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Abstract

General purpose agents must be able to execute a large number of skills in non-
Markov settings. Yet learning diverse sets of policies in these domains is challeng-
ing because agents also need to learn representations that preserve information
about the underlying state found in histories of actions and observations. We
introduce an Empowerment-based unsupervised skill discovery algorithm for build-
ing skillsets in non-Markov settings. The algorithm maximizes a mutual infor-
mation objective with respect to both a recurrent neural network (RNN) and a
skill-conditioned policy, enabling agents to simultaneously learn a representation
and a large number of policies conditioned on the learned representation. We prove
that our objective encourages RNNs that preserve information about the underlying
state. We also demonstrate empirically that our approach can learn large skillsets
ranging from hundreds to thousands of skills in three small, non-Markov settings.

1 Introduction

Non-Markov settings, in which an agent’s history provides more information about the underlying
state than the latest observation, are ubiquitous in real-world settings. As a result, general purpose
agents must be able to learn large sets of skills in non-Markov settings. But building skillsets in
these settings is difficult because it is unclear what representation should be used as input to these
policies. Conditioning policies on a specific number of the most recent actions and observations
produces a trade-off between information and computational cost. At one end of the spectrum, simply
conditioning policies on the latest observation means the agent is acting with limited information
about the underlying state, which can result in stochastic and redundant skillsets that target wide
and overlapping regions of observations. At the other end of the spectrum, agents could condition
skills on the full history of actions and observations. While this will lessen the problem of underlying
state uncertainty that can produce redundant skillsets, it comes at the expense of processing long
histories prior to each action, which can be impractical in long-horizon settings. A more compelling
approach is to instead learn representations that preserve information about the underlying state,
using an architecture such as a recurrent neural network (Rumelhart & McClelland, 1987; Hopfield,
1982) that only needs to process a limited number of inputs to generate each representation. Yet
existing unsupervised skill discovery algorithms have not yet demonstrated how agents can learn both
information-preserving representations and skills conditioned on these representations in non-Markov
settings (Gregor et al., 2016; Eysenbach et al., 2019; Sharma et al., 2020; Park et al., 2024; Zheng
et al., 2025; Levy et al., 2025).

We introduce a new unsupervised skill discovery algorithm based on empowerment (Klyubin et al.,
2005; Salge et al., 2013; Jung et al., 2012; Mohamed & Rezende, 2015; Karl et al., 2017; Gregor et al.,
2016; Levy et al., 2023) that can help agents learn large skillsets in non-Markov settings. Empower-
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Figure 1: Visualizations of agent skillsets under different RNN and skill-conditioned policy settings.
(Left) Skillset with low mutual information as RNN maps all 3-bit passwords to the same representa-
tion c0 producing redundant skill trajectories. (Middle) Skillset with medium mutual information
as RNN detects first bit of password but entangles the remaining bits. (Right) Skillset with high
mutual information as RNN assigns different representations to different passwords, enabling skills
to target different observations outside the cage. An RNN trained to maximize skillset size via mutual
information will automatically prefer the extra information in the middle setting relative to the left
setting and the right setting relative to the middle setting.

ment has provided an intuitive approach for skill discovery in settings with Markov observations. For
any skill-conditioned policy, the mutual information between skills and skill-terminating observations
measures the number of distinct skills produced by the skill-conditioned policy under consideration.
To build large skillsets, empowerment-based algorithms simply maximize this mutual information
with respect to the skill-conditioned policy (i.e., the algorithms try to find skill-conditioned policies
with more distinct skills). In the non-Markov setting, when an agent’s policy is conditioned on a
representation generated from an RNN, the mutual information depends both on the parameters of
the RNN and the skill-conditioned policy. Thus, to scale empowerment to the non-Markov setting,
we propose to simply maximize the mutual information between skills and observations with respect
to both the recurrent neural network and the skill-conditioned policy.

Maximizing mutual information can encourage information-preserving representations because if
an RNN has reduced the size of an agent’s skillset by assigning similar representations to histories
with different underlying state distributions, this objective should encourage the RNN to disentangle
these histories. Consider the setting in Figure 1 where an agent is locked in a cage but can exit the
cage if it enters the correct three-bit password. During each of the first three timesteps of an episode,
the agent is given a single bit of a three-bit password, and then in the following three timesteps, the
agent must output one bit of the password per time step. The agent receives no signal indicating
whether the entered password is correct or not until all three bits have been entered. Figure 1 shows
three skillsets with different RNNs and skill-conditioned policies at the third timestep when the agent
begins to enter the password. Figure 1 (Left) shows what the agent’s skillset could look like at the
beginning of training when the RNN entangles histories by assigning similar representations to all
combinations of the three-bit password. In this case, the mutual information, which measures the
number of distinct skills in the skillset, is minimal as most skills produce similar outcomes with the
agent entering the incorrect password and remaining locked in the cage. Figure 1 (Middle) shows an
agent’s skillset in which the RNN can now distinguish the first bit of the password, but then assigns
similar representations to the following two bits. In this scenario, the mutual information of the
agent’s skillset is larger as the agent more frequently executes the correct password, but the skillset
is still largely redundant with many skills causing the agent to remain in the cage. Figure 1 (Right)
shows the skillset where the RNN preserves information by assigning different representations to
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different passwords. In this case, the mutual information of the agent’s skillset is large as most skills
target distinct observations outside the cage. A key benefit of training an RNN to maximize skillset
size using mutual information is that it will automatically encourage the information-preserving
changes that for instance take the RNN from the left setting to the middle setting and then to the
right setting because these changes increase skillset size. No regularization terms specializing in
information gain need to be added for the RNN to disentangle histories corresponding to different
underlying state distributions.

This work makes the following three contributions. First, we present new objective functions
for maximizing the mutual information between skills and observations with respect to an RNN
and a skill-conditioned policy. Second, we provide theoretical analysis showing that maximizing
empowerment with respect to an RNN does encourage the RNN to preserve information with respect
to the underlying state found in the agent’s history of actions and observations. Specifically, we prove
that our average empowerment objective is maximized when agents have learned an RNN that outputs
sufficient statistic representations of histories with respect to the underlying state, which means that
the RNN outputs representations that provide as much information about the underlying state as the
agent’s full history. In addition, we prove that if the agent is considering two RNNs and one RNN
provides more information about the underlying state than the other, then the average empowerment
of the RNN providing more information will be at least as large as the average empowerment from
the other RNN. Third, we demonstrate empirically that our approach can learn large skillsets in
three settings with non-Markov observations. All three settings are small in terms of observation
dimensionality but require that the agents learn representations that remember one or more past
actions and observations in order to build skillsets containing hundreds to thousands of skills. To our
knowledge, our approach is the first unsupervised skill discovery algorithm to successfully perform
both representation learning and unsupervised skill discovery in non-Markov settings.

2 Background

2.1 Modeling the Agent-Environment Interaction

We assume that the agent’s interaction with the environment can be modeled as a Hidden
Markov Control Process (HMCP), which is a Partially Observable Markov Decision Process
(POMDP) (Kaelbling et al., 1998) without a reward function. An HMCP is defined by the tu-
ple (S,O,A, p(s0), p(st+1|st, at), p(ot|st)), in which S is the space of states, O is the space of
observations, and A is the space of actions. p(s0) is the initial state distribution, p(st+1|st, at) is
the Markov state transition dynamics in which the distribution of the next state conditioned on the
current state and action is independent of the history, and p(ot|st) is the observation distribution
that is conditionally independent of the history given state st. We also assume that observations are
non-Markov, which in this work will mean that the distribution over the underlying state st given
observation ot, p(st|ot), is not equal to the distribution over the underlying state given the history of
actions and observations ht = (a0, o1, . . . , at−1, ot), p(st|ht), for all histories ht. Using information
theoretic terms, non-Markov observations are equivalent to noting that the mutual information be-
tween histories and environment states conditioned on the last observation, I(Ht;St|Ot) > 0, which
means that on average, the history ht provides extra information (i.e., reduces uncertainty) on the
underlying state st when given the current observation ot.

