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Abstract

Contrastive learning (CL) stands as a lead-001
ing paradigm for self-supervised representa-002
tion learning, achieving state-of-the-art results003
in multi-modal learning. However, a notable004
drawback of standard CL is its lack of robust-005
ness in the face of noisy (misaligned) data pairs.006
For instance, not all negative samples are truly007
negative; within a mini-batch, there can be neg-008
ative samples that are semantically similar to009
positive samples. This issue is prevalent in010
many web-sourced multimodal datasets like011
CC3M and YFCC, commonly used for CL, due012
to their inherently noisy nature during dataset013
crawling. Consequently, dataset noise could014
significantly undermine the efficacy of CL. On015
the other hand, Bayesian modeling is renowned016
for its inherent capability to handle data noise017
and uncertainty. Is it possible to merge the018
strengths of both approaches by incorporating019
Bayesian modeling into CL for noise-robust020
representation learning? In this paper, we pro-021
pose a novel solution by reimagining standard022
CL within a probability framework and intro-023
ducing learnable random weights to associate024
with data pairs. Our framework enables au-025
tomatic inference of the level of noisiness for026
each data pair through efficient Bayesian sam-027
pling, based on a technique borrowed from028
Bayesian data augmentation. Importantly, our029
model can be effectively optimized using a030
novel learning algorithm based on stochastic031
expectation maximization. We demonstrate the032
efficacy of our approach on various standard033
multi-modal CL benchmarks, showcasing sig-034
nificant performance improvements over stan-035
dard CL methods.036

1 Introduction037

Contrastive learning has gained increasing popular-038

ity in multi-modal representation learning due to its039

effectiveness in aligning representations from dif-040

ferent modalities. In the realm of vision-language041

representation learning, the objective is to acquire042

generic representations from images and texts that 043

could enhance multi-modal downstream applica- 044

tions, such as zero-shot image classification and 045

image-text retrieval. Recent advancements (Jia 046

et al., 2021a; Radford et al., 2021; Li et al., 2021; 047

Zhou et al., 2022; Gao et al., 2023; Guo et al., 048

2023) have scaled up vision-language represen- 049

tation learning by leveraging contrastive loss to 050

pre-train models with a substantial volume of web- 051

sourced paired image-text data, such as Conceptual 052

Caption (Sharma et al., 2018), YFCC (Thomee 053

et al., 2016), and LAION (Schuhmann et al., 2022). 054

While some studies amalgamate the representations 055

of two modalities into a single encoder (Wang et al., 056

2021a,b, 2022b,c), it is more prevalent to repre- 057

sent the image and text modalities separately using 058

modality-specific encoders, akin to the CLIP frame- 059

work (Mokady et al., 2021; Shen et al., 2021; Yang 060

et al., 2022; Shukor et al., 2022). Following pre- 061

training, the model can generate general representa- 062

tions of both image and text inputs, showcasing out- 063

standing performance in downstream tasks, such as 064

text-guided generation of natural images (Ramesh 065

et al., 2021; Crowson et al., 2022; Xu et al., 2023; 066

Ruiz et al., 2023; Liu et al., 2023), videos (Kwon 067

et al., 2022; Lin et al., 2022; Rasheed et al., 2023), 068

3D shapes (Sanghi et al., 2023; Wang et al., 2022a; 069

Sanghi et al., 2022), point clouds (Zhu et al., 2022), 070

and semantic segmentation (Park et al., 2022; Zhou 071

et al., 2023; Liang et al., 2023), among others. 072

In multi-modal representation learning, the stan- 073

dard contrastive loss aims to maximize the simi- 074

larity between corresponding image-text pairs (re- 075

ferred to as “positive pairs”) while distinguishing 076

them from all non-matching image-text pairs (re- 077

ferred to as “negative pairs”). This objective aligns 078

true image-text pairs to construct meaningful repre- 079

sentations. Despite the effectiveness of contrastive 080

loss in empirical applications for multi-modal rep- 081

resentation learning, two open questions have been 082

largely overlooked in previous works. Firstly, 083
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the reliability of the ground truth labels “positive”084

