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Abstract

As retrieval-augmented generation (RAG) becomes more widespread, the role of
retrieval is shifting from retrieving information for human browsing to retrieving
context for AI reasoning. This shift creates more complex search environments,
where relevance is difficult to pre-define. Existing retrievers rely on supervised
fine-tuning (SFT) with human labels or synthetic data, resulting in static relevance
that struggles to adapt to diverse RAG environments. To address this challenge, we
propose R3, a Retrieval framework optimized for RAG through Reinforcement
learning (RL). Specifically, we adopt an RL training paradigm that enables the re-
triever to explore and self-improve within given RAG environments, automating the
learning process with minimal manual experimentation or tuning effort. Extensive
experiments across diverse tasks demonstrate that R3 improves RAG performance
by 5.2% over the original retriever and surpasses state-of-the-art retrievers by 4.9%,
while achieving comparable results to LLM-augmented retrieval and RAG systems
built on post-trained or instruction-tuned LLMs. It is both efficient and practical,
requiring only 4 GPUs and completing training within a single day.

1 Introduction

Retrieval-augmented generation (RAG) [1, 2, 3] is a well-established paradigm that integrates large
language models (LLMs) [4] with information retrieval (IR) [5] to access external knowledge.
Recently, RAG has rapidly evolved into a foundation for a new wave of advanced AI applications [6].
Examples include web-browsing agents [7, 8] that interact with live web content, conversational
chatbots [9, 10, 11] that integrate retrieval to enable knowledge-grounded and emotionally aware
dialogue, and DeepResearch assistants [12, 13, 14] that autonomously analyze and synthesize
information across multiple sources to produce comprehensive reports.

These RAG applications signify a fundamental shift in the role of retrieval, from search for humans to
search for AI. As illustrated in Figure 1, traditional IR searches information for human users, where
relevance is pre-defined as superficial similarity to ensure interpretability [15, 16], so that human
users can instantly grasp the underlying relations. In contrast, RAG searches contextual knowledge
for AI systems, which can efficiently process and reason over vast amounts of information and are
designed to handle diverse and evolving tasks. The retriever functions as an internal component
within a RAG environment that encompasses tasks, workflows, LLMs, and other components, making
relevance more environment-dependent, hard to pre-define, and necessary to explore.

Existing RAG applications have several retrieval options. Some leverage search engine APIs, which
are convenient but expensive, difficult to scale, and cannot be further optimized [17]. Others deploy
neural retrievers locally. However, directly applying these off-the-shelf retrievers can suffer from gap
between IR and RAG. Studies have shown that traditional IR often retrieve semantically related
but unhelpful content [18, 19, 20], LLM-generated documents [21], or misleading evidence [22],
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Figure 1: Comparison of traditional IR setting and RAG setting.

all of which can degrade RAG performance. Furthermore, Cuconasu et al. [23, 24] demonstrate
that while traditional IR retrieves documents containing the correct answer, these documents do not
necessarily improve RAG performance. Additionally, related findings have emerged in the study of
LLM faithfulness, where Anthropic [25] and Apple [26] found that chain-of-thought prompts often
fail to reflect the actual reasoning process of LLMs, and even advanced LLMs sometimes fail to
follow explicit instructions. These observations reveal a key challenge of context engineering: there
is no clear guidance on what constitutes effective context across different environments, leaving the
process heavily dependent on manual effort.

In addition to the studies mentioned above, we further examine this gap through empirical experi-
ments presented in Appendix D, where we evaluate the varying capabilities of different retrievers
(unsupervised, supervised, and SOTA) on tasks of varying complexity in both IR and RAG settings.
In IR, we examine whether the retriever can retrieve documents containing the answer, while in
RAG, we assess whether the retrieved document can prompt the LLM to generate the correct answer.
The results reveal two key findings. Finding 1: Better IR performance does not always lead to
better RAG performance, especially when a task shift occurs. For QA tasks, we observe that
higher accuracy in IR settings generally correlates with better RAG performance. However, this
trend does not hold for non-QA tasks. For example, on PubHealth, a vanilla DPRMS outperforms a
SOTA retriever in RAG settings, despite being weaker in IR metrics. Similarly, on ARC, the unsuper-
vised CONTRIEVER achieves the best RAG performance, outperforming its supervised counterparts.
Finding 2: Substantial room for improvement in retrieval within the RAG system. We find that
although most required knowledge already exists in the datastore, each retriever succeeds on only a
subset of queries. For example, on NQ, 77% of queries can be answered by at least one retriever via
RAG, yet the best single retriever covers only 43%.

To bridge the gap from IR to RAG, we propose R3, a Retrieval framework optimized for RAG via
Reinforcement learning. Unlike prior works that learn pre-defined relevance via supervised fine-
tuning (SFT) through annotated or synthetic data, R3 aims to explore relevance via reinforcement
learning (RL) within the RAG environment. Specifically, R3 follows the standard RAG workflow:
it retrieves documents and incorporates them as context for generation. Based on the generated
outcomes, the retrieved documents are labeled as positive or negative with respect to the query,
and contrastive learning objective is applied to optimize the retriever accordingly. We refer to this
paradigm as reinforced contrastive learning, where contrastive signals arise from interaction with
environment rather than manual annotation. Extensive experiments demonstrate that R3 enables
retrievers to effectively adapt from IR to RAG, achieving an average 5.2% improvement in 1-shot
accuracy and consistently outperforming SOTA retrievers as well as LLM-empowered retrieval
methods.

Our contributions are summarized as follows:

1. We identify and analyze the relevance gap between traditional IR and RAG settings, supported by
evidence from prior studies across diverse domains as well as our own empirical findings.

2. We propose R3, which pioneers reinforcement learning optimization for embedding-based retriev-
ers in RAG systems.

3. R3 is simple and effective, delivering consistent RAG improvements with modest training costs,
consistently outperforming existing SOTA retrievers and achieving improvements comparable to
those seen in post-trained or instruction-tuned LLM across several tasks.
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2 Related Works

The Evolution of Information Retrieval. Information retrieval has long been a core mechanism
for various applications. The field began with heuristic approaches such as TF-IDF and BM25 [27],
which have been widely adopted in both research and industry. As the field progressed, the advent of
neural networks gave rise to neural retrieval [28]. Yet, these models still heavily relied on training
data annotated using BM25 and manual validation [29, 30], leading to superficial relevance. In recent
years, however, the rise of RAG has exposed the gap between search for humans and search for
AI. This shift has prompted efforts to optimize retrieval models specifically for RAG. Early work
in this direction focus on learning-free methods, such as using LLMs or heuristics to determine
when to retrieve [31, 32], performing adaptive retrieval with reasoning [33, 34, 35], or decomposing
and refining complex queries [36, 37]. Other research explored learning-based approaches, where
retrievers are optimized jointly [2, 38] or separately [39, 40] with LLMs, using unsupervised objective
like prefix language modeling [40], or supervised objective that maximize question-answer generation
likelihood [41]. Despite their successes, these methods often come with high computational costs
and focus primarily on general relevance, with limited consideration of specific RAG environments.

Beyond conventional RAG systems that search context for LLMs, there are many more complex,
real-world environments where retrieval must interact with other intelligent components to address
emerging challenges. For example, searching multi-modal data to improve multi-modal LLM
reasoning [42, 43], retrieving MCP services for agents [44], or searching action modules or planning
for robot embodiment [45, 46]. All of these emerging and advanced applications highlight complex
environment-specific relevance. Our method, in line with this area, provides a solution by efficiently
training specialized retrievers tailored to a specific environment for applications.

Contrastive Learning. Contrastive learning (CL) [47, 48] is a well-established method used to
train bi-encoder retrievers by pulling representations of positive pairs closer and pushing negatives
apart [28, 49]. CL relies on contrastive labels, which define the positive or negative relationship
between pair-wise data. These relational data (i.e., positive and negative query–document pairs) can
be obtained through annotation [29], extracted from the web [50, 51], or, more recently, synthesized
using LLMs [52, 53]. While these contrastive labels provide effective training signals, they are
inherently defined at the data level, making them difficult to transfer across different environments
when needed. If components such as tasks, LLMs, or workflows within the environment change,
these labels often lose effectiveness and require reconstructed. We further introduce Reinforced
Contrastive Learning (RCL), which distinguishes itself from conventional CL by constructing
contrastive signals on-the-fly in a trial-and-feedback manner. Simply put, traditional CL involves
SFT on annotated data to learn pre-defined relevance, while RCL leverages RL to explore proper
relevance that suit the specific search environment. Our framework follows RCL paradigm, enabling
versatility and automatic generalization to any RAG environment.

3 Methodology

In this section, we introduce R3, a framework that optimizes Retrieval for RAG via Reinforced
constrastive learning. While our idea is straightforward, it presents several challenges. In the
following sections, we detail the problem setup (§3.1), the solution to the first challenge, which
addresses the on-policy retrieval issue (§3.2), the solution to the second challenge, which focuses on
mitigating the cost of autoregressive generation (§3.3), and the reinforced contrastive learning (§3.4).