In this work, actions will be generated by skills or policies π : C → ∆(A) that map contexts, which
are learned representations, to distributions over actions. The goal in this work is to learn a large
number of skills that target distinct observations. We will define a set of skills (i.e., a skillset) as
a distribution over policies p(π). Context representations that serve as inputs to policies will be
generated by the representation distribution pη(ct+1|ct, at, ot+1). This distribution will be modeled
as a diagonal Gaussian N (ct+1; [µ, σ

2] = fη(ct, at, ot+1)), in which the mean and log variance are
output by an RNN fη that takes as input the current context ct, action at, and next observation ot+1. A
special type of context representation is a sufficient statistic of a history with respect to the underlying
state. Sufficient statistics xt ∈ C have the property that the distribution over the underlying state
st given the sufficient statistic xt is independent of the history ht: p(st|xt) = p(st|ht), which is
equivalent to noting that the histories provide no extra information about the underlying state given
the sufficient statistic (i.e., I(Ht;St|Xt) = 0), in contrast to single observations. Sufficient statistics
xt are sampled from the distribution p(xt+1|xt, at, ot+1).
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2.2 Empowerment

In this work, we will learn representations and skillsets using empowerment. In non-Markov settings,
we will define the empowerment of a (c0, η) pair, in which c0 is a context representation and η is the
parameters of an RNN, as the maximum mutual information between a policy random variable Π and
a skill-terminating observation random variable On, in which the maximum is with respect to the
skillset p(π) that defines Π:

E(c0, η) = max
p(π)

I(Π;On|c0, η). (1)

The mutual information between Π and On for a skillset p(π), I(Π;On|c0, η), measures the number
of distinct skills within skillset p(π) when the skillset is executed from c0 and future contexts ct are
generated by an RNN defined by η (Cover & Thomas, 2006). Because it is unclear how to search
through the space of all skillsets p(π), it is common to instead use a lower bound of equation 1, in
which the mutual information is between a skill random variable Z and skill-terminating observations
On and is conditioned on a skill-conditioned policy πθz parameterized by θz:

E(c0, η) = max
θz

I(Z;On|c0, η, θz) (2)

= max
θz

Ez∼p(z),on∼p(on|c0,η,θz,z)[log p(z|c0, η, θz, on)− log p(z)]. (3)

A copy of the lower bound proof from Levy et al. (2025) is provided in section A of the ap-
pendix. In this definition of empowerment, agents are still searching for the p(π) skillset with
the most distinct skills but now the search is limited to sets of policies produced by sampling
skills z ∈ Z from a fixed distribution over skills p(z) and then inputting the skill z into a skill-
conditioned policy πθz : C × Z → ∆(A) that maps contexts and skills to distributions over
actions. Note that the channel distribution p(on|c0, η, θz, z) marginalizes over the joint distri-
bution p(h, x0, s0, a0, s1, o1, . . . , cn−1, xn−1, an−1, sn, on|c0, η, θz, z) containing the intermediate
states st ∼ p(st|st−1, at−1), actions at ∼ pθz (at|ct, z), observations ot ∼ p(ot|st), contexts
ct ∼ pη(ct|ct−1, at−1, ot), and sufficient statistic xt ∼ p(xt|xt−1, at−1, ot) random variables.
h ∼ p(h|c0, η) refers to the histories of actions and observations that are mapped to c0 using
the current RNN parameters η. Note that the time subscripts in the variables do not necessarily refer
to absolute times but rather the relative number of timesteps since the starting context c0 as histories
of different lengths can be mapped to the same c0.

While the objective in line 2 computes the largest skillset for a specific context c0 that is produced
from a specific RNN parameterized by η, general purpose agents need to have large skillsets across a
variety of contexts c0 and they are also not limited to using a single set of RNN parameters η. As
a result, in this work we are interested in maximizing the following average context empowerment
objective with respect to the parameters of an agent’s RNN:

max
η

Ec0∼p(c0|η)[E(c0, η)] = max
η,fλ

Ec0∼p(c0|η)[I(Z;On|c0, η, θz = fλ(c0))]. (4)

In this objective, the distribution p(c0|η) marginalizes over the joint distribution p(h, c0|η), in
which the history h ∼ p(h|η) = p(h) is sampled from a replay buffer or some manually specified
distribution. Per the right side of 4, the average empowerment objective involves maximizing an
average mutual information with respect to (i) the RNN parameters η (i.e., representation learning)
and (ii) the function fλ that outputs the parameters θz of a skill-conditioned policy for a specific
context c0 (i.e., skill discovery).

2.3 Maximizing Empowerment In Practice

Levy et al. (2025) demonstrated how a mutual information objective similar to the one in line 4 can
be maximized in practice. The key difference in the objective Levy et al. (2025) maximized was that
it involved Markov settings. Thus, instead of training an RNN parameterized by η, the authors only
trained an observation encoder pη(ct|ot) parameterized by η. To jointly maximize mutual information
with respect to η and fλ, Levy et al. (2025) used two actor-critics.

The first actor-critic trained the actor, fλ, to output more diverse skillsets θz for specific contexts c0,
assuming a fixed observation encoder defined by η. To guide the actor to larger skillsets, the critic
Qα(c0, θz) was used to measure the variational mutual information IV (Z;On|c0, θz) for various
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skillsets θz . IV (Z;On|c0, θz) is a lower bound on the true mutual information and is formed by
replacing the posterior p(z|c0, θz, on), which is intractable to compute in continuous settings, with
the variational posterior qψ(z|c0, θz, on) parameterized by ψ (Barber & Agakov, 2003; Poole et al.,
2019). A key change from prior work is that Levy et al. (2025) include the skillset θz in the
conditioned variables of the variational posterior and train qψ(z|c0, θz, on) to match the true posterior
p(z|c0, θz, on) for any θz under consideration. The authors show that these changes produce a tighter
bound on variational mutual information, enabling agents to more accurately measure the size of
a skillset θz . Yet taking θz , which represents the parameters of a skill-conditioned policy and can
be thousands of parameters long, as an input makes training the variational posterior and the critic
impractical. Levy et al. (2025) overcome this problem by showing that all that is needed to estimate
an accurate gradient with respect to the actor fλ is how the variational mutual information changes
with respect to each parameter of θz while the others remain constant. As a result, instead of training
a single variational posterior and critic, they train |θz| variational posteriors qψi(z|c0, θiz, on) and
critics Qαi(c0, θ

i
z) in parallel for i = 0, . . . , |θz| − 1, in which |θz| is the number of parameters in

θz . θiz is a scalar representing the skillset θz in which all parameters take on their greedy value from
fλ(c0) except for the i-th parameter, which is set to θiz . The left side of Figure 2 visualizes how the
parameter-specific critics attach to the fλ actor for this actor-critic responsible for skill discovery.

The second actor-critic trains an actor fγ to output RNN parameters η that produce larger average
mutual information Ec0∼p(c0|η)[I(Z;On|c0, η)]. Similar to the first actor-critic, parameter-specific
variational posteriors qψi(z|c0, ηi, on) and critics Qξi(ηi) for i = 0, . . . , |η| − 1 are used to measure
the average variational mutual information of different RNN settings η. Similar to θiz , ηi is a scalar
representing a vector of parameters η in which all parameters take on their greedy values from fγ(a)
except for the i-th parameter, which is set to ηi. a is simply a fixed vector as the actor fγ does not take
as input a variable vector. The right side of Figure 2 visualizes this second actor-critic architecture.

