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Abstract

Generative modeling has been the dominant001
approach for large-scale pretraining and zero-002
shot generalization. In this work, we challenge003
this convention by showing that discriminative004
approaches perform substantially better than005
generative ones on a large number of NLP006
tasks. Technically, we train a single discrimi-007
nator to predict whether a text sample comes008
from the true data distribution, similar to GANs.009
Since many NLP tasks can be formulated as010
selecting from a few options, we use this dis-011
criminator to predict the concatenation of in-012
put and which option has the highest probabil-013
ity of coming from the true data distribution.014
This simple formulation achieves state-of-the-015
art zero-shot results on the T0 benchmark, out-016
performing T0 by 16.0%, 7.8%, and 11.5% re-017
spectively on different scales. In the finetuning018
setting, our approach also achieves new state-019
of-the-art results on a wide range of NLP tasks,020
with only 1/4 parameters of previous meth-021
ods. Meanwhile, our approach requires mini-022
mal prompting efforts, which largely improves023
robustness and is essential for real-world ap-024
plications. Furthermore, we also jointly train025
a generalized UD in combination with gener-026
ative tasks, which maintains its advantage on027
discriminative tasks and simultaneously works028
on generative tasks.029

1 Introduction030

Generative modeling has been the dominant031

approach for large-scale pretraining and zero-032

shot generalization (Brown et al., 2020; Artetxe033

et al., 2021; Rae et al., 2021). Combined with034

prompts (Brown et al., 2020), most of the natural035

language processing (NLP) tasks can be formulated036

into the fill-in-the-blank format and perform gen-037

erative language modeling. Based on the unified038

generative formulation, pretrained models such as039

GPT-3 (Brown et al., 2020), BERT (Devlin et al.,040

2019; Schick and Schütze, 2020), T5 (Raffel et al.,041

Figure 1: Average zero-shot performance over 11 zero-
shot tasks for our Universal Discriminator and T0 (Sanh
et al., 2021). Our universal discriminator significantly
outperforms T0 across three different scales.

2019), can perform zero-shot inference on new 042

tasks. 043

More recent work (Sanh et al., 2021) proposed 044

to further pretrain a generative T5 (Raffel et al., 045

2019) with multitask prompted datasets and has 046

substantially enhanced the performance of zero- 047

shot generalization. In contrast, methods based 048

on discriminative modeling (Devlin et al., 2019) 049

have not been able to achieve state-of-the-art per- 050

formance on zero-shot learning. The adoption of 051

discriminative approaches for zero-shot learning 052

has been limited in the literature. 053

In this work, we challenge the convention of 054

zero-shot learning and propose to study and im- 055

prove discriminative approaches. This is motivated 056

by the fact that many NLP tasks can be framed as 057

selecting from a few options; e.g., telling whether 058

sentence A entails sentence B, or predicting which 059

answer is correct for a given question. We call 060

these tasks discriminative tasks. As we will dis- 061

cuss in later sections, a significant portion of NLP 062

tasks is in fact discriminative tasks. We hypothe- 063

size that discriminative approaches perform better 064

for discriminative tasks. 065

To verify the hypothesis, we propose the uni- 066

versal discriminator (UD), which substantially 067

improves zero-shot generalization over the previ- 068

ous generative state-of-the-art (SOTA) (Sanh et al., 069
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2021), as Figure 1 shows. The main idea is to070