3.1 Problem Setup

A RAG framework typically consists of:

• Retriever Rθ parameterized by θ;
• Datastore D containing a vast number of documents d;
• User query q, and the corresponding answers a, if provided;
• RAG environment env, which refers to everything surrounding the Rθ, such as LLM G, task

instructions, and specific workflows, etc.;
• Reward function Reward(·) that evaluates the quality of the generated response.
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The downstream RAG pipeline generally follows:

1. Retrieval: retrieve the top-k relevant documents from the D, with a relevance function fθ:

{d̂}k = Rθ(q,D, k) ≜ argmaxk
d∈D

fθ(q, d)

2. Generation: generate response based on the retrieval results and the environment env.

ŷ = Genv(q, {d̂}k) ≜ RAGθ(q | env)

3. Evaluation: measure the quality of the generation ŷ. In our setup, we measure whether the
generation contains the answer, which can be considered as a binary reward:

Reward(ŷ) =

{
1 if ŷ contain a,
0 otherwise.

Optimization Goal. Given a RAG environment, R3 aims to learn the retrieval parameters to
maximize the system reward for all training queries:

θ̂ = argmax
θ

∑
∀q

Reward(ŷ)

= argmax
θ

∑
∀q

Reward(RAGθ(q | env))

Overview. Our work applies reinforcement learning (RL) to learn embedding-based retrievers,
where downstream rewards are used to ensure consistent improvements. A key challenge lies in
the interaction cost of retrieval within the environment, given that retrieval is only one small step
in the overall RAG pipeline. The main contribution of this paper is to make this interaction cost
manageable, using various approximations and designed retrieval architectures. We position our
work as leveraging these techniques to automate retrieval learning for RAG with stable improvement,
aiming to achieve a better trade-off between cost and effectiveness in practical applications.
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Figure 2: Illustration of the R3 training process.

Training Pipeline. Our training consists of three steps: (i) on-policy retrieval that conduct search
during training with its latest parameters; (ii) approximiated LLM generation based on the retrieved
documents; (iii) reinforced contrastive learning to optimize the retriever. Steps i and ii present
practical challenges, which we address in the next section. Both are essential to enable effective
reinforced contrastive learning. An illustration of our framework is depicted in Figure 2.

3.2 On-Policy Retrieval

In this step, given a query q, we use the on-policy retriever to retrieve the top-k relevant documents.
The main challenge in this stage concerns the retrieval index.

Challenge of Index Staleness. As is well known, a bi-encoder retriever consists of a query encoder
EQ

θ and a document encoder ED
θ . During training, as the parameters update from θ → θ′, query

4



embeddings can be computed on the fly using the updated encoder EQ
θ′ , since the number of queries

is limited to the batch size. In contrast, the document datastore typically contains billions or even
trillions of documents (i.e., |D| ≫ 1), making it impractical to recompute document embeddings
with the updated encoder ED

θ′ . As a result, the index ED
θ (D) becomes stale as training progresses

θ → θ′. Fundamentally, this challenge stems from the coupling between index and parameters θ.

Prior solutions alleviate index staleness by periodically rebuilding the index [2, 40] or freezing the
document encoder during training [41, 38]. While shorter re-index intervals are observed to yield
better results [54], longer intervals are often chosen to reduce re-indexing costs. Although these
strategies alleviate index staleness to some extent, residual staleness remains and ultimately limits the
effectiveness of retriever training.

Our Solution. We adopt our recently proposed semi-parametric retriever architecture SIDR [55],
which is designed to address this issue.

Figure 3: Overview illustration of SIDR.

Revisiting SIDR. Figure 3 illustrates the core idea of SIDR. Intuitively, a language model together
with its pre-training head can be viewed as an auto-encoder that encodes one-hot token representations
T (x) ∈ {0, 1}|V | into softmax vocabulary probabilities V (x) ∈ (0, 1)

|V | to predict masked or next
tokens. Inspired by this, SIDR aligns bag-of-token representation with sparse embeddings so that, at
downstream, the embedded query can directly search over tokenized documents, thereby decoupling
the index from parameters θ.

Specifically, SIDR builds upon a BERT-based models with three simple modifications to its pre-
training head: (i) replacing the softmax with elu1p activation; (ii) aggregating token representations
via max pooling; and (iii) applying top-k sparsification. Given a sequence X , SIDR embeds it into a
|V |-dimensional sparse embedding which we refer to Eθ(X) ∈ (0,+∞)|V |. During training, SIDR
applies constrastive learning across three channels: Eθ(q) with Eθ(d), T (q) with Eθ(d), Eθ(q) with
T (d). In this setup, it succeeds in using Eθ(q) to search over bag-of-token index T (D). We expand
on SIDR in more detail in Appendix C.
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On-policy Retrieval. During R3 training, we adopt the late parametric mechanism of SIDR (shwon
as option 4), which first retrieves the top-m documents using the bag-of-tokens index T (D), and then
embeds the these documents for re-ranking. This process can be formulated as:

{d̂}m = Rθ(Eθ(q), T (D),m)

{d̂}k = Rθ(Eθ(q), Eθ({d̂}m), k)

To reduce training costs, we set m = k = 20 in our experiments. Additional ablation studies and
comparisons on re-indexing solutions are provided in Section 5.1.

3.3 Probability-approximiated Generation

Following on-policy retrieval, we obtain the retrieved set {d̂}k for each query, denoted as D̂q. The
goal of the LLM forward step is to divide this set into a positive pool D̂+

q and a negative pool D̂−
q ,

based on the RAG outcome. Below, we outline the key challenges involved in this step.

Challenge of Online Autoregressive Generation. During training, the online generation process G
is computationally expensive and slow due to the overhead of autoregressive decoding.

Solution. While a promising solution is to generate responses on-the-fly and verify them with either
human-in-the-loop in the loop [56] or a larger proprietary LLM as a judge [57, 58], this approach
incurs substantial computational cost, potentially slowing down training and reducing the accessibility
of our method. As a more practical solution, we pre-compute a probability threshold offline and
use it to approximate autoregressive generation online. This relies on the weak assumption that a
higher conditional probability P (y | x) corresponds to a greater likelihood of generating y, where x
is the input to the LLM. Further discussion on this assumption is provided in Appendix F. Below, we
present the details of our solution.

Offline Computation of Probability Threshold. We follow the standard RAG pipeline described
in Section 3.1. For each training query q, we retrieve the top-100 documents, denoted as the initial
retrieved set Dq. For each di ∈ Dq, we compute the joint probability P (y | x) of generating the
ground truth response y given the input prompt x, where x consists of the query, one retrieved
document, and the instruction.

x = Prompttask(q, di); P (y | q, di) = P (y | x) =
∏

∀ti∈y

Pϕ(ti | t<i, x)

We then generate responses ŷ = G(x). Based on whether ŷ passes the evaluation, we partition the
initial retrieved set Dq into a positive pool D+

q and a negative pool D−
q . We set k = 100 and discard

any query for which either pool is empty. We define the probability thresholds for positives and
negatives as T + and T −, respectively.

T +
q = max{P (y | q, d) | ∀d ∈ D−

q }; T −
q = min{P (y | q, d) | ∀d ∈ D+

q }

Online Identification of Positives and Negatives. During online training, given a query q, we
retrieve the top-k documents as the in-training retrieved set D̂q. For each d̂i ∈ D̂q, we compute
P (y | q, d̂i) and classify it as positive or negative based on the offline thresholds.

d̂i ∈


D̂+

q , if P (y | q, d̂i) > T +
q

D̂−
q , if P (y | q, d̂i) < T −

q

Discarded, else

In plain terms, if using d̂i leads to a higher probability of generating y than any d ∈ D−
q , then d̂i is

considered positive. Conversely, if its probability is lower than any d ∈ D+
q , then d̂i is considered

negative. Otherwise, d̂i is discarded. If D̂−
q or D̂+

q is empty, we fall back to the initial set D−
q or D+

q .

Sampling. In practice, we iterate through the retrieved documents in descending order of retrieval
relevance. For each document d̂i, we apply the LLM forward pass to classify it as positive, negative,
or discard it. This process continues until the first negative document is identified, which we designate
as the hard negative d̂−. We then randomly sample one positive document d̂+ from D̂+

q . If either
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d̂+ or d̂− is unavailable, we fall back to sampling from the initial pool D+
q or D−

q , respectively. We
evaluate alternative sampling strategies in Appendix E and find that this strategy consistently achieves
the best performance.

Other Details. For closed-set tasks where the response is a single token, we directly compare
next-token probabilities to classify d̂i. If the gold choice token has a higher probability than other
options, d̂i is considered as positive; otherwise, negative. For queries q with multiple gold responses
y, each y is treated as a separate entry. If d̂i succeeds on at least one, it is considered positive;
otherwise negative. To avoid redundant computation, we cache all P (y | q, d̂i) for reuse.

3.4 Reinforced Contrastive Learning

Following on-policy retrieval and probability-approximiated generation, we obtain the in-training
retrieved positive document d̂+ and negative documents d̂−i for the training query q. In the final step,
we apply contrastive learning to these pairs.