and “negative” from web-sourced datasets warrants085

scrutiny. Most common web-sourced datasets con-086

sider images and their corresponding descriptions087

as the sole true positive pairs. However, in these088

datasets, multiple image-text pairs may contain sim-089

ilar contents while being labeled as negative pairs.090

In other words, due to their large volume and auto-091

mated collection processes without human labeling,092

web-sourced datasets naturally contain substantial093

noisy pairs. For instance, consider Figure 1, where094

the first image is deemed a true positive match for095

the text “man and woman hold hands, walk to the096

beach”. Both other texts in the same batch would097

typically be labeled as negative samples to be distin-098

guished from the image representation. However,099

the second text “loving couple on a beach” could100

also be considered semantically positive in reflect-101

ing the content of the first image, despite being102

labeled as “negative” during training. Moreover,103

other positive pairs in the dataset may feature dis-104

similar or vague descriptions, as illustrated in the105

right example in Figure 1. Such noisy data pairs106

have the potential to introduce mixed training sig-107

nals and compromise performance accuracy.108

The second open question pertains to whether109

contrastive learning can effectively handle such110

noisy pairs. The conventional design of contrastive111

learning emphasizes the significance of true posi-112

tive pairs within every mini-batch while uniformly113

pushing away all negative pairs. Consequently, it114

may be susceptible to inconsistent training signals.115

For example, as depicted in Figure 1, even though116

the second text contains content more similar to the117

image, it is considered equally “negative” as other118

texts in the same batch. Without the flexibility to119

adjust the importance of each data pair, contrastive120

learning may tend to overfit to the noisy data pairs121

within web-sourced datasets, thereby resulting in122

sub-optimal solutions.123

To address these limitations, we propose lever-124

aging Bayesian modeling, known for its robustness125

in handling data noise with uncertainty, to enhance126

contrastive learning. Our approach involves aug-127

menting the contrastive loss with stochastic weight-128

ing, allowing for automatic inference on the degree129

of noise present in each data pair. This introduces130

a level of flexibility, enabling the system to bet-131

ter navigate and adapt to the inherent uncertain-132

ties within the dataset. By assigning probability133

weights to data pairs, we ensure that they are treated134

more accurately based on their posterior of being135

genuine positive or negative pairs, rather than rely- 136

ing solely on batch-specific determinations, which 137

can be erratic. 138

To facilitate efficient learning and inference, 139

we first reframe the problem within a probability 140

framework using Bayesian data augmentation tech- 141

niques. This formulation enables us to infer the 142

weight of each data pair in contrastive learning, 143

thus ensuring the learned representations are robust 144

to noisy training data. Finally, we develop a novel 145

stochastic expectation maximization algorithm to 146

incorporate the inferred random weights into the 147

learning process of model parameters. In summary, 148

our contributions are as follows: 149

• We identify and address the inherent noise 150

problem in commonly used datasets for con- 151

trastive learning, formulating it as contrastive 152

learning with noisy data pairs. 153

• We propose a principled method to tackle this 154

problem by reformulating it within a probabil- 155

ity framework and developing a stochastic ex- 156

pectation maximization algorithm for robust 157

learning while inferring stochastic data-pair 158

weights. 159

• We demonstrate significant performance im- 160

provements through extensive experiments on 161

various public benchmarks for multi-modal 162

contrastive learning. 163

2 Method 164

We begin by outlining the foundational setup and 165

notation for contrastive learning. In this frame- 166

work, a backbone network, parameterized by θ, is 167

employed to generate generalized representations 168

denoted as z = enc(x;θ), where x denotes the 169

input data. The multi-modal data is organized into 170

positive and negative pairs. Specifically, in a multi- 171

modal dataset D ≜ (x1
i ,x

2
i ), with superscripts 172

indicating different modalities and subscripts in- 173

dexing individual data samples, each (x1
i ,x

2
i ) rep- 174

resents a positive pair, while each (x1
i ,x

2
j ) with 175

i ̸= j represents a negative pair. We define 176

si+ ≜ sim(enc(x1
i ;θ),enc(x2

i ;θ)) as the simi- 177

larity score between the positive pair (x1
i ,x

2
i ) after 178

passing through the encoder. Additionally, sik− ≜ 179

sim(enc(xm1
i ;θ),enc(xm2

k ;θ)) denotes the simi- 180

larity score between the negative pair (xm1
i ,xm2

k ), 181

where m1,m2 ∈ 1, 2, and sim(·, ·) represents a 182

similarity metric yielding positive values. In this 183

paper, we adopt the exponential cosine similarity, 184
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man and woman hold hands, 
walk to the ocean

loving couple on a beach

Noisy negative pairs: contain similar
contents but treated as negative

Positive

Positive

Negative

Get ready for the worlds

Eastern bunny?
I feel sorry for him

Positive

Positive

Noisy positive pairs: contain dissimilar/vague
contents but treated as positive

Figure 1: Examples from CC3M dataset that contain noisy pairs.