3 Building Skillsets in Non-Markov Settings with Empowerment

In this section, we present our approach for jointly performing representation learning and skill
discovery with empowerment. Our approach extends the work of Levy et al. (2025) to the non-
Markov setting by training an RNN to output representations instead of an observation encoder. We
then provide theoretical analysis showing that maximizing average empowerment with respect to the
parameters of an RNN encourages the agent to preserve information about the underlying state found
in the agent’s actions and observations.

3.1 Algorithm

Algorithm 1 provides the algorithm for updating both the skill discovery and representation learning
actor-critics, which are visualized in Figure 2. The algorithm alternates between updating the two
actor-critics. For each actor-critic update, the parameter-specific critics are initially updated by first
updating the parameter-specific variational posteriors and then the parameter-specific critics. For
instance, for the skill discovery actor-critic, the variational posteriors qψi(z|c0, θiz, on) are first trained
to match the true posteriors p(z|c0, θiz, on) for noisy θz for M iterations (M = 300 in our experi-
ments). Then the parameter-specific critics Qαi(c0, θ

i
z) are trained to approximate the variational

mutual information IV (Z;On|c0, θiz) for noisy θz for M iterations. After the variational posteriors
and critics have been updated during each actor-critic update, the actor is then updated once using an
objective that sums all the parameter-specific critic objectives. For instance, in the representation
learning actor-critic, the actor fγ is updated using the objective J(γ) =

∑|η|−1
i=0 Qξi(η

i = fγ(a)[i]),
where fγ(a)[i] outputs the i-th component of the vector fγ(a).

3.2 Theoretical Analysis

To learn large and distinct skillsets in non-Markov settings, the representations need to preserve
information about the underlying state. Otherwise, skillsets can be overly stochastic, yielding
redundant skills. In this section, we prove that maximizing mutual information with respect to the
RNN encourages the RNN to preserve information. Specifically, in Theorem 1, we prove that the
average empowerment is maximized when an RNN outputs sufficient statistic representations of
histories with respect to the underlying state. That is, average empowerment is maximized when
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Parameter-Specific Critics
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Figure 2: We use two actor-critic architectures to maximize our average mutual information with
respect the parameters of a skill-conditioned policy and an RNN. The actor-critic on the left is
designed to learn diverse skillsets across various contexts c0. The actor fλ(c0) maps a context to a
skillset θz . The parameter-specific critics measure how many distinct skills are in each skillset θiz
using variational mutual information. The actor-critic on the right is designed to learn RNNs that
output representations producing large average mutual information across all contexts. The actor
fλ(a) maps a constant vector a to the parameters, η, of the RNN. Each parameter-specific critic
measures the average mutual information produced by the RNN defined by the scalar ηi.

Algorithm 1 Skill Discovery and Representation Learning with Empowerment
▷ Update Skill Discovery Actor-Critic

for all dimensions i = 0, . . . , |θz| − 1 in parallel do
for M iterations do ▷ Update Variational Posterior

Update qψi : ψi ← ψi − ϵ∇ψi
(DKL(p(z|c0, θiz, on)||qψi(z|c0, θiz, on))) with noisy θiz

end for
for M iterations do ▷ Update Critic

Update Qαi : αi ← αi − ϵ∇αi((Qαi(c0, θ
i
z)− Target)2) with noisy θiz ,

Target = Ez∼p(z),on∼p(on|c0,θiz,z)[log qψi(z|c0, θiz, on)− log p(z)]
end for

end for
Update fλ: λ← λ+ ϵ∇λ(

∑|θz|−1
i=0 Qαi(c0, θ

i
z = fλ(c0)[i])) ▷ Update Actor

▷ Update Representation Learning Actor-Critic
for all dimensions i = 0, . . . , |η| − 1 in parallel do

for M iterations do ▷ Update Variational Posterior
Update qψi : ψi ← ψi − ϵ∇ψi

(DKL(p(z|c0, ηi, on)||qψi(z|c0, ηi, on))) with noisy ηi
end for
for M iterations do ▷ Update Critic

Update Qξi : ξi ← ξi − ϵ∇ξi((Qξi(ηi)− Target)2) with noisy ηi,
Target = Ez∼p(z),on∼p(on|c0,ηi,z)[log qψi(z|c0, ηi, on)− log p(z)]

end for
end for
Update fγ : γ ← γ + ϵ∇γ(

∑|η|−1
i=0 Qξi(η

i = fγ(a)[i])) ▷ Update Actor
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an RNN outputs representations of histories that preserve as much information as the full history.
In Theorem 2, we prove that if there are two RNNs and one RNN outputs representations that
provide more information about the underlying state, then the average empowerment provided by the
RNN that provides additional information is at least as large as the average empowerment produced
by the other RNN. This result is notable because it implies that empowerment can be a relatively
dense reward for training RNNs. Agents can be rewarded every time the agent gains certain bits of
information about the underlying state similar to how the size of the agent’s skillset grew in Figure 1
each time the agent remembered more bits of the password.

Theorem 1. Let η be the parameters of any RNN fη : C × A×O → C and let ηx be the parameters
of an RNN that outputs sufficient statistic representations of histories with respect to the underlying
state, then the average empowerment produced by η is upper bounded by the average empowerment
produced by ηx: Ec0∼p(c0|η)[E(c0, η)] ≤ Ex0∼p(x0|ηx)[E(x0, ηx)].

Theorem 2. Let ηa and ηb be the parameters of two RNNs, and let p(h, ca0 , c
b
0) be the joint distribution

of a history h uniformly sampled from a dataset of histories and ca0 and cb0 be the contexts produced by
inputting the history into the two respective RNNs. If (i) I(Cb0;S|Ca0 ) > 0 (i.e., ηb provides more infor-
mation about the underlying state than ηa) and (ii) p(st|ca0 , cb0, cbt , z) = p(st|cb0, cbt , z) for all (ca0 , c

b
0)

with p(ca0 , c
b
0) > 0 and for all t ∈ [0, n), then Eca0∼p(ca0 |ηa)[E(c

a
0 , η

a)] ≤ Ecb0∼p(cb0|ηb)[E(c
b
0, η

b)].

The proofs for both theorems are provided in section B of the appendix.

3.3 Limitations

Our approach enables agents to build skillsets in non-Markov settings by jointly performing represen-
tation learning and skill discovery in a manner that is reward-free and does not require knowledge of
the exact transition dynamics p(st+1|st, at) nor the observation distribution p(ot|st). However, to
train the parameter-specific variational posteriors and critics in parallel, the algorithm needs to collect
a large number of (skill z, observation on) tuples and so our approach does assume it can sample the
distribution p(ot+1|ht, at) thousands of times in parallel, which is not a realistic assumption. Future
work can try to learn this potentially high-dimensional generative model similar to other work in
POMDPs (Han et al., 2019; Igl et al., 2018; Lee et al., 2020). Alternatively, recent work by Levy et al.
(2024) has shown how agents can maximize mutual information using easier-to-learn latent-predictive
models that predict compact representations of observations. Future work can try to integrate similar
models into our approach.

4 Experiments

4.1 Environments and Baselines

We evaluate whether our algorithm can learn large skillsets in non-Markov settings using three
environments. All environments are small in terms of their observation dimensionality, but all involve
continuous observation and action spaces and all are non-Markov. Visuals of all three settings are
provided in Figure 3. We briefly describe these environments next and provide additional detail in
section E of the appendix.

