good results possibly due to output becoming too long.

4.6.1 ANNOTATED PROOFS

In each step, simplification is performed over a sub-expression of the polynomial. To check explic-
itly, if the system can locate the sub-expression and find the type of simplification step, we devise
the annotated proof setting. For each simplification step, we add an intermediate step, in which the
model annotates the part of polynomial to operate on. For example, the starting input sequence is
“MARK $ (5 ∗ x2

1 + x1 ∗ x2) ∗ (3 ∗ x1) ∗ (2)”; and the corresponding expected output sequence is
“MUL $ #(5 ∗ x2

1 + x1 ∗ x2) ∗ (3 ∗ x1)# ∗ (2)”. Each sequence has two parts: 1) the step index to
perform (MARK, MUL, FAC, SUM), and 2) the polynomial expression. For MARK step, a marker
token (#) is used to annotate the candidate sub-expression to be simplified next.
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Endpoints Full Proof Step-wise Calibration

#EE #Endpoint
Acc #Train Full Proof

Accuracy
Stepwise
Accuracy

Top-1
Acc

Beam-5
Acc

Sure
Rate P R F1

Small
Coeff

Coarse/Infix 5M 96 3.6M 95 98.83 88.13 89.67 83.2 100 94.4 0.97
Fine/Infix 5M 96 4.8M 98.9 99.79 94.46 95 92.38 100 97.8 0.99
Coarse/Prefix 5.2M 97.8 3.2M 95.3 98.97 87.83 89.37 83.03 100 94.54 0.97
Fine/Prefix 5.2M 97.8 4.4M 96.9 99.4 95.1 95.83 93.13 99.96 97.9 0.99

Medium
Coeff

Coarse/Infix 4.1M 91.2 4.3M 92.8 98.24 88.97 91.67 84.3 100 94.75 0.97
Fine/Infix 4.1M 91.2 2.9M 90.3 97.99 86.1 87.68 81.14 100 94.24 0.97
Coarse/Prefix 6.1M 95.87 5.3M 93.6 98.58 86.6 88.47 82.83 99.88 95.54 0.98
Fine/Prefix 6.1M 95.87 4.5M 91.7 98.37 95.1 96.43 91.27 100 95.97 0.98

Large
Coeff

Coarse/Infix 4.8M 83.73 3.4M 82.1 95.97 92.34 94.22 87.2 99.98 94.41 0.97
Fine/Infix 4.8M 83.73 3.4M 82.5 96.44 92.32 94.26 87.5 99.98 94.76 0.97
Coarse/Prefix 6.5M 85.87 3.5M 83.5 96.25 80.6 83.3 75 99.91 92.97 0.96
Fine/Prefix 6.5M 85.87 3.2M 82 96.32 79.13 80.63 75.57 99.96 95.45 0.98

No
Backtrack

Coarse/Infix 5.9M 80.1 3.8M 75.6 94.62 72.74 77.28 61.8 99.9 84.88 0.92
Fine/Infix 5.9M 80.1 4M 74.5 94.76 88.34 90.9 79.44 99.92 89.86 0.95
Coarse/Prefix 6.6M 78.87 5.6M 79.7 95.38 81.93 85.57 72.2 100 88.12 0.94
Fine/Prefix 6.6M 78.87 4.2M 74.7 95.23 79 82.03 72.23 100 91.43 0.96

Medium
Degree

Coarse/Infix 9.2M 96.4 4.9M 92.8 98.26 87.18 88.96 81.12 100 93.05 0.96
Fine/Infix 9.2M 96.4 3.3M 83.4 96.12 88.26 90.44 83.04 99.95 94.04 0.97
Coarse/Prefix 7M 94.33 4.3M 87.7 96.82 77.33 82.13 69.33 100 89.66 0.95
Fine/Prefix 7M 94.33 5.9M 90.6 97.92 82.2 83.7 77.27 99.96 93.96 0.97

Medium
Terms

Coarse/Infix 4.6M 81.9 2.3M 72.7 93.99 79.44 82.22 68.22 99.97 85.85 0.92
Fine/Infix 4.6M 81.9 2.8M 75.1 95.42 86.2 88.48 76.72 99.92 88.93 0.94
Coarse/Prefix 7M 89.8 4.3M 76.3 95.78 87.8 91.17 81.3 100 92.6 0.96
Fine/Prefix 7M 89.8 3.2M 74.8 95.55 87.67 90.4 76.9 100 87.72 0.93

Table 1: Results for 1 variable in the COARSE and FINE configuration for both Infix and Prefix
representation.

Endpoints Full Proof Step-wise Calibration

#EE #Endpoint
Acc #Train Full Proof

Accuracy
Stepwise
Accuracy

Top-1
Acc

Beam-5
Acc

Sure
Rate P R F1

Small
Coeff Infix 4.3M 94.7 3.7M 87.9 97.01 88.9 91 81.07 100 91.19 0.95

Prefix 4.5M 93.93 5.3M 91.2 98.08 83.83 86.7 77.57 100 92.52 0.96
Medium
Coeff Infix 7M 95.3 5.3M 88.5 97.35 90.98 93.7 84.64 99.98 93.01 0.96

Prefix 5.2M 92.77 4.8M 84.5 96.03 89.57 92.93 81.27 99.96 90.7 0.95
Large
Coeff Infix 9M 91.8 3.8M 80.4 95.18 90.44 93.14 82.74 99.93 91.42 0.95

Prefix 6.1M 86.6 5.4M 83.7 96.23 92.23 94.57 86.03 100 93.28 0.97
No
Backtrack Infix 8.6M 83.8 5M 72.7 93.13 75.48 78.74 64.4 100 85.32 0.92

Prefix 7.1M 79.2 4.3M 63.2 89.87 72.07 76.43 59.4 99.94 82.38 0.9
Medium
Degree Infix 4.9M 87.9 5.1M 80.5 95.13 90.3 92.53 80.63 100 89.29 0.94

Prefix 5.2M 83.73 6.1M 83.4 96.41 92.07 94.43 83.13 99.96 90.26 0.95
Medium
Terms Infix 8.5M 90 3.8M 64 92.03 80.5 83.66 66.62 100 82.76 0.91

Prefix 6.6M 87.07 6.3M 67.8 93.58 89.7 91.57 80.33 99.96 89.52 0.94

Table 2: Results for 2 variables for the COARSE configuration for both Infix and prefix representa-
tions.

