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Abstract

Contrastive learning (CL) stands as a lead-
ing paradigm for self-supervised representa-
tion learning, achieving state-of-the-art results
in multi-modal learning. However, a notable
drawback of standard CL is its lack of robust-
ness in the face of noisy (misaligned) data pairs.
For instance, not all negative samples are truly
negative; within a mini-batch, there can be neg-
ative samples that are semantically similar to
positive samples. This issue is prevalent in
many web-sourced multimodal datasets like
CC3M and YFCC, commonly used for CL, due
to their inherently noisy nature during dataset
crawling. Consequently, dataset noise could
significantly undermine the efficacy of CL. On
the other hand, Bayesian modeling is renowned
for its inherent capability to handle data noise
and uncertainty. Is it possible to merge the
strengths of both approaches by incorporating
Bayesian modeling into CL for noise-robust
representation learning? In this paper, we pro-
pose a novel solution by reimagining standard
CL within a probability framework and intro-
ducing learnable random weights to associate
with data pairs. Our framework enables au-
tomatic inference of the level of noisiness for
each data pair through efficient Bayesian sam-
pling, based on a technique borrowed from
Bayesian data augmentation. Importantly, our
model can be effectively optimized using a
novel learning algorithm based on stochastic
expectation maximization. We demonstrate the
efficacy of our approach on various standard
multi-modal CL benchmarks, showcasing sig-
nificant performance improvements over stan-
dard CL methods.

1 Introduction

Contrastive learning has gained increasing popular-
ity in multi-modal representation learning due to its
effectiveness in aligning representations from dif-
ferent modalities. In the realm of vision-language
representation learning, the objective is to acquire

generic representations from images and texts that
could enhance multi-modal downstream applica-
tions, such as zero-shot image classification and
image-text retrieval. Recent advancements (Jia
et al., 2021a; Radford et al., 2021; Li et al., 2021;
Zhou et al., 2022; Gao et al., 2023; Guo et al.,
2023) have scaled up vision-language represen-
tation learning by leveraging contrastive loss to
pre-train models with a substantial volume of web-
sourced paired image-text data, such as Conceptual
Caption (Sharma et al., 2018), YFCC (Thomee
etal., 2016), and LAION (Schuhmann et al., 2022).
While some studies amalgamate the representations
of two modalities into a single encoder (Wang et al.,
2021a,b, 2022b,c), it is more prevalent to repre-
sent the image and text modalities separately using
modality-specific encoders, akin to the CLIP frame-
work (Mokady et al., 2021; Shen et al., 2021; Yang
et al., 2022; Shukor et al., 2022). Following pre-
training, the model can generate general representa-
tions of both image and text inputs, showcasing out-
standing performance in downstream tasks, such as
text-guided generation of natural images (Ramesh
et al., 2021; Crowson et al., 2022; Xu et al., 2023;
Ruiz et al., 2023; Liu et al., 2023), videos (Kwon
et al., 2022; Lin et al., 2022; Rasheed et al., 2023),
3D shapes (Sanghi et al., 2023; Wang et al., 2022a;
Sanghi et al., 2022), point clouds (Zhu et al., 2022),
and semantic segmentation (Park et al., 2022; Zhou
et al., 2023; Liang et al., 2023), among others.

In multi-modal representation learning, the stan-
dard contrastive loss aims to maximize the simi-
larity between corresponding image-text pairs (re-
ferred to as “positive pairs”) while distinguishing
them from all non-matching image-text pairs (re-
ferred to as “negative pairs”). This objective aligns
true image-text pairs to construct meaningful repre-
sentations. Despite the effectiveness of contrastive
loss in empirical applications for multi-modal rep-
resentation learning, two open questions have been
largely overlooked in previous works. Firstly,



the reliability of the ground truth labels “positive”
and “negative” from web-sourced datasets warrants
scrutiny. Most common web-sourced datasets con-
sider images and their corresponding descriptions
as the sole true positive pairs. However, in these
datasets, multiple image-text pairs may contain sim-
ilar contents while being labeled as negative pairs.
In other words, due to their large volume and auto-
mated collection processes without human labeling,
web-sourced datasets naturally contain substantial
noisy pairs. For instance, consider Figure 1, where
the first image is deemed a true positive match for
the text “man and woman hold hands, walk to the
beach’”. Both other texts in the same batch would
typically be labeled as negative samples to be distin-
guished from the image representation. However,
the second text “loving couple on a beach could
also be considered semantically positive in reflect-
ing the content of the first image, despite being
labeled as “negative” during training. Moreover,
other positive pairs in the dataset may feature dis-
similar or vague descriptions, as illustrated in the
right example in Figure 1. Such noisy data pairs
have the potential to introduce mixed training sig-
nals and compromise performance accuracy.