The first environment is a variant of the T-Maze setting (Bakker, 2001; Allen et al., 2024). In this
setting, an agent starts in a thin hallway and at the eastern end of the hallway, a larger hallway
perpendicular to the initial hallway opens either to the north or south. In this variant, if the agent tries
to enter the larger hallway in the wrong direction (e.g., the agent makes a turn south but the hallway
actually opens to the north), the agent becomes stuck for the remainder of the episode. During each
episode in evaluation, the agent starts at the western end of the thin hallway and for only the first
timestep the agent is given a binary signal indicating whether the hallway opens to the north or south.
For the next 15 timesteps, the agent remains frozen in place no matter what (∆x,∆y) action the
agent executes. Then for the remainder of the episode, the agent is free to move. The most diverse
skillset θz that maximizes the mutual information is one in which each skill targets a precise region
of the (x, y), particularly in the large hallway. To do this, the agent needs to have an RNN that
“remembers" the initial binary signal that describes the direction the hallway opens. Otherwise, the
only observations an agent’s skillset can definitively target are limited to the thin hallway.
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Figure 3: Visuals of the three non-Markov environments in which we evaluated our approach.

In the second environment, Agent Observation, there is a randomly sampled (x, y) goal region that an
agent needs to navigate to before time expires, and if the agent fails to do so then the agent is returned
to the center for the remainder of the episode. However, unlike a traditional goal-conditioned RL
domain where agents are given the goal as part of each observation, in this setting the agent needs to
infer the goal from watching two other agents pursue the goal, while the primary agent remains frozen
in place. During the first 5 timesteps of this period, the primary agent observes another agent move
toward and achieve the goal (shown by the orange circles in Figure 3). When the other agent achieves
the goal, the primary agent receives a signal that the goal has been achieved. For the following 5
timesteps, the goal-achieving agent is removed and a different “decoy" agent starts to move randomly
in a manner that is unlikely to achieve the goal (red circles in Figure 3). After these 10 timesteps, the
primary agent then must attempt to move within a threshold of the goal (dashed orange square in
Figure 3) in the next eight actions. The mutual information maximizing skillset executes skills that
first head to the goal region, which was shown by the first observed agent, and then target distinct
(x, y) positions. In order to build this skillset, the agent needs an RNN representation that remembers
the goal location targeted by the first agent.

The third setting is a 4-bit version of the password setting discussed previously. During evaluation,
the agent starts each episode in the cage and receives a single bit of the password for each of the first
four timesteps. During each of the next four timesteps, the agent can output 1 bit of the password. If
there are any mistakes, the agent remains stuck in the cage for the remainder of the episode. Note
that this setting is more challenging than the first two as the agent needs an RNN that remembers a
sequence of observations (i.e., the password) as well as a sequence of actions (i.e., the number of bits
of the password the agent has already output). The mutual information maximizing skillset will be
one in which most skills start each episode by outputting the correct 4-bit password and then target
distinct regions outside the cage.

Note that during the training episodes (i.e., non-evaluation episodes), we also provide the agent with
a type of curriculum to make it easier to jointly learn representations and skills conditioned on those
representations. These curricula are implemented as a wider distribution of histories that include
histories that extend the duration of observations providing information about the underlying state.
For instance, in T-Maze, the number of timesteps that include the binary flag indicating the direction
of the hallway is randomly sampled from the range [1, 16] during training episodes, where 1 is the
same as the evaluation episodes. Similarly, in Agent Observation we randomly sample the duration
of the first agent that achieves the goal from the range of [5, 10] timesteps, in which 5 is the same
as the evaluation episodes and 10 means no decoy agent is shown. In 4-Bit Password, we assist the
agent by executing the correct bit (even if the agent outputs the wrong bit) and provide the next bit as
an additional dimension to the observation for a randomly sampled number of timesteps in the range
[0, 3], where 0 means no help is provided and 3 means the agent does not have to correctly execute
the first 3 bits of the password and is also provided a hint of the final bit. The purpose for adding
these curricula is that when mutual information is maximized with respect to both the RNN and
skill-conditioned policy, there is a chicken-and-egg problem that arises. The RNN may be considering
a change that preserves information by assigning different representations to histories with different
belief states. However, if the fλ(c) actor that outputs skill-conditioned policies θz has not been
trained on these possible new representations, the skill-conditioned policy may be poor, which may
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T-Maze 4-Bit PasswordAgent Observation

Figure 4: Average skillset size (in nats) vs. number of algorithm iterations. Skillset size is measured
using variational mutual information. Mean and 1 std. of error computed with 5 random seeds.

then cause the RNN to disregard this information-preserving change. By extending the length of the
information signal, the agent’s RNN will then consider histories in which the last observation has the
signal about the underlying state. If the RNN happens to preserve information by assigning different
representations to these final observations with different signals, the skill-conditioned policies can be
trained to be effective in these representations. Then, in settings where there is no extended signal
and the RNN is considering a change from some entangled representation to representations that
preserve information and those representations already have good skill-conditioned policies, the RNN
will be encouraged to make that change.

We compare to two other algorithms in these three settings. First we compare to the empowerment
approach introduced by Levy et al. (2025), which jointly performs representation learning and skill
discovery with empowerment but is designed for the Markov setting. This comparison will test
whether our approach actually encourages the RNN to preserve information. We also compare to our
approach but with a fixed RNN. This comparison will test whether a randomly initialized RNN by
default assigns representations that disentangle histories, which would mean no training of an RNN
is necessary. Because the focus of this paper is skill discovery in non-Markov settings, all agents are
evaluated based on the size of their skillsets, measured using average variational mutual information
Ec0∼p(c0|η)[IV (Z;On|c0, η, θz = fλ(c0))].

4.2 Results

Figure 4 plots the results for all algorithms in the three domains. The y-axis measures skillset size
using average variational mutual information. Note that skillset size is measured in logarithmic
units (nats). The x-axis reflects the number of iterations through algorithm 1. Our approach is the
“Non-Markov" line (blue); the approach of Levy et al. (2025), which follows algorithm 1 but trains an
observation encoder, is shown by the “Markov" line (red); and the approach that uses algorithm 1 but
does not update the representation learning actor-critic is the “Fixed" line (black).

Our approach successfully learns large skillsets in all domains. In T-Maze, Agent Observation, and
4-Bit Password our approach learned skillsets containing 5.4 nats (∼ 220 skills), 5.7 nats (∼ 300
skills), and 7.0 nats (∼ 1, 100 skills) of skills, respectively, in around 5,000 iterations of Algorithm
1. These skillset sizes were 5.2x, 16.4x, and 555.6x larger than the performance of the next best
approach from Levy et al. (2025). The Fixed comparison was not able to learn a meaningful skillset
in any domain. The significant outperformance relative to the comparisons shows the importance of
learning representations of histories that preserve information in non-Markov settings.

For additional evidence on the successful performance of our approach, we also provide
visuals of the different entropy terms included in the symmetric definitions of I(Z;On):
H(On), H(On|Z), H(Z), H(Z|On) for all tasks in Figures 5, 6, and 7. H(On), which repre-
sents the distribution of skill-terminating observations produced by the trained skillset, is visualized
with both agent trajectories and by marking skill-terminating observations. In all settings, the agents
learn a skillset that mostly covers the observation space that can be targeted. For instance, in T-Maze,
the agent learns skills that can target most of the larger hallway and never attempts to move to the
non-existent hallway. Similarly, in Agent Observation and 4-Bit Password, nearly all skills first pass

9



through the bottleneck (i.e., move to (x, y) goal in Agent Observation or enter the correct password in
4-Bit Password) and then target a large area of observations. The H(On|Z) visuals, which show the
observations targeted by specific skills, show that each skill targets a precise region of the observation
space. Similarly, the visualizations of H(Z|On), which show samples of the variational posterior
qψ(z|on) forming tight distributions around the executed skill, further demonstrate that the agent is
learning diverse skillsets.