We experiment only with INFIX representation. The results for 1 variable and 2 variables are in Table
3 and 9 (in Appendix). The errors per step type are shown in Appendix Tables 10 and 11. Compared
to non-annotated setting, while the step-wise accuracy is similar, the proof accuracy suffers often by
7-10%. A reason for such decrease in accuracy is that length of the annotated proofs are twice as
long as non-annotated. However, we note that the errors in MARK step are the lowest compared to
other types of steps. This indicates that the models are able to learn the candidate sub-expression for
simplification, and predict the next operation correctly.

4.7 OUT-OF-DISTRIBUTION EVALUATION

We also test out-of-distribution generalization by choosing different test configurations than train.
The best 2 Variable models (COARSE/PREFIX) were tested on 1 Variable dataset with same coeffi-
cient configuration. We interestingly observe (in Appendix Table 14) that in all settings except one

7
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Config Proof
Type

Endpoint #Train Full Proof Stepwise Calibration

#EE Endpoint
Acc.

Full
Proof
Acc.

Greedy
Stepwise

Acc.

Top-1
Acc.

Beam-5
Acc.

Sure
Rate P R F1

SMALL
COEFF

Fine 5M 96 2.4M 88.5 98.82 86.77 87.7 83.97 99.96 96.73 0.98
Coarse 3.7M 91.9 99.16 90.07 90.73 88.13 100 97.85 0.99

MEDIUM
COEFF

Fine 4.1M 91.2 2.8M 78.6 97.66 92.67 93.63 88.23 100 95.22 0.98
Coarse 3.5M 84.2 98.29 94.83 95.53 92.4 99.96 97.4 0.99

LARGE
COEFF

Fine 4.8M 83.73 3.6M 75.5 97.37 96.8 97.8 92.4 99.93 95.39 0.98
Coarse 4.6M 80.3 97.86 80.37 81.6 77.83 100 96.85 0.98

NO BACK
TRACK

Fine 5.9M 80.1 4.1M 68 96.78 90.43 92.33 84.5 99.96 93.4 0.97
Coarse 3.6M 59.7 95 92.5 94.33 86.47 99.81 93.3 0.96

MEDIUM
DEG

Fine 9.2M 96.4 3.7M 76 97.37 83.67 85.23 79.1 100 94.54 0.97
Coarse 3.4M 78.7 97.38 93.2 94.37 88.2 100 94.64 0.97

MEDIUM
TERMS

Fine 4.6M 81.9 3.6M 70.4 97.48 91.5 92.2 86.87 100 94.94 0.97
Coarse 3.3M 66.2 96.34 88.9 90.27 83.17 99.84 93.4 0.97

Table 3: Results for FINE and COARSE configurations for 1 Variable for annotated proofs

(MEDIUM COEFF), the 2 variable models outperform the corresponding 1 variable models. For the
LARGE COEFF case, the improvement is close to 6% over the 1 variable model. As expected, the 2
Variable models perform better on 1 variable dataset than 2 variable. The results for OOD evaluation
with respect to coefficient limits, polynomial degree and polynomial length (no. of terms in starting
polynomial) are discussed in the Appendix (Tables 15 & 16).

4.8 CURRICULUM LEARNING

Simplification steps entail learning of addition and multiplication of numeric coefficients and sym-
bolic variables. But, as some of the individual sub-tasks seem harder to grasp, we employ different
types of curricula based on the Mastering-Rate-based (MR) curriculum learning algorithm proposed
by Willems et al. (2020)5. For all our experiments, we use the MR algorithm with gAmax Linreg
A2D converter functions described in Willems et al. (2020). Model parameters and the training con-
figurations remain the same. We show the results in Table 17 for 1 variable COARSE configuration.
As coefficient size grows from SMALL, MEDIUM, LARGE to NO BACKTRACK, improvements in
full proof accuracy steadily increase from 1% to 10.84% (COARSE/INFIX). For NO BACKTRACK,
the improvement in top-1 accuracy is by 20% from a no curriculum setting. However, we observe
for MEDIUM TERMS, there is a drop in accuracy for all curricula and input representations. It is
possible that, more carefully designed curricula may improve the results. There is no clear advan-
tage observed between infix or prefix representations. However, compared to learning without a
curriculum, the improvement observed for infix representation is often larger than prefix.

5 CONCLUSION

We explored the polynomial simplification task to investigate the capabilities and shortcomings of
Transformer networks across various dimensions. We proposed a synthetic polynomial generation
algorithm which generates constrained polynomials with unique proof steps. While Transformers
perform impressively in many settings, reaching above 90% proof accuracies, there were also clear
limitations and there are many avenues for future work. Among notable results, in many cases
full proof accuracy is lower than endpoint accuracy, but with a low margin. This is perhaps not
surprising because the model is trained to optimize for stepwise accuracy and generating a valid
proof requires getting all of the multiple proof steps correct. Thus a more proof-centric training
approach might further improve proof-wise accuracies. Prefix representation has a slight advantage
over infix and coarse proofs have slight advantage over fine proofs. Transformers quickly learn
addition, but consistently struggle with multiplication. Carefully designed curriculums can boost
full proof accuracy up to 10% for large coefficient sizes. Models trained on two variable datasets
often did very well on single variable datasets—even better than the models trained on single variable
datasets. Exploring multivariate polynomial manipulations and more general algebraic systems are
some immediate future directions, though even for the polynomial simplification task significant
gaps remain in our understanding.