The second open question pertains to whether
contrastive learning can effectively handle such
noisy pairs. The conventional design of contrastive
learning emphasizes the significance of true posi-
tive pairs within every mini-batch while uniformly
pushing away all negative pairs. Consequently, it
may be susceptible to inconsistent training signals.
For example, as depicted in Figure 1, even though
the second text contains content more similar to the
image, it is considered equally “negative” as other
texts in the same batch. Without the flexibility to
adjust the importance of each data pair, contrastive
learning may tend to overfit to the noisy data pairs
within web-sourced datasets, thereby resulting in
sub-optimal solutions.

To address these limitations, we propose lever-
aging Bayesian modeling, known for its robustness
in handling data noise with uncertainty, to enhance
contrastive learning. Our approach involves aug-
menting the contrastive loss with stochastic weight-
ing, allowing for automatic inference on the degree
of noise present in each data pair. This introduces
a level of flexibility, enabling the system to bet-
ter navigate and adapt to the inherent uncertain-
ties within the dataset. By assigning probability
weights to data pairs, we ensure that they are treated
more accurately based on their posterior of being

genuine positive or negative pairs, rather than rely-
ing solely on batch-specific determinations, which
can be erratic.

To facilitate efficient learning and inference,
we first reframe the problem within a probability
framework using Bayesian data augmentation tech-
niques. This formulation enables us to infer the
weight of each data pair in contrastive learning,
thus ensuring the learned representations are robust
to noisy training data. Finally, we develop a novel
stochastic expectation maximization algorithm to
incorporate the inferred random weights into the
learning process of model parameters. In summary,
our contributions are as follows:

* We identify and address the inherent noise
problem in commonly used datasets for con-
trastive learning, formulating it as contrastive
learning with noisy data pairs.

* We propose a principled method to tackle this
problem by reformulating it within a probabil-
ity framework and developing a stochastic ex-
pectation maximization algorithm for robust
learning while inferring stochastic data-pair
weights.

* We demonstrate significant performance im-
provements through extensive experiments on
various public benchmarks for multi-modal
contrastive learning.

2 Method

We begin by outlining the foundational setup and
notation for contrastive learning. In this frame-
work, a backbone network, parameterized by 6, is
employed to generate generalized representations
denoted as z = enc(x;0), where x denotes the
input data. The multi-modal data is organized into
positive and negative pairs. Specifically, in a multi-
modal dataset D = (x},x?), with superscripts
indicating different modalities and subscripts in-
dexing individual data samples, each (x}, x?) rep-
resents a positive pair, while each (x;,x3) with
1 # j represents a negative pair. We define
s;+ = sim(enc(x};0),enc(x?;0)) as the simi-
larity score between the positive pair (x},x?) after
passing through the encoder. Additionally, s,;,— =
sim(enc(x;"; @), enc(x;?; 0)) denotes the simi-
larity score between the negative pair (x;"',x,"?),
where mq, mo € 1,2, and sim(-, ) represents a
similarity metric yielding positive values. In this
paper, we adopt the exponential cosine similarity,
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Figure 1: Examples from CC3M dataset that contain noisy pairs.

commonly used in contrastive learning methods,
defined as sim(xy,xz) £ eX1 X2 Note that the
similarity scores depend on the model parameter
0, although we omit explicit reference to it in our
notation for simplicity.