Our training objective follows SIDR to preserve its compatibility with late parametric retrieval
(i.e., retrieving documents from a bag-of-tokens index and then re-ranking). Given a batch B of N
samples, each sample contains a query qi, a positive document d+i , and a negative document d−i . The
semi-parametric contrastive loss is defined as:

L(q, d) =−
N∑
i=1

(log
ef(qi,d

+
i )∑

∀d∈B ef(qi,d)︸ ︷︷ ︸
q-to-d

+ log
ef(d

+
i ,qi)∑

∀q∈B ef(d
+
i ,qi)︸ ︷︷ ︸

d-to-q

)

The final loss integrates contrastive loss of both parametric and semi-parametric components:

Lpara(q, d) = L(Eθ(q), Eθ(d))

Lsemi-para(q, d) = L(Eθ(q), T (d))/2 + L(T (q), Eθ(d))/2

Lfinal(q, d) = Lpara(q, d) + Lsemi-para(q, d)

4 Experiments

4.1 Experimental Setup

Tasks and Datasets. We evaluate R3 on five public RAG benchmarks. For free-form generation,
we utilize Natural Questions (NQ; Kwiatkowski et al., 2019), TriviaQA (TQA; Joshi et al., 2017),
and HotpotQA [60], three well-established open-domain QA datasets. For closed-set generation, we
employ the PubHealth [61] dataset for fact-checking tasks, and the ARC-Challenge [62] dataset for
multiple-choice reasoning. More details can be found in Appendix A.

We exclude long-form generation datasets as we use the probability of continuation to approximate
RAG performance, which may not align well with such tasks. Additionally, certain datasets, such as
PopQA [63], which only offer a test split, are also excluded.

Evaluation Metrics. Following previous works [64, 63], we use accuracy on the test set as our
evaluation metric. In the traditional IR setting, accuracy reflects whether the retrieved documents
contain the answer, while in the RAG setting, it is determined by whether the generated output
contains the answer. Since our training uses only one document in context, whereas prior work
typically uses ten, we report accuracy under both 1-shot and 10-shot settings for comparison.

Implementation Details. Our RAG system employs the LLM Llama3-8b [65] with the retriever
SIDRMS [55] that trained on MS MARCO dataset [30]. For experiments on NQ, since certain
baselines are trained on its training split, we additionally train SIDRMS on NQ before applying our
method. By defualt, we use the same English Wikipedia datastore and prompt as those open-sourced
by SELF-RAG, detailed in Appendix K. For HotpotQA, we use the official datastore provided with
the dataset. During training, we train the retriever for each dataset for 80 epochs, aligning with the
training duration used for SIDRMS. We use a batch size of 128 and an AdamW optimizer [66] with
a learning rate of 2× 10−5. The training process is divided into two phases: the first half involves
a warm-up phase using initial retrieved positives and negatives, while the second half transitions
to in-training retrieval, using the in-training positives and negatives. During inference, we set the
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maximum number of generated token to be 100 for free-form generation while 20 for closed-set
generation. Our experiments are conducted with 4 NVIDIA GPUs. Both offline RAG preparation
and online RAG training take less than one day, depending on the number of queries in the datasets.
We leverage vLLM [67] to accelerate offline generation.

Baselines. We consider the below baselines: (1) Standard RAG: RAG frameworks using Llama3-8B
and SOTA retrievers E5 [51] and CONTRIEVERMS [49]. (2) Improving IR for RAG: RAG frame-
works with tuning retriever or advanced retrieval strategies enhanced by LLM. Strategy-based
methods include ADAPTIVE-RAG [33] and IR-COT [35], which adapt retrieval based on question
complexity or LLM reasoning, as well as DRAGIN [31], FLARE [32], and SEAKR [34], which
dynamically retrieve or selectively integrate external information guided by LLMs. For learning-
based method, we compare against REPLUG [40], which tunes only the retriever while frozen the
LLM. (3) Improving LLM for RAG: RAG frameworks that tune the LLM, typically requiring more
computation than tuning the retriever. We compare with SELF-RAG [64], which trains the LLM to
decide when to retrieve and to self-verify its answers, and with RA-DIT [41], which jointly tunes both
the retriever and the LLM. We include LLM-tuning methods in the comparison to illustrate the rela-
tive improvement from tuning the retriever. (4) Transferring to other LLMs: We compare the RAG
framework using different LLMs, such as Llama3-Instruct8B [65], Phi-3-mini-4k-instruct3.8B [68],
Mistral-Instruct7B [69], along with SIDRMS before and after tuning. This setup is designed to evaluate
whether the learned in-context relevance transfers across different LLMs. Further model details are
provided in Appendix B.

4.2 Main Results

Table 1: Main results of R3 and other RAG baselines. Bold: best RAG method by only improving
IR. ∆: improvement or decline; ▲: baseline for below methods to compare; †: reproduction by other
works; ‡: our reproduction; ♠: LLM-enhanced retrieval process.

Task Type (→) Free-form Closed-set

Dataset (→) NQ TriviaQA HotpotQA PubHealth ARC-C

Method (↓) Metrics (→) 1-shot ∆ 10-shot ∆ 1-shot ∆ 10-shot ∆ 1-shot ∆ 1-shot ∆ 10-shot ∆ 1-shot ∆ 10-shot ∆

Standard RAG

‡ Llama38B + SIDR 42.2 ▲ 42.1 ▲ 62.0 ▲ 62.5 ▲ 39.1 ▲ 63.5 ▲ 64.9 ▲ 56.9 ▲ 57.5 ▲
‡ Llama38B + CONTRIEVERMS 36.5 -5.7 38.3 -3.8 60.7 -1.3 60.6 -1.9 37.2 -1.9 63.1 -0.4 62.9 -2.0 58.1 +1.2 58.9 +1.4
‡ Llama38B + E5 43.2 +1.0 41.8 -0.3 63.2 +1.2 61.4 -1.1 35.7 -3.4 64.7 +1.2 63.7 -1.2 58.0 +1.1 58.1 +0.6

Improving IR for RAG

♠ADAPTIVE-RAGT5-XXL-11B (15-shot) [33] – – 47.4 +5.3 – – 57.2 -5.3 46.8 +7.7 – – – – – – – –
†♠IR-COTLlama-3.1-8B-Instruct (15-shot) [35] – – 47.8 +5.7 – – 60.8 -1.7 43.8 +4.7 – – – – – – – –
†♠DRAGINLlama-3.1-8B-Instruct (15-shot) [31] – – 48.0 +5.9 – – 66.6 +4.1 43.0 +3.9 – – – – – – – –
†♠SEAKRLlama-3.1-8B-Instruct (15-shot) [34] – – 40.6 -1.5 – – 65.6 +3.1 42.4 +3.3 – – – – – – – –
†♠FLARELlama-3.1-8B-Instruct (15-shot) [32] – – 45.0 +2.9 – – 64.8 +2.3 37.2 -1.9 – – – – – – – –
†REPLUGLlama2-7B (3-shot) [70] – – – – – – – – – – – – 41.7 -23.2 – – 47.2 -10.3
R3Llama-3-8B (Ours) 47.8 +5.6 48.2 +6.1 65.8 +3.8 66.2 +3.7 47.1 +8.0 69.5 +6.0 69.3 +4.4 59.2 +2.3 59.4 +1.9

Improving LLM for RAG

Llama3-Instruct8B + SIDR 47.2 +5.0 54.7 +12.6 65.2 +3.2 73.3 +10.8 49.0 +9.9 67.2 +3.7 71.8 +6.9 72.3 +15.2 75.4 +18.0
SELF-RAGLlama2-7B [64] – – – – – – 66.4 +3.9 – – – – 72.4 +7.5 – – 67.3 +9.8
†SELF-RAGMistral-7B [71] – – – – – – 64.8 +2.3 – – – – 72.4 +7.5 – – 74.9 +17.4
†SELF-RAGLlama3-8B [72] – – – – – – 56.4 -6.1 – – – – 67.8 +2.9 – – 58.0 +0.5
‡SELF-RAGLlama3-8B + SIDR 38.5 -3.7 38.0 -4.1 51.0 -11.0 57.7 -4.8 – – 64.2 +0.7 64.0 -0.9 58.9 +2.0 59.1 +1.6
RA-DITLlama-65B (5-shot) [41] – – 43.9 +1.8 – – 75.1 +12.6 40.7 +1.6 – – – – – – – –

Transferring R3 to other LLM

Llama3-Instruct8B + SIDR 45.2 ▲ 52.7 ▲ 65.2 ▲ 73.3 ▲ 49.0 ▲ 67.2 ▲ 71.8 ▲ 72.3 ▲ 75.4 ▲
Llama3-Instruct8B + R3 48.8 +3.6 56.5 +3.8 65.6 +0.4 73.8 +0.5 50.7 +1.7 65.2 -2.0 66.1 -5.7 71.8 -0.5 75.1 -0.3
Phi-3-mini-4k-instruct3.8B + SIDR 44.1 ▲ 50.7 ▲ 64.6 ▲ 69.2 ▲ 44.1 ▲ 48.2 ▲ 57.6 ▲ 84.5 ▲ 84.7 ▲
Phi-3-mini-4k-instruct3.8B + R3 46.6 +2.5 52.4 +1.7 65.6 +1.0 70.4 +1.2 45.7 +1.6 45.3 -2.9 54.4 -3.2 85.1 +0.6 84.2 -0.5
Mistral-Instruct7B + SIDR 43.9 ▲ 48.8 ▲ 58.2 ▲ 57.1 ▲ 42.4 ▲ 50.1 ▲ 57.4 ▲ 69.8 ▲ 71.2 ▲
Mistral-Instruct7B + R3 46.1 +2.2 51.7 +2.9 59.8 +1.6 57.6 +0.5 41.8 -0.6 46.7 -3.4 54.6 -2.8 69.2 -0.6 70.6 -0.6

Table 1 presents results of R3 and other RAG methods, with key findings summarized below:

Reinforced contrastive learning effectively improves the retriever within RAG environments.
Unlike CONTRIEVERMS and E5, which rely on extensive pre-training and SFT, R3 tunes SIDR
with only four GPUs in one day. This efficient setup yields an average improvement of 5.2% over
the original SIDRMS and outperforms other SOTA retrievers by 4.9% under the 1-shot setting. On
PubHealth, the gain reaches 6%, which even instruction-tuned LLMs fail to match. These results
demonstrate that learning retrieval tailored to the specific RAG environment in an RL manner is more
effective than SFT with massive paired data that is unaware of the RAG environment. In Appendix I,
we show that improving the retriever for RAG can degrade its performance in traditional IR settings,
highlighting the gap between IR and RAG.
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Tuning a small retriever can yield improvements on par with tuning a LLM. Reproductions
of SELF-RAG from other works [72, 71] and our own experiments have shown inconsistent gains.
This suggests that, despite substantial training costs, improving RAG through LLM tuning requires
heavy customization and lacks generalizability. In contrast, tuning a smaller retriever can achieve
comparable or even superior results to RAG-oriented or instruction-tuned 8B LLMs on certain
datasets. Importantly, improving retriever complements improving LLM without conflict, offering a
more efficient and controllable path for improving RAG systems.