5For full details, please see Appendix Section I.
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A VISUALIZATION OF TRANSFORMER LAYERS

Following Piotrowski et al. (2019), we also attempt to understand what the Transformer networks
are learning through layer-wise visualization of attention (Vig, 2019). We take model trained on
COARSE granularity proofs using INFIX representation for 1 variable using the SMALL COEFF con-
figuration. We take the following example:

P0 = (4 ∗ x2
1) ∗ (5 ∗ x3

1 + 4 ∗ x1) + (12 ∗ x1), /* MULSTEP */

= (20 ∗ x5
1 + 16 ∗ x1 ∗ ∗3) + (12 ∗ x1)

In Figure 1, we observe that in layer 2 encoder-decoder attention indicates that while generating the
number 16, the Transformer network is clearly able to attend to the two digits 4 and 4 required for
the multiplication. In Figure 2, we observe that the Transformer networks, in the same time also
learns to copy the expression 12 + x1 in Layer 1. Even though such clear logical patterns emerge
quite frequently, in some cases patterns become hard to interpret.

Algorithm 1: BuildProduct (Sampling Products)
Input: xP , mdeg
Constraints: nvars prod, max coeff prod, max fac prod, max terms prod
Output: A list of factors Fseq

1 Sample nvar ∈ {num vars fac, . . . ,nvars prod}
2 nvar = min(|xP |, nvar)
3 Sample nvar variables from xP as xPi // Variable set for this product
4 Sample nfac ∈ {2, . . . ,max fac prod} // #Factors for this product
/* Get maximum degree, terms and coefficient available */

5 rdegree = mdeg, rterms = max terms prod, rcoeff = max coeff prod
6 cprod = 1 // Keeping track of product built till now
7 Fseq = [ ]
8 for j ← 1 to nfac 1 do
9 fj = buildFactor(xPi

, rdegree, rterms, rcoeff)
/* Update degree, terms and coefficient for next factor */

10 cprod = cprod ∗ fj
11 rdegree = rdegree− degree(fj)
12 rterms = max terms prod/|terms(cprod)|
13 rcoeff = max coeff prod/max(coeffs(cprod))
14 Append fj in Fseq

15 if rdegree == 0 then
16 break
17 end
18 end
19 Shuffle Fseq

10
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Figure 1: The layer 2 encoder-decoder attention for the output digits 16 in the first simplified product
for the output (20 ∗ x5

1 + 16 ∗ x1 ∗ ∗3) + (12 ∗ x1). As expected, the digits 1 and 6 attends to the
coefficients of the first and third monomial in the input expression (4 ∗ x2

1) ∗ (5 ∗ x3
1 + 4 ∗ x1) +

(12 ∗ x1). Config: COARSE, SMALL COEFF, INFIX, 1 variable.
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Figure 2: The layer 1 encoder-decoder attention for the coefficient 12 in the last product (20 ∗ x5
1 +

16 ∗ x1 ∗ ∗3) + (12 ∗ x1). It is expected, that in this step, this product remains unchanged and
simply copied o the output. Therefore, we see that the layers learn to copy the coefficients directly
by attending to the corresponding digits (i.e. 1 attends to 1 in the last product). Config: COARSE,
SMALL COEFF, INFIX, 1 variable.
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B ALGORITHMS

The polynomial sampling algorithms buildProduct and buildFactor are provided in Algo-
rithms 1 and 2 respectively.

Algorithm 2: BuildFactor (Sampling A Factor)
Input: xPi

, rdegree, rterms, rcoeff
Constraints: num vars fac, max coeff fac, max terms fac,

max degree fac
Output: A factor fj , Number of terms ntermsj

1 Sample nvar ∈ {1, . . . ,num vars fac}
2 cvars = Sample nvar variables from xPi

// Variable set for this factor
3 Sample nterms ∈ {1, . . . ,min(max terms fac, rterms)}

// # Terms for this factor
4 Sample {dk}nterms

k=1 , s.t. dk ∈ {0, . . . ,min(max degree fac, rdegree)}
// Term degrees: degree 0 allows for constant terms

5 Sample {ck}nterms
k=1 , s.t. ck ∈ {1, . . . ,min(max coeff fac, rcoeff)}

// Term coefficients
6 for k ← 1 to nterms 1 do
7 selects d[k] variables from cvars with replacement

// E.g. if d[k] = 4, cvars = [x1, x2]. May sample [x1, x2, x1, x1]
8 Convert the selected d[k] variables to a term // tk = ck ∗ x3

1 ∗ x2,
9 end

10 fj =
∑nterms

k=1 tk
11 return fj ;

C TABLE OF CONSTRAINTS AND NOTATIONS

We provide the full list of constraints and notations in Table 4.