commonly used in contrastive learning methods,185

defined as sim(x1,x2) ≜ ex
T
1 x2 . Note that the186

similarity scores depend on the model parameter187

θ, although we omit explicit reference to it in our188

notation for simplicity.189

Preliminaries on Bayesian Modeling In con-190

trast to the conventional approach to neural network191

modeling, Bayesian modeling treats parameters of192

interest as random variables, such as the weight-193

ing parameters w+
i and w−

ik introduced in equation194

equation 1 below. Each stochastic parameter is as-195

sociated with two types of distributions: the prior196

distribution and the posterior distribution. The prior197

distribution encapsulates our initial belief about the198

parameter’s distribution before observing any data.199

For instance, in our case, we define the stochastic200

weights w+
i and w−

ik to follow Gamma distribu-201

tions, reflecting our hypothesis that each data pair202

should contribute differently to the loss. On the203

other hand, the posterior distribution combines our204

prior belief with the actual observed data, repre-205

senting the "optimal" distribution in some sense206

and serving as the target of Bayesian inference.207

In the subsequent sections, we first reformulate208

the standard contrastive learning framework into209

a probabilistic framework and then propose effi-210

cient Bayesian inference methods to compute the211

posterior distribution of our stochastic weights, to212

compensate potential data noise in learning.213

2.1 Probability Weighted Contrastive214

Learning215

As discussed in the Introduction, contrastive learn-216

ing is tailored for scenarios involving clean pair217

data. In the standard setup, each data sample com-218

prises one positive pair and K negative pairs. The219

contrastive loss function is defined as follows: 220

Lcon(D;θ) = −
1

|D|
∑
xi∈D

log(Lxi), 221

with Lxi ≜
si+

si+ +
∑K

k=1 sik−
. 222

However, real-world data often contain noisy 223

pairs, making direct application of contrastive 224

learning challenging. Here, we present our fun- 225

damental approach to address noisy pair data in 226

contrastive representation learning. Our basic strat- 227

egy is intuitive: we extend the standard contrastive 228

loss by introducing learnable stochastic weights 229

for all data pairs. Specifically, we incorporate lo- 230

cal learnable weights w+
i , w

−
ik associated with the 231

data pairs, defining the noise-robust weighted con- 232

trastive loss as follows: 233

Lrcon(D;θ) = −
1

|D|
∑
xi∈D

log(Lrxi
), (1) 234

with Lrxi
≜

w+
i si+

w+
i sij+ +

∑K
k=1w

−
iksik−

, (2) 235

where {w+
i } represents weights for positive pairs, 236

and {w−
ik} for negative pairs. Notably, when all 237

weights are set to one, the loss reduces to the stan- 238

dard contrastive loss. 239

One challenge with such a loss, however, is 240

the quadratic growth of auxiliary random weights 241

concerning the training data size (including aug- 242

mented data), which becomes impractical to store 243

in the context of continuous data augmentation. To 244

address this challenge, drawing inspiration from 245

the recent probability reformulation of contrastive 246

learning (Chen et al., 2022), we propose a scalable 247

Bayesian learning mechanism to efficiently sample 248

the local weights in each iteration. These weights 249

3



are then integrated into the contrastive loss to op-250

timize the global model parameter. Specifically,251

we reframe the problem from a Bayesian modeling252

perspective by assigning appropriate priors for the253

weights. We can consider Bernoulli priors to model254

weights as binary random variables, or Gamma pri-255

ors to model them as positive values. For simplicity,256

we adopt Gamma priors, given by:257

w+
i ∼ Gamma(a+, b+), w−

ik ∼ Gamma(a−, b−) ,258

where a+ and a− are the shape parameters, and259

b+ and b− are the rate parameters. This gives a260

joint posterior distribution over the global model261

parameter and local random weight variables w+
i262

and w−
ik:263

p({w+
i }, {w

−
ik},θ;D) ∝ (3)264 ∏

xi∈D
w+
i

s
i+

w+
i

s
ij+

+
∑K

k=1
w−
ik

s
ik−

·p({w+
i })p({w−

ik})p(θ)265

This probability weighting mechanism serves as a266

measure of confidence in the pairing, facilitating267

a more flexible and adaptive learning process. It268

accommodates variations and possible inconsisten-269