Preliminaries on Bayesian Modeling In con-
trast to the conventional approach to neural network
modeling, Bayesian modeling treats parameters of
interest as random variables, such as the weight-
ing parameters w;L and w;, introduced in equation
equation 1 below. Each stochastic parameter is as-
sociated with two types of distributions: the prior
distribution and the posterior distribution. The prior
distribution encapsulates our initial belief about the
parameter’s distribution before observing any data.
For instance, in our case, we define the stochastic
weights wj and w;, to follow Gamma distribu-
tions, reflecting our hypothesis that each data pair
should contribute differently to the loss. On the
other hand, the posterior distribution combines our
prior belief with the actual observed data, repre-
senting the "optimal"” distribution in some sense
and serving as the target of Bayesian inference.
In the subsequent sections, we first reformulate
the standard contrastive learning framework into
a probabilistic framework and then propose effi-
cient Bayesian inference methods to compute the
posterior distribution of our stochastic weights, to
compensate potential data noise in learning.

2.1 Probability Weighted Contrastive
Learning

As discussed in the Introduction, contrastive learn-
ing is tailored for scenarios involving clean pair
data. In the standard setup, each data sample com-
prises one positive pair and K negative pairs. The

contrastive loss function is defined as follows:
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However, real-world data often contain noisy
pairs, making direct application of contrastive
learning challenging. Here, we present our fun-
damental approach to address noisy pair data in
contrastive representation learning. Our basic strat-
egy is intuitive: we extend the standard contrastive
loss by introducing learnable stochastic weights
for all data pairs. Specifically, we incorporate lo-
cal learnable weights w;r , w,;. associated with the
data pairs, defining the noise-robust weighted con-
trastive loss as follows:

1
Lin(D;0) = —— ) " log(LL,), (1)
|D| x; €D
+o.
with £, 2 S e)

+ K —
w; Sz'j+ + Zk:l wiksikf

where {w:r } represents weights for positive pairs,
and {w;, } for negative pairs. Notably, when all
weights are set to one, the loss reduces to the stan-
dard contrastive loss.

One challenge with such a loss, however, is
the quadratic growth of auxiliary random weights
concerning the training data size (including aug-
mented data), which becomes impractical to store
in the context of continuous data augmentation. To
address this challenge, drawing inspiration from
the recent probability reformulation of contrastive
learning (Chen et al., 2022), we propose a scalable
Bayesian learning mechanism to efficiently sample
the local weights in each iteration. These weights



are then integrated into the contrastive loss to op-
timize the global model parameter. Specifically,
we reframe the problem from a Bayesian modeling
perspective by assigning appropriate priors for the
weights. We can consider Bernoulli priors to model
weights as binary random variables, or Gamma pri-
ors to model them as positive values. For simplicity,
we adopt Gamma priors, given by:

w;” ~ Gamma(ay,by), wy, ~ Gamma(a_,b_),

where ay and a_ are the shape parameters, and
by and b_ are the rate parameters. This gives a
joint posterior distribution over the global model
parameter and local random weight variables w;r
and w;;:

p({w;}, {w;},0;D) x 3)
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This probability weighting mechanism serves as a
measure of confidence in the pairing, facilitating
a more flexible and adaptive learning process. It
accommodates variations and possible inconsisten-
cies in the data, enabling the model to better adapt
to real-world complexities.

Another challenge, however, arises from the in-
feasibility of directly performing Bayesian infer-
ence on such a posterior distribution due to the
non-conjugacy between the priors and likelihood.
To address this, we draw inspiration from (Chen
et al., 2022) and introduce an augmented random
variable u; associated with each data point. This
augmentation yields an augmented joint posterior
distribution p(0, u, w |D)*, expressed as:

p(0,u,w |D) x H w;_SHe_ wiwls; 4)
©:x; €D
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where u £ {uy,ug, -+ ,ujp;} and w £ {w; } U
{w,, }. Subsequently, learning and inference can
be conducted based on the augmented posterior
p(0,u,w |D). In the following, we propose an
efficient algorithm based on stochastic expectation
maximization (stochastic EM) to alternately infer
the local random variables and optimize the global
model parameter.

“In the sense that marginalizing over the augmented ran-
dom variables w} and w,, in p(0, U, w;, w}, |D) yields the

original p(w;", w;,, 8; D). Thus, learning and inferences on
the two forms are equivalent.

