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ABSTRACT

Gains in the ability to generalize on image analysis tasks for neural networks
have come at the cost of increased number of parameters and layers, dataset sizes,
training and test computations, and GPU RAM. We introduce a new architecture
– WaveMix-Lite – that can generalize on par with contemporary transformers and
convolutional neural networks (CNNs) while needing fewer resources. WaveMix-
Lite uses 2D-discrete wavelet transform to efficiently mix spatial information from
pixels. WaveMix-Lite seems to be a versatile and scalable architectural frame-
work that can be used for multiple vision tasks, such as image classification and
semantic segmentation, without requiring significant architectural changes, unlike
transformers and CNNs. It is able to meet or exceed several accuracy benchmarks
while training on a single GPU. For instance, it achieves state-of-the-art accuracy
on five EMNIST datasets, outperforms CNNs and transformers in ImageNet-1K
and Places-365, and achieves an mIoU of 77% on Cityscapes validation set, while
using less than one-fifth the number parameters and half the GPU RAM of compa-
rable CNNs or transformers. Our experiments show that while the convolutional
elements of neural architectures exploit the shift-invariance property of images,
new types of layers (e.g., wavelet transform) can exploit additional properties of
images, such as scale-invariance and finite spatial extents of objects.

1 INTRODUCTION

Ever since it has been demonstrated that convolutional neural networks (CNNs) generalize better
than the alternatives for image classification (Lecun et al., 1998; Krizhevsky et al., 2012), further
improvements have relied on simple but effective architectural changes that allow training of deeper
CNNs (Simonyan & Zisserman, 2014; Szegedy et al., 2014; He et al., 2015b; Howard et al., 2017;
Hu et al., 2017; Huang et al., 2016). On the other hand, adapting transformers that were developed
for natural language processing (NLP) for vision tasks was a departure from using convolutional pro-
cessing, which showed that further improvements in generalization in image classification are possi-
ble by using architectures that scale with larger labeled datasets and computational resources (Zhao
et al., 2020; Dosovitskiy et al., 2021). However, forsaking inductive priors suitable for images, such
as 2D convolutional weight sharing, and adopting global self-attention with quadratic complexity
meant that the training requirements increased to a prohibitive extent for most applications (Khan
et al., 2022). Linear approximations to quadratic attention reduce the computational requirements
only to some extent, and they do not resolve the problem of not having an appropriate inductive bias
for images (Jeevan & Sethi, 2022).

More recently, there have been attempts to combine the inductive prior of convolutional design
with the scalability of transformers in hybrid architectures for image analysis to reduce the training
requirements of neural networks (pre-training dataset size, parameters, floating point operations
(FLOPs)) (Graham et al., 2021; Hassani et al., 2021; Dosovitskiy et al., 2021; Wu et al., 2021; Jeevan
& Sethi, 2022; Jeevan & sethi, 2022). The expensive training requirements of pure transformers also
led to research into alternative token-mixing architectures that can replace self-attention (Tolstikhin
et al., 2021; Lee-Thorp et al., 2021; Guibas et al., 2021; Trockman & Kolter, 2022). These works
indicate that it is worth exploring priors other than shift-invariance (via convolutions) for images
to reduce the training requirements with little to no sacrifice of generalization. However, most of
these architectures cannot be easily adapted for multiple image sizes and other vision tasks, such as
segmentation and object detection (Trockman & Kolter, 2022).
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An important prior in images that has been much less explored in deep neural networks is the multi-
resolution self-similarity (across spatial scales) and sparseness of edges (finite spatial extents of
objects), with some notable exceptions (Mei et al., 2020). Two-dimensional discrete wavelet trans-
forms (2D-DWT) capture this prior well and have been widely used in the pre-deep neural network
era for various imaging applications, especially for compression and denoising (Lewis & Knowles,
1992; Ruikar & Doye, 2010).