Term
Constraints

#Products
#Factors in Pi

#Terms in fij
#Terms in P̂i

nprod ∈ {2, . . . ,maxPP}
nfaci ∈ {2, . . . ,maxfP},∀i ∈ {1, . . . ,nprod}
|terms(fi)| ∈ {1, . . . ,maxTf},∀fij ∈ fP
|terms(P̂i)| ≤ maxTP∀Pi ∈ P0

Degree
Constraints

#Degree in P̂
#Degree in fij

∑
dmn ≤ DP , ∀m ˆtm ∈ terms(P̂ ),∀n xn ∈ vars( ˆtm)∑
dkl ≤ Df ,∀k terms(fij),∀fij ∈ fP

Variable
Constraints

#Variables in P0

#Variables in Pi

#Variables in fi

|xP | ≤ VP
|vars(Pi)| ≤ VP,∀Pi ∈ P0

|vars(fij)| ≤ Vf ,∀fj ∈ fP

Coefficient
Constraints

Coeff in P̂
Coeff in P̂i

Coeff in fi

âj ≤ CP ,∀âj ∈ coeffs(P̂ )

âij ≤ CP,∀a coeffs(P̂i),∀Pi ∈ P0

ak ≤ Cf ,∀a coeffs(fij),∀fij ∈ fP

Table 4: List of notations, and corresponding constraints that a generated polynomial satisfies.

D PROBLEM SPACE SIZE ESTIMATION

We present the problem space size estimates here in Table 5.
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Config NVAR = 1 NVAR = 2
Equation

Size Estimate
Endpoint

Size Estimate
Equation

Size Estimate
Endpoint

Size Estimate
SMALL COEFF 104M 8.24M 184M 27.4M

MEDIUM COEFF 179M 16.3M 325M 42.4M
LARGE COEFF 289M 32M 507M 68.8M

NO BACKTRACK 324M 54.9M 538M 104M
MEDIUM DEG 459M 67.4M 902M 144M

MEDIUM TERMS 866M 31.5M 1.73B 801M

Table 5: Size Estimates for the problem space, after generating sets of size 5M.

E INPUT REPRESENTATION (ADDITIONAL RESULTS)

We present the results for FINE configuration for 2 variable setting here in Table 6. The errors made
by the models for 1 Variable and 2 Variable settings are presented in Tables 7 and 8 respectively.

Config Proof
Type

Endpoint #Train Full Proof Stepwise Calibration

#EE Endpoint
Acc.

Full
Proof
Acc.

Greedy
Stepwise

Acc.

Top-1
Acc.

Beam-5
Acc.

Sure
Rate P R F1

SMALL
COEFF

Infix/Fine 4.3M 94.7 4.6M 88.1 97.19 90.7 92.2 83.47 100 92.02 0.96
Prefix/Fine 4.5M 93.93 5.4M 90.3 97.83 94.63 96.2 87.9 99.96 92.85 0.96

MEDIUM
COEFF

Infix/Fine 7M 95.3 4.4M 82.2 96.25 94.28 95.76 86.24 100 91.47 0.96
Prefix/Fine 5.2M 92.77 2.9M 72.4 93.6 91.53 94.33 81.97 100 89.55 0.94

LARGE
COEFF

Infix/Fine 9M 91.8 3.2M 73 93.85 77.94 82.2 63 99.9 80.75 0.89
Prefix/Fine 6.1M 86.6 4.7M 78.6 95.6 91.93 93.47 83.87 100 91.23 0.95

NO
BACKTRACK

Infix/Fine 8.6M 83.8 5.8M 72.5 94.64 81.54 84.82 72.34 100 88.72 0.94
Prefix/Fine 7.1M 79.2 4.1M 60.7 90.48 81.73 85.67 70.2 99.91 85.81 0.92

MEDIUM
DEG

Infix/Fine 4.9M 87.9 3.6M 73.5 94.21 89.78 92.46 77.22 100 86.01 0.92
Prefix/Fine 5.2M 83.73 4.6M 73.6 94.57 86.5 89.4 76.93 100 88.94 0.94

MEDIUM
TERMS

Infix/Fine 8.5M 90 4.8M 64 92.98 79.04 81.86 66.92 99.88 84.56 0.92
Prefix/Fine 6.6M 87.07 4.5M 62.9 92.74 86.4 89.07 73.67 100 85.26 0.92

Table 6: Results for FINE configuration for 2 Variables for Infix and Prefix representation (No cur-
riculum, No annotation).

Config Proof Type Full Proof Error Percentage

Full Proof
Accuracy

Greedy
Stepwise
Accuracy

First
FacStep

Total
FacStep

First
MulStep

Total
MulStep

First
SumStep

Total
SumStep

SMALL
COEFF

Coarse/Infix 95 98.83 8 9.43 88 84.91 4 5.66
Fine/Infix 98.9 99.79 0 0 100 100 0 0

Coarse/Prefix 95.3 98.97 4.26 4.08 72.34 71.43 23.4 24.49
Fine/Prefix 96.9 99.4 9.68 9.68 77.42 77.42 12.9 12.9

MEDIUM
COEFF

Coarse/Infix 92.8 98.24 1.39 1.25 95.83 92.5 2.78 6.25
Fine/Infix 90.3 97.99 11.34 11.32 85.57 84.91 3.09 3.77

Coarse/Prefix 93.6 98.58 3.12 2.94 95.31 95.59 1.56 1.47
Fine/Prefix 91.7 98.37 2.41 2.33 96.39 96.51 1.2 1.16

LARGE
COEFF

Coarse/Infix 82.1 95.97 3.35 3.02 93.85 91.46 2.79 5.53
Fine/Infix 82.5 96.44 2.86 2.56 93.71 90.77 3.43 6.67

Coarse/Prefix 83.5 96.25 4.24 3.78 93.94 92.97 1.82 3.24
Fine/Prefix 82 96.32 3.33 2.97 90.56 86.63 6.11 10.4

NO
BACKTRACK

Coarse/Infix 75.6 94.62 2.87 3.13 93.44 86.83 3.69 10.03
Fine/Infix 74.5 94.76 3.14 3.56 93.33 78.63 3.53 17.81