cies in the data, enabling the model to better adapt270

to real-world complexities.271

Another challenge, however, arises from the in-272

feasibility of directly performing Bayesian infer-273

ence on such a posterior distribution due to the274

non-conjugacy between the priors and likelihood.275

To address this, we draw inspiration from (Chen276

et al., 2022) and introduce an augmented random277

variable ui associated with each data point. This278

augmentation yields an augmented joint posterior279

distribution p(θ,u,w |D)*, expressed as:280

p(θ,u,w |D) ∝
∏

i:xi∈D
w+
i si+e

−ui w
+
i si+ (4)281

·
∏
k

e−uiw
−
iksik−p({w+

i })p({w
−
ik})p(θ) ,282

where u ≜ {u1, u2, · · · , u|D|} and w ≜ {w+
i } ∪283

{w−
ik}. Subsequently, learning and inference can284

be conducted based on the augmented posterior285

p(θ,u,w |D). In the following, we propose an286

efficient algorithm based on stochastic expectation287

maximization (stochastic EM) to alternately infer288

the local random variables and optimize the global289

model parameter.290

*In the sense that marginalizing over the augmented ran-
dom variables w+

i and w−
ik in p(θ,U, w+

i , w
−
ik|D) yields the

original p(w+
i , w

−
ik,θ;D). Thus, learning and inferences on

the two forms are equivalent.

2.2 Efficient Inference and Learning with 291

Stochastic Expectation Maximization 292

Drawing on the concept outlined in (Chen et al., 293

2022), we propose a stochastic expectation maxi- 294

mization (EM) algorithm for efficient inference and 295

learning of our model. Stochastic EM, a stochas- 296

tic variant of the widely used EM algorithm, al- 297

ternates between inferring local random variables 298

and optimizing global model parameters for a la- 299

tent variable model (Allassonnière and Chevallier, 300

2021; Chen et al., 2018; Delyon et al., 1999). The 301

algorithm comprises three main steps: simulation, 302

stochastic approximation, and maximization. 303

In our context, simulation involves sampling lo- 304

cal random variables for a batch of data, denoted 305

as u and w. Stochastic approximation then em- 306

ploys the sampled auxiliary random variables to 307

update a stochastic objective Q(θ) at each itera- 308

tion t, given by the recursive formula: Qt+1(θ) = 309

Qt(θ) + λt(log p(θ,u,w |D)−Qt(θ)), where λt 310

is a sequence of decreasing weights. Finally, in 311

the maximization step, we optimize the model pa- 312

rameter θ by maximizing the stochastic objective 313

Qt+1(θ). Further details are provided below. 314

Simulation Given the joint posterior distribution 315

in equation 4 and the current batch of data, sam- 316

pling the local random variables u and w is straight- 317

forward. Specifically, each ui and w+
i , w−

ik follows 318

a Gamma distribution: 319

ui|{w+
i , w

−
ik,θ} ∼ Gamma(au, bu + w+

i si++ 320∑
k

w−
iksik−), (5) 321

w+
i |{u,θ} ∼ Gamma(1 + a+, uisi+ + b+) (6) 322

w−
ik|{u,θ} ∼ Gamma(a−, uisik− + b−), ∀i, k 323

These sampled random variables for the current 324

batch of data are then used in the subsequent 325

stochastic approximation step. Optionally, for sta- 326

bility, we propose updating ui’s with moving aver- 327

ages after sampling. This involves maintaining ui 328

in memory and updating them as follows:: ui ← 329

αui + (1 − α)ũi, where ũi ∼ Gamma(au, bu + 330

w+
i si+ +

∑
k w

−
iksik−) and α ∈ [0, 1] is a hyper- 331

parameter to balance old and new values. This 332

strategy only requires limited storage overhead as 333

we only need extra memory proportional to the 334

training data size, which is considered negligible 335

compared to other parameters. 336

Stochastic approximation Next, we calculate 337

the stochastic approximation based on the simu- 338
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Algorithm 1 Noise-Robust Contrastive Learning
with Stochastic EM

1: Initialize θ; set t = 1
2: for x1,x2 in loader do ▷ load a minibatch

(x1,x2) with B samples
3: Calculate positive/negative similarity

scores {si+} and {sik−}
4: Initialize all the weights {w+

i } and {w−
ik}

to be one
5: for k = 1 · · · iter [2 in practice] do
6: Sample u according to equation 5
7: Sample w according to equation 6
8: end for
9: Calculate the weighted contrastive loss in

equation 1 with the sampled w on the current
batch of data

10: Update the model parameter by stochastic
gradient descent with the calculated weighted
contrastive loss