In this work, we explore the use of a 2D-DWT as a spatial token mixer directly into a largely
convolutional architecture, which we call WaveMix-Lite. WaveMix-Lite has the following benefits:

1. Incorporate multi-resolution inductive bias without increasing training costs: A pre-
defined 2D-DWT allows us to mix features spatially in a multi-resolution manner without
introducing extra parameters. Additionally, the 2D-DWT also scales the image dimension
by positive integral powers of 1

2 × 1
2 , which reduces the GPU RAM and FLOPs required

per training image per forward or backward pass for the subsequent trainable layers. The
resultant efficiency in terms of parameters, FLOPs, and GPU RAM allowed us to conduct
experiments using a single GPU on Google Colab Pro+®.

2. Impart versatility in architectural design for image recognition as well as segmenta-
tion: Unlike other CNN and multi-head attention (MHA) models which need complete
redesigning of the architecture to provide good performance in different vision tasks, the
WaveMix-Lite architecture is versatile and can perform multiple vision tasks, such as im-
age classification and semantic segmentation, without the need for special architectural
modifications. We find this design simplicity and reusable block structure to be attractive
in its own right.

3. Obtain high accuracy with reduced training requirements: For image classification
and segmentation on multiple datasets WaveMix-Lite was able to match the test accu-
racy of some widely used convolutional and transformer architectures while using 5 to
10 times fewer parameters and 2 to 50 times lesser GPU RAM for a fixed batch size. Con-
sequently, its training and testing throughputs were 1.5 to 6 times higher than the models
compared. WaveMix-Lite also achieved state-of-the-art accuracy on 5 EMNIST datasets
(Byclass, Bymerge, Letters, Digits and Balanced). Additionally, it gives compelling results
on TinyImageNet, CIFAR 10 and 100, STL-10, Places-365, Caltech-256 and ImageNet-1K
for classification; and Cityscapes for semantic segmentation.

After describing how WaveMix-Lite is related to previous works in Section 2, we describe its in-
sights and details in Section 3. We compare WaveMix-Lite with other models on image classification
and semantic segmentation and provide empirical evidence of its scalability and examine the impor-
tance of its components in Section 4. We conclude and list potential future directions in Section 5.

2 RELATED WORKS

Statistical properties of natural images, which have been studied for the last several decades, in-
clude shift-invariance (stationarity), scale-invariance (especially in 2D projections of a 3D world
viewed from various distances), high spatial auto-correlation (monochromatic objects or regions),
spatial sparseness of edges (finite spatial extent of objects), and certain chromatic contrasts (pre-
ponderance of certain colors) (Field, 1993; Ruderman, 1994; Lee, 1996; Párraga et al., 2002). Of
these, only the shift-invariance has been widely exploited in neural architectures for image analysis
in the form of convolutional filters (LeCun et al., 1998) and other architectural elements. There
have been some exceptions that incorporate rotational-invariance for remote sensing images (Cheng
et al., 2016), and multi-resolution analysis for segmentation of histopathology images (Kurian et al.,
2022; van Rijthoven et al., 2021), but these methods have not been tested on general computer vision
benchmarks.

Advances in CNN performance have mainly come from architectural changes with the goals of
easing gradient flow to deeper layers (He et al., 2015a; Szegedy et al., 2014), or reducing parameters
per layer by restricting convolutional kernel size (Simonyan & Zisserman, 2014) or their scope
to only one dimension (Chollet, 2016). Attention mechanisms for space or channel (Chen et al.,
2017) also seem to improve performance of CNNs, although it has not been explored why a stack of
additional convolutional layers cannot model the same function as that of spatial or channel attention.
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Vision transformers and hybrid architectures, inspired by their success on NLP tasks, have
pushed the image classification accuracy beyond those of the largest CNNs, albeit at the cost of
several times more data and network parameters (Dosovitskiy et al., 2021). Training such data hun-
gry models with hundreds of millions of parameters requires access to large GPU clusters, which is
impractical for resource-constrained applications. Reduction in the computational requirements of
vision transformers have been made possible by architectural changes that provide image specific
inductive biases creating hybrid models with elements including distillation (Touvron et al., 2020),
convolutional embeddings (Jeevan & Sethi, 2022; Hassani et al., 2021), convolutional tokens (Wu
et al., 2021), and encoding overlapping patches (Yuan et al., 2021). The quadratic complexity with
respect to the sequence length (number of pixels) for vanilla transformers has also led to the search
for other linear approximations of self-attention to efficiently mix tokens (Jeevan & Sethi, 2022).