Coarse/Prefix 79.7 95.38 7.39 6.57 89.16 83.94 3.45 9.49
Fine/Prefix 74.7 95.23 2.37 2.41 96.44 89.16 1.19 8.43

MEDIUM
DEG

Coarse/Infix 92.8 98.26 5.56 6.02 86.11 79.52 8.33 14.46
Fine/Infix 83.4 96.12 6.63 5.56 89.76 83.33 3.61 11.11

Coarse/Prefix 87.7 96.82 4.07 3.57 93.5 90.71 2.44 5.71
Fine/Prefix 90.6 97.92 8.51 7.55 89.36 87.74 2.13 4.72

MEDIUM
TERMS

Coarse/Infix 72.7 93.99 25.64 24.18 73.26 69.72 1.1 6.1
Fine/Infix 75.1 95.42 21.29 20.51 75.1 69.94 3.61 9.55

Coarse/Prefix 76.3 95.78 7.59 8.71 88.61 84.67 3.8 6.62
Fine/Prefix 74.8 95.55 14.68 16.76 79.76 74.28 5.56 8.96

Table 7: Errors for 1 variable in the COARSE and FINE configuration for both Infix and Prefix input
representation. (No curriculum, No annotation).
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Config Proof Type Full Proof Error Percentage

Full Proof
Accuracy

Greedy
Stepwise
Accuracy

First
FacStep

Total
FacStep

First
MulStep

Total
MulStep

First
SumStep

Total
SumStep

SMALL
COEFF

Coarse/Infix 87.9 97.01 5.79 4.9 88.43 79.72 5.79 15.38
Fine/Infix 88.1 97.19 8.4 7.98 75.63 68.1 15.97 23.93

Coarse/Prefix 91.2 98.08 1.14 1.03 88.64 84.54 10.23 14.43
Fine/Prefix 90.3 97.83 8.25 6.35 80.41 73.02 11.34 20.63

MEDIUM
COEFF

Coarse/Infix 88.5 97.35 4.35 3.73 83.48 76.87 12.17 19.4
Fine/Infix 82.2 96.25 2.25 1.83 76.4 68.81 21.35 29.36

Coarse/Prefix 84.5 96.03 3.87 3.68 88.39 81.58 7.74 14.74
Fine/Prefix 72.4 93.6 12.68 9.95 76.09 67.74 11.23 22.31

LARGE
COEFF

Coarse/Infix 80.4 95.18 6.12 4.84 82.65 75.81 11.22 19.35
Fine/Infix 73 93.85 11.85 8.74 70.74 62.3 17.41 28.96

Coarse/Prefix 83.7 96.23 4.29 3.61 87.12 82.99 8.59 13.4
Fine/Prefix 78.6 95.6 5.14 4.2 81.31 74.43 13.55 21.37

NO
BACKTRACK

Coarse/Infix 72.7 93.13 4.4 3.15 87.55 75.79 8.06 21.07
Fine/Infix 72.5 94.64 3.27 2.54 85.09 73.79 11.64 23.66

Coarse/Prefix 63.2 89.87 3.26 2.24 91.3 78.73 5.43 19.03
Fine/Prefix 60.7 90.48 2.29 1.58 89.31 72.64 8.4 25.79

MEDIUM
DEG

Coarse/Infix 80.5 95.13 6.67 5.44 81.54 71.97 11.79 22.59
Fine/Infix 73.5 94.21 7.17 6.55 68.3 57.83 24.53 35.61

Coarse/Prefix 83.4 96.41 4.82 4.19 81.33 75.39 13.86 20.42
Fine/Prefix 73.6 94.57 7.58 6.38 75.38 67.48 17.05 26.14

MEDIUM
TERMS

Coarse/Infix 64 92.03 25 19.05 72.5 66.5 2.5 14.45
Fine/Infix 64 92.98 13.61 8.62 79.44 69.59 6.94 21.79

Coarse/Prefix 67.8 93.58 10.25 7.69 87.89 80.98 1.86 11.32
Fine/Prefix 62.9 92.74 9.16 5.97 85.71 74.37 5.12 19.65

Table 8: Errors for 2 variables in the COARSE and FINE configuration for both Infix and Prefix input
representation. (No curriculum, No annotation).

F ANNOTATED PROOF (ADDITIONAL RESULTS)

We present the results for COARSE and FINE configuration for 2 variable setting for annotated
proofs here in Table 9. The errors made by the models for 1 Variable and 2 Variable settings are
presented in Tables 10 and 11 respectively.

Config Proof Type Endpoint # Train
Examples

Full Proof Stepwise Calibration

# Endpoint
Examples

Endpoint
Accuracy

Full Proof
Accuracy

Greedy
Stepwise
Accuracy

Top-1
Accuracy

Beam-5
Accuracy Sure Rate P R F1

SMALL COEFF Fine 4.3M 94.7 3.6M 82.3 97.93 86.47 87.5 81.83 100 94.64 0.97
Coarse 5.1M 85 98.31 93.5 94.03 90.27 100 96.54 0.98

MEDIUM COEFF Fine 7M 95.3 5.4M 78.8 97.78 93.8 94.5 90.2 99.93 96.09 0.98
Coarse 5M 80.1 97.69 89.37 90.27 86.77 99.96 97.05 0.98

LARGE COEFF Fine 9M 91.8 4.1M 70.1 96.59 84.8 86.63 77.77 99.83 91.55 0.96
Coarse 4M 73.2 96.66 92.77 93.8 87.23 100 94.04 0.97

NO BACKTRACK Fine 8.6M 83.8 3.5M 46.5 92.93 84.9 87.67 74.5 99.96 87.71 0.93
Coarse 6.7M 65.5 95.7 67.8 69.37 63.3 99.79 93.17 0.96

MEDIUM DEG Fine 4.9M 87.9 3.9M 59.6 95.28 94.13 95.7 86.4 100 91.78 0.96
Coarse 4.1M 65.1 95.61 85.43 87.43 78.2 99.96 91.49 0.96

MEDIUM TERMS Fine 8.5M 90 4.8M 56.9 95.7 92.4 93.83 85.77 99.88 92.71 0.96
Coarse 4.2M 52.8 94.57 84 85.93 75.93 99.82 90.24 0.95

Table 9: Results for FINE and COARSE configurations for 2 Variables for annotated proofs (No
curriculum).