train a single discriminator to predict whether a071

text sample comes from the true data distribution072

of natural language, similar to GANs (Goodfellow073

et al., 2014). Given a set of training tasks with074

labeled data, we construct a dataset with positive075

and negative examples, where positive ones are in-076

distribution natural language samples and negative077

ones are out-of-distribution. There are two major078

types of discriminative tasks. The first type is tasks079

with multiple options, such as multi-choice ques-080

tion answering and news classification. We fill the081

options into the sentences and the ones with correct082

options are considered positive samples. The sec-083

ond type is tasks with yes/no options, which can be084

formulated as a binary discrimination problem it-085

self. For example, natural language inference aims086

to predict whether a premise entails a hypothesis.087

In this case, we use a prompt to concatenate the088

premise A and the hypothesis B into a sentence089

“Premise: A. Hypothesis: B.” If entailment holds,090

this sample is treated as positive in-distribution091

samples and otherwise negative out-of-distribution092

ones.093

For the performance of zero-shot generalization,094

our approach achieves new state-of-the-art on the095

T0 benchmark, outperforming T0 by 16.0%, 7.8%,096

and 11.5% respectively on different scales. UD097

also achieves state-of-the-art performance on a098

wide range of supervised NLP tasks, using only099

1/4 parameters of previous methods. Compared100

with the previous generative prompt-based meth-101

ods, our universal discriminator requires minimal102

prompting, which is simple, robust, and applicable103

in real-world scenarios.104

In addition, we also generalize UD to a larger105

scope of tasks, such that UD can perform discrimi-106

native and generative tasks at the same time. Specif-107

ically, we extend UD to the encoder-decoder archi-108

tecture for training on generative tasks, and restrict109

the model’s prediction on "yes"/"no" tokens for110

jointly training discriminative tasks. Results prove111

that generalized UD maintains UD’s advantages112

on discriminative tasks and achieves comparable113

results on generative tasks (See § 3.4).114

2 Related Work115

2.1 Zero-Shot Generalization Using PLMs116

Pretrained language models (PLM) can transfer117

knowledge from training data to downstream tasks.118

Prompting methods further narrow the gap between119

training data and downstream tasks. Schick and 120

Schütze (2020) reformulate NLP tasks into cloze 121

filling using prompts so that PLMs can conduct 122

zero-shot inference by generating tokens given 123

prompted inputs. Meng et al. (2022) use PLMs to 124

generate class-conditioned texts with the guidance 125

of prompts without seeing any task-specific data. 126

Most recently, researchers have introduced natural 127

language prompts to unify various kinds of tasks 128

and propose a multi-task prompted training frame- 129

work to achieve great zero-shot performance even 130

faced with unseen downstream tasks (Wei et al. 131

(2021); Sanh et al. (2021); Chung et al. (2022)). 132

However, zero-shot learning has been dominated 133

by generative approaches. 134

2.2 Prompt-based and Prompt-free Methods 135

in NLP 136

Prompting is the method of reformatting NLP 137

tasks using natural language templates to adapt 138

to downstream tasks (Raffel et al., 2019; Schick 139

and Schütze, 2020). To reduce the instability and 140

labor costs brought by prompting, researchers have 141

tried various approaches (Liu et al. (2021a); He 142

et al. (2021a)) to learn continuous prompts. 143

Recently, prompt-free methods are also being ex- 144

plored. Mahabadi et al. (2022) adopts task-specific 145

adapters to learn task descriptions implicitly for 146

few-shot learning with PLMs. It has also been indi- 147

cated that using null prompts without task-specific 148

templates can achieve decent performance com- 149

pared with manually-designed prompts on various 150

tasks (Logan IV et al. (2021)). 151

Our work further shows that those widely used 152

lengthy instructive prompts are not necessary for 153

zero-shot learning. Actually, minimal prompting 154

performs better with our discriminative formulation 155

in the multi-task zero-shot learning setting. 156

2.3 Discriminative Models in NLP 157

PLMs trained with masked language modeling 158

(MLM) (Devlin et al., 2019; Liu et al., 2019) can 159

be finetuned in a discriminative manner for down- 160

stream tasks. ELECTRA (Clark et al., 2020) trains 161

a discriminator to detect whether a token has been 162

replaced. WKLM (Xiong et al., 2019) employs an 163

entity-centric approach for pretraining and predicts 164

whether an entity has been replaced. However, fine- 165

tuning for these methods is usually based on one 166

separate CLS head per task, which is not suitable 167

for zero-shot generalization. 168
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Recently, prompting has been combined with169

token-level discriminators based on ELECTRA for170

few-shot learning (Yao et al., 2022; Xia et al., 2022).171

While these are also discriminative approaches,172

there are a few key differences from our approach.173

The biggest difference between them and us is that:174

we unify all discriminative tasks into one single175

task with minimal prompting, showing extremely176

good zero-shot generalization. Moreover, these177

methods are specific to ELECTRA-like pretraining,178

while our approach accepts arbitrary pretrained en-179

coders. In our experiments, we will also make a180

direct comparison with these approaches to demon-181

strate our effectiveness.182

3 Approach183

Previous works (Sanh et al., 2021; Wei et al., 2021)184

have shown that prompted multi-task training can185

greatly improve zero-shot performance on unseen186

tasks. One intuitive reason behind the validity of187

this improvement is that all the NLP tasks share a188

common ability that allows LMs to solve unseen189

tasks based on the data from other training tasks. To190

test this idea and even enhance zero-shot general-191

ization, a direct way is explicitly defining what this192

"common ability" is. Here, we define this "com-193

mon ability" by designing a new general task of194

“discriminating whether a text sample comes from195

the true data distribution of natural language”.196

We will first formulate the learning problem197

(§ 3.1), and then define the concept discrimina-198

tive tasks (§ 3.2), followed by describing how we199

transform discriminative tasks into our shared for-200

mulation. In § 3.3 and § 3.4, we will study our UD,201

respectively on discriminative tasks and on a gener-202

alized scope of both discriminative and generative203

tasks.204

3.1 Multi-Task Training for Zero-Shot205

Generalization206

Now we describe the learning problem we aim to207

solve in this work. We adopt the same setting as in208

Sanh et al. (2021). The input to our problem is a set209

of training tasks with labeled data, and the goal is210

to train a model that generalizes to unseen test tasks.211

The training and test tasks are constrained to have212

distinct task types for the evaluation of cross-task-213

type generalization. A pre-trained model is jointly214

trained on the set of training tasks and directly215

evaluated on the set of test tasks in a zero-shot216

manner.217

3.2 Discriminative Tasks 218

We use the term “discriminative tasks” to refer to 219

tasks that can be framed as selecting from a few 220

options. 221

More concretely, there are two types of discrimi- 222

native tasks. The first type is tasks with multiple op- 223

tions, such as multi-choice question answering and 224

news classification. The problem can be framed 225

as selecting the right option from multiple ones, 226

where the options are either customized for each 227

sample (e.g., multi-choice question answering) or 228

shared within the task (e.g., news classification). 229

The second type is tasks with yes/no options, such 230

as paraphrase identification and natural language 231

inference. Given a sample of these tasks, a model 232

is asked to predict a yes/no (or true/false) answer. 233

It is important to notice that discriminative tasks 234

constitute a significantly large portion of modern 235

NLP research tasks. For example, all of the test 236

tasks of the T0 benchmark (Sanh et al., 2021), Su- 237

perGLUE (Wang et al., 2019a), GLUE (Wang et al., 238

2019b), and 85+% tasks in BBH benchmark (Suz- 239

gun et al., 2022) are discriminative tasks. 240

Also note that our definition of discriminative 241

tasks has a larger scope compared to the con- 242

ventional notion of “classification” which usually 243

refers to tasks with a non-customized, fixed set 244

of labels. In contrast, discriminative tasks might 245

have sample-customized options, e.g., multi-choice 246

question answering and coreference resolution. 247

3.3 A Universal Discriminator 248

Given a text sample x, let P (true|x) be the prob- 249

ability that x is sampled from the true data distri- 250

bution of natural language. We train a universal 251

discriminator (UD), denoted as D(x), to estimate 252

the probability P (true|x) for each text sample x. 253

From another perspective of contrastive learning 254

(Oord et al., 2018), this problem can also be viewed 255

as learning a partial order of the probability distri- 256

bution. Specifically, for two text samples x1 and x2, 257

if P (true|x1) > P (true|x2), the UD is expected to 258

predict D(x1) > D(x2). This contrastive view is 259

essential for tasks with multiple options, i.e., learn- 260

ing to select from a few options based on the partial 261

order given by UD. 262

Figure 2 compares the multi-task prompted for- 263

mulation of T0 and the formulation of our UD. In 264

the following, we will show how we use this for- 265

mulation of UD to unify and solve discriminative 266

tasks. 267
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Figure 2: An overview that compares the multi-task prompted formulation of T0 (Sanh et al., 2021) and the formu-
lation of our universal discriminator. The underlines mark natural language prompts. The universal discriminator
uses a shared formulation of the discriminative tasks—determining whether a sample comes from the true data
distribution of natural language.