Token mixers that replace the self-attention in transformers with fixed token mixing mechanisms,
such as the Fourier transform (FNet), achieves comparable generalization with lower computa-
tional requirements (Lee-Thorp et al., 2021). Other token-mixing architectures have also been pro-
posed that use standard neural components, such as convolutional layers and multi-layer perceptrons
(MLPs) for mixing visual tokens. MLP-mixer (Tolstikhin et al., 2021) uses two MLP layers (cascade
of 1×1 convolutions) applied first to image patch sequence and then to the channel dimension to mix
tokens. ConvMixer (Trockman & Kolter, 2022) uses standard convolutions along image dimensions
and depth-wise convolutions across channels to mix token information. These token mixing mod-
els perform well with lower computational costs compared to transformers without compromising
generalization.

Wavelets for images: Extensive prior research has uncovered and exploited various multi-resolution
analysis properties of wavelet transforms on image processing applications, including denois-
ing (Ruikar & Doye, 2010), super-resolution (Guo et al., 2017), recognition (Mahmood et al., 2018),
and compression (Lewis & Knowles, 1992). Features extracted using wavelet transforms have also
been used extensively with machine learning models (Mowlaei et al., 2002), such as support vector
machines and neural networks (Ranaware & Deshpande, 2016), especially for image classifica-
tion (Nayak et al., 2016). Representative instances of integration with neural architectures include
the following. ScatNet architecture cascades wavelet transform layers with nonlinear modulus and
average pooling to extract translation invariant features that are robust to deformations and preserves
high-frequency information for image classification (Bruna & Mallat, 2013). WaveCNets replaces
max-pooling, strided-convolution, and average-pooling of CNNs with 2D-DWT for noise-robust
image classification (Li et al., 2020a). Multi-level wavelet CNN (MWCNN) has been used for im-
age restoration as well with U-Net architectures for better trade-off between receptive field size and
computational efficiency (Liu et al., 2018). Wavelet transform has also been combined with a fully
convolutional neural network for image super resolution (Kumar et al., 2017).

We propose using the two-dimensional discrete wavelet transform (2D-DWT) for token mixing.
Among the different types of mother wavelets available, we used the Haar wavelet (a special case of
the Daubechies wavelet (Daubechies, 1990) , also known as Db1), which is frequently used due to
its simplicity and faster computation. Haar wavelet is both orthogonal and symmetric in nature, and
has been used to extract basic structural information from images (Porwik & Lisowska, 2004). For
even-sized images, it reduces the dimensions exactly by a factor of 2, which simplifies the designing
of subsequent layers.

3 WAVEMIX-LITE ARCHITECTURE

Image pixels have several interesting co-dependencies. The localized and stationary nature of certain
image features (e.g., edges) have been exploited using linear space-invariant filters (convolutional
kernels) of limited size. Scale-invariance of natural images has been exploited to some extent by
pooling (LeCun et al., 1998). However, we think that scale-invariance can be better modeled by
wavelet decomposition due to its natural multi-resolution analysis properties. Additionally, the finer
scale of a multi-level wavelet decomposition also incorporates the idea of linear space-invariant fea-
ture extraction using convolutional filters of small support; albeit using predefined weights. The
basic idea, therefore, behind our proposed architecture is to alternate between learnable spatially
repeated feature extraction using convolutional layers (includes, 3× 3 conv, MLP, as well as upconv
layers), and fixed token mixing using 2D-DWT for a few layer blocks. Injecting fixed (unlearnable)
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spatial token-mixing that also reduces the image dimensions by a factor of 1
2×