G FULLY SYMBOLIC PROOFS

As > 80% of the errors occurred in multiplication step, we separately tested the Transformer’s abil-
ity to do arithmetic, by creating datasets involving multiplication and addition of 4-digit and 9-digit
numbers. While the models quickly achieved an accuracy of close to 99% for addition; for multipli-
cation, they could not go beyond even 1% after seeing 2M examples. Hence, we envision a setting
where polynomial simplification steps only involve symbolic addition and multiplication, without
any arithmetic manipulation. For example, instead of multiplying 3 and 4 as 12, the model will
output c1 ∗ c2 given coefficients c1 and c2. The results for 1 Variable setting are presented in Table
12. Here, MEDIUM COEFF and MEDIUM DEGREE denote the same configuration as the case with
integer coefficients. The only difference being that the limits of coefficients no longer apply. The
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Config Proof Type Full Proof Error Percentage

Full Proof
Accuracy

Greedy
Stepwise
Accuracy

First
FacStep

Total
FacStep

First
MulStep

Total
MulStep

First
SumStep

Total
SumStep

First
MarkStep

Total
MarkStep

SMALL COEFF Fine 88.5 98.82 3.48 2.99 89.57 83.58 6.09 11.19 0.87 2.24
Coarse 91.9 99.16 1.23 1.19 98.77 96.43 0 1.19 0 1.19

MEDIUM COEFF Fine 78.6 97.66 18.69 15.19 74.77 74.44 3.27 6.67 3.27 3.7
Coarse 84.2 98.29 4.43 4.65 84.81 84.88 6.33 5.81 4.43 4.65

LARGE COEFF Fine 75.5 97.37 11.43 9.21 72.65 66.35 10.61 19.68 5.31 4.76
Coarse 80.3 97.86 5.58 5.86 90.86 87.39 1.02 4.5 2.54 2.25

NO BACKTRACK Fine 68 96.78 7.19 6.46 86.56 78.54 5.62 12.71 0.62 2.29
Coarse 59.7 95 6.2 5.25 88.09 76.88 3.72 15.41 1.99 2.45

MEDIUM DEG Fine 76 97.37 11.67 10.85 82.5 80.34 3.75 6.78 2.08 2.03
Coarse 78.7 97.38 6.1 5.84 86.38 81.32 4.69 9.73 2.82 3.11

MEDIUM TERMS Fine 70.4 97.48 16.89 16.27 75 69.14 3.72 8.85 4.39 5.74
Coarse 66.2 96.34 25.44 25.28 68.05 63.48 2.37 5.81 4.14 5.43

Table 10: Errors for FINE and COARSE configurations for 1 Variable for annotated proofs (No cur-
riculum).

Config Proof Type Full Proof Error Percentage

Full Proof
Accuracy

Greedy
Stepwise
Accuracy

First
FacStep

Total
FacStep

First
MulStep

Total
MulStep

First
SumStep

Total
SumStep

First
MarkStep

Total
MarkStep

SMALL COEFF Fine 82.3 97.93 4.52 3.07 86.44 68.97 7.34 24.14 1.69 3.83
Coarse 85 98.31 2 1.68 88.67 78.21 8 18.44 1.33 1.68

MEDIUM COEFF Fine 78.8 97.78 8.96 6.79 80.19 68.21 9.43 22.5 1.42 2.5
Coarse 80.1 97.69 9.05 7.79 87.94 80.33 3.02 10.66 0 1.23

LARGE COEFF Fine 70.1 96.59 13.38 10 69.9 59.32 13.38 25.45 3.34 5.23
Coarse 73.2 96.66 10.45 7.84 79.85 70.87 7.84 18.49 1.87 2.8

NO BACKTRACK Fine 46.5 92.93 9.16 5.15 74.21 57.9 14.58 33.69 2.06 3.25
Coarse 65.5 95.7 3.19 2.61 90.14 77.31 5.22 18.27 1.45 1.81

MEDIUM DEG Fine 59.6 95.28 7.43 5.48 72.03 57.1 15.35 32.9 5.2 4.52
Coarse 65.1 95.61 6.88 5.26 78.51 67.79 11.46 24.63 3.15 2.32

MEDIUM TERMS Fine 56.9 95.7 21.58 13.3 67.29 57.72 8.58 23.96 2.55 5.02
Coarse 52.8 94.57 23.94 15.6 68.22 62.77 3.6 16.67 4.24 4.96

Table 11: Errors for FINE and COARSE configurations for 2 Variable for annotated proofs (No cur-
riculum).

errors made by the model for each kind of step are summarized in Table 13.
We observe that the proof accuracy is about 20% less than the non-symbolic models. This could be
because the intermediate polynomials in the simplification sequence become very long with sym-
bolic coefficients.

Config Proof
Type

Endpoint #Train Full Proof

#EE Endpoint
Acc.

Full
Proof
Acc.

Greedy
Stepwise

Acc.