3.3.1 Unifying Discriminative Tasks268

We assume that for any task, the concatenation269

of input and the correct option follows the true270

data distribution of natural languages, while the271

concatenation of input and the other wrong options272

deviates much from the true data distribution.273

Given this assumption, we claim that almost274

all discriminative tasks are equivalent to our de-275

fined task (i.e., estimating P (true|x)) above. Here,276

“equivalent” has bi-directional meanings: on one277

hand, there exists a reduction* from UD’s task (say,278

task U) to any discriminative task (say, task A):279

given a piece of labeled training data for task A,280

we can generate several pieces of labeled training281

data for task U.282

On the other hand, there exists another reduction283

from any discriminative task A to UD’s task U:284

given a piece of testing data for task A, we can285

generate several pieces of testing data for task U286

such that by first predicting D(·) on them and then287

using a mapping from task U’s outputs to task A’s288

outputs, we can generate the answer for task A.289

Based on the definition of discriminative tasks in290

§ 3.2, there are two main categories, multi-choice291

tasks and yes/no tasks. We will discuss each cat-292

egory in detail as follows (also see Table 4 in ap-293

pendix for specifics).294

Multi-Choice Tasks For multi-choice tasks, we295

concatenate the text input xin with each choice296

{ci}Nc
i=1 to form samples. For example, for multi-297

choice question answering, we concatenate the298

*In complexity theory, a reduction is an algorithm trans-
forming one problem A into another problem B such that a
solution for problem B could also be used to solve problem A.

given paragraph and question with each answer 299

candidate. See Table 4 for more task formulations. 300

During training, the concatenated samples with the 301

correct choice are given label 1 (true) for UD and 302

the other incorrect ones are given label 0 (false). 303

During testing, similarly, we concatenate the text 304

input xin with each choice {ci}Nc
i=1 to form several 305

samples {(xin, ci)}Nc
i=1 and ask UD for their D(·) 306

scores. We then select the sample with the maximal 307

D(·) score and output its corresponding choice. 308

Tasks with Yes/No Choices For yes/no tasks, 309

we directly treat the text input xin as a sample and 310

assign its 0/1 label based on its yes/no label. During 311

training, we use xin with its assigned 0/1 label as 312

UD’s training data. During testing, we first get 313

the output of UD on xin, D(xin), and then output 314

answer yes/no based on whether D(xin) > 0.5†. 315

Empirical experiments suggest that unifying 316

tasks with Yes/No choices in such a new way can 317

produce better zero-shot performance than using 318

the same method for Multi-Choice Tasks. We pro- 319

vide two justifications here: First, the Yes/No an- 320

swer tokens here don’t contain specific information 321

and thus the model cannot benefit from concatena- 322

tion. Second, the two tokens Yes/No are asymmet- 323

ric in the training dataset which may result in the 324

model uniformly assigning higher scores for one 325

of them no matter what the task input is. 326

Minimal Prompting A key principle we follow 327

for task formulation is minimal prompting. From 328

Table 4, one can see that our prompts are min- 329

†We note that more delicate threshold search might be
possible, but we find it performs well using a constant 0.5.
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imal in the sense that they are mostly just con-330