With respect to representation learning, the consistently large skillsets shown in the entropy visu-
alizations despite the underlying state randomly changing every episode shows the RNN is able to
disentangle histories representing different distributions of underlying states. If the agent was failing
at preserving information, such as the agent assigning similar representations to the 16 different
possible passwords in 4-Bit Password, the agents would not have been able to learn large skillsets. In
Figures 8, 9, 10, and 11, we also show some of the actual learned representations of the trained agents
for different underlying states. In all tasks, early in training the agent was not able to disentangle the
histories representing different underlying states. For instance, in T-Maze, the agent would assign
nearly the exact same representation when the agent was in some (x, y) position regardless of the
signal the agent had received about the direction the hallway opened. But as training continued,
agents in all tasks were able to correctly separate histories.

5 Related Work

Unsupervised Skill Discovery and Empowerment There have been several works that have at-
tempted to use the mutual information between skills and observations to build skillsets in settings
with compact and Markov observations (Gregor et al., 2016; Eysenbach et al., 2019; Warde-Farley
et al., 2019; Achiam et al., 2018; Hansen et al., 2020; Sharma et al., 2020; Zhang et al., 2021; Campos
et al., 2020; Choi et al., 2021; Levy et al., 2023). As a result of the inconsistent performance of these
methods, a new class of empowerment-adjacent methods emerged that either made some changes to
the mutual information objective such as adding regularization terms to improve exploration (Laskin
et al., 2022; Zheng et al., 2025; Kim et al., 2023; Strouse et al., 2022; Baumli et al., 2021; Hu et al.,
2024; Wang et al., 2025) or used related metrics to learn distinct skills (Park et al., 2022, 2023, 2024).
Yet, Levy et al. (2025) demonstrated that many of these works still struggled to learn large skillsets in
simple settings.

Representation Learning and Empowerment There have also been several works that have used
empowerment or empowerment-related methods to learn representations (Klyubin et al., 2008;
Capdepuy, 2011; Bharadhwaj et al., 2022; Rudolph et al., 2024; Lamb et al., 2023). Unlike our
approach, they did not perform representation learning in non-Markov settings and they did not
simultaneously learn closed loop skills.

Representation Learning in POMDPs Also related are the numerous works that learn represen-
tations in POMDPs (Lin & Mitchell, 1993; Schmidhuber, 1990, 1991; Bakker, 2001; Hausknecht
& Stone, 2015; Ni et al., 2022; Wierstra et al., 2007; Heess et al., 2015; Hafner et al., 2019; Allen
et al., 2024). A key difference from our work is that these approaches rely on hand-crafted rewards to
provide signals for learning representations that in practice can be costly to implement and/or overly
sparse. Our approach uses skillset size, which is affected by whether or not an agent’s representation
preserves information about natural features of the environment such as the turns in T-Maze or the
password bottleneck in 4-Bit Password. These approaches also do not jointly learn large skillsets
while performing representation learning.

6 Conclusion

Given that non-Markov settings are omnipresent in the real world, agents must be able to learn large
skillsets in these settings. But learning large sets of skills in non-Markov settings is challenging
as agents need to both learn a representation that preserves information and learn many policies
conditioned on these representations. We show that an empowerment objective both in theory and
in practice enables agents to jointly learn information-preserving representations and large skillsets
conditioned on these representations.
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A Empowerment Lower Bound Proof (from Levy et al. (2025))

The following proof shows that the empowerment objective in equation 2, which maximizes a mutual
information between a skill random variable Z and a skill-terminating observation On with respect to
a skill-conditioned policy θz , is a lower bound to equation 1, which maximizes the mutual information
between a policy random variable Π and On with respect to any distribution over policies p(π).

max
p(π)

I(Π;On|c0) ≥ max
θz

I(Π;On|c0) (5)

≥ max
θz

I(Z, θz;On|c0) (6)

= max
θz

I(Z;On|c0, θz) (7)

The upper bound in line 5 results from reducing the search space from all possible skillsets (i.e., a
search over all distributions over policies p(π), to only skillsets p(π) produced from sampling a skill
z ∼ p(z) and then plugging the skill z into a skill conditioned policy πθz : C × Z → ∆(A) that
maps contexts and skills to distributions over actions. The lower bound in line 6 results from the Data
Processing Inequality (Cover & Thomas, 2006) because the random variables Z, πz → Π → On
form a Markov chain. In the final line 7, θz is moved to the list of conditioned variables as it is
deterministic.
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B Theoretical Analysis Proofs

Theorem 3. Let η be the parameters of any RNN fη : C × A×O → C and let ηx be the parameters
of an RNN that outputs sufficient statistic representations of histories with respect to the underlying
state, then the average empowerment produced by η is upper bounded by the average empowerment
produced by ηx: Ec0∼p(c0|η)[E(c0, η)] ≤ Ex0∼p(x0|ηx)[E(x0, ηx)].

Proof.

Ec0∼p(c0|η)[E(c0, η)] = Ec0∼p(c0|η)[I(Z;On|c0, η, θ
∗
z)] (8)

≤ Ec0∼p(c0|η),x0∼p(x0|c0,η)[I(Z;On|c0, x0, η, θ
∗
z)] (9)

≤ Ex0∼p(x0|ηx)[I(Z;On|x0, ηx, θ
x
z )] (10)

≤ Ex0∼p(x0|ηx)[I(Z;On|x0, ηx, θ
x,∗
z )] (11)

= Ex0∼p(x0|ηx)[E(x0, ηx)] (12)

Line 8 applies the definition of the empowerment of a tuple of context and RNN parameters. θ∗
represents the mutual information maximizing skill-conditioned policy parameters for the (context,
RNN) tuple of (c0, η).

The lower bound in line 9 applies the convexity property of mutual information with respect to
the channel distribution (Cover & Thomas, 2006; Capdepuy, 2011). The convexity property states
that in a mutual information I(A;B), if the channel distribution (i.e., the distribution p(b|a) for
all p(a, b) > 0) is a weighted mixture of channels p(b|a, c) (i.e., p(b|a) =

∫
c
p(c)p(b|a, c)), then

the original mutual information of the mixed channel is upper bounded by the average mutual
information of the individual channels in the mixture (i.e., I(A;B) ≤ Ec∼p(c)[I(A;B|C)]). In our
case, the channel distribution p(on|c0, η, θ∗z , z) =

∫
x0
p(x0|c0, η)p(on|c0, x0, η, θ∗z , z) is a weighted

mixture of the channels p(on|c0, x0, η, θ∗z , z) containing the sufficient statistic representation x0.
Consequently, I(Z;On|c0, η, θ∗z) ≤ Ex0∼p(x0,η)[I(Z;On|c0, x0, η, θ∗z)].
Line 10 removes the dependence on the RNN parameterized by η by (i) using the RNN defined
by ηx to produce the skill representation xt and (ii) replacing θ∗z with a specific skill-conditioned
policy θxz . As we will show, this will replace each mutual information term, I(Z;On|c0, x0, η, θ∗),
with a new mutual information term, I(Z;On|x0, ηx, θxz ), that is at least as large. For each con-
text x0, θxz will be constructed as follows. For each x0, find the tuple (c0, x0) with the largest
I(Z;On|c0, x0, η, θ∗) as there can be multiple contexts c0 associated with the same sufficient
statistic x0. Then, for each x0 let θxz be the skill-conditioned policy distribution p(at|x0, xt, t) =∫
ct
p(ct|c0, x0, xt)p(at|c0, x0, xt, ct) =