Learned relevance can be transferred to other LLMs across domains but not across tasks.
Our results show that R3, trained with Llama3-8B, also improves performance when paired with
other LLMs, such as Llama3-Instruct-8B, Phi-3-mini-4k-instruct, and Mistral-Instruct, on QA tasks
across different benchmarks. However, this transferability does not consistently extend to non-QA
tasks. Given that the original SIDR is trained on a QA dataset, the current observations suggest
that the learned relevance to be robust for transfer across domains within the same task, but not
across tasks. This also reflects a broader phenomenon: while different LLMs may require similar
documents for general QA tasks, these requirements diverge significantly for more complex tasks,
such as fact-checking and complex reasoning. This highlights the importance of learning retrieval
tailored to the specific RAG environment. Rather than viewing this as a limitation, we see it as
evidence that R3 is capable of capturing environment-specific relevance.

5 Analysis

5.1 Ablation Study

Compared to prior works, our main differences include (i) construct constrastive on-the-fly (ii)
employing contrastive objective instead of KL divergence objective, and (iii) using late parametric
to avoid periodic re-indexing. We systematically analyze these factors in this section. Note that our
ablation experiments on NQ are conducted with the initial retriever SIDRMS, and thus differs from
the main experiment setup.

Contrastive Learning versus Reinforced Contrastive Learning. In the warm-up stage, we use
documents retrieved offline from the initial retrieval pool. During the training stage, we apply RCL
using documents retrieved online with the current parameters (i.e., on-policy). We conduct an ablation
study on NQ and PubHealth under three settings: [offline-only] uses only the offline retrieved pool
offline, which can be considered as conventional CL; [online-only] skips the warm-up and relies
solely on online on-policy retrieval; our full method [offline+online] uses both offline warm-up and
online on-policy retrieval, which refers to RCL with both positive and negative pools guaranteed.

As shown in Figure 4, using either [offline-only] or [online-only] alone results in suboptimal perfor-
mance, while [offline+online] leads to the best results. These observations demonstrate that both
off-policy contrastive labels obtained through conventional CL and on-policy contrastive labels identi-
fied via RCL during training can improve the retriever. However, combining both approaches delivers
the best results. This supports findings from our prior work [55], which show that a warm-up phase
with static contrastive labels helps the retriever initially align with environment-specific relevance,
and on-policy retrieval further refines it by continuously mining more effective contrastive labels
during training, thereby deepening the retriever’s alignment with the environment.

Contrastive Objective versus KL-Divergence Objective. We also evaluate a variant of our method
that replaces contrastive learning objective with KL divergence, denoted as [offline+online(KL)]. KL
divergence has been adopted in prior work [40, 2] to align query-document relevance with generation
likelihood. Our results show that while KL divergence yields initial improvements, these gains
quickly plateau and remain consistently lower than those achieved by our contrastive approach.
KL-based alignment is easier to implement but provides a more rigid and less adaptive learning signal.
In contrast, contrastive learning continuously supplies effective positives and negatives based on the
current retriever state, enabling ongoing improvement throughout training.

We believe KL divergence underperforms in this context because the generation likelihood distribution
of LLMs is inherently hard to capture by bi-encoder. Many studies in knowledge distillation [73, 74]
have attempted to use small bi-encoders to approximate fine-grained ranking signals, typically
provided by cross-encoders or LLMs, but have consistently found that such models struggle to
capture these signals effectively. This limitation has led to the widespread adoption of the retrieve-
then-rerank paradigm in both academic and industrial settings.
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Figure 4: Ablation of offline and online learning. Figure 5: Ablation on re-indexing strategies.

Late Parametric versus Periodic Re-indexing. Another key distinction between our method and
prior approaches lies in how we address index staleness. While previous works periodically rebuild
the index during training, we adopt a late parametric mechanism from SIDR to avoid frequent
re-indexing. Below, we compare these strategies for handling index staleness. [R3 (w/o re-rank)]
refers to performing retrieval directly on the bag-of-tokens index without subsequent re-ranking.
This reduces computational cost but results in suboptimal retrieval accuracy. [R3 (w/o semi-para)]
denotes the removal of the entire semi-parametric design, falling back to periodic re-indexing as done
in prior work. In our setup, the index is rebuilt three times during training. More details are provided
in Appendix H.

As shown in Figure 5, our results indicate that while periodic re-indexing R3 (w/o semi-para)
provides some improvement, it is significantly less effective than the semi-parametric design. The late
parametric approach not only yields better performance but also reduces training cost and simplifies
implementation. Compared to direct retrieval on the bag-of-tokens index, the late parametric design
provides higher-quality positive and negative examples to improve. This advantage is particularly
evident on the PubHealth dataset, where R3 shows a much larger improvement over R3 (w/o re-rank).

5.2 Cost-Effectiveness Analysis

The main training cost comes from LLM forward passes to compute probability P (y | q, d) for
previously unseen documents. In Table 2, we report the number of such documents processed during
training. Each query involves between 14 and 128 unseen documents, depending on the task. We
observe a positive correlation between the number of processed documents and the performance gain
of R3. Notably, PubHealth encounters most unseen documents and yields the largest improvement,
suggesting a greater gap between the initial and learned retriever.

NQ TriviaQA PubHealth ARC
nDoc 34 18 128 14

Improv. +5.6% +3.8% +6.0% +2.3%
Table 2: Number of documents requiring probability computation and corresponding improvement.

Together with the transferability results in Table 1, this motivates further analysis. In Appendix G,
we show that R3 learns LLM-specific relevance on PubHealth. We find that transferability improves
initially but then declines steadily during training, even as RAG performance continues to rise. This
suggests that the retriever becomes more specialized for the target LLM (Llama3-8B), reducing its
generalization to other LLMs. This pattern reflects a broader trend: while LLMs may share similar
relevance preferences for general QA tasks, they might diverge in specialized domains and complex
tasks, highlighting the need to tune retrievers for each specific RAG enviroment.

6 Conclusion

In this work, we demonstrate the relevance gap between IR and RAG. To address this gap, we
introduce R3, a RAG framework that optimizes retrieval for a given RAG environment in a RL
manner. Our results show that RCL, which constructs on-policy contrastive signals on-the-fly,
significantly improves a retriever within a specific RAG environment, outperforming state-of-the-art
off-the-shelf retrievers and LLM-augmented retrieval, while performing comparably to RAG systems
with post-trained or instruction-tuned 8B LLMs. These findings highlight the substantial potential of
our approach to enhance RAG systems through effective retrieval learning.
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Limitations

Our work explores optimizing retrieval for RAG in a reinforcement learning manner, but several
limitations remain. First, the current experimental setup focuses on a vanilla RAG workflow, where
only one document is retrieved as context. We believe this idea can naturally extend to more complex
workflows, as long as the online learning process remains computationally feasible. Second, the
current reward function is constrained by its reliance on short answers and string matching. During
training, we also observe that performance is sensitive to how positive and negative examples are
defined. A more stable and generalizable reward or evaluation function, such as using an LLM-as-
a-Judge, could further improve reliability. Lastly, our current foundation model is based on BERT,
which is relatively outdated. We believe that incorporating more advanced LLM-based encoders and
tuning them in a semi-parametric manner could greatly broaden the applicability and user-facing
potential of this framework.

Broader Impact and Future Work

In this section, we discuss the broader societal impact of our work and its potential influence on other
areas and advanced applications.

RAG Application Safety. Our work could be deployed in complex environments where retrieval
is learned to affect AI behavior and safety. The retrieval module can learn to retrieve contextual
information, few-shot examples, instructions, or existing chain-of-thought prompts that guide LLMs
toward more reliable outputs, or conversely be intentionally misused to generate harmful content,
mislead users, or surface inappropriate material. We acknowledge this potential for malicious use
and encourage responsible deployment and safeguard mechanisms in practice.