catenations of different elements from the raw in-331

put, discarding most of the previously instructive332

prompting words. This is very different from T0333

(Sanh et al., 2021) and other generative approaches334

(Brown et al., 2020; Schick and Schütze, 2020)335

that add lengthy task descriptions with different336

wordings into the prompts.337

We argue that there are two major benefits of338

minimal prompting. First, previous work (Liu et al.,339

2021b) has shown that zero-shot and few-shot per-340

formances are very sensitive to the prompts used341

for inference. Minimal prompting is more robust342

and requires less prompt engineering efforts at test343

time. This is especially important for true zero-shot344

real-world applications as there is no data available345

for choosing the right prompt. Second, as we will346

show in our experiments, UD performs much bet-347

ter with minimal prompts than lengthy descriptive348

prompts, while generative approaches do not work349

well with minimal prompts. This is also consistent350

with our motivation that all the NLP tasks share351

a common ability: “discriminating whether a text352

sample comes from the true data distribution” and353

UD is attempting to learn “what kind of concate-354

nation between input and option makes it look like355

the true language?”, which does not rely much on356

the descriptions for each task. On the other hand,357

T0 attempts to generate the answer directly basing358

on all the information it gets, so prompts provide359

an extra source of information and are helpful. See360

§ 4.4.1 for our ablation study on minimal prompts.361

Note that it is also important to use minimal362

prompts to resolve ambiguity in some cases. For363

example, consider the natural language inference364

(NLI) task that predicts whether a premise A entails365

a hypothesis B. Simply concatenating A and B is366

ambiguous, because the model cannot tell which is367

the premise. The model also is not aware that this368

is an NLI task. To resolve this kind of ambiguity,369

we use a minimal prompt “Premise: A. Hypothesis:370

B.” instead, as shown in Table 4.371

3.3.2 Architecture372

UD can use any pre-trained encoder model as the373

backbone. In this work, we experiment with the T5374

encoder and DeBERTa (He et al., 2021b). Since375

T5 is an encoder-decoder model, we only use the376

encoder part. For the T5 backbone, we perform377

mean pooling over the last-layer encoder features,378

followed by a dropout layer and a linear layer to379

predict a scalar logit. For the DeBERTa backbone,380

we use the last-layer feature of the first token, fol- 381

lowed by a two-layer perceptron with dropout to 382

also output a scalar logit. We train UD with the 383

binary cross entropy loss. 384

3.4 A Generalized Universal Discriminator 385

To further study how the discriminative approaches 386

work in combination with generative tasks, we also 387

propose to experiment with a generalized version 388

of UD (denoted as generalized UD). 389

Different from the previous UD that only uses 390

an encoder as the backbone model, the general- 391

ized UD employs an encoder-decoder architec- 392

ture. In the following, we experiment with the 393

T5 model. Generalized UD takes both discrimina- 394

tive and generative tasks into consideration, and is 395

jointly trained over both types of tasks at the same 396

time. 397

For discriminative tasks, they are reformulated 398

into binary classification tasks through minimal 399

prompting, as is described in § 3.3.1. Specifically, 400

it takes the minimal prompted texts into the en- 401

coder and uses the decoder to predict over {“Yes”, 402

“No”}. In such cases, generalized UD is optimized 403

with the binary cross-entropy loss. For generative 404

tasks, they take the form of “input-and-target” pairs. 405

Generalized UD is fed with the textual inputs, and 406

generates the targets through decoding. For gener- 407

ative tasks, generalized UD is trained to optimize 408

the cross-entropy loss. 409

4 Experiments 410

4.1 Experimental Setup 411

We performed extensive experiments to validate 412

the performance of the zero-shot generalization of 413

our UD. We follow the same zero-shot setting as 414

T0 (Sanh et al., 2021) by training on multi-task 415

datasets and evaluating a held-out set of tasks that 416

are never seen during training. 417

Datasets The original T0 training set consists 418

of 38 tasks of 8 different types. There are in to- 419

tal 21/38 discriminative training tasks, with which 420

we train the UD. The evaluation set covers four 421

types of tasks, including natural language infer- 422

ence (RTE (Candela et al., 2006), CB (De Marn- 423

effe et al., 2019), ANLI/R1-R3 (Nie et al., 2020)), 424

coreference resolution (WSC (Levesque et al., 425

2012), Winogrande (Sakaguchi et al., 2020)), 426

sentence completion (COPA (Roemmele et al., 427

2011), StoryCloze (Mostafazadeh et al., 2017), 428
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(a) On 11 discriminative test tasks following the T0 benchmark.

Base Model Method #Params
Natural Language Inference Sentence Completion Coreference WSD

Avg.
RTE CB ANLI1 ANLI2 ANLI3 COPA Hella. Story. WSC Wino. WiC

Decoder-only GPT-3 175B 63.5 46.4 34.6 35.4 34.5 91.0 78.9 83.2 65.4 70.2 - -
Decoder-only GLaM 137B 56.3 39.3 39.7 35.5 34.1 90.0 76.7 81.1 82.1 71.3 50.6 59.7
MoE Decoder-only GLaM 64B 66.8 33.9 40.9 38.2 40.9 90.0 77.1 82.5 83.5 73.4 50.5 61.6
Decoder-only PaLM 540B 72.9 51.8 48.0 44.2 45.7 93.0 83.4 84.6 89.1 81.1 59.1 68.5
Decoder-only FLAN 137B 78.3 64.1 47.7 43.9 47.0 90.6 56.4 92.2 80.8 67.3 - -

ELECTRA
PE-CLS 335M 60.2 57.4 34.1 34.4 36.4 92.7 44.1 96.0 62.8 56.3 50.7 56.8
PE-PROB 335M 54.0 49.2 32.3 33.3 33.5 81.9 36.7 89.5 64.3 50.7 50.9 52.4
PE-REP 335M 69.0 61.3 36.1 35.0 39.4 91.2 47.0 96.8 70.0 56.2 51.1 58.5

DeBERTaV3 UD (ours) 304M 71.1 76.8 43.8 41.3 45.7 96.0 60.7 97.4 66.4 83.6 53.3 66.9

T5-Large
T0 ⋆ 800M 75.1 55.5 32.9 32.3 33.7 84.6 28.2 94.0 63.0 54.6 51.2 55.0
UD (ours) 400M 83.8 80.4 36.8 34.2 42.2 90.0 56.1 96.4 68.3 62.9 54.6 64.1

T5-XL
T0 † 3B 64.6 45.4 33.8 33.1 33.3 72.4 27.3 84.0 65.1 51.0 50.7 51.0
T0 ⋆ 3B 79.7 68.9 43.1 38.5 42.3 94.1 31.5 97.5 68.8 61.3 54.1 61.8
UD (ours) 1.5B 78.7 73.2 41.2 36.3 45.4 94.0 70.1 97.9 72.1 70.6 53.0 66.6

T5-XXL

T0 † 11B 80.8 70.1 43.6 38.7 41.3 90.0 33.6 92.4 61.5 59.9 56.6 60.8
T0 ⋆ 11B 85.8 73.3 47.3 42.0 46.1 94.4 31.5 98.4 62.8 72.8 56.0 64.6
UD (ours) 5.5B 80.5 87.5 49.0 42.9 48.8 95.0 77.4 98.6 73.1 82.2 57.1 72.0
UD+ (ours) 5.5B 82.0 89.3 53.4 48.1 51.0 96.0 78.9 96.7 75.0 86.4 58.5 74.1

(b) On 13 discriminative BigBench tasks following the T0 benchmark

Model T0-Large UD-large T0-XL UD-XL T0-XXL UD-XXL UD+-XXL

BigBench (Avg.) 39.6 43.5 44.8 48.9 47.4 55.5 58.7

(c) On 22 discriminative BBH tasks

Model T0-Large Flan-T5-Large UD-Large T0-XL Flan-T5-XL UD-XL T0-XXL Flan-T5-XXL UD-XXL UD+-XXL

BBH (Avg.) 38.9 39.5 44.2 40.4 44.6 47.3 45.0 49.4 51.3 56.7

Table 1: Zero-shot performance of our UD and baselines. Results in the first block are reported by previous work,
respectively from GPT-3 (Brown et al., 2020), GLaM (Du et al., 2022), PaLM (Chowdhery et al., 2022), and
FLAN (Wei et al., 2021). Note that we provide these reported results for reference, and do not compare directly.
Some of the reported tasks are evaluated on the test split, while we follow the better baseline method T0 to report on
validation splits. Results with † are reported by Sanh et al., and results with ⋆ are reproduced in our framework. We
reproduced the three variants of prompting ELECTRA (Xia et al., 2022) under our setting, denoted as “PE-CLS”,
“PE-PROB”, “PE-REP”. Results for Flan-T5-Large/Xl/XXL (Chung et al., 2022) are reproduced by testing zero-shot
performance on their released checkpoints. In the same group, T0 and Flan-T5 has 2x model parameters compared
to UD. For abbreviation, we denote UD based on T5-XX as “UD-XX”, e.g., UD-XL refers to UD based on the
T5-XL model.