∫
ct
p(ct|c0, x0, xt)p(at|c0, ct, t), in which p(at|c0, ct, t) is

the probability specified by the skill-conditioned policy defined by θ∗z . That is, the skill-conditioned
policy θxz will have the same distribution over actions as executed by θ∗z when conditioned on the
contexts xt from the RNN defined by ηx. Next, we show that for all (c0, x0), the original mutual infor-
mation I(Z;On|c0, x0, η, θ∗z) is upper bounded by the new mutual information I(Z;On|x0, ηx, θxz ).
We first show that for each mutual information term I(Z;On|c0, x0, η, θ∗z) from which θxz was
constructed in the previous step, I(Z;On|x0, ηx, θxz ) = I(Z;On|c0, x0, η, θ∗z). That is, we re-
place the original mutual information term with an equivalent mutual information term. Given
that the source distributions p(z) are the same by definition as they are fixed, to show that
the mutual information terms are the same, we need to show that the channel distributions
p(on|c0, x0, η, θ∗z , z) = p(on|x0, ηx, θxz , z) are the same for all (z, on) tuples. We show this be-
low by proving by induction that the joint distributions p(xt−1, st−1, at−1, ot, xt|c0, x0, η, θ∗z , z) =
p(xt−1, st−1, at−1, ot, xt|x0, ηx, θxz , z) for t = 1, . . . , n. Then because the joint distribution
p(xn−1, sn−1, an−1, on, xn|c0, x0, η, θ∗z , z) = p(xn−1, sn−1, an−1, on, xn|x0, ηx, θxz , z), the chan-
nel distributions are equal: p(on|c0, x0, η, θ∗z , z) = p(on|x0, ηx, θxz , z).
The proof by induction goes as follows. In the base case at t = 1, the distribution
p(x0|c0, x0, η, θ∗z , z) = p(x0|x0, ηx, θxz , z) because the same x0 appears in the conditioning vari-
ables. p(s0|c0, x0, η, θ∗z , z) = p(s0|x0, ηx, θxz , z) because per the definition of sufficient statis-
tic representations p(st|xt) = p(st|ht), in which the history ht includes context representations.
p(a0|c0, x0, η, θ∗z , z) = p(a0|x0, ηx, θxz , z) using the definition of θxz . p(o1|c0, x0, η, θ∗z , z, s0, a0) =
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p(o1|x0, ηx, θxz , z, s0, a0) as the next observation o1 only depends on s0 and a0 and is indepen-
dent of the other variables. Lastly, p(x1|c0, x0, η, θ∗z , z, s0, a0, o1) = p(x1|x0, ηx, θxz , z, s0, a0, o1)
because the next context x1 only depends on x0, a0, o1, which are the same in both cases.
Thus, the base case of the induction proof is true as p(x0, s0, a0, o1, x1|c0, x0, η, θ∗, z) =
p(x0, s0, a0, o1, x1|x0, ηx, θxz , z).
Assuming the proof holds through t = k − 1, then at step t = k,
p(xk−1|c0, x0, η, θ∗z , z) = p(xk−1|x0, ηx, θxz , z) because the joint distribution
p(xk−2, sk−2, ak−2, ok−1, xk−1|c0, x0, η, θ∗z , z) = p(xk−2, sk−2, ak−2, ok−1, xk−1|x0, ηx, θbz, z).
p(sk−1|c0, x0, η, θ∗z , z, xk−1) = p(sk−1|x0, ηx, θxz , z, xk−1) because again
p(sk−1|xk−1) = p(sk−1|hk−1) as xk−1 is a sufficient statistic.
p(ak−1|c0, x0, η, θ∗z , z, xk−1) = p(ak−1|x0, ηx, θxz , z, xk−1) using the definition of θxz . Again,
p(o1, xk|c0, x0, η, θ∗z , z, xk−1, sk−1, ak−1) = p(o1, xk|x0, ηx, θxz , z, xk−1, sk−1, ak−1) as ok
only depends on sk−1 and ak−1 and xk only depends on xk−1, ak−1, ok. Thus, the in-
duction proof holds through step t = k as p(xk−1, sk−1, ak−1, ok, xk|c0, x0, η, θ∗z , z) =
p(xk−1, sk−1, ak−1, ok, xk|x0, ηx, θxz , z).
Thus, I(Z;On|x0, ηx, θxz ) = I(Z;On|c0, x0, η, θ∗z) for those (c0, x0) tuples from which θxz was
constructed. For the other smaller I(Z;On|c0, x0, η, θ∗z) terms that were not used to construct θxz ,
these will also be replaced by the larger I(Z;On|x0, ηx, θxz ). If these terms exist, the inequality in
line 10, will be replaced by a strictly less than.

In line 11, the lower bound results from replacing the skill-conditioned policy θxz with the optimal
skill-conditioned policy θx,∗z for the specific x0 context and RNN defined by ηx. If this replacement
produces larger mutual information, then the inequality becomes a strictly less than.

The final line 12 uses the definition of the empowerment of a context x0 with representation dis-
tribution defined by ηx. This completes the proof that an RNN defined by η produces an average
empowerment that is upper bounded by the averaged empowerment of an RNN defined by ηx that
generates sufficient statistic representations.

Theorem 4. Let ηa and ηb be the parameters of two RNNs, and let p(h, ca0 , c
b
0) be the joint distribution

of a history h uniformly sampled from a dataset of histories and ca0 and cb0 be the contexts produced by
inputting the history into the two respective RNNs. If (i) I(Cb0;S|Ca0 ) > 0 (i.e., ηb provides more in-
formation about the underlying state than ηa) and (ii) p(s|ca0 , cb0, cbt , z) = p(s|cb0, cbt , z) for all (ca0 , c

b
0)

with p(ca0 , c
b
0) > 0 and for all t ∈ [0, n), then Eca0∼p(ca0 |ηa)[E(c

a
0 , η

a)] ≤ Ecb0∼p(cb0|ηb)[E(c
b
0, η

b)].

Proof.

Eca0∼p(ca0 |ηa)[E(c
a
0 , η

a)] = Eca0∼p(ca0 |ηa)[I(Z;On|c
a
0 , η

a, θa,∗z )] (13)

≤ Eca0∼p(ca0 |ηa),cb0∼p(cb0|ca0 ,ηa)[I(Z;On|c
a
0 , c

b
0, η

a, θa,∗z )] (14)

≤ Ecb0∼p(cb0|ηb)[I(Z;On|c
b, ηb, θbz)] (15)

≤ Ecb0∼p(cb0|ηb)[I(Z;On|c
b, ηb, θb,∗z )] (16)

= Ecb0∼p(cb0|ηb)[E(c
b
0, η

b)] (17)

Line 13 applies the definition of the empowerment of a tuple of context and RNN parameters. θa,∗
represents the mutual information maximizing skill-conditioned policy parameters for the (context,
RNN) tuple of (ca0 , η

a).