11: t = t+ 1
12: end for

lated local random variables. For simplicity in339

notation, let Q0(θ) = 0. We reformulate Qt+1(θ)340

by decomposing the recursion:341

Qt+1(θ) =
t∑

τ=0

λ̃τ log p(θ,uτ ,wτ |Dτ ), (7)342

where λ̃τ ≜ λτ

t∏
t′=τ+1

(1− λt′) ,343

where τ indexes the minibatch and the correspond-344

ing local random variables at the current time τ .345

Maximization The stochastic approximation ob-346

jective in equation 7 provides a convenient form for347

stochastic optimization over time, akin to online348

optimization. At each time t, we initialize the pa-349

rameter θ from the previous step and update it via350

stochastic gradient descent computed from the cur-351

rent batch of data. To mitigate variance, we propose352

optimizing a marginal version of p(θ,uτ ,wτ |Dτ)353

by integrating out uτ , essentially reducing to our354

original weighted contrastive loss in equation 1.355

With these steps, we are prepared to optimize the356

model using stochastic EM. Algorithm 1 provides357

further details.358

3 Experiments359

We concentrate on image-text contrastive learn-360

ing employing CLIP-based models, which utilize361

Method Top1 ↑ Top5↑

CyCLIP (Goel et al., 2022) 17.77 36.20
LATENT (Jiang et al., 2023) 20.45 39.28

CLIP (Radford et al., 2021) 17.71 35.87
DeCL (Chen et al., 2022) 17.55 36.46
RINCE (Chuang et al., 2022) 17.46 34.61
OURS 20.96 38.24

Table 1: Zero-Shot Transfer Learning Classifiction Ac-
curay (%) on ImageNet1K.

two separate encoders to align features across im- 362

age and text modalities. Subsequently, we assess 363

their performance on established benchmarks en- 364

compassing zero-shot, distribution shift, and linear 365

probing tasks. Additionally, we conduct an abla- 366

tion study and delve into the analysis of sampling 367

hyperparameters and sampled weights to further 368

illuminate our findings. 369

3.1 Experiments Setup 370

For our encoders, we utilize ResNet-50 (He et al., 371

2016) for the image encoder and BERT (Devlin 372

et al., 2018) for the text encoder within our CLIP 373

model. We adopt the official code from OpenCLIP 374

(Ilharco et al., 2021) and DeCL (Chen et al., 2022) 375

to replicate the baselines and implement our meth- 376

ods. Our reproduced CLIP results align closely 377

with recent works (Mu et al., 2021; Gao et al., 378

2021; Jiang et al., 2023), albeit slightly lower than 379

reported in the original CLIP paper. This discrep- 380

ancy may stem from our utilization of fewer GPUs, 381

resulting in a smaller effective batch size. It is 382

crucial to note that all methods utilize the same 383

OpenCLIP codebase and same pretraining dataset, 384

we also reproduce three baselines (CLIP, DeCL 385

and RINCE) with identical hyper-parameter con- 386

figurations., ensuring a fair comparison. And it is 387

unfair to compare results from some literature that 388

adopts different experimental settings, e.g., (Ando- 389

nian et al., 2022; Jia et al., 2021b; Hu et al., 2023). 390

Pre-training: We adhere to standard practice and 391

pre-train our model on the CC3M dataset (Sharma 392

et al., 2018), consisting of 3 million unique images 393

and 4 million image-text pairs. 394

Evaluation: For zero-shot image classification, we 395

leverage the pre-trained image encoder to derive 396

image representations and utilize the pre-trained 397

text encoder and prompts to formulate class descrip- 398

tions, thus obtaining class representations. Eval- 399

uation is conducted on ImageNet for embedding 400
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Method
ImageNetV2 ImageNetSketch ImageNet-A ImageNet-R

Top1 ↑ Top5 ↑ Top1 ↑ Top5 ↑ Top1 ↑ Top5 ↑ Top1 ↑ Top5 ↑

CyCLIP (Goel et al., 2022) 15.25 32.15 8.30 20.77 3.27 13.07 19.85 40.35
LATENT (Jiang et al., 2023) 17.37 36.65 10.90 26.11 3.87 16.76 23.85 45.03

CLIP (Radford et al., 2021) 16.44 34.15 10.23 24.21 5.05 17.71 24.75 46.30
DeCL (Chen et al., 2022) 15.58 33.11 10.1 22.57 3.94 15.66 22.68 44.26
RINCE (Chuang et al., 2022) 14.92 31.89 9.7 22.62 2.79 12.11 21.88 41.43
OURS 17.63 33.25 12.36 25.76 4.21 14.76 25.85 46.42

Table 2: Zero-Shot Natural Distribution Shift Classifiction Accuray (%).
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Table 3: Linear Probing Top1 Classification Accuracy (%) on Vision Benchmarks.