Hellaswag (Zellers et al., 2019)), and word sense429

disambiguation (WiC (Pilehvar and Camacho-430

Collados, 2018)). Following T0, we use accuracy431

on the validation split as the evaluation metric. For432

prompt-based baselines, we report the average ac-433

curacy over multiple prompts for each test task. Be-434

sides, we also evaluate zero-shot performance on435

13 BigBench (Srivastava et al., 2022) tasks, which436

are also adopted by T0 (Sanh et al., 2021), and 22437

BBH tasks (Suzgun et al., 2022), which are adopted438

by Flan-T5 (Chung et al., 2022).439

Baselines We primarily compare our method440

with T0 (Sanh et al., 2021), which is a generative441

approach. Another baseline is prompting ELEC-442

TRA (Xia et al., 2022) which is a recent work on443

discriminative modeling. Since it was proposed 444

in a different setting (i.e., a few-shot setting or di- 445

rect zero-shot inference without any finetuning), 446

we reproduced their method under our multitask 447

zero-shot setting for comparison. 448

For a fair comparison, we follow T0 to use the 449

T5-V1.1-LM-Adapted (Raffel et al., 2019) as the 450

backbone model, and we experimented with three 451

different scales, respectively 800M, 3B, and 11B. 452

For UD, it only makes use of the encoder of T5- 453

v1.1 and additionally replaces the output layer with 454

a classification head. 455

In addition, we provide reported zero-shot re- 456

sults of several large language models (with hun- 457

dreds of billions of parameters) for reference, in- 458

cluding GPT-3 (Brown et al., 2020), GLaM (Du 459
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Dataset SOTA UD+-XXL

QQP 90.60 90.44
DREAM 91.80 94.95
QuAIL 87.20 88.13
IMDB 97.30 97.44
AgNews 95.58 95.56
OBQA 87.20 89.20
STSB 92.30 92.90
CSQA 84.90 84.68
SST-2 97.30 97.48
QNLI 96.50 96.56
AbductiveNLI 89.80 93.20
VitaminC 91.10 92.62
MNLI 92.10 92.03
MCScript 97.30 98.03
MCScript 2.0 97.90 98.01
AdversarialNLI (r3) 53.50 67.83
COLA 71.50 71.42

Avg. 89.05 90.62

Table 2: Results on fully-supervised tasks for UD, which
is based on the encoder of T5-xxl. Previous sota model
(Tay et al., 2022) has 4x model parameters compared to
UD.

et al., 2022), PaLM (Chowdhery et al., 2022), and460

FLAN (Wei et al., 2021). We also reproduce zero-461

shot results of a recent work Flan-T5 (Chung et al.,462

2022) by evaluating their released checkpoints on463

BBH tasks‡. Note that Flan-T5’s training data sets464

are much broader than ours, so results for Flan-T5465

here are only for reference but not a fair compari-466

son.467

Training During training, we truncate the input468

sequence to 256 tokens and use a batch size of469

256. For optimization, we use the Adam optimizer470

with a fixed learning rate of 1e-5 and a dropout471

rate of 0.1. Each experiment is trained with 10, 8,472

and 5 epochs respectively for 800M, 3B, and 11B473

models.474

4.2 Main Results on Zero-Shot Tasks475

UD Zero-Shot Results The main results are pre-476

sented in Table 1. We compare methods of similar477

scales. Results in Table 1(a) show that our UD sub-478

stantially outperforms the T0 baseline on average479

by a large margin of around 9, 5, and 7 points re-480

spectively at Large, XL, and XXL scales. Compar-481

ing the results of UD-T5-Large, UD-DeBERTaV3,482

and prompting ELECTRA, both variants of UD483

also substantially outperform prompting ELEC-484

TRA by more than 6 points. On BIG-Bench485

datasets, results in Table 1(b) show that our UD486

‡T0 test sets are included in Flan-T5’s training data sets,
so we can’t test its zero-shot performance on those data sets.

outperforms the T0 baseline by a margin of around 487

4-8 points. On BBH datasets, results in Table 1(c) 488

show that our UD constantly outperforms T0 and 489

Flan-T5 by a margin of around 2-5 points, even 490

though our UD is only trained on a small fraction 491

of Flan-T5’s training sets. Overall, these results 492

demonstrate the advantages of UD at every scale, 493

and a broad range of tasks compared with base- 494

lines. 495

Another interesting finding is that the advantages 496

of UD significantly increase along with scaling. 497

When scaling from Large-scale to XL-scale (i.e., 498

around 3.75x of the parameters), the average per- 499

formance improves by around 2 points. However, 500

when scaling from XL-scale to XXL-scale (i.e., 501

3.6x of the parameters), the improvements of av- 502

erage zero-shot performance enlarge to 8 points. 503

Based on the observation, we hypothesize that UD 504

can achieve even better performance of zero-shot 505

generalization if further scaling to an even larger 506

models, which we leave to future work. 507

To further boost the zero-shot performance, we 508

also train a new variant of UD at 11B scale by scal- 509

ing to more training tasks, including the discrim- 510

inative English tasks used in Wang et al. (2022), 511

and the discriminative English tasks used in Tay 512

et al. (2022). The new model is denoted as UD+. 513

UD+ achieves the highest average accuracy among 514

all the zero-shot evaluation tests. 515

Generalized UD Zero-Shot Results The zero- 516

shot results of generalized UD on 11 T0 discrim- 517

inative test tasks and on 13 Big-Bench tasks are 518

respectively reported in Table 7(a) and Table 7(b) in 519

appendix. In addition, to test how generalized UD 520

performs on zero-shot generative tasks, we also re- 521

port results on 15 generative tasks from Big-Bench. 522

Results are presented in Table 7(c). 523

Analyses are as follows. First, comparing the 524

results of generalized UD and T0, generalized UD 525

still holds significant improvements on discrimi- 526

native tasks. Second, comparing generalized UD 527

with our previous UD (in Table 1), we observe 528

there is a slight decrease in average performance, 529

proving that adding generative tasks into training 530

could have impacted a little bit, in trade for capa- 531

bility for handling generative tasks. Third, on 15 532

generative tasks, both generalized UD and T0 show 533

comparable results. 534
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Natural Language Inference Sentence Completion Coreference WSD Avg.RTE CB ANLI1 ANLI2 ANLI3 COPA Hella. Story. WSC Wino. WiC

UD (Minimal) 83.8 80.4 36.8 34.2 42.2 90.0 56.1 96.4 68.3 62.9 54.6 64.1
UD (Instructive) 72.2 64.5 37.0 33.4 39.7 85.3 45.2 96.0 65.4 53.9 50.9 58.5

T0 (Minimal) 61.6 57.8 30.6 30.3 33.4 67.2 33.8 66.6 60.9 52.8 51.7 49.7
T0 (Instructive) 75.1 55.5 32.9 32.3 33.7 84.6 28.2 94.0 63.0 54.6 51.2 55.0

Table 3: Zero-shot performance for UD and T0 respectively with instructive and minimal prompts. Instructive
prompts are lengthy descriptions of tasks (Sanh et al., 2021), while minimal prompts use a simple concatenation of
input data.