The lower bound in line 14 applies the convexity property of mutual information with respect to the
channel distribution (Cover & Thomas, 2006; Capdepuy, 2011). In our case, if the RNN defined
by ηb provides more information about the underlying state than ηa (i.e., I(Cb;S|ca) for each
ca ∼ p(ca)), then the channel distribution p(on|ca0 , ηa, θa,∗z , z) is a weighted mixture of channels
p(on|ca0 , cb0, ηa, θa,∗z , z) (i.e., p(on|ca, ηa, θa,∗z , z) =

∫
cb0
p(cb0|ca0 , ηa)p(on|ca0 , cb0, ηa, θa,∗z , z)) and so

the mutual information of the mixed channel I(Z;On|ca) is upper bounded by the average mutual
information of the individual channels Ecb0∼p(cb0|ca0 )[I(Z;On|c

a
0 , c

b
0, η

a, θa,∗)].
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Line 15 removes the dependence on the RNN parameterized by ηa by (i) using the RNN defined by
ηb to produce the skill representation and (ii) replacing θa,∗ with a specific skill-conditioned policy θb.
As we will show, this will replace each mutual information term, I(Z;On|ca0 , cb0, ηa, θa,∗), with a new
mutual information term, I(Z;On|cb0, ηb, θbz), that is at least as large. For each context cb0, θbz will be
constructed as follows. For each cb0, find the tuple (ca0 , c

b
0) with the largest I(Z;On|ca0 , cb0, ηa, θa,∗)

as there can be multiple contexts ca0 associated with the same cb0. Then, for each cb0 let θbz be
the skill-conditioned policy distribution p(at|cb0, cbt , t) =

∫
cat
p(cat |ca0 , cb0, cbt)p(at|ca0 , cb0, cbt , cat , t) =∫

cat
p(cat |ca0 , cb0, cbt)p(at|ca0 , cat , t), in which p(at|ca0 , cat , t) is the probability specified by the skill-

conditioned policy defined by θa,∗z . That is, the skill-conditioned policy θbz will have the same distri-
bution over actions as executed by θa,∗z when conditioned on the contexts cbt from the RNN defined
by ηb. Next, we show that for all (ca0 , c

b
0), the original mutual information I(Z;On|ca0 , cb0, ηa, θa,∗z )

is upper bounded by the new mutual information I(Z;On|cb, ηb, θbz).

We first show that for each mutual information term I(Z;On|ca0 , cb0, ηa, θa,∗z ) from which θbz
was constructed in the previous step, I(Z;On|cb0, ηb, θbz) = I(Z;On|ca0 , cb0, ηa, θa,∗z ). That is,
we replace the original mutual information term with an equivalent mutual information term.
Given that the source distributions p(z) are the same by definition as they are fixed, to show
that the mutual information terms are the same, we need to show that the channel distributions
p(on|ca0 , cb0, ηa, θa,∗z , z) = p(on|cb0, ηb, θbz, z) are the same for all (z, on) tuples. We show this below
by proving by induction that the joint distributions p(cbt−1, st−1, at−1, ot, c

b
t |ca0 , cb0, ηa, θa,∗z , z) =

p(cbt−1, st−1, at−1, ot, c
b
t |cb0, ηb, θbz, z) for t = 1, . . . , n. Then because the joint distribution

p(cbn−1, sn−1, an−1, on, c
b
n|ca0 , cb0, ηa, θa,∗z , z) = p(cbn−1, sn−1, an−1, on, c

b
n|cb0, ηb, θbz, z), the chan-

nel distributions are equal: p(on|ca0 , cb0, ηa, θa,∗z , z) = p(on|cb0, ηb, θbz, z).
The proof by induction goes as follows. In the base case at t = 1, the distribution
p(cb0|ca0 , cb0, ηa, θa,∗z , z) = p(cb0|cb0, ηb, θbz, z) because the same cb0 appears in the conditioning
variables. p(s0|ca0 , cb0, ηa, θa,∗z , z) = p(s0|cb0, ηb, θbz, z) because p(s0|ca0 , cb0, z) = p(s0|cb0, z) per
the assumption in the theorem statement. p(a0|ca0 , cb0, ηa, θa,∗z , z) = p(a0|cb0, ηb, θbz, z) using
the definition of θbz . p(o1|ca0 , cb0, ηa, θa,∗z , z, s0, a0) = p(o1|cb0, ηb, θbz, z, s0, a0) as the next ob-
servation o1 only depends on s0 and a0 and is independent of the other variables. Lastly,
p(cb1|ca0 , cb0, ηa, θa,∗z , z, s0, a0, o1) = p(cb1|cb0, ηb, θbz, z, s0, a0, o1) because the next context cb1 only
depends on cb0, a0, o1, which are the same in both cases. Thus, the base case of the induction proof is
true as p(cb0, s0, a0, o1, c

b
1|ca0 , cb0, ηa, θa,∗z , z) = p(cb0, s0, a0, o1, c

b
1|cb0, ηb, θbz, z).

Assuming the proof holds through t = k − 1, then at step t = k,
p(cbk−1|ca0 , cb0, ηa, θa,∗z , z) = p(cbk−1|cb0, ηb, θbz, z) because the joint distribution
p(cbk−2, sk−2, ak−2, ok−1, c

b
k−1|ca0 , cb0, ηa, θa,∗z , z) = p(cbk−2, sk−2, ak−2, ok−1, c

b
k−1|cb0, ηb, θbz, z).

p(sk−1|ca0 , cb0, ηa, θa,∗z , z, cbk−1) = p(sk−1|cb0, ηb, θbz, z, cbk−1) because
p(sk−1|ca0 , cb0, cbk−1, z) = p(sk−1|cb0, cbk−1, z) per the assumption in the theorem statement.
p(ak−1|ca0 , cb0, ηa, θa,∗z , z, cbk−1) = p(ak−1|cb0, ηb, θbz, z, cbk−1) using the definition of θbz . Again,
p(o1, c

b
k|ca0 , cb0, ηa, θa,∗z , z, cbk−1, sk−1, ak−1) = p(o1, c

b
k|cb0, ηb, θbz, z, cbk−1, sk−1, ak−1) as ok

only depends on sk−1 and ak−1 and cbk only depends on cbk−1, ak−1, ok. Thus, the in-
duction proof holds through step t = k as p(cbk−1, sk−1, ak−1, ok, c

b
k|ca0 , cb0, ηa, θa,∗z , z) =

p(cbk−1, sk−1, ak−1, ok, c
b
k|cb0, ηb, θbz, z).

Thus, I(Z;On|cb0, ηb, θbz) = I(Z;On|ca0 , cb0, ηa, θa,∗z ) for those (ca0 , c
b
0) tuples from which θbz was

constructed. For the other smaller I(Z;On|ca0 , cb0, ηa, θa,∗z ) terms that were not used to construct θbz ,
these will also be replaced by the larger I(Z;On|cb0, ηb, θbz). If these terms exist, the inequality in
line 15, will be replaced by a strictly less than.

In line 16, the lower bound results from replacing the skill-conditioned policy θbz with the optimal
skill-conditioned policy θb,∗z for the specific cb0 context and RNN defined by ηb. If this replacement
produces larger mutual information, then the inequality becomes a strictly less than.

The final line 17 uses the definition of the empowerment of a context cb0 with representation distribu-
tion defined by ηb. This completes the proof that an RNN defined by ηb providing more information
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Figure 5: Entropy visualizations for the T-Maze domain. H(On) visualizes the distribution of skill-
terminating observations in two ways. The left most figure shows agent trajectories from randomly
selected skills z ∼ p(z). The adjacent figure marks skill-terminating observations from 1000
randomly selected skills. As the images show, the skills target most of the larger hallway regardless
of which direction the hallway opens. H(On|Z) visualizes the skill-terminating observations from
four randomly selected skills, showing five observations for each skill. The figure shows that each
skill targets a precise regions of the (x, y) space. The right most figure visualizes both H(Z) and
H(Z|On) by showing skills (filled squares) sampled from the fixed, uniform p(z) (shown by the
inner black square) as well as sampled from the variational posterior q(z|on). Note that the samples
from the variational posterior form tight distributions around the executed skill. All the entropy
visualizations confirm the agent has learned a large set of distinct skills as the skillset covers a larger
area of observations and each skill targets a precise region of the observation space. In addition, the
very different policies that occur when the hallway opens north and south shows that the RNN is able
to disentangle histories that do not have the same distribution over underlying states.

on the underlying state than an RNN defined by ηa, produces average empowerment that is at least as
large as the other RNN.