2.2 Efficient Inference and Learning with
Stochastic Expectation Maximization

Drawing on the concept outlined in (Chen et al.,
2022), we propose a stochastic expectation maxi-
mization (EM) algorithm for efficient inference and
learning of our model. Stochastic EM, a stochas-
tic variant of the widely used EM algorithm, al-
ternates between inferring local random variables
and optimizing global model parameters for a la-
tent variable model (Allassonniere and Chevallier,
2021; Chen et al., 2018; Delyon et al., 1999). The
algorithm comprises three main steps: simulation,
stochastic approximation, and maximization.

In our context, simulation involves sampling lo-
cal random variables for a batch of data, denoted
as u and w. Stochastic approximation then em-
ploys the sampled auxiliary random variables to
update a stochastic objective Q(0) at each itera-
tion ¢, given by the recursive formula: Q;41(0) =
Q:(0) + M\ (logp(0,u, w |D) — Q(0)), where \;
is a sequence of decreasing weights. Finally, in
the maximization step, we optimize the model pa-
rameter 6 by maximizing the stochastic objective
Q¢+1(0). Further details are provided below.

Simulation Given the joint posterior distribution
in equation 4 and the current batch of data, sam-
pling the local random variables u and w is straight-
forward. Specifically, each u; and wj, w;,. follows
a Gamma distribution:

UZ|{U)Z+, wi_k‘7 0} ~ Gamma(au, bu —+ w;_SiJr_}_
> wisi- ), (5)
k

wlﬂ{u, 0} ~ Gamma(l + at,u;si+ + by) (6)
w;[{u, 8} ~ Gamma(a_,u;s;- +b_), Vi, k

These sampled random variables for the current
batch of data are then used in the subsequent
stochastic approximation step. Optionally, for sta-
bility, we propose updating wu;’s with moving aver-
ages after sampling. This involves maintaining u;
in memory and updating them as follows:: u; <
au; + (1 — a)u;, where 4; ~ Gamma(ay, by, +
wi s+ + >, wisi-) and a € [0,1] is a hyper-
parameter to balance old and new values. This
strategy only requires limited storage overhead as
we only need extra memory proportional to the
training data size, which is considered negligible
compared to other parameters.

Stochastic approximation Next, we calculate
the stochastic approximation based on the simu-



Algorithm 1 Noise-Robust Contrastive Learning
with Stochastic EM
1: Initialize @; sett =1
2: for x1, x5 in loader do
(x1,x2) with B samples
3: Calculate positive/negative
scores {s;+} and {s;;—}
4: Initialize all the weights {w;"} and {w;, }
to be one
for £k =1--- iter [2 in practice] do
Sample u according to equation 5
Sample w according to equation 6
end for
Calculate the weighted contrastive loss in
equation 1 with the sampled w on the current
batch of data
10 Update the model parameter by stochastic
gradient descent with the calculated weighted
contrastive loss
11: t=t+1
12: end for

> load a minibatch

similarity
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lated local random variables. For simplicity in
notation, let Qo(0) = 0. We reformulate QQ;+1(0)
by decomposing the recursion:

t
Qi41(0) =) A-logp(0,ur, w, |D;), (1)

7=0

t
where A\, £ )\, H (1=Xy),
t'=1+1

where 7 indexes the minibatch and the correspond-
ing local random variables at the current time 7.

Maximization The stochastic approximation ob-
jective in equation 7 provides a convenient form for
stochastic optimization over time, akin to online
optimization. At each time ¢, we initialize the pa-
rameter 0 from the previous step and update it via
stochastic gradient descent computed from the cur-
rent batch of data. To mitigate variance, we propose
optimizing a marginal version of p(8, u,, w. |DT)
by integrating out u,, essentially reducing to our
original weighted contrastive loss in equation 1.

With these steps, we are prepared to optimize the
model using stochastic EM. Algorithm 1 provides
further details.