4.3 SOTA Results on Finetuned Tasks535

To explore how UD performs on fully-supervised536

tasks, we finetuned UD for a wide range of down-537

stream tasks and reported their results in Table538

2. For each finetuning experiment, the maximum539

training epoch is set to be 10. We search a hyper-540

parameter space with learning rate in {2e-5, 1e-5,541

5e-6}, batch size in {32, 64, 128}. We select the542

best checkpoint using a validation set with early543

stopping.544

From results in Table 2, we find that UD can545

achieve remarkable performance on most of the546

downstream tasks. We achieve state-of-the-art per-547

formance on 12 out of the 17 tasks we evaluated.548

The results also show that more challenging tasks549

(tasks that require more knowledge) will benefit550

more from the multi-task training period, especially551

some QA tasks.552

4.4 Ablation Study553

We have also conducted ablation studies to further554

explore how several factors affect the performance555

of zero-shot generalization. Please see appendix for556

further ablation studies on UD with different base557

models (§ C.1) and generalizing UD to a broader558

domain (§ C.2).559

4.4.1 Instructive Prompts vs Minimal560

Prompts561

UD employs minimal prompts that use simple562

concatenation, while previous approaches rely on563

lengthy instructive prompts to provide more de-564

tailed instructions (Sanh et al., 2021; Wei et al.,565

2021; Brown et al., 2020). Statistically, we count566

the average number of prompt words (exclud-567

ing raw input) for both minimal and instructive568

prompts, and statistics are respectively 0.4 versus569

> 10. We compare these two types of prompts in570

the following experiment. We adopt the instructive571

prompts from T0 and apply them on UD without572

changing the discriminator formulation. To con-573

struct minimal prompts for T0, we remove all the 574

instructive words similar to UD. 575

Results are shown in Table 3. We observe that 576

minimal prompts yield better performance for UD 577

than instructive prompts. In contrast, for T0, in- 578

structive prompts perform much better than mini- 579

mal prompts. These results are consistent with our 580

motivation that UD tends to unify the tasks better 581

with a shared discrimination formulation. As a re- 582

sult, task-specific instructions are not necessary and 583

might hurt generalization performance. Generative 584

approaches, on the other hand, rely on instructive 585

prompts to better distinguish different tasks and 586

generate specific answers directly. 587

5 Conclusions 588

Universal Discriminator is a discriminating model 589

for predicting whether a sample comes from the 590

true data distribution, which is a new formulation 591

for all discriminative NLP tasks. Experiments show 592

that UD sets the new state-of-the-art for zero-shot 593

generalization on many benchmarks. UD is high- 594

performing with minimal prompting, and thus is 595

more robust and applicable in practice. A gener- 596

alized UD can also solve generative tasks at the 597

same time which keeps UD’s advantage on dis- 598

criminative tasks and has comparable performance 599

on generative tasks. 600

Inspite of this, generalized UD may not handle 601

certain complex generation tasks very well (e.g., 602

summarization) and its performance on generative 603

tasks is not significantly better than other models’ 604

in comparison to its advantage on discriminative 605

tasks over other models. We leave expanding UD 606

to solve a broader range of generative tasks and 607

achieve greater performance advantage as our fu- 608

ture work. 609
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A Examples of Minimal Prompt874

Here we provide Table 4 for some examples of how to construct minimal prompted data according to875

§ 3.3.1.876

Category Task Type Our Minmal Prompt Label

yes/no

Paraphrase
Identification

John is Lily’s husband. Lily is John’s wife 1

John is Lily’s husband. Lily is John’s mother. 0

Natural
Language
Inference

Premise: Dana Reeve, the widow of the actor Christopher Reeve, has died of lung cancer at
age 44. Hypothesis: Dana Reeve had an accident.

1

Premise: Dana Reeve, the widow of the actor Christopher Reeve, has died of lung cancer at
age 44. Hypothesis: Christopher Reeve had an accident.

0

multi-choice

Coreference
Resolution

Jane gives Joan candy because Joan was hungry. 1

Jane gives Joan candy because Jane was hungry. 0

Question
Answer

The earth moves around the sun. What is the earch to the sun? Planet 1

The earth moves around the sun. What is the earch to the sun? Satellite 0

Topic
Classification

Open Source Apps Developer SugarCRM Releases Sugar.Sales 1.1. Science and technology 1

Open Source Apps Developer SugarCRM Releases Sugar.Sales 1.1. Sports 0

Sentence
Completion

A boy is running down a track. The boy lifts his body above the height of a pole. 1

A boy is running down a track. The boy stands on his hands and springs. 0

Sentiment
Classification

I really love this movie. Positive 1

I don’t like this movie. Negative 1

Table 4: Examples of how we unify discriminative tasks. The underlined text represents additional words not present
in raw inputs. Note that this is just our implementation of the UD formulation and there can be other ways of task
formulation under the UD framework. Some tasks can either be yes/no tasks or multi-choice tasks, depending on
how options are provided.

B Full Experiment Results877

B.1 Evaluation on Big-Bench878

Here we report the full results for 13 tasks in the Big-Bench Srivastava et al. (2022), which is also utilized879

in original T0 paper (Sanh et al., 2021). All the tasks from BIG-Bench are ensured unseen in our training880

set for the zero-shot setting. The results are displayed in Table 5, where UD outperforms T0 by 4-8 points881

on different scales.882

B.2 Evaluation on BBH883

Here we report the full results for 22 discriminative tasks from BBH (Suzgun et al., 2022). For reference,884

we reproduce Flan-T5(Chung et al., 2022)’s zero-shot performance on BBH tasks by evaluating their885

Model code
desc.

conce
-ptual

known
unknowns

logic
grid

logic
deduction

miscon
-ceptions

novel
concepts

strate
-gyqa

wino
-why

syllo
-gisms

movie
dialog

lang
-uage_id

vita
-minc Avg.