1
2 , similar to a pooling

layer (which we do not use), reduces the number of computations in some of the subsequent learn-
able layers and increases the effective receptive field to capture distant spatial relationships more
efficiently with the number of layers. This combination requires far fewer layers and parameters
than using only convolutional layers with pooling. On the other hand, while transformers and other
token mixers have very large effective receptive fields right from the first few layers, they do not
utilize inductive priors that are suitable for images. This is where the wavelet transform plays its
role in both increasing the effective receptive field at an exponential rate per layer (unlike the linear
rate of convolutional layers), while still retaining the essence of convolutional design to keep the
architecture flexible. Additionally, compared to pooling, wavelet is a lossless transform.
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Figure 1: WaveMix-Lite architecture: Overall architecture for (a) classification and (b) semantic
segmentation, along with (c) details of the WaveMix-Lite block

3.1 OVERALL ARCHITECTURE

As shown in Figure 1, the input image is first passed through a convolutional layer that creates feature
maps of the image. The use of trainable convolutions before the wavelet transform is a key aspect of
our architecture, as it allows the extraction of only those feature maps that are suitable for the chosen
wavelet family. This is followed by a series of WaveMix-Lite blocks1. A task specific output layer
is then attached to the end. For image classification, we add an MLP head, a global average pooling
layer, and a softmax layer for generating the class probabilities. For semantic segmentation, we use

1Our code is available at XXXX
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deconvolution layers to expand the output from WaveMix-Lite block back to the input resolution. A
pixel-wise softmax layer is then added to generate the class probabilities for the required number of
semantic classes. For both the tasks, the core architecture remains the same and we only replace the
classification head with the segmentation head. WaveMix-Lite processes image as a 2D graph and
not as sequence of pixels/patches. That is, at no point in the model do we unroll the image into a
sequence of pixels/patches as done in transformer models. This key feature allows transfer learning
from a source to a target dataset even when the two have different image sizes or tasks.

3.2 WAVEMIX-LITE BLOCK

In a WaveMix-Lite block (Figure 1(c)), the input is first passed through a convolutional layer which
decreases the embedding dimension by a factor of four, so that the concatenated output after 2D-
DWT has the same dimension as input.2 We only use one level 2D-DWT in WaveMix-Lite to reduce
the parameters and computations. The 2D-DWT produces four output channels (one approximation
and three details (Daubechies, 1990)) for each input channel. The four outputs are concatenated
together (depth or channel-wise) and this output has the same number of channels as the input to
the WaveMix-Lite block (embedding dimension). The output resolution (height × width) after 2D-
DWT will be half that of the input; i.e., if the input is 64 × 64, the output will be 32 × 32.

The concatenated output from 2D-DWT is passed to an MLP layer (two 1× 1 convolutional layers
separated by a GELU non-linearity) having a multiplication factor more than one where channel
mixing is performed by the MLP. Since wavelet transform reduces the image resolution by half, the
GPU consumption and computations needed by the MLP significantly reduces in each layer. The im-
age size reconciliation is performed using transposed convolutions (up-convolutions) which resizes
the image back to the original input resolution. The kernel size and stride of deconvolutional layers
were chosen such that the output has the same size as the input to WaveMix-Lite block. We chose
deconvolutional layer rather than an inverse 2D-DWT because the former is much faster and con-
sumes less GPU than the latter. The outputs from the deconvolutional layers are then passed through
batch normalization. A residual connection (He et al., 2015a) is provided within each WaveMix-Lite
block so that the model can be made deeper with a larger number of blocks, if necessary.