3 Experiments

We concentrate on image-text contrastive learn-
ing employing CLIP-based models, which utilize

Method Topl T Top5t
CyCLIP (Goel et al., 2022) 17.77  36.20
LATENT (Jiang et al., 2023) 2045  39.28
CLIP (Radford et al., 2021) 1771  35.87
DeCL (Chen et al., 2022) 17.55 36.46
RINCE (Chuang et al., 2022) 17.46  34.61
OURS 2096 38.24

Table 1: Zero-Shot Transfer Learning Classifiction Ac-
curay (%) on ImageNet1K.

two separate encoders to align features across im-
age and text modalities. Subsequently, we assess
their performance on established benchmarks en-
compassing zero-shot, distribution shift, and linear
probing tasks. Additionally, we conduct an abla-
tion study and delve into the analysis of sampling
hyperparameters and sampled weights to further
illuminate our findings.

3.1 Experiments Setup

For our encoders, we utilize ResNet-50 (He et al.,
2016) for the image encoder and BERT (Devlin
et al., 2018) for the text encoder within our CLIP
model. We adopt the official code from OpenCLIP
(Ilharco et al., 2021) and DeCL (Chen et al., 2022)
to replicate the baselines and implement our meth-
ods. Our reproduced CLIP results align closely
with recent works (Mu et al., 2021; Gao et al.,
2021; Jiang et al., 2023), albeit slightly lower than
reported in the original CLIP paper. This discrep-
ancy may stem from our utilization of fewer GPUs,
resulting in a smaller effective batch size. It is
crucial to note that all methods utilize the same
OpenCLIP codebase and same pretraining dataset,
we also reproduce three baselines (CLIP, DeCL
and RINCE) with identical hyper-parameter con-
figurations., ensuring a fair comparison. And it is
unfair to compare results from some literature that
adopts different experimental settings, e.g., (Ando-
nian et al., 2022; Jia et al., 2021b; Hu et al., 2023).

Pre-training: We adhere to standard practice and
pre-train our model on the CC3M dataset (Sharma
et al., 2018), consisting of 3 million unique images
and 4 million image-text pairs.

Evaluation: For zero-shot image classification, we
leverage the pre-trained image encoder to derive
image representations and utilize the pre-trained
text encoder and prompts to formulate class descrip-
tions, thus obtaining class representations. Eval-
uation is conducted on ImageNet for embedding



Method ImageNetV?2 ImageNetSketch ImageNet-A ImageNet-R
Topl + Top5 1 ‘ Topl + Top5 1 ‘ Topl + Top5 1 ‘ Topl + Top5 1
CyCLIP (Goel et al., 2022) 15.25  32.15 8.30 20.77 3.27 13.07 | 19.85  40.35
LATENT (Jiang et al., 2023)  17.37  36.65 | 1090 26.11 3.87 16.76 | 23.85 45.03
CLIP (Radford et al., 2021) 16.44 3415 | 1023  24.21 5.05 17.71 | 2475  46.30
DeCL (Chen et al., 2022) 1558  33.11 10.1 22.57 3.94 15.66 | 22.68 44.26
RINCE (Chuang et al., 2022) 1492  31.89 9.7 22.62 2.79 12.11 | 21.88 4143
OURS 17.63 3325 | 1236 25.76 4.21 1476 | 25.85 4642
Table 2: Zero-Shot Natural Distribution Shift Classifiction Accuray (%).
=T z = 2 8 8 & § g8 z 8 g8 ¥|%s
: £ 2 B 2z & 5§ 5 8 % &2 S % 3%
D »n 175} = <« > = ) o 3 V4 >
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8 S - -
2 .
CLIP 793 459 887 76.1 541 559 214 578 542 552 682 78.1 177 5l1.1 57.4
DeCL 76,5 409 892 753 527 563 19.8 56.1 53.6 530 668 733 154 50.24 | 55.68
OURS 814 49.2 899 774 555 58.0 238 621 568 59.0 739 805 193 5293 | 60.0

Table 3: Linear Probing Top1 Classification Accuracy (%) on Vision Benchmarks.

quality and its distribution shifted benchmarks to
assess the robustness of our methods. Additionally,
we evaluate linear probing performance, wherein
the encoders remain fixed, and a single linear layer
is trained with supplementary supervision to evalu-
ate the quality of the learned representations.