UD-DeBERTaV3 76.7 64.1 76.1 39.9 54.9 50.2 50.0 59.9 45.8 50.4 57.7 13.3 61.5 53.9

T0-Large⋆ 14.1 40.4 60.4 38.0 41.2 50.0 10.0 52.3 49.7 50.3 46.8 16.0 46.2 39.6
UD-Large 51.7 54.4 47.8 33.4 34.6 50.2 26.5 47.0 45.7 50.6 51.7 16.3 55.8 43.5

T0-XL⋆ 23.4 48.1 64.6 42.5 50.1 52.7 25.0 53.1 45.4 50.2 47.7 19.0 60.0 44.8
UD-XL 53.3 73.8 65.2 37.2 37.8 48.0 35.3 53.1 45.3 50.4 50.1 22.9 63.7 48.9

T0-XXL† 36.7 62.5 63.0 39.6 55.4 52.5 15.6 52.7 47.4 51.8 53.8 20.7 64.7 47.4
UD-XXL 61.7 71.8 76.1 38.0 59.1 49.3 61.8 61.3 45.9 50.1 57.3 21.6 67.2 55.5
UD+-XXL 63.3 82.5 84.8 39.2 67.5 49.3 58.8 64.2 47.5 50.4 57.9 27.3 70.2 58.7

Table 5: Zero-shot performance of Universal Discriminator and T0 on Big-Bench test tasks used in T0 paper. Results
with † are reported by Sanh et al., and results with ⋆ are reproduced in our framework.
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Dataset T0-Large Flan-T5-Large UD-Large T0-XL Flan-T5-XL UD-XL T0-XXL Flan-T5-XXL UD-XXL UD+-XXL

boolean_expression 48.4 49.6 64.0 47.6 54.8 68.4 46.4 56.8 68.4 66.0
causal_judgement 56.2 59.4 61.5 58.8 59.9 63.6 62.0 60.9 65.2 63.6
data_understanding 30.4 18.8 30.4 38.8 34.8 41.2 63.2 56.8 51.6 53.2
disambiguation_qa 54.4 34.8 68.4 61.2 66.8 65.2 64.4 66.8 67.2 66.8
formal_fallacies 54.4 55.6 50.4 52.4 54.0 46.4 52.0 55.2 54.0 58.8
geometric_shapes 0.0 21.6 9.6 0.0 20.0 9.6 11.2 31.2 9.6 9.6
hyperbaton 72.0 59.6 71.2 52.4 58.8 66.8 63.2 70.8 68.0 82.0
logical_deduction_five_objects 34.8 40.0 32.8 38.8 48.0 39.2 46.4 53.6 58.4 65.2
logical_deduction_seven_objects 27.6 40.4 25.2 37.6 52.4 32.0 50.4 60.0 56.4 67.2
logical_deduction_three_objects 49.2 37.6 60.4 62.8 64.8 69.2 65.6 74.4 80.8 83.2
movie_recommendation 51.4 55.0 60.4 55.0 47.4 69.6 61.0 38.5 73.2 78.8
navigate 58.8 56.4 63.6 60.4 59.2 58.4 65.6 60.8 63.2 64.8
penguins_in_a_table 36.3 32.9 36.3 34.3 42.5 41.1 40.4 41.1 39.7 46.6
reasoning_about_colored_objects 39.2 40.4 36.4 41.6 47.2 54.4 56.8 61.6 57.2 63.2
ruin_names 23.0 22.6 44.4 21.8 33.5 24.4 17.8 34.7 35.6 68.8
snarks 48.3 56.1 74.7 45.5 55.6 73.0 55.1 72.5 75.3 82.0
sports_understanding 53.2 55.6 54.8 47.6 52.4 51.6 52.8 60.0 57.6 56.0
temporal_sequences 13.2 25.2 23.6 24.8 22.4 63.2 14.8 28.8 43.2 60.8
tracking_shuffled_objects_five_objects 12.8 12.4 12.0 12.8 12.0 13.2 12.0 15.2 12.4 20.0
tracking_shuffled_objects_seven_objects 7.6 8.4 9.6 8.8 9.2 8.4 8.0 13.2 8.4 14.0
tracking_shuffled_objects_three_objects 33.2 33.6 31.2 33.6 32.8 34.8 29.6 24.4 33.6 20.8
web_of_lies 51.2 52.4 51.2 51.2 52.4 47.6 50.8 50.0 50.4 56.8

Avg. 38.9 39.5 44.2 40.4 44.6 47.3 45.0 49.4 51.3 56.7

Table 6: Zero-shot performance of Universal Discriminator, T0, and Flan-T5 on BBH test tasks (Suzgun et al.,
2022).

public checkpoints. All the tasks from BBH are ensured unseen in our training set for the zero-shot setting. 886

The results are displayed in Table 6, where UD constantly performs better than T0 and Flan-T5 on all the 887

scales even though Flan-T5 is trained on a much broader scope of tasks than UD is. 888

B.3 Experiment Results for Generalized Universal Discriminator 889

Here we report the zero-shot results of generalized UD on 11 T0 test tasks (Table 7(a)), 13 Big-Bench 890

tasks selected by T0 paper (Table 7(b)), and 15 generative tasks from Big-Bench (Table 7(c)). We select 891

the top 15 uncommon generative tasks from BigBench basing on ascending order of data size. We assume 892

that tasks with smaller data sizes are less common and more likely to be unrelated to our training data and 893

more suitable for zero-shot tests. We observe that generalized UD still holds significant improvements on 894

discriminative tasks and gets comparable results on generative tasks. 895

C More Ablation Studies 896

C.1 Ablation on Base Models 897

We also study the effects of using different backbone pretrained models. We experiment with three 898

backbone models of different types, respectively the encoder part of an encoder-decoder model, an 899

encoder model, and a decoder model. Specifically, we use the T5 encoder, DeBERTa (He et al., 2021b), 900

and GPT (Radford et al., 2018) respectively for these three types. It is noteworthy that though similar 901

in architecture for both T5 encoder and DeBERTa, they are pretrained with different self-supervised 902

language modeling tasks, which in fact leads to huge differences in zero-shot generalization, as we will 903

show in Table 8. 904

Results of different backbone models are presented in Table 8. Among all three types of backbone 905

models, the encoder backbone models appear to be the most suitable type of backbone, where both 906

encoder models of two scales respectively achieve the best and the second best results, outperforming all 907

the others by more than 5 points. 908

Using the same number of parameters (i.e., 1.5B), both DeBERTa-V2 and T5-Encoder significantly out- 909

perform GPT-XL, which demonstrates that a bidirectional architecture works better than the unidirectional 910

architecture for the discriminator formulation. In addition, DeBERTa-V2 outperforms T5-Encoder by 7 911

points, implying that not only model architecture but also the self-supervised pretraining task determines 912

the ability of UD discrimination. Models pretrained with masked language modeling tasks are more 913

suitable for UD. 914
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(a) On 11 discriminative test tasks following the T0 benchmark.