MEDIUM
COEFF

Coarse/Infix 5M 93.5 4.3M 78.5 94.19
Fine/Infix 2.8M 63.5 90.64

Coarse/Prefix 4.9M 89.77 3.7M 70.9 91.53
Fine/Prefix 4.3M 70.9 93.2

MEDIUM
DEGREE

Coarse/Infix 5.6M 88 3.7M 65.2 89.55
Fine/Infix 6.3M 75.5 94.59

Coarse/Prefix 6.3M 83.93 3.4M 57.6 85.98
Fine/Prefix 6.7M 67.7 92.76

Table 12: Results for 1 Variable Symbolic Coeff setting. (No curriculum, No annotation).

H OUT-OF-DISTRIBUTION EVALUATION

We present the results for Out-of-Distribution evaluation here. Table 14 contains results for best 2
variable models (Prefix/Coarse) tested on 1 Variable setting.
Table 15 contains results for best 1 variable models (Prefix/Coarse) tested on SMALL, MEDIUM and
LARGE coefficient setting. As expected, the SMALL and MEDIUM models perform much worse
when tested on higher coefficients.
We also evaluated the best 1 variable models (Prefix/Coarse) on MEDIUM DEGREE and TERMS set-
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Config Proof Type Full Proof Error Percentage

Full Proof
Accuracy

Greedy
Stepwise
Accuracy

First
FacStep

Total
FacStep

First
MulStep

Total
MulStep

First
SumStep

Total
SumStep

MEDIUM
COEFF

Coarse/Infix 78.5 94.19 3.72 2.82 77.67 67.25 18.6 29.93
Fine/Infix 63.5 90.64 3.29 2.29 79.73 67.43 16.99 30.28

Coarse/Prefix 70.9 91.53 2.06 1.45 76.29 64.01 21.65 34.54
Fine/Prefix 70.9 93.2 1.37 0.97 73.88 66.1 24.74 32.93

MEDIUM
DEGREE

Coarse/Infix 65.2 89.55 2.01 1.41 85.06 71.49 12.93 27.11
Fine/Infix 75.5 94.59 0.41 0.31 86.12 77.02 13.47 22.67

Coarse/Prefix 57.6 85.98 6.6 4.34 83.25 65.42 10.14 30.24
Fine/Prefix 67.7 92.76 1.86 1.39 88.54 79.35 9.6 19.26

Table 13: Errors made by models in 1 Variable Symbolic Coeff setting. (No curriculum, No annota-
tion).

tings, to check generalization with respect to # terms and degree of polynomial. Table 16 contains
results for the same. The MEDIUM COEFF model is not able to generalize to more terms or polyno-
mials of higher degree.

Config Train/Test= 2 Var/1 Var Train/Test= 1 Var/1 Var Train/Test= 2 Var/2 Var
Full

Proof Acc.
Greedy

Stepwise Acc.
Full

Proof Acc.
Greedy

Stepwise Acc.
Full

Proof Acc.
Greedy

Stepwise Acc.
SMALL
COEFF 95.34 99.12 95.3 98.97 91.2 98.08

MEDIUM
COEFF 87.4 97.11 93.6 98.58 84.5 96.03

LARGE
COEFF 89.4 97.13 83.5 96.25 83.7 96.23

NO BACK
TRACK 84.2 98.29 79.7 95.38 63.2 89.87

MEDIUM
DEG 87.7 97.83 87.7 96.82 83.4 96.41

MEDIUM
TERMS 78.5 96.16 76.3 95.78 67.8 93.58

Table 14: Results for OOD Testing. NVAR = 2 COARSE/PREFIX models tested on corresponding
NVAR = 1 setting (No curriculum, No annotation).

Train
Config

Test Config
SMALL
COEFF

MEDIUM
COEFF

LARGE
COEFF

Full
Proof
Acc.

Greedy
Stepwise

Acc.

Full
Proof
Acc.

Greedy
Stepwise

Acc.

Full
Proof
Acc.

Greedy
Stepwise

Acc.
SMALL
COEFF 95.3 98.97 33.4 69.05 31 68.02

MEDIUM
COEFF 96.6 99.29 93.6 98.58 33.6 68.96

LARGE
COEFF 95.8 99.1 94.4 98.64 83.5 96.25

Table 15: OOD Testing: Prefix/Coarse 1 Variable Models tested on various coefficient limit config-
urations (SMALL, MEDIUM and COARSE). (No curriculum, No annotation).

I CURRICULUM LEARNING

Learning the simplification steps should entail learning the sub-tasks, such as addition and mul-
tiplication (of numeric coefficients and symbolic variables); where multiplying variables precludes
learning to add exponents of similar variables. As these sub-tasks are well-defined and dependencies
among them are clear, we explore different types of curriculums based on the Mastering-Rate-based
(MR) curriculum learning algorithm proposed in Willems et al. (2020). Authors in Willems et al.

17



Under review as a conference paper at ICLR 2021

Train
Config

Test Config
MEDIUM
COEFF

MEDIUM
DEG

MEDIUM
TERMS

Full
Proof
Acc.

Greedy
Stepwise

Acc.

Full
Proof
Acc.

Greedy
Stepwise

Acc.

Full
Proof
Acc.

Greedy
Stepwise

Acc.
MEDIUM
COEFF 93.6 98.58 20.8 47.77 26.1 54.65

MEDIUM
DEG 94.8 98.93 87.7 96.82 25.5 54.39

MEDIUM
TERMS 92.7 96.87 18.6 46.97 76.3 95.78

Table 16: Prefix/Coarse 1 Variable Models tested on various #term and degree configurations
(MEDIUM DEGREE and MEDIUM TERMS). (No curriculum, No annotation).