To underscore the effectiveness of our approach
with noisy datasets, we introduce random noise
of 10% into the training data by randomly select-
ing 10% of data pairs within each batch and re-
sampling the positive labels, resulting in 10% of
the training data featuring incorrect positive pairs.
Three baselines(CLIP, DeCL, RINCE) are trained
from scratch using the same codebase, fixed ran-
dom seed, and consistent hyper-parameters for eq-
uitable comparisons. After pre-training, we eval-
uate the model trained on the final epoch for all
baselines and our approach. We also report results
from two other baselines (CyCLIP and LATENT)
with same pre-training data and network architec-
ture.

3.2 Zero-Shot Transfer Learning Evaluation

We perform zero-shot transfer learning on standard
image classification tasks using the ImageNet1K
dataset (Russakovsky et al., 2015). We adopt the
common strategy of prompt engineering, construct-
ing text prompts for each dataset using class names
and templates such as "a photo of the [class
name]" and "a sketch of the [class name]". The
normalized class text embeddings are derived us-

ing multiple standard prompts, while image em-
beddings are obtained from the pre-trained encoder.
During evaluation, the class whose text embedding
exhibits the highest similarity score to the image
embedding is utilized as the predicted label. We
report Top-K classification accuracy with K = 1
and 5.

Table 1 presents the zero-shot transfer learn-
ing performance, including baselines for reference,
with a focus on comparing with CLIP and DeCL.
DeCL improves upon CLIP performance by 1% in
Top-5 accuracy by addressing gradient bias issues,
while our approach surpasses CLIP by 3% in both
Top-1 and Top-5 accuracy through stochastic train-
ing pairs re-weighting. Notably, both DeCL and
our method entail no additional computing over-
head beyond the original CLIP baseline, except
for the sampling processes, which are negligible
relative to the total training cost.

3.3 Natural Distribution Shift Evaluation

We evaluate variations of the ImageNet1K dataset
featuring shifted distributions (Recht et al., 2019;
Wang et al.,, 2019; Hendrycks et al., 2021b,a),
which incorporate sketches, cartoons, and adver-
sarially generated images. These datasets serve to
assess model generalizability and robustness. Em-
ploying the same processes outlined in the previous
section, we conduct zero-shot evaluation and report
classification accuracy on Top-1 and Top-5.

Table 2 showcases the zero-shot transfer learn-
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Figure 2: Visualization of model performance. Every axis denotes the performance on a particular dataset measured
using wither Top1 or Top5 accuracy metric. Distinct colors signify different methods or approaches. An approach
that spans a larger area demonstrates superior overall performance.

ing performance on the Natural Distribution Shift
benchmark. DeCL exhibits the poorest perfor-
mance across all four benchmarks, while the CLIP
baseline demonstrates the best performance on
ImageNet-A. Additionally, CLIP exhibits decent
performance on Top-5 accuracy for ImageNetV2.
Our method enhances the CLIP baseline perfor-
mance by 1-2% in Top-1 accuracy for three out
of four benchmarks (ImageNet-V2, ImageNetS-
ketch, and ImageNet-R), and by around 1% for
two out of four benchmarks (ImageNetSketch and
ImageNet-R). This indicates that by leveraging our
approach to weight training pairs with stochastic
approximation, we improve the robustness and gen-
eralizability of learned embeddings. However, our
method underperforms CLIP on ImageNet-A, a
dataset with adversarial noise, possibly due to the
ineffectiveness of correcting noisy pairs in training
to combat adversarial noise in data.

3.4 Linear Probing Evaluation

We further perform evaluations on linear probing
classification tasks, wherein we fit a linear classifier
with a downstream training dataset by leveraging
the fixed learned visual encoder. The finetuned
model is then evaluated on the testing dataset. This
setting is used to evaluate how well the learned
embeddings can generalize to new tasks with fur-
ther supervision that requires only minimum fine-
tuning effort. Following standard setup, we test on
14 standard benchmarks (Krizhevsky, 2009; Rus-
sakovsky et al., 2015; Fei-Fei et al., 2006; Net-
zer et al., 2011; Coates et al., 2011; Cimpoi et al.,

2014; Maji et al., 2013; Parkhi et al., 2012; Socher
et al., 2013; Bossard et al., 2014; Houben et al.,
2013; Krause et al., 2013; Nilsback and Zisserman,
2008).