Method
Natural Language Inference Sentence Completion Coreference WSD

Avg.
RTE CB ANLI1 ANLI2 ANLI3 COPA Hella. Story. WSC Wino. WiC

T0-XL 79.7 68.9 43.1 38.5 42.3 94.1 31.5 97.5 68.8 61.3 54.1 61.8
GenUD-XL 71.5 80.4 43.1 39.5 42.6 94.0 55.8 96.7 63.5 75.5 52.8 65.0

(b) On 13 discriminative Big-Bench tasks following the T0 benchmark.

Model code
desc.

conce
-ptual

known
unknowns

logic
grid

logic
deduction

miscon
-ceptions

novel
concepts

strate
-gyqa

wino
-why

syllo
-gisms

movie
dialog

lang
-uage_id

vita
-minc Avg.

T0-XL 23.4 48.1 64.6 42.5 50.1 52.7 25.0 53.1 45.4 50.2 47.7 19.0 60.0 44.8
GenUD-XL 60.0 64.1 69.6 38.2 52.8 48.9 44.1 57.1 46.5 50.4 50.9 15.5 66.8 48.9

(c) On 15 generative tasks from Big-Bench

Model
auto

debugging
simple

arithmetic
repeat

copy logic
sufficient

information
simple text

editing
scientific

press release codenames
emoji

movies

T0-XL 11.2 6.7 25.8 33.8 7.5 6.7 44.8 8.7
GenUD-XL 15.5 6.7 8.2 34.4 12.6 6.4 25.1 0.0

Model
penguins
in a table

few shot
nlg operators tense

geometric
shapes

chinese remainder
theorem

temporal
sequences Avg.

T0-XL 11.4 17.4 10.5 80.7 0.0 0.0 14.0 18.6
GenUD-XL 8.1 20.5 3.7 80.9 0.0 0.0 33.5 17.0

Table 7: Zero-shot performance for generalized UD and T0 on discriminative and generative tasks. We select the
top 15 uncommon generative tasks from BigBench basing on ascending order of data size. (We assume that datasets
with smaller sizes are less common, and more suitable for zero-shot tests.) The metrics are respectively accuracy for
discriminative tasks and ROUGE1 for generative tasks. “GenUD” denotes our generalized UD method.

Base Model
Natural Language Inference Sentence Completion Coreference WSD

Avg.
RTE CB ANLI1 ANLI2 ANLI3 COPA Hella. Story. WSC Wino. WiC

Encoder
DeBERTa-V3 (304M) 71.1 76.8 43.8 41.3 45.7 96.0 60.7 97.4 66.4 83.6 53.3 66.9
DeBERTa-V2 (1.5B) 77.6 80.4 43.2 39.3 44.8 95.0 67.2 98.2 74.0 82.1 56.0 68.9

Enc-Dec
T5-Encoder (400M) 75.1 55.5 32.9 32.3 33.7 84.6 28.2 94.0 63.0 54.6 51.2 55.0
T5-Encoder (1.5B) 79.7 68.9 43.1 38.5 42.3 94.1 31.5 97.5 68.8 61.3 54.1 61.8

Decoder GPT-XL (1.5B) 71.1 75.0 30.4 31.8 37.8 71.0 40.9 87.7 62.5 54.5 50.3 55.7

Table 8: Ablation study on different backbone models. We experiment with base models of different architectures
and scales. “Enc-Dec” refers to models that are pretrained in an encoder-decoder manner.
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Setting Accuracy

True Data vs Manually-Generated Data 80.0
True Data vs Model-Generated Data 74.4

Table 9: The accuracy of UD discriminating real data and generated data. Each time we feed UD with a real sample
x from the real-world data distribution, and a generated sample x′. If UD assigns higher score to x than x′ (i.e.,
D(x) > D(x′)), it is considered an accurate prediction. We experimented with two approaches to generate data,
manual generation and model-based generation.

The impacts of the architecture and pretraining tasks of backbone models are even larger than the 915

influence of scale, as we also observe that an encoder model with 300M parameters (i.e., DeBERTaV3) 916

achieves much better performance than the T5 encoder and GPT-XL with 1.5B parameters. 917

C.2 How Well UD Generalizes to a Broader Domain? 918

In the previous sections, we have trained UD to solve the task of discriminating whether a text sample 919

comes from the true data distribution of natural language. So far we have constrained the problem to 920

supervised labeled tasks. However, this discrimination problem formulation is in fact general and can be 921

applied to a broader domain of natural language. We conduct the following experiment to see how UD 922

generalizes. 923

To test whether a model discriminates against the true data distribution, a straightforward way of 924

verification is to compare the probability of real data with that of some generated, fake data. This form of 925

verification is not specific to any downstream task and can be viewed as generalizing to a broader domain. 926

Formally, given a text sample x, let D(x) be the output of UD, which estimates the probability that x is 927

sampled from the true data distribution, i.e., P (true|x). Given a true data sample x and a generated data 928

sample x′, we expect a well-trained UD to predict D(x) > D(x′). 929

Specifically, we randomly select 2,600 real data samples x from the validation set of the T0 training 930

data and generate the data x′ in two different ways: model-based generation and manual generation. 931

For a model-based generation, we utilize the T0-Large model with a paraphrase prefix “Paraphrase the 932

sentence:” to generate data x′. It is expected that the generated samples x′ are similar to true samples x 933

to some extent but demonstrate some flaws that are unique to generated data. For a manual generation, 934

we manually create some conflict or contradiction in the real sample x. Specifically, we manually attach 935

wrong answers to the original data and obtain x′ , which is similar to what we have done in constructing 936

negative samples in our main framework. 937

We then use our universal discriminator based on T5-Encoder Large to compute the probability 938

D(x) and D(x′) for both real and generated data. As displayed in Table 9, we find that the universal 939

discriminator assigns a higher score for x than x′ 80% of the time for manually-generated data. When 940

tested with model-generated data, UD assigns a high probability for real data in 74% of the cases. This is 941

probably because manually generated data are more paradoxical and logically incoherent and thus are 942

easier for UD to discriminate. Overall, these results demonstrate that the discrimination ability of UD is 943

not limited to the downstream tasks on which it was trained, but is also generalizable to a broader domain 944

of text data. This indicates a possibility of extending UD to other scenarios such as model pretraining and 945

generation tasks. 946
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