Scaling with Learned Sparity. The success of different areas can be unified under the paradigm
of Scaling with Learned Sparsity. For example, LLM pre-training leverages Mixture-of-Experts
(MoE) to scale up the parameter space, improving effectiveness while sparsely activating modules at
inference time to ensure efficiency. RAG can be viewed as scaling knowledge coverage by integrating
external databases, while sparsely activating specific data partitions through the retrieval function.
Similarly, a line of sparse retrieval studies [75, 76, 77] can be regarded as scaling the representation
space to enhance representational capacity and allivate the limitations [78] of embedding models,
while sparsely activating dimensions to guarantee search efficiency.

MoE RAG Sparse Retrieval
Area Pre-training Inference Representation Learning

Scaling Parameter Space Knowledge Space Representation Space
Sparsely Activate Neural Modules Data Partitions Dimensions

Table 3: Overview of scaling with learned sparsity paradigms.

Looking forward, we believe that future AI systems will inevitably require learning to scale along
certain axes while simultaneously learning sparsity over them. Our two works, SIDR and R3,
demonstrate how to learn sparsity and how such sparsity can further be utilized to improve the
large-scale complex systems within which they operate, offering preliminary insights in this direction.

Multi-modal RAG. Beyond document retrieval, emerging AI search systems increasingly involve
multimodal data such as images and videos. Unlike query–document pairs, where lexical relevance
can often serve as a reasonable heuristic, constructing effective relevance pairs for cross-modal data
is far more challenging due to the high cost of annotation and the lack of explicit alignment signals.
This direction highlights opportunities for framework that can automatically obtain contrastive labels
through interaction or feedback signals, a principle that aligns with the learning dynamics explored in
our work.

Searching Tools, Skills, MCP, and Agents. Recent progress in agentic frameworks, where AI
agents learn to call tools, skills, MCP services, or interact with other agents, has largely relied
on online reinforcement learning to manage a small pool of available operations. As the pool of
callable components continues to grow, learning effective representations of these components for
retrieval will become crucial for scalable and efficient decision-making. In such settings, the proposed
reinforced contrastive learning offers one possible direction for enabling search and coordination
across a large pool of tools, skills, and agents.
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A Details of Datasets

We present details of datasets as follows.

• Natural Questions (NQ; Kwiatkowski et al., 2019) is a widely used open-domain QA dataset
constructed from Wikipedia. The questions originate from Google search queries, and the answers
are text spans within Wikipedia passages. This dataset consists of queries with one or more answer
strings, requiring RAG systems to generate responses based on factual knowledge.

• TriviaQA (TQA; Joshi et al., 2017) is a challenging QA dataset that comprises question-answer
pairs curated by trivia enthusiasts along with independently gathered evidence documents.

• HotpotQA [60] is a multi-hop question answering dataset that requires reasoning over multiple
Wikipedia paragraphs to answer factoid questions.

• PubHealth [61] is a fact-checking task that focuses on verifying health claims across a variety of
biomedical topics.

• ARC-Challenge [62] is a multiple-choice reasoning dataset consisting of science exam questions
for grades 3 to 9.
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B Details of Models

B.1 Retrieval Model (IR)

• E5 [51] is a state-of-the-art dense retriever that pre-trained on millions of weakly related text
pairs from the Web. The unsupervised version of this model is denoted as E5-unsup. This model
undergoes further fine-tuning on natural language inference (NLI) datasets, as well as the Natural
Questions and MS MARCO datasets, to enhance its capabilities in downstream applications. The
fine-tuned version is denoted as E5.

• CONTRIEVER [49] is a widely-used dense retriever pre-trained unsupervised on Wikipedia data
and CCNet [79]. The unsupervised version of this model is denoted as CONTRIEVER. It is further
fine-tuned on the MS MARCO dataset to enhance its retrieval performance, with the fine-tuned
version denoted as CONTRIEVERMS.

• DPR [28] is a widely used dense passage retriever initialized with a BERT-based uncased en-
coder [80], and fine-tuned on downstream dataset. Specifically, DPRMS is fine-tuned on the MS
MARCO dataset, DPRNQ on the NQ dataset, and DPRTQA on the TriviaQA dataset.

• SIDR [55] is a semi-parametric sparse retriever that supports using both embeddings and tokeniza-
tion as index. This nature allows for in-training retrieval, where the model’s parameters dynamically
update while the retrieval index remains fixed. The model is initialized with a BERT-based uncased
encoder [80] and fine-tuned exclusively on single dataset depending on the variant: SIDRMS is
fine-tuned on the MS MARCO dataset, SIDRNQ on the NQ dataset, and SIDRTQA on the TriviaQA
dataset.

All the above retrieval methods are initialized with a BERT-based encoder, which contains approxi-
mately 200 million (0.2B) parameters.

B.2 Large Language Model (LLM)

• Llama38B [65] is a variant of the latest Llama3 model series with 8 billion parameters.

• Llama3-Instruct8B [65] builds upon the Llama38B by undergoing a post-training stage in which the
model is specifically tuned to follow instructions and align with human preferences to improve
specific capabilities.

• Phi-3-mini-4k-instruct3.8B [68] is a lightweight widely-used LLM with 3.8 billion parameters,
trained on the Phi-3 dataset featuring synthetic and high-quality filtered web data, focused on
reasoning and quality.

• Mistral-Instruct7B [69]. We use Mistral-7B-Instruct-v0.3 LLM which is an instruct fine-tuned
version of the Mistral-7B-v0.3.

B.3 Retrieval-augmented Generation Framework (RAG)

• ADAPTIVE-RAG [33] is a RAG framework that adapts the retrieval strategy based on question
complexity where simple questions are answered without retrieval and complex ones trigger a
multi-step process involving iterative interaction between the retriever and the LLM.

• IR-COT [35] is a RAG framework designed for multi-hop question answering. It interleaves
retrieval with intermediate steps in chain-of-thought (CoT) reasoning.

• FLARE [32] is a RAG framework that enhances LLM performance by selectively integrating
external knowledge. It monitors token-level generation probabilities to detect uncertainty and
triggers retrieval when needed during generation.

• DRAGIN [31] is a RAG framework that, similar to FLARE, monitors token-level probabilities
during generation to detect uncertainty.

• SEAKR [34] is a RAG framework that reduces hallucinations by leveraging self-aware uncertainty.
It monitors the LLM’s internal signals and triggers retrieval only when high uncertainty is detected
during generation.
For the above four baselines, we adopt the reproductions and reported results from Moskvoretskii
et al. [19].
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• REPLUG [40] is a RAG framework using GPT-3 and CONTRIEVER. The retriever is specifically
trained to use the first 128 tokens of a sequence as queries, with the goal of retrieving documents that
maximize the probability of generating the subsequent 128 tokens when these retrieved documents
are prepended to the query.

• SELF-RAG [64] is a RAG framework designed to improve response quality by enabling on-demand
retrieval and incorporating self-reflection mechanisms.
The reproductions by Wang et al. [71] and Zhang et al. [72], SELF-RAGMistral-7B and
SELF-RAGLlama3-8B respectively, involve tuning Mistral-7B and Llama3-8B as base lan-
guage models using the open-source data provided by SELF-RAG. Our reproduction,
SELF-RAGLlama3-8B+SIDRMS, utilizes the SELF-RAGLlama3-8B checkpoint from Zhang et al. [72]
as LLM, while employing the same retriever SIDRMS and adapting it to our downstream setup.

• RA-DIT [41] is a RAG framework that separately fine-tunes the LLM to better utilize retrieved
information and the retriever to align with the LLM’s preferences.

C Revisiting Semi-parametric Disentangled Retriever (SIDR)

This section can be considered an expanded version of Section 3.2, where we discuss SIDR in more
detail.

Figure 6: Overview illustration of SIDR.

Background: Challenge of Index Staleness. As is well known, the retrieval index is typically
the embedding of the datastore, denoted as Eθ(D). During training, as the Rθ parameters update
from θ → θ′, the index must be updated accordingly, from Eθ(D) → Eθ′(D), where |D| ≫
1. Otherwise, the index becomes stale, leading to mismatches between the query and document
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embeddings. However, frequently re-embedding a large datastore is computationally expensive and
often unaffordable in practice. Fundamentally, this challenge stems from the coupling between
retrieval index and model parameters θ.

Intuition of SIDR. Intuitively, a language model (LM), together with its pre-training head, can be
viewed as an auto-encoder. Let’s use BERT as an example. Given an input sequence X , a specific
token x can be represented as a one-hot vector T (x) ∈ 0, 1|V |, where |V | = 30522 is the size
of the BERT vocabulary V . These tokens are then processed by the embedding layer to yield a
d-dimensional hidden state H0(x), where d = 768. After passing through 12 transformer blocks, the
token representations interact with the contextualized token representations, resulting in the final
token representation from the last layer, denoted as Hn(x). The Hn(x) of a masked token is then
further processed by the masked language model head (MLMH) to yield a probability distribution
V (x) ∈ (0, 1)|V | over the vocabulary space, used to predict the masked token.

Given a sequence X , SIDR embeds it into a |V |-dimensional sparse embedding, denoted as Eθ(X) ∈
(0,+∞)|V |. SIDR builds upon a BERT-based model with three simple modifications to its pre-
training head: (i) replacing the softmax activation with elu1p; (ii) aggregating token representations
via max pooling; and (iii) applying top-k sparsification.