As shown in Table 3, our method outperforms
both CLIP and DeCL on all the datasets, leading to
an average gain of 3-4%. This further validates that
our approach enables more flexible training with
a higher tolerance for noisy data pairs, which can
improve the model performance for better repre-
sentations.

We visualize the model performance in Figure 2
where each color represents a different approach
and the larger the area one approach covers indi-
cates the better performance. We can see that our
method outperforms baselines on both tasks with
more advantage on linear probing tasks.

4 Related Works and Limitation

Vision-Language Representation Learning: Re-
cent advances in vision-language representation
learning can be broadly classified based on the man-
ner in which information from two modalities is
utilized for joint learning. The first category lever-
ages unified models (Wang et al., 2021a, 2022b,c)
to process both images and texts. Typically, these
inputs are tokenized into sequences (Peng et al.,
2022; Bao et al., 2022). The latter methods deploy
separate encoders (Radford et al., 2021; Mokady
et al., 2021; Shen et al., 2021; Li et al., 2021; Yang
etal., 2022; Kwon et al., 2022; Jia et al., 2021a) for
images and texts. To align the different modalities,
they utilize the contrastive loss (Oord et al., 2018;



He et al., 2020; Chen et al., 2020). It’s noteworthy
that these techniques have been demonstrated to
achieve state-of-the-art (SOTA) results on multiple
downstream tasks. How to obtain robust and repre-
sentational embeddings from CL is vital to benefit
downstream tasks. Specifically, we focus on how
to cope with noisy positive-negative pairs for CL.

Noisy Pairs in Contrastive Learning: While most
works directly utilize large scale dataset for con-
trastive learning, some argue the noisy dataset is-
sue. Noisy contrastive learning is an advanced
technique that addresses the challenges of standard
contrastive learning when faced with inconsisten-
cies or "noise" within paired data. Traditional con-
trastive methods often struggle with mislabeled or
ambiguous pairs, leading to decreased accuracy and
efficiency. Noisy contrastive learning, on the other
hand, incorporates mechanisms, often probabilis-
tic in nature, to accommodate these uncertainties.
By assigning confidence or probability weights to
each pair, this approach allows for more adaptive
and flexible learning. Rather than being limited by
the binary classification of pairs, it embraces the
inherent complexities and variations in real-world
data, enhancing the model’s robustness and perfor-
mance. NLIP (Huang et al., 2023) enforces the
pairs with larger noise probability to have fewer
similarities. (Han et al., 2022) apply noise estima-
tion component to adjust the consistency between
different modalities for the action recognition task.
RINCE (Hoffmann et al., 2022) uses a ranked order-
ing of positive samples to improve InfoNCE loss.
Another recent work (Chen et al., 2022) studies
the gradient bias issue in contrastive learning and
proposes a stochastic approach to mitigate it with
an bayesian augmentation. This method transforms
the contrastive loss into a decomposable form. Con-
sequently, conventional stochastic optimization can
be applied without inducing gradient bias. Our ap-
proach uses a stochastic approach from a different
perspective to address the noisy data issue instead
of the gradient bias issue. To combat this challenge,
we are introducing a probability extension. This
innovative approach assigns a probability weight
to each pair, whether positive or negative. By do-
ing so, the model is no longer rigidly committed
to a binary classification of the pairs but can now
take into consideration the uncertainties or noise
present in the data. This not only provides more nu-
anced information to the model but also enhances
its robustness.

Stochastic Expectation Maximization Stochas-
tic EM (Nielsen, 2000) stands as a pivotal algo-
rithm in machine learning and probabilistic model-
ing. Building upon the foundations of the classical
Expectation-Maximization (EM) algorithm (Lin,
2011), Stochastic EM offers an efficient solution
for parameter estimation in situations involving
vast datasets or latent variables, e.g., to maximize
the log-likelihood of p(z,D|@), where D is the
dataset, z is the local random variable and 0 is the
global model parameter. By leveraging the power
of mini-batch sampling, Stochastic EM strikes a
balance between computational scalability and es-
timation accuracy. It has found widespread utility
in various domains, including clustering (Allasson-
nicre and Chevallier, 2021), topic modeling (Za-
heer et al., 2016), and latent variable modeling
(Zhang and Chen, 2020), making it an indispens-
able tool to cope with complex probabilistic models
and extensive data and a natural fit to our problem.