(2020) define curriculum learning by 1) a curriculum i.e. a set of tasks C = {c1, . . . , cn}, where
a task is set of examples of similar type with a sampling distribution, and 2) a program which for
each training step defines the tasks to train the learner given its learning state and the curriculum.
Formally, the program d : N → DC , is a sequence of distributions over C. The authors estimate the
program function through an attention function which defines attention over the tasks at a time-step,
and an attention-to-distribution converter which converts the attention to a distribution over C. Au-
thors observe that other algorithms (Matiisen et al., 2019; Graves et al., 2017) are special cases of
the above setting with different choices for program.

To learn on tasks that are learnable but not learnt yet, authors define an ordered curriculum OC
which is a directed graph over tasks in C. An edge from A to B indicates that learning task A before
B is preferable. For supervised learners, the learnability for each task depends on mastering rate
(Mc(t)) computed from the normalized mean accuracy for that task at time-step t. At each time-
step, the MR algorithm computes attention over a task (ac(t)) from mastering rates of its ancestors
and successors. During training to sample batches, a hyperparameter Nb for the curriculum deter-
mines the number of batches to be considered at a step, before re-computing the attention over tasks.
Using the program d, we first sample Nb ∗ b examples from tasks in C. The model is then trained on
randomly sampled Nb minibatches are sampled updating the mastering rates.

For polynomial simplification for 1 variable, we define the following tasks ADD, MUL2, MUL3,
SCOEFF and MIXED. For ADD, only one factor per product is allowed, so there is no multiplication.
For MUL2 and MUL3 only 1 product is allowed with maximum two factors and three factors re-
spectively. SCOEFF points to the SMALL COEFF configuration and MIXED is the final variable size
configuration of the target variable configuration. We define the following curriculums:
• C: {(ADD, MUL3), (MUL3, MIXED), (ADD, MIXED)}.
• C2: {(ADD, MUL2), (MUL2, MUL3), (MUL3, MIXED), (ADD, MIXED)}.
• C4: {(ADD, MUL2), (MUL2, MUL3), (MUL3, SCOEFF), (ADD, SCOEFF) (SCOEFF, MIXED)}.
For all our experiments, we use the MR algorithm with gAmax Linreg A2D converter functions de-
scribed in Willems et al. (2020). Model parameters and the training configurations remains the same
as before6. We show the results in Table 17 for COARSE configuration. As coefficient size grows
from SMALL, MEDIUM, LARGE to NO BACKTRACK - the improvements in full proof accuracy
steadily increase from 1% to 10.84%. For NO BACKTRACK, the improvement in top-1 accuracy is
by 20% from a no curriculum setting. However, we observe for MEDIUM TERMS, there is a drop in
accuracy for all curriculums and input representations. It is possible that, more carefully designed
curriculums may improve the results. There is no conceivable pattern observed for infix or prefix
representations. However, compared to learning without curriculum, the improvement observed for
infix representation is larger than prefix.

6We use Nb as 10. For other default parameters in CL, please check github.com/lcswillems/
automatic-curriculum.
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Full Proof Step-wise Calibration
Curri
culum #Train Full Proof

Accuracy
Stepwise
Accuracy

Top-1
Acc

Beam-5
Acc

Sure
Rate P R F1

C 2.8M 94.38 98.76 94.84 96.68 89.36 100 94.22 0.97Infix C2 2M 95.98 99.0 91.64 93.24 86.16 99.9 93.98 0.97
C 2.02M 94.26 98.65 77.76 80.46 70.62 99.94 90.77 0.95

Small
Coeff Prefix C2 2.29M 94.6 98.56 93.44 95.28 88.02 99.89 94.09 0.97

C2 3.9M 95.44 99.02 94.86 96.44 91.18 100 96.12 0.98Infix C4 2M 93.86 98.59 88.22 90.24 84.68 99.91 95.90 0.98
C2 3.7M 94.78 98.82 91.98 93.66 88.08 99.93 95.69 0.98

Medium
Coeff Prefix C4 4.4M 94.8 98.87 85.3 87.82 80.62 99.98 94.49 0.97

C2 6.9M 91.26 97.92 96.4 98.06 90.24 99.89 93.51 0.97Infix C4 7.6M 91.62 98.16 91.54 93.3 87.38 99.84 95.3 0.98
C2 6.5M 92.2 98.31 85.38 87.78 81.42 99.95 95.32 0.98

Large
Coeff Prefix C4 6.97M 92.46 98.42 91.3 93.34 87.54 100.0 95.88 0.98

C2 4.8M 86.44 97.27 93.68 95.46 88.72 99.98 94.68 0.97Infix C4 5.1M 85.96 97.21 94.64 96.1 89.5 100 94.57 0.97
C2 7M 86.16 97.30 82.24 84.44 77.46 99.95 94.14 0.97

No
Backtrack Prefix C4 5.5M 86.48 97.45 92.6 94.3 87.78 99.95 94.75 0.97

C2 3.5M 87.12 97.01 84.16 87.44 78.46 99.95 93.18 0.96Infix C4 3.4M 94.12 98.65 90.62 81.984 86.66 99.93 95.56 0.98
C2 5.35M 94.28 98.71 80.8 82.84 75.76 100 93.51 0.97

Medium
Degree Prefix C4 3.5M 92.38 98.30 83.7 85.48 78.94 99.92 94.24 0.97

C2 4.4M 59.54 75.76 65.6 69.56 60.84 95.36 88.45 0.92Infix C4 3.8M 56.94 76.72 69.84 73.44 60.76 97.5 84.82 0.91
C2 2.8M 41.84 51.24 40.62 45.36 36.9 92.57 84.10 0.88

Medium
Terms Prefix C4 3.37M 49.02 65.41 58.56 64.64 45.44 96.83 75.14 0.85

Table 17: Curriculum Learning results for 1 variable for the COARSE configuration for both Infix
and prefix representations.
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