Inspired by the auto-encoder property, we are curious whether output sparse embedding can be
aligned with input tokenization to yield better features. Specifically, during training, SIDR applies
contrastive learning across three channels: Eθ(q) with Eθ(d), T (q) with Eθ(d), and Eθ(q) with T (d).
In this training setup, we find that SIDR successfully uses Eθ(q) to search over the bag-of-token
index T (D), as illustrated in Figure 6 with Option 3 (Beta Search) and Option 4 (Beta Search +
Re-rank). This provides an opportunity to use a non-parametric bag-of-token index as a frozen proxy
for retrieval during the retriever’s training loop, thereby bypassing the re-indexing issue.

On-policy Retrieval. During R3 training, we adopt the late parametric mechanism of SIDR (shwon
as option 4), which first retrieves the top-m documents using the bag-of-tokens index T (D), and then
embeds the these documents for re-ranking. This process can be formulated as:

{d̂}m = Rθ(Eθ(q), T (D),m)

{d̂}k = Rθ(Eθ(q), Eθ({d̂}m), k)

To reduce training costs, we set m = k = 20 in our experiments.

Other Applications of SIDR. Besides using the bag-of-token index to enable on-policy training in
R3 (i.e., Eθ(q) searches over T (D)), SIDR offers additional advantages. For example, it facilitates
conventional search, where the sparse embedding of the query searches over the sparse embeddings
of the documents, enabling efficient search via inverted indexing and improving interpretability. Addi-
tionally, it can further reduce online query embedding time by using the bag-of-token representation
of the query (i.e., T (q) searches over Eθ(D)), a method known as alpha search [81].

D Preliminary Study

In Table 4, we report the performance of several off-the-shelf retrievers across multiple datasets,
covering both IR and RAG scenarios. The datasets include QA benchmarks such as NQ and TQA,
and non-QA benchmarks such as PubHealth and ARC, as detailed in Appendix A. The evaluated
retrievers include the dense retriever DPR, the sparse retriever SIDR, and unsupervised models such
as CONTRIEVER and E5-unsup, along with their supervised counterpart. Model details are provided
in Appendix B. The evaluation metric is described in Section 4.1, where the IR measure evaluates
whether the retrieved document contains the answer, and the RAG measure evaluates whether the
retrieved document can prompt the LLM to generate the answer. We benchmark all models using
SIDRMS as the base retriever, which also serves as the backbone of our proposed method. The results
reveal two key findings.

Finding 1: Better IR performance does not always lead to better RAG performance, especially
when a task shift occurs. For QA tasks, we observe that higher accuracy in IR settings generally
correlates with better RAG performance. However, this trend does not hold for non-QA tasks. For
example, on PubHealth, a vanilla DPRMS outperforms a SOTA retriever in RAG settings, despite
being weaker in IR metrics. Similarly, on ARC, the unsupervised CONTRIEVER achieves the best
RAG performance, outperforming its supervised counterparts.
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Table 4: Accuracy in IR and RAG settings using Llama3-8b with top-1 retrieved document in-context;
Bold: best performance; ∆: improvement or decline compared to SIDRMS; §: has been trained
in-domain.

Dataset (→) NQ TriviaQA PubHealth ARC-C

Retriever (↓) IR ∆ RAG ∆ IR ∆ RAG ∆ RAG ∆ RAG ∆

Unsupervised Pre-training
Contriever 23.6 -15.5 30.9 -3.5 37.2 -18.9 56.6 -5.4 61.8 -1.7 58.6 +1.7
E5-unsup 30.8 -8.3 33.4 -1.0 39.5 -16.6 54.3 -7.7 62.9 -0.6 58.3 +1.4

Supervised on MSMARCO
DPRMS 38.9 -0.2 34.9 +0.5 43.7 -12.4 55.2 -6.8 64.5 +1.0 56.3 -0.6
SiDRMS 39.1 – 34.4 – 56.1 – 62.0 – 63.5 – 56.9 –

Supervised on NQ
DPRNQ ‡43.5 +4.4 ‡38.5 +4.1 39.4 -16.7 55.9 -6.1 62.9 -0.6 56.6 -0.3
SiDRNQ ‡49.5 +10.4 ‡42.7 +8.3 47.4 -8.7 59.8 -2.2 63.5 – 57.1 +0.2

Supervised on TQA
DPRTQA 32.1 -7.0 32.9 -1.5 ‡55.4 -0.7 ‡61.1 -0.9 63.1 -0.4 56.7 -0.2
SiDRTQA 30.6 -8.5 32.9 -1.5 ‡56.9 +0.8 ‡63.6 +1.6 61.1 -2.4 58.6 +1.7

Pre-training + Supervised on Multiple Datasets
ContrieverMS 41.5 +2.4 36.5 +2.1 53.5 -2.6 60.7 -1.3 63.1 -0.4 58.1 +1.2

E5 ‡58.0 +18.9 ‡43.2 +8.8 58.7 +2.6 63.2 +1.2 64.7 +1.2 58.0 +1.1

Upper-bound 65.9 77.6 78.5 80.3 92.1 71.5

Finding 2: Substantial room for improvement in retrieval within the RAG system. We find that
although most required knowledge already exists in the datastore, each retriever succeeds on only a
subset of queries. For example, on NQ, 77% of queries can be answered by at least one retriever via
RAG, yet the best single retriever covers only 43%. This gap reveals significant untapped potential in
the datastore and underscores the need for stronger retrieval in RAG.

E Sampling Strategies

We report the performance using SIDRMS as the initial retriever under the 1-shot setting. The
sampling strategy plays a crucial role in forming effective contrastive pairs during training. In this
section, we compare our current sampling method against two alternatives:

• Current (A): Most-relevant negative + randomly selected positive

• Alternative (B): Randomly selected negative + randomly selected positive

• Alternative (C): Most-relevant negative + most-relevant positive

Table 5 reports the RAG performance on NQ and PubHealth under each strategy.

Table 5: Impact of sampling strategies on RAG performance using SIDRMS as the initial retriever.

Strategy NQ PubHealth
A 39.8 69.5
B 38.7 68.7
C 39.2 69.0

Overall, the current strategy (A) achieves the best performance on both datasets. We hypothesize
that incorporating the most-relevant negative increases training difficulty and encourages more
discriminative learning, while introducing randomness in positive sampling promotes generalization.
These findings are consistent with observations from prior retrieval learning studies (e.g., DPR),
where the choice of hard negatives has a substantial impact on performance, whereas positive selection
tends to be less critical.

F Assumption on Probability and Generation

Given that our training relies on the conditional probability of the ground-truth response y given
input x, denoted as P (y | x), as a signal for identifying positive and negative documents, we now
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Table 6: Results of RAG framework using top-1 and top-10 documents in context, sorted by retrieval
relevance and joint probability of responses.

Task Type (→) Free-form Closed-set
Dataset (→) NQ TriviaQA PubHealth ARC-C

Method (↓) Metrics (→) 1-shot 10-shot 1-shot 10-shot 1-shot 10-shot 1-shot 10-shot
Llama38B + SIDRMS (doc with top relevance) 49.1 51.4 65.3 67.2 65.2 67.4 58.1 57.3
Llama38B + SIDRMS (doc with top P (y | x)) 85.1 76.2 88.7 84.2 87.4 77.4 95.6 83.6

investigate whether higher values of P (y | x) correlate with improved RAG performance (i.e., better
generation of y).

For each dataset, we sample 1,000 training instances. For each query, we retrieve the top 100
documents, and evaluate RAG performance using only the top-1 and top-10 documents, selected
either by retrieval relevance or by P (y | x). The results, presented in Table 6, show that P (y | x) is
predictive of final RAG accuracy. Moreover, the strong performance obtained when using documents
ranked by P (y | x) highlights untapped potential of the datastore, a potential that current retrieval
methods fail to fully leverage.

To our knowledge, using P (y | x) to identify positives and negatives is a rough yet resource-efficient
solution that could cover most existing knowledge-intensive tasks, aligning with their evaluation
metrics that often utilize string matching. However, it may not be suitable for long-form generation,
which requires different evaluation strategies. We believe it is possible to customize the identification
of positive and negative examples based on the specific needs of each task. Ideally, if computational
cost is not a concern or resources are sufficient, a strong proprietary LLM like GPT-4 can be used for
identification on-the-fly.

G LLM-Specific Relevance

In Table 2, we observe that PubHealth requires significantly more online probability computations
and yields larger improvements compared to other datasets. Combined with the transferability results
in Table 1, we hypothesize that R3 may succeed in learning LLM-specific relevance on this task.
While this enables strong task-specific performance, it also limits the retriever’s generalization ability
across LLMs. To further examine this hypothesis, we report both effectiveness and transferability
metrics throughout the online training process of R3 on PubHealth.

Table 7: Effectiveness and transferability during different stages of online training on PubHealth.

On-policy Training Progress 0% 25% 50% 75% 100%

RAG Effectiveness 65.7 67.7 68.8 69.4 69.5
Transfer to Llama3-8B-Instruct 66.7 67.1 67.0 66.1 65.2
Transfer to Mistral-7B-Instruct 49.8 50.4 48.2 47.7 46.7

We observe that while transferability initially increases, it steadily declines as training progresses,
even as task-specific RAG performance continues to improve. This trend indicates that the retriever
is learning a relevance function increasingly specialized for the target LLM. Although this improves
retrieval quality for the specific LLM, it comes at the cost of generalization to others. This reflects a
broader phenomenon: while LLMs may share similar relevance preferences for general tasks such as
QA, their needs diverge more significantly in specialized domains like fact-checking. These results
underscore the value of end-to-end retrieval learning for RAG.