4 EXPERIMENTS AND RESULTS

4.1 DATASETS

To demonstrate the applicability of WaveMix-Lite for image classification, we used multiple types
of publicly available (under MIT Licenses) datasets based on the number of images and image
size. Small datasets of smaller image sizes included CIFAR-10, CIFAR-100 (Krizhevsky, 2009),
EMNIST (Cohen et al., 2017), Fashion MNIST (Xiao et al., 2017), and SVHN (Netzer et al., 2011).
Small datasets of larger image sizes included STL-10 (Coates et al., 2011), Caltech-256 (Griffin
et al., 2007) and Tiny ImageNet (Le & Yang, 2015). We also used larger datasets with larger images
sizes such as, ImageNet-1K (Deng et al., 2009), Places-365 (Zhou et al., 2017) and iNaturalist2021-
10k (iNAT mini) (Horn et al., 2021). We used Cityscapes (Cordts et al., 2016) dataset for semantic
segmentation experiments and evaluated performance in the Cityscapes validation dataset.

4.2 MODELS COMPARED

WaveMix-Lite was compared with various other CNNs, transformers, and token-mixing mod-
els. These include ResNets (He et al., 2015a), MobileNet (Sandler et al., 2018), UNets and
DeepLabV2 as CNNs; ViT (vision transformer) (Dosovitskiy et al., 2021), hybrid ViN (vision Nys-
tromformer) (Jeevan & Sethi, 2022), CPV (convolutional performer for vision) (Jeevan & sethi,
2022), CCT (compact convolutional transformer) (Hassani et al., 2021), CvT (convolutional vision
transformer) (Wu et al., 2021), and SegFormer (Xie et al., 2021) as transformers; and FNet (Lee-
Thorp et al., 2021), ConvMixer (Trockman & Kolter, 2022) and MLP-Mixer (Tolstikhin et al., 2021)
as token-mixers. Results of the other models that were directly taken from their original papers are
cited in results tables.

2Base code: https://pytorch-wavelets.readthedocs.io/en/latest/readme.html
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Table 1: Image classification on ImageNet-1K dataset shows improved accuracy as well as through-
put due to decreased parameter count and GPU RAM consumption by WaveMix-Lite (arrows show
desired directions)

Architecture Top-1 Accu.
(%) ↑ # Param. ↓ GPU RAM for

batch size 64 ↓
Max batch size

in 16 GB GPU ↑
Throughput (im/s)

Train ↑ Test ↑

ResNet-18 55.12 11.7 M 2.7 GB 384 450 439
ResNet-34 57.02 21.8 M 3.1 GB 330 414 410
ResNet-50 61.76 25.6 M 6.2 GB 164 638 617
ResNet-101 64.60 44.5 M 9.6 GB 106 487 725
ResNet-152 65.86 60.2 M 12.7 GB 80 344 758
MobileNetv3-small 51.57 2.5 M 1.4 GB 751 255 229
MobileNetv3-large 58.89 5.5 M 3.5 GB 289 492 481
ViT-B-16 39.53 86.6 M 10.0 GB 102 140 420
ViT-B-32 30.11 88.2 M 2.2 GB 474 1,595 1,613
CPV-256/5x4 63.02 6.7 M 12.9 GB 79 364 728
ConvMixer-512/12 60.24 4.2 M 10.8 GB 94 292 735
ConvMixer-512/16 62.24 5.4 M 14.1 GB 72 220 725
ConvMixer-1024/12 64.13 14.6 M 23.6 GB 43 251 667
WaveMix-Lite-128/8 54.12 3.9 M 4.5 GB 228 1,242 1,724
WaveMix-Lite-144/8 55.42 4.6 M 4.9 GB 208 943 1,714
WaveMix-Lite-256/24 67.71 32.4 M 19.2 GB 53 222 649

For model notation we use the format Model Name-Embedding Dimension/Layers×Heads for trans-
formers and exclude the heads for the other architectures. For example, CCT with embedding di-
mension of 128 having 4 layers and 4 heads is labelled as CCT-128/4× 4.