quality and its distribution shifted benchmarks to401

assess the robustness of our methods. Additionally,402

we evaluate linear probing performance, wherein403

the encoders remain fixed, and a single linear layer404

is trained with supplementary supervision to evalu-405

ate the quality of the learned representations.406

To underscore the effectiveness of our approach407

with noisy datasets, we introduce random noise408

of 10% into the training data by randomly select-409

ing 10% of data pairs within each batch and re-410

sampling the positive labels, resulting in 10% of411

the training data featuring incorrect positive pairs.412

Three baselines(CLIP, DeCL, RINCE) are trained413

from scratch using the same codebase, fixed ran-414

dom seed, and consistent hyper-parameters for eq-415

uitable comparisons. After pre-training, we eval-416

uate the model trained on the final epoch for all417

baselines and our approach. We also report results418

from two other baselines (CyCLIP and LATENT)419

with same pre-training data and network architec-420

ture.421

3.2 Zero-Shot Transfer Learning Evaluation422

We perform zero-shot transfer learning on standard423

image classification tasks using the ImageNet1K424

dataset (Russakovsky et al., 2015). We adopt the425

common strategy of prompt engineering, construct-426

ing text prompts for each dataset using class names427

and templates such as "a photo of the [class428

name]" and "a sketch of the [class name]". The429

normalized class text embeddings are derived us-430

ing multiple standard prompts, while image em- 431

beddings are obtained from the pre-trained encoder. 432

During evaluation, the class whose text embedding 433

exhibits the highest similarity score to the image 434

embedding is utilized as the predicted label. We 435

report Top-K classification accuracy with K = 1 436

and 5. 437

Table 1 presents the zero-shot transfer learn- 438

ing performance, including baselines for reference, 439

with a focus on comparing with CLIP and DeCL. 440

DeCL improves upon CLIP performance by 1% in 441

Top-5 accuracy by addressing gradient bias issues, 442

while our approach surpasses CLIP by 3% in both 443

Top-1 and Top-5 accuracy through stochastic train- 444

ing pairs re-weighting. Notably, both DeCL and 445

our method entail no additional computing over- 446

head beyond the original CLIP baseline, except 447

for the sampling processes, which are negligible 448

relative to the total training cost. 449

3.3 Natural Distribution Shift Evaluation 450

We evaluate variations of the ImageNet1K dataset 451

featuring shifted distributions (Recht et al., 2019; 452

Wang et al., 2019; Hendrycks et al., 2021b,a), 453

which incorporate sketches, cartoons, and adver- 454

sarially generated images. These datasets serve to 455

assess model generalizability and robustness. Em- 456

ploying the same processes outlined in the previous 457

section, we conduct zero-shot evaluation and report 458

classification accuracy on Top-1 and Top-5. 459

Table 2 showcases the zero-shot transfer learn- 460
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Figure 2: Visualization of model performance. Every axis denotes the performance on a particular dataset measured
using wither Top1 or Top5 accuracy metric. Distinct colors signify different methods or approaches. An approach
that spans a larger area demonstrates superior overall performance.