H Late Parametric vs. Periodic Re-indexing

A key distinction between our work and prior practices lies in our use of the late parametric mechanism
to avoid re-indexing during training. In this section, we systematically evaluate these in-training
retrieval approaches.

Baseline. We present ablation studies on different in-training retrieval approaches: (i) R3 employs the
late parametric method as proposed in SIDR, which uses a bag-of-token index for first-stage retrieval
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and re-ranks the top-20 documents on-the-fly using up-to-date parameters. (ii) R3 (w/o re-rank)
employs the bag-of-token index for retrieval, similar to the late parametric method but without the
re-ranking process. This setup aims to assess the costs associated with re-ranking during training. (iii)
R3 (w/o semi-para) involves periodic re-indexing using the most recently built but outdated index for
retrieval, an in-training retrieval method that commonly used in prior studies. In this setup, we employ
DPRMS as the initial retriever. We avoid using SIDRMS, which has high-dimensional embeddings of
30,522, in stark contrast to DPR’s 768 dimensions. This significant discrepancy prevents our GPU
cards from allocating the parametric index for SIDRMS, although they manage DPR effectively.

Training. All models undergo the similar training pipeline: they are trained for 80 epochs with the
first 40 epochs as a warm-up and the last 40 conducting in-training retrieval. They differ only in
their in-training retrieval strategies: both R3 and R3 (w/o re-rank) do not require re-indexing; R3
(w/o semi-para) requires rebuilding index at every 15 epochs (around 5k steps), a rebuild interval
commonly used in previous research [54], resulting in a total of three rebuilds.

Results. We present the RAG accuracy on NQ and PubHealth test splits during in-training retrieval,
with results reported every four epochs, as depicted in Figure 7. For the re-ranking setup, signifi-
cant improvements are observed in the PubHealth data when re-ranking is employed, whereas the
NQ dataset shows only minor improvements. Given that the costs associated with re-ranking are
manageable in our setup, we continue to implement it. Regarding re-indexing, our findings indicate
that despite requiring significant time and resources, it fails to yield improvements comparable
to those of the late parametric approach and significantly lags behind. We attribute this to index
staleness, where query embeddings must optimize against outdated document embeddings, rendering
the learning process less effective. On the other hand, as presented in the study by Zhou et al. [55], by
re-ranking the top-20 retrieved documents, the late parametric method can recover more than 90% of
the performance of a full parametric search across different tasks, representing a minor compromise.
This also partially explains why the late parametric approach outperforms periodic re-indexing.

Figure 7: RAG accuracy of different in-training retrieval approaches.

I Inconsistencies between IR and RAG Settings

I.1 Performance Changes in IR Scenarios after Tuning

Table 8: Performance changes before and after tuning the retriever using the R3 approach.

Dataset (→) NQ TriviaQA

Method (↓) Metrics (→) IR RAG IR RAG

Llama38B + SIDRMS 39.1 34.4 56.1 62.0
Llama38B + R3 (SIDRMS) 40.8 (+1.7) 39.8 (+5.4) 53.9 (-2.2) 65.8 (+3.8)

Llama38B + SIDRNQ 49.5 42.7 – –
Llama38B + R3 (SIDRNQ) 47.1 (-2.4) 44.1 (+1.4) – –

We evaluate the performance of our retriever in both IR and RAG scenarios before and after tuning.
Note that the retriever we use for NQ is SIDRMS, which does not access the NQ training split, unlike
the version used in the main experiments. In IR scenarios, we measure top-1 retrieval accuracy by
checking whether the top-1 retrieved document contains the answer. In RAG scenarios, we measure
accuracy using a single document in the context window, evaluating whether the generated response
contains the correct answer.
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Our results indicate that while R3 tunes the retriever to improve RAG performance, it results in
inconsistent performance on traditional IR performance, with some degradation observed on certain
datasets. This highlights a long-standing issue in the IR evaluation pipeline: a document containing
the answer does not necessarily imply that it effectively addresses the query, and conversely, a
document not containing the answer does not mean it is irrelevant or unhelpful.

Our conclusion also aligns with the findings and observations of other research. Cuconasu et al.
[23] find that including more answer-containing documents in the context negatively impacts RAG
performance. Similarly, Nian et al. [82] observe that traditional relevance definitions for IR tasks
do not enhance RAG response quality. Additional research emphasizes the need for further learning
to bridge the preference gap [83] or re-ranking [84] for off-the-shelf retrievers to improve RAG
performance.

I.2 Case Study

In this section, we present a case study using the NQ dataset where each query has a list of answer
strings. This case study is designed to further explore the inconsistency issues inherent in RAG
implementations. We specifically examine two scenarios: (i) cases where the retrieved document
contains the correct answer but fails to produce the correct RAG output, and (ii) instances where
the retrieved document does not directly address the query, yet the RAG model manages to generate
the correct answer nonetheless. To enhance our analysis, we also ask GPT-4 to judge whether the
documents address the question, helping readers quickly grasp the key issue.

In Figure 8, we present examples where RAG outputs the correct answer, even though the retrieved
document neither contains the answer nor is considered to address the question by GPT-4. In both
cases, the document fails to provide the correct answer or relevant clues, yet RAG is still able to
generate the correct response. We believe this is a common phenomenon, as LLMs possess a wealth of
internal knowledge, particularly for public knowledge questions. In general, an incorrect or imperfect
retrieved document is insufficient to mislead the LLM into producing an incorrect output.

In Figure 9, we present examples where RAG fails to output the correct answer, even though the
retrieved document contains the correct answer or GPT-4 considers the document as addressing the
question. In the first case, the document does not address the query, and the LLM tends to extract
key phrases, such as the title, as the response, ignoring the query. In the second case, the document
contains information that addresses the query, and the LLM generates the correct answer, but the
answer’s alias name is not included in the pre-defined answer candidates, leading to a failure in the
RAG scenario. These inconsistencies can be driven by many factors, including the LLM, instruction
prompt, evaluation metrics, and relevance. All of these factors are intertwined, and we believe that
end-to-end data-driven learning is more effective than analyzing their interplay in isolation.

J Examples of Generation

For free-form generation tasks, we assess whether the generation contains any of the given answers.
For closed-set generation tasks, we measure whether the generation contains the answers. Below are
examples that illustrate how different generations pass (1) or fail (0) the evaluation.

K Prompt Formats

We demonstrate our prompts for different tasks such as OpenQA, fact-checking, and multi-choice
reasoning in Figures 12, 13, and 14, respectively.
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======================================== Question =========================================
Who plays Big Momma in Big Momma’s House?
======================================== Answers ==========================================
[’Ella Mitchell’, ’Martin Lawrence’]
======================================== Document =========================================
Bounce with Me
Jermaine Dupri, Jagged Edge and Da Brat. Brief clips from "Big Momma’s House" are also
included. Bounce with Me "Bounce with Me" is a single by American rapper Lil’ Bow Wow
featuring Xscape. It is Lil’ Bow Wow’s debut single, taken from his debut album "Beware of
Dog". The single samples "Love Serenade (Part II)" by Barry White. It spent nine weeks at
number 1 on the U.S. Rap Chart and number 20 on "Billboard" Hot 100. The song was featured
in the film "Big Momma’s House" and the trailer of "Hardball".
======================================= Generation ========================================
[1] Martin Lawrence
===================================== GPT4 Judgement ======================================
No, the document does not address the question. The document talks about the song "Bounce
with Me" and its connection to the movie Big Momma’s House, but it doesn’t mention who
plays Big Momma in the movie. The answer to the question is Martin Lawrence, who plays the
character of Big Momma in Big Momma’s House.

======================================== Question =========================================
Who sang "Buddy, Can You Spare a Dime?"
======================================== Answers ==========================================
[’Rudy Vallee’, ’Bing Crosby’]
======================================== Document =========================================
Brother, Can You Spare a Dime?
Brother, Can You Spare a Dime? "Brother, Can You Spare a Dime?", also sung as "Buddy, Can
You Spare a Dime?", is one of the best-known American songs of the Great Depression.
Written in 1930 by lyricist E. Y. "Yip" Harburg and composer Jay Gorney, "Brother, Can You
Spare a Dime?" was part of the 1932 musical revue "Americana"; the melody is based on a
Russian-Jewish lullaby Gorney’s mother had sung to him as a child. It was considered by
Republicans to be anti-capitalist propaganda, and almost dropped from the show; attempts
were made to ban it from the radio.
======================================= Generation ========================================
The song "Brother, Can You Spare a Dime?" was written by E. Y. "Yip" Harburg and Jay Gorney
. It was first performed by Bing Crosby in 1932.
===================================== GPT4 Judgement ======================================
The document provides information about the song "Brother, Can You Spare a Dime?" (also
referred to as "Buddy, Can You Spare a Dime?") and its origins, but it does not directly
answer the question of who sang it. The document focuses more on the history of the song
and its cultural significance.

To answer your question: The song has been performed by several artists, including Bing
Crosby, Al Jolson, and Barbra Streisand, among others.

Figure 8: Example of RAG output correct answers while the retrieved document does not contain the
correct answer, nor does GPT-4 consider the document address the question.