4.3 IMPLEMENTATION DETAILS

We trained models using AdamW optimizer (α = 0.001, β1 = 0.9, β2 = 0.999, ϵ = 10−8) with
a weight decay coefficient of 0.01 during initial epochs and then used SGD (stochastic gradient
descent) with learning rate of 0.001 and momentum = 0.9 during the final 20 epochs (Keskar &
Socher, 2017). We used automatic mixed precision in PyTorch during training to optimize speed
and memory consumption. Almost all experiments were done with a 16 GB Tesla V100-SXM2
GPU available in Google Colab Pro+®. No image augmentations were used while training the
models. Maximum number of epochs in all experiments was set to 150. GPU usage for a batch size
of 64 was reported for image classification along with top-1% accuracy from best of three runs with
random initialization based on prevailing protocols (Hassani et al., 2021). We report the semantic
segmentation performance using mean intersection over union (mIoU) metric. Cross-entropy loss
was used for image classification and pixel-wise focal loss was used for semantic segmentation.
Few segmentation experiments were run on A100-SXM4 GPU in Google Colab Pro+®. Due to
resource constraints, for segmentation experiments in 16 GB V100 GPU, the original 1024 × 2048
image was resized to 256 × 512 and for 40 GB A100 GPU, it was resized to 512 × 1024. We also
adjusted the stride of the initial convolutional layers in all WaveMix-Lite models that handled high-
resolution images to ensure that smaller side of input was always 64 before it reached WaveMix-
Lite blocks. The classification head of ConvMixer was replaced with a segmentation head similar
to WaveMix-Lite for segmentation. No pre-training was performed on any of the WaveMix-Lite
models. For training ImageNet-1K, we used the ResNets, MobileNets and ViT models available in
pytorch library (Paszke et al., 2019) without using pre-trained weights.

4.4 IMAGE CLASSIFICATION

Table 1 shows the performance of WaveMix-Lite compared to the other architectures on image clas-
sification using supervised learning on ImageNet-1K on a single GPU within a reasonable time.
Similarly, for the transformer models, in order to train on a single GPU, fewer layers gave bet-
ter results, for which we used smaller patch sizes. We see that WaveMix-Lite models outperform
ResNets, transformers, hybrid xformers, and ConvMixer while requiring lesser GPU RAM and num-
ber of parameters. WaveMix-Lite does not need a large number of parameters to give performance

6



Under review as a conference paper at ICLR 2023

comparable to large ResNets and they require very less GPU RAM compared to transformer models
for achieving similar results.

Even though convolution has been widely regarded as a GPU-efficient operation, the need for deeper
architectures have necessitated the use of networks having over tens to hundreds of layers for achiev-
ing high generalization. Even though a single convolutional operation is comparatively cheaper than
a 2D-DWT, we can achieve generalization comparable to deep convolutional networks with far
fewer layers of the wavelet transforms. This ability of the wavelet transform to provide competi-
tive performance without needing large number of layers helps in improving the efficiency of the
network by consuming much lesser GPU RAM than deep convolutional models like ResNets. We
also observe that deeper WaveMix-Lite models perform better and this suggests that even further
scale-up of WaveMix-Lite in multi-GPU setting could be possible. Even shallow WaveMix-Lite
models are performing comparable to ResNets and MobileNets, and they are much 2 times faster
in training 4 times faster in inference. Even larger WaveMix-Lite models provide faster inference
and better performance compared to other models. ConvMixers are parameter efficient and provide
good accuracy, but they consume much higher GPU RAM compared to WaveMix-Lite.

Table 2: Results for Image classification on various datasets show improved accuracy compared to
ResNets when trained on a single 16 GB V100 GPU.

Models STL-10
96× 96

SVHN
32× 32

Caltech-256
256× 256

Places-365
256× 256

iNAT-2021
256× 256

ResNet-18 70.41 97.40 52.97 48.74 26.35
ResNet-34 68.07 97.47 50.92 49.02 31.02
ResNet-50 66.04 97.32 49.97 49.80 33.14
WaveMix-Lite 70.88 98.42 54.62 56.45 33.23

WaveMix-Lite outperforms ResNets in all the datasets tested as shown in Table 2. We also achieved
State-of-the-art accuracy of 56.45% on Places-365 Standard dataset in the category of models which
does not use pre-training on larger datasets, out-performing previous