C Entropy Visualizations

Figures 5, 6, and 7 provide visualizations of the entropy terms for the three domains.

D Representation Visualizations

Figures 8, 9, 10, and 11 shows samples of the disentangled learned representations for all settings.

E Additional Environment Detail

1. T-Maze

• Action space: at ∈ R2 representing change in (x, y) directions
• State space: st ∈ R4 representing (x position, y position, north or south hallway

direction, part of hallway). The last component has three possibilities agent indicating
which part of the hallway the agent is in: (i) thin hallway only, (ii) intersection of thin
and large hallway, and (iii) large hallway. Note that this component alone does not
indicate which direction the hallway opens and was added to help the agent turn.

• Observation space: ot ∈ R4 representing (x position, y position, hallway direction flag
∈ {−1, 0, 1}, part of hallway).

• Non-Markov Detail: During evaluation episodes, agent is only provided hallway
direction flag ∈ {−1, 1} after first timestep of episode. For the remainder of episode
the agent receives no signal (i.e., flag = 0), including the initial 15 time steps when the
agent is frozen and then when the agent executes skills
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Figure 6: Entropy visualizations for the Agent Observation domain. H(On) visualizes the distribution
of skill-terminating observations in two ways. The top figure on the left column shows agent
trajectories from randomly selected skills z ∼ p(z). The bottom figure on the left column marks
skill-terminating observations from 1000 randomly selected skills. Per the graphics, the agent’s
skillset first moves to the goal (orange square) and then targets a wide area of the observation space.
H(On|Z) visualizes the skill-terminating observations from four randomly selected skills, showing
five observations for each skill. This figure demonstrates that each skill targets a precise region of
the (x, y) space. The right most figure visualizes both H(Z) and H(Z|On) by showing skills (filled
squares) sampled from the fixed, uniform p(z) (in the shape of a 2D box in the ranges [-1,1]) as
well as samples from the variational posterior q(z|on). Note that the samples from the variational
posterior form tight distributions around the executed skill. All the entropy visualizations confirm
the agent has learned a large set of distinct skills as the skillset covers a larger area of observations
and each skill targets a precise region of the observation space. In addition, the different policies that
occur when the goal changes shows that the RNN is able to disentangle histories that do not have the
same distribution over underlying states.

• Skill length n = 8 actions
• Curriculum: During training episodes we vary the number of timesteps the binary

signal lasts from 1 (same as evaluation episodes) to 16.
2. Agent Observation

• Action space: at ∈ R2 representing change in (x, y) directions
• State space: st ∈ R6 representing (agent x position, agent y position, agent goal

achieved boolean, other agent x position, other agent y position, other agent goal
achieved boolean)

• Observation space: ot ∈ R6 representing (agent x position, agent y position, agent
goal achieved boolean, other agent x position, other agent y position, other agent goal
achieved boolean)

• Non-Markov Detail: During evaluation episodes, agent is not explicitly given the goal
as part of each observation. Instead, agent must remember location of goal from when
the first agent’s boolean flag turned true.

• Skill length n = 8 actions
• Curriculum: During training episodes, the number of timesteps the primary agent

watches the first agent achieve the goal is randomly sampled between 5 (no change
from evaluation episodes) to 10 (only goal achieving agent and not the decoy agent is
observed).

3. 4-Bit Password
• Action space: at ∈ R3 representing change in (x, y) directions and one dimension

representing each “bit" of the password output by the agent. Agent outputs a continuous
number for the password bit. If this bit and the same bit of the password are both
positive or both negative, the bit is counted as correct.
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Figure 7: Entropy visualizations for the 4-Bit Password domain. H(On) visualizes the distribution of
skill-terminating observations in two ways. The top figure on the left column shows agent trajectories
from randomly selected skills z ∼ p(z). The bottom figure on the left column marks skill-terminating
observations from 1000 randomly selected skills. Note that because each skill lasts eight actions and
because the agent is frozen in place during the first four actions when it outputs a password, the agent
can not move more than four units in any direction. Per the figures, most skills in the skillset are
executing the correct password and then target a wide range of observations. H(On|Z) visualizes
the skill-terminating observations from four randomly selected skills, showing five observations
for each skill. Per the figure, each skill is targeting a precise region of the (x, y) space. The right
most figure visualizes both H(Z) and H(Z|On) by showing skills (filled squares) sampled from
the fixed, uniform p(z) (in the shape of a 2D box in the ranges [-1,1]) as well as samples from the
variational posterior q(z|on) that form tight distributions around the executed skill. The entropy
visualizations confirm the agent has learned a large set of distinct skills as the skillset covers a larger
area of observations and each skill targets a precise region of the observation space. In addition, the
fact that the agent can still learn skills that cover the available observation space despite the randomly
selected password shows that the RNN is able to disentangle histories that do not have the same
distribution over underlying states.

Figure 8: RNN representations in the T-Maze for when agent is in same starting (x, y) position but
received a different binary signal for the direction of the T-Maze 15 timesteps earlier. Early in training
these representations were virtually identical meaning that early in training the agent was not able
to disentangle these histories. But later in training, the RNN was able to separate these histories as
shown by some of the dimensions of the 4-dim vector that are more than 2 units apart.
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Figure 9: Figure shows sequences of RNN representations in T-Maze during episodes where the agent
first receives the binary signal, then remains frozen for 15 timesteps, and then executes 5 actions to
enter the larger hallway. The left table shows the RNN sequence for when the hallway opens up; the
center table shows the RNN sequence for when the hallway opens down; and the right table shows
the differences between the two. The consistent large differences in the RNN sequences after training
shows that not only is the agent able to assign a different representation after the agent receives a
different binary signal, but is able to maintain that difference both while remaining frozen in place
and once the agent starts to move towards and enter the larger hallway.

Figure 10: Figure shows the different RNN representations for different episode goals indicated by
the movements of the first agent in the Agent Observation setting. These representations are sampled
after the first 10 timesteps of the episode when the agent has just finished observing the two agents in
the environment. Early in training, these representation were similar regardless of the goal observed.
But after training, the agent’s RNN was able to learn different representation for different goals. For
instance, the top and bottom lines show goals in the top right and bottom left, respectively. The agent
was able to learn a representation that nearly differs by 5 units along two of the dimensions.

Figure 11: Figure shows the different RNN representations for different episode passwords in the
4-Bit password setting. These representations were sampled immediately after the fourth timestep
when the agent had been given the last bit of the password. Note that, as shown in the table, the
passwords provided to the agent were four-dim vectors of continuous numbers. Instead of bits, each
dimension was either in the range [0.25, 1.] or [−1.,−0.25]. Early in training, these representation
were nearly identical regardless of the password provided. But after training, the agent’s RNN was
able to learn different representation for different passwords.
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• State space: st ∈ R7 representing the four bit password, the number of bits the agent
has output correctly, and the (x, y) position of the agent.

• Observation space: ot ∈ R4 representing (agent x position, agent y position, single
bit of password, flag indicating whether password is correct (1), incorrect (-1), or
incomplete (0)). Note that the flag indicating whether password is correct or not is only
provided after the four timesteps when agent attempts to enter the correct password.
Otherwise, the agent just received the incomplete flag.

• Non-Markov Detail: Password is only provided 1 bit at a time, and actions are only
entered 1 bit at a time. Thus, agent is not provided multiple bits of the password or
shown the bits it has entered so far.

• Skill length n = 8 actions
• Curriculum: During training episodes, we assist the agent by executing the correct

bit and providing the next bit (through an extra dimension of the observation) for a
randomly selected number of timesteps between 0 (i.e., no help is provided similar to
evaluation episodes) and 3 (i.e., we enter the first three bits correctly regardless of what
the agent enters and then provide the next bit through an observation).
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