ing performance on the Natural Distribution Shift461

benchmark. DeCL exhibits the poorest perfor-462

mance across all four benchmarks, while the CLIP463

baseline demonstrates the best performance on464

ImageNet-A. Additionally, CLIP exhibits decent465

performance on Top-5 accuracy for ImageNetV2.466

Our method enhances the CLIP baseline perfor-467

mance by 1-2% in Top-1 accuracy for three out468

of four benchmarks (ImageNet-V2, ImageNetS-469

ketch, and ImageNet-R), and by around 1% for470

two out of four benchmarks (ImageNetSketch and471

ImageNet-R). This indicates that by leveraging our472

approach to weight training pairs with stochastic473

approximation, we improve the robustness and gen-474

eralizability of learned embeddings. However, our475

method underperforms CLIP on ImageNet-A, a476

dataset with adversarial noise, possibly due to the477

ineffectiveness of correcting noisy pairs in training478

to combat adversarial noise in data.479

3.4 Linear Probing Evaluation480

We further perform evaluations on linear probing481

classification tasks, wherein we fit a linear classifier482

with a downstream training dataset by leveraging483

the fixed learned visual encoder. The finetuned484

model is then evaluated on the testing dataset. This485

setting is used to evaluate how well the learned486

embeddings can generalize to new tasks with fur-487

ther supervision that requires only minimum fine-488

tuning effort. Following standard setup, we test on489

14 standard benchmarks (Krizhevsky, 2009; Rus-490

sakovsky et al., 2015; Fei-Fei et al., 2006; Net-491

zer et al., 2011; Coates et al., 2011; Cimpoi et al.,492

2014; Maji et al., 2013; Parkhi et al., 2012; Socher 493

et al., 2013; Bossard et al., 2014; Houben et al., 494

2013; Krause et al., 2013; Nilsback and Zisserman, 495

2008). 496

As shown in Table 3, our method outperforms 497

both CLIP and DeCL on all the datasets, leading to 498

an average gain of 3-4%. This further validates that 499

our approach enables more flexible training with 500

a higher tolerance for noisy data pairs, which can 501

improve the model performance for better repre- 502

sentations. 503

We visualize the model performance in Figure 2 504

where each color represents a different approach 505

and the larger the area one approach covers indi- 506

cates the better performance. We can see that our 507

method outperforms baselines on both tasks with 508

more advantage on linear probing tasks. 509

4 Related Works and Limitation 510

Vision-Language Representation Learning: Re- 511

cent advances in vision-language representation 512

learning can be broadly classified based on the man- 513

ner in which information from two modalities is 514

utilized for joint learning. The first category lever- 515

ages unified models (Wang et al., 2021a, 2022b,c) 516

to process both images and texts. Typically, these 517

inputs are tokenized into sequences (Peng et al., 518

2022; Bao et al., 2022). The latter methods deploy 519

separate encoders (Radford et al., 2021; Mokady 520

et al., 2021; Shen et al., 2021; Li et al., 2021; Yang 521

et al., 2022; Kwon et al., 2022; Jia et al., 2021a) for 522

images and texts. To align the different modalities, 523

they utilize the contrastive loss (Oord et al., 2018; 524
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He et al., 2020; Chen et al., 2020). It’s noteworthy525

that these techniques have been demonstrated to526

achieve state-of-the-art (SOTA) results on multiple527

downstream tasks. How to obtain robust and repre-528

sentational embeddings from CL is vital to benefit529

downstream tasks. Specifically, we focus on how530

to cope with noisy positive-negative pairs for CL.531

Noisy Pairs in Contrastive Learning: While most532

works directly utilize large scale dataset for con-533

trastive learning, some argue the noisy dataset is-534

sue. Noisy contrastive learning is an advanced535

technique that addresses the challenges of standard536

contrastive learning when faced with inconsisten-537

cies or "noise" within paired data. Traditional con-538

trastive methods often struggle with mislabeled or539

ambiguous pairs, leading to decreased accuracy and540

efficiency. Noisy contrastive learning, on the other541

hand, incorporates mechanisms, often probabilis-542

tic in nature, to accommodate these uncertainties.543

By assigning confidence or probability weights to544

each pair, this approach allows for more adaptive545

and flexible learning. Rather than being limited by546

the binary classification of pairs, it embraces the547

inherent complexities and variations in real-world548

data, enhancing the model’s robustness and perfor-549

mance. NLIP (Huang et al., 2023) enforces the550

pairs with larger noise probability to have fewer551

similarities. (Han et al., 2022) apply noise estima-552

tion component to adjust the consistency between553

different modalities for the action recognition task.554

RINCE (Hoffmann et al., 2022) uses a ranked order-555

ing of positive samples to improve InfoNCE loss.556

Another recent work (Chen et al., 2022) studies557

the gradient bias issue in contrastive learning and558

proposes a stochastic approach to mitigate it with559

an bayesian augmentation. This method transforms560

the contrastive loss into a decomposable form. Con-561

sequently, conventional stochastic optimization can562

be applied without inducing gradient bias. Our ap-563

proach uses a stochastic approach from a different564

perspective to address the noisy data issue instead565

of the gradient bias issue. To combat this challenge,566

we are introducing a probability extension. This567

innovative approach assigns a probability weight568

to each pair, whether positive or negative. By do-569

ing so, the model is no longer rigidly committed570

to a binary classification of the pairs but can now571

take into consideration the uncertainties or noise572

present in the data. This not only provides more nu-573

anced information to the model but also enhances574

its robustness.575

Stochastic Expectation Maximization Stochas- 576

tic EM (Nielsen, 2000) stands as a pivotal algo- 577

rithm in machine learning and probabilistic model- 578

ing. Building upon the foundations of the classical 579

Expectation-Maximization (EM) algorithm (Lin, 580

2011), Stochastic EM offers an efficient solution 581

for parameter estimation in situations involving 582

vast datasets or latent variables, e.g., to maximize 583

the log-likelihood of p(z,D|θ), where D is the 584

dataset, z is the local random variable and θ is the 585

global model parameter. By leveraging the power 586

of mini-batch sampling, Stochastic EM strikes a 587

balance between computational scalability and es- 588

timation accuracy. It has found widespread utility 589

in various domains, including clustering (Allasson- 590

nière and Chevallier, 2021), topic modeling (Za- 591

heer et al., 2016), and latent variable modeling 592

(Zhang and Chen, 2020), making it an indispens- 593

able tool to cope with complex probabilistic models 594

and extensive data and a natural fit to our problem. 595

Limitations: Our work is based on the contrastive 596

learning framework where the training data are 597

present in pairs. Expansion to broader contrastive 598

learning setting, as well as other modalities would 599

be our next steps. 600

5 Conclusion 601

We address a significant yet often overlooked lim- 602

itation of standard CL, arising in data contain- 603

ing noisy positive-negative pairs. We overcome 604

the limitation by presenting a principled solu- 605

tion, which reformulates CL within a probabil- 606

ity framework and introduces random weights for 607

data pairs. Leveraging Bayesian data augmenta- 608

tion techniques, we efficiently infer these random 609

weights through sampling, and optimize the model 610

parameters effectively using stochastic expectation 611

maximization. Our innovative approach demon- 612

strates its effectiveness through thorough evalua- 613

tions on standard benchmarks, including applica- 614

tions in multi-modal contrastive learning using the 615

CLIP framework. The results underscore the broad 616

applicability and enhanced robustness of our pro- 617

posed method. We believe our approach constitutes 618

a valuable addition to the contrastive representation 619

learning literature, capable of significantly improv- 620

ing the performance of state-of-the-art representa- 621

tion learning foundation models when applied to 622

larger datasets. 623
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A Analysis962

A.1 Sensitivity to Sampling Parameters963

We conduct an analysis to investigate the sensitiv-964

ity of our method to different sampling parameters.965

As detailed in Section 2.2 and Algorithm 1, there966

are several hyperparameters associated with the967

Gamma distributions that require determination.968

Following the same setting as in DeCL, we intro-969

duce a Gamma prior for ui’s with shape and rate970

parameters au = 1 and bu = 0. Subsequently,971

we determine the parameters for the prior Gamma972

distribution for w, where we need to establish a−973

and b− for negative pairs, as well as a+ and b+ for974

positive pairs.975

To simplify and without loss of generality, we976

set b− and b+ to be 0. To reduce the search space,977

we fix a+ and perform a grid search for the optimal978

value of a−. Specifically, we set a+ = 5 and979

explore 1, 5, 10, 20 for a−, where a higher value980

indicates a stronger preference for higher weight in981

the prior on negative pairs.982

The results are presented in Table 4. Optimal a−983

is observed to be twice that of a+, with the trend984

indicating that neither higher nor lower values yield985

greater gains. This suggests that slightly higher986

weights on negative pairs are preferable in noisy987

dataset training scenarios, while excessive attention988

to negative pairs is undesirable as it may diminish989

the learning signal from positive pairs.990

Furthermore, we visualize the learned distribu-991

tion sample results in Figure 3. It is observed that992

with proper hyperparameter settings, the majority993

of sampled weights cluster around 1, with some994

pairs associated with significantly higher or lower995

weights. This observation aligns with expectations,996

as our objective is to enable the model to adaptively 997

determine lower weights for noisy training pairs. 998

A.2 Visualization of Embeddings. 999

In our study, we examine the visualization of im- 1000

age and text class embeddings of CIFAR10 dataset 1001

from trained models employing distinct approaches. 1002

Our analysis reveals that both RINCE and our 1003

method facilitate a more uniform distribution of 1004

text embeddings. 1005

B Implementation Details 1006

We maintain consistency with the OpenCLIP code- 1007

base and hyper-parameter settings, except for the 1008

number of GPUs. Training is executed from scratch 1009

across 8 NVIDIA V100 GPUs for 32 epochs, with 1010

a batch size of 128 per GPU and a feature dimen- 1011

sion of 1024. An initial learning rate of 5× 10−4 1012

is employed, with a warm-up period of 10000 it- 1013

erations and subsequent cosine decay scheduling. 1014

AdamW optimizer (Loshchilov and Hutter, 2019) 1015

is utilized, along with a weight decay of 0.2. To 1016

underscore the effectiveness of our approach with 1017

noisy datasets, we introduce random noise of 10% 1018

into the training data by randomly selecting 10% 1019

of data pairs within each batch and re-sampling the 1020

positive labels, resulting in 10% of the training data 1021

featuring incorrect positive pairs. All baselines are 1022

trained from scratch using the same codebase, fixed 1023

random seed, and consistent hyper-parameters for 1024

equitable comparisons. After pre-training, we eval- 1025

uate the model trained on the final epoch for all 1026

baselines and our approach. 1027
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Table 4: Effect of Changing Sampling Parameters on ImageNet zero-Shot Classification (%).

a− = 1 a− = 5 a− = 10 a− = 20
Top1 Top5 Top1 Top5 Top1 Top5 Top1 Top5

a+ = 5 18.00 34.57 18.02 34.55 20.96 38.24 18.39 35.38
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(d) a− = 20

Figure 3: Posterior sample distribution of pair weights w with different prior choices, where a+ = 5. a− = 10
features the best performance.
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Figure 4: Visualization of Embeddings
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