25



======================================== Question =========================================
When was The Hitchhiker’s Guide to the Galaxy made?
======================================== Answers ==========================================
[’1978’, ’2005’]
======================================== Document =========================================
The Hitchhiker’s Guide to the Galaxy (radio series)
The original series was the recipient of a number of awards including the Imperial Tobacco
Award (1978), The Sony Award (1979), The Society of Authors/Pye Awards Best Programme for
Young People (1980) and the Mark Time Awards ’Grand Master Award’ (Adams) and ’Hall of Fame
’ (1998). It was the only radio show ever to be nominated for the Hugo science fiction
awards, in 1979, in the ’Best Dramatic Presentation’ category. As a result of the series,
Douglas Adams was inducted into the Radio Academy’s Hall of Fame. In November 2003, two
years after Adams’s death and 23 years after the ...

======================================= Generation ========================================
[1] The Hitchhiker’s Guide to the Galaxy (radio series)
===================================== GPT4 Judgement ======================================
No, the document does not directly address the query of when The Hitchhiker’s Guide to the
Galaxy was made. It provides information about the radio series, its awards, and
recognition but does not specify the year of its creation or first broadcast.

The original radio series of The Hitchhiker’s Guide to the Galaxy first aired in 1978.

======================================== Question =========================================
Who ordered the Forbidden City to be built?
======================================== Answers ==========================================
[’Zhu Di’]
======================================== Document =========================================
History of the Forbidden City
The site of the Forbidden City was situated on the Imperial city during the Mongol Yuan
Dynasty. After the collapse of the Yuan Dynasty, the Hongwu Emperor of the Ming Dynasty
moved the capital from Beijing in the north to Nanjing in the south, and in 1369 ordered
that the Yuan palaces be razed. His son Zhu Di was created Prince of Yan with his seat in
Beijing. In 1402, Zhu Di usurped the throne and became the Yongle Emperor. He made Beijing
a secondary capital of the Ming empire ...

======================================= Generation ========================================
The Yongle Emperor ordered the forbidden city to be built.
===================================== GPT4 Judgement ======================================
Yes, the document addresses the query. It mentions that Zhu Di, who later became the Yongle
Emperor, ordered the construction of the Forbidden City. The passage describes how he
moved the capital to Beijing and commissioned the building of the Forbidden City in 1406.

Figure 9: Example of RAG failing to output the correct answer while the retrieved document contains
the correct answer or GPT-4 considers the document as addressing the question.

======================================== Question =========================================
Who is the sister of for king and country?
========================================= Answers =========================================
[’Rebecca St. James’]
====================================== Generation 1 =======================================
Rebecca St. James

### Explanation:
Rebecca St. James is the sister of for king and country. She is a Christian recording
artist and speaker. The Smallbones are the younger brothers of Rebecca St. James, and the
brothers-in-law of Jacob Fink, former bassist for the band Foster the People. They were
raised with another sister, Libby, and three other brothers, Ben, Dan, and Josh. On
======================================== Output 1 =========================================
Eval(Generation): 1
====================================== Generation 2 =======================================
Courtney Helm

### Explanation:
Courtney Helm is the sister of for king and country.
======================================== Output 2 =========================================
Eval(Generation): 0

Figure 10: Examples of generations and their evaluation results for free-form tasks.
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======================================== Question =========================================
Study: Vaccine for Breast, Ovarian Cancer Has Potential.
========================================= Answers =========================================
True
====================================== Generation 1 =======================================
True

### Explanation:
The study is about a vaccine for breast and ovarian cancer. The vaccine is
======================================== Output 1 =========================================
Eval(Generation): 1
====================================== Generation 2 =======================================
False

### Explanation:
The statement is false because the vaccine is not for breast and ovarian cancer.
======================================== Output 2 =========================================
Eval(Generation): 0

Figure 11: Examples of generations and their evaluation results for close-set tasks.

===================================== Prompt (OpenQA) =====================================
### Paragraph:
[1] For King & Country (band)
Their father was a music promoter, and Joel recalls, "going to these rock concerts, sitting
on my father\’s shoulders, plugging my ears...Honestly, in a lot of ways I feel like music
chose me and as I grew older, I made a clear decision to fully lean into it." The
Smallbones are the younger brothers of Christian recording artist and speaker Rebecca St.
James, and the brothers-in-law of Jacob Fink, former bassist for the band Foster the People
. They were raised with another sister, Libby, and three other brothers, Ben, Dan, and Josh
. On ...

### Instruction:
Who is the sister of for king and country?

### Response:
====================================== Continuation =======================================
Rebecca St. James
======================================= Generation ========================================
Rebecca St. James

### Explanation:
Rebecca St. James is the sister of for king and country. She is a Christian recording
artist and speaker. The Smallbones are the younger brothers of Rebecca St. James, and the
brothers-in-law of Jacob Fink, former bassist for the band Foster the People. They were
raised with another sister, Libby, and three other brothers, Ben, Dan, and Josh. On
========================================= Output ==========================================
Probility: P(‘Rebecca St. James’|prompt) = 0.595
Eval(Generation): 1

Figure 12: Example prompt and outcomes of each step for NQ and TQA dataset.
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================================= Prompt (Fact Checking) ==================================
Below is an instruction that describes a task. Write a response that appropriately
completes the request.

### Paragraph:
[1] Gustav Gaudernack
potential of dendritic cells (DCs) and in 2005, Gaudernack’s group published results from a
phase I/II clinical trial in prostate cancer patients using autologous DCs loaded with
tumor mRNA as a vaccine. This study demonstrated that vaccination with autologous DCs
transfected with mRNA derived from three prostate cancer cell lines was safe and an
improved clinical outcome was significantly related to immune responses against the vaccine
. Furthermore, Gaudernack and colleagues initiated a phase I/II clinical trial for
treatment of malignant melanoma with autologous tumor-mRNA transfected DC vaccines. These
data clearly demonstrated vaccine-specific immune responses with a broad specter of ...

### Instruction:
Is the following statement correct or not? Say true if it’s correct; otherwise say false.

### Input:
Study: Vaccine for Breast, Ovarian Cancer Has Potential

### Response:
====================================== Continuation =======================================
True
======================================= Generation ========================================
true

### Explanation:
The study is about a vaccine for breast and ovarian cancer. The study has ...
========================================= Output ==========================================
P(‘true’ |prompt) = 0.116
P(‘false’|prompt) = 0.109
Eval(Generation): 1

Figure 13: Example prompt and outcomes of each step for the Pubhealth dataset.
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============================= Prompt (Multi-choice Reasoning) =============================
Below is an instruction that describes a task. Write a response that appropriately
completes the request.

### Paragraph:
[1] Rheumatic fever
Rheumatic fever may occur following an infection of the throat by the bacterium "
Streptococcus pyogenes". If the infection is untreated rheumatic fever can occur in up to
three percent of people. The underlying mechanism is believed to involve the production of
antibodies against a person\’s own tissues. Due to their genetics, some people are more
likely to get the disease when exposed to the bacteria than others. Other risk factors
include malnutrition and poverty. Diagnosis of RF is often based on the presence of signs
and symptoms in combination with evidence of a recent streptococcal infection. Treating
people who have strep ...

### Instruction:
Given four answer candidates, A, B, C and D, choose the best answer choice.

### Input:
Which factor will most likely cause a person to develop a fever?
A: a leg muscle relaxing after exercise
B: a bacterial population in the bloodstream
C: several viral particles on the skin
D: carbohydrates being digested in the stomach

### Response:
====================================== Continuation =======================================
B
======================================= Generation ========================================
B

### Explanation:
The bacteria Streptococcus pyogenes is a common cause of throat
========================================= Output ==========================================
P(‘A’|prompt) = 0.121
P(‘B’|prompt) = 0.309
P(‘C’|prompt) = 0.061
P(‘D’|prompt) = 0.100
Eval(Generation): 1

Figure 14: Example prompt and outcomes of each step for the ARC-Challenge dataset.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: In the abstract and introduction, we have elaborated on the motivation of the
paper, and summarized the contributions of the paper in detail.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Please refer to our limitations section in Appendix 6, where we discuss
computational trade-offs and the limitations of the relatively weak retriever backbone used
in our framework.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]
Justification: Our paper is primarily empirical, but we are careful in stating our assumptions.
For example, we demonstrate the relevance gap between IR and RAG with supporting
analysis in Appendix I, and we provide the relationship between probability and generation
accuracy with further discussion in Appendix F.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Yes. We provide dataset details in Appendix A, model architecture in Ap-
pendix B and C, and training details in Section 4.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

31



5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: We provide sufficient implementation details to support reproducibility.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Please refer to the training details in Section 4.1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We follow standard RAG evaluation protocols established in prior work and
validate our results through multiple independent reproductions across different sources,
which consistently support our findings.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We report our training cost and runtime details in Section 4.1, with a more
detailed analysis provided in Section 5.2.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our research complies with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Please refer to Appendix 6.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our models are tuned for general QA and reasoning tasks, and do not pose
significant risk of misuse.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All datasets and models used in our work are obtained from publicly available
open-source papers. We have cited the original sources and provided detailed references in
the Appendix A and B.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the package
should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We plan to release the trained models and code upon acceptance. Documenta-
tion will be provided to ensure reproducibility and responsible use.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Our work does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Our work does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: We describe the usage of LLMs as a core component of our method in Section 3,
including details on how the LLM interacts with the retriever during training.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/
LLM) for what should or should not be described.
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