Limitations: Our work is based on the contrastive
learning framework where the training data are
present in pairs. Expansion to broader contrastive
learning setting, as well as other modalities would
be our next steps.

5 Conclusion

We address a significant yet often overlooked lim-
itation of standard CL, arising in data contain-
ing noisy positive-negative pairs. We overcome
the limitation by presenting a principled solu-
tion, which reformulates CL within a probabil-
ity framework and introduces random weights for
data pairs. Leveraging Bayesian data augmenta-
tion techniques, we efficiently infer these random
weights through sampling, and optimize the model
parameters effectively using stochastic expectation
maximization. Our innovative approach demon-
strates its effectiveness through thorough evalua-
tions on standard benchmarks, including applica-
tions in multi-modal contrastive learning using the
CLIP framework. The results underscore the broad
applicability and enhanced robustness of our pro-
posed method. We believe our approach constitutes
a valuable addition to the contrastive representation
learning literature, capable of significantly improv-
ing the performance of state-of-the-art representa-
tion learning foundation models when applied to
larger datasets.
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A Analysis

A.1 Sensitivity to Sampling Parameters

We conduct an analysis to investigate the sensitiv-
ity of our method to different sampling parameters.
As detailed in Section 2.2 and Algorithm 1, there
are several hyperparameters associated with the
Gamma distributions that require determination.
Following the same setting as in DeCL, we intro-
duce a Gamma prior for u;’s with shape and rate
parameters a,, = 1 and b, = 0. Subsequently,
we determine the parameters for the prior Gamma
distribution for w, where we need to establish a_
and b_ for negative pairs, as well as a and b, for
positive pairs.

To simplify and without loss of generality, we
set b_ and b to be 0. To reduce the search space,
we fix a and perform a grid search for the optimal
value of a_. Specifically, we set ay = 5 and
explore 1,5, 10, 20 for a_, where a higher value
indicates a stronger preference for higher weight in
the prior on negative pairs.

The results are presented in Table 4. Optimal a_
is observed to be twice that of a., with the trend
indicating that neither higher nor lower values yield
greater gains. This suggests that slightly higher
weights on negative pairs are preferable in noisy
dataset training scenarios, while excessive attention
to negative pairs is undesirable as it may diminish
the learning signal from positive pairs.

Furthermore, we visualize the learned distribu-
tion sample results in Figure 3. It is observed that
with proper hyperparameter settings, the majority
of sampled weights cluster around 1, with some
pairs associated with significantly higher or lower
weights. This observation aligns with expectations,
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as our objective is to enable the model to adaptively
determine lower weights for noisy training pairs.

A.2 Visualization of Embeddings.

In our study, we examine the visualization of im-
age and text class embeddings of CIFAR10 dataset
from trained models employing distinct approaches.
Our analysis reveals that both RINCE and our
method facilitate a more uniform distribution of
text embeddings.

B Implementation Details

We maintain consistency with the OpenCLIP code-
base and hyper-parameter settings, except for the
number of GPUs. Training is executed from scratch
across 8 NVIDIA V100 GPUs for 32 epochs, with
a batch size of 128 per GPU and a feature dimen-
sion of 1024. An initial learning rate of 5 x 10™%
is employed, with a warm-up period of 10000 it-
erations and subsequent cosine decay scheduling.
AdamW optimizer (Loshchilov and Hutter, 2019)
is utilized, along with a weight decay of 0.2. To
underscore the effectiveness of our approach with
noisy datasets, we introduce random noise of 10%
into the training data by randomly selecting 10%
of data pairs within each batch and re-sampling the
positive labels, resulting in 10% of the training data
featuring incorrect positive pairs. All baselines are
trained from scratch using the same codebase, fixed
random seed, and consistent hyper-parameters for
equitable comparisons. After pre-training, we eval-
uate the model trained on the final epoch for all
baselines and our approach.



Table 4: Effect of Changing Sampling Parameters on ImageNet zero-Shot Classification (%).

a_ =1 a- =95 a_ =10 a_ =20
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features the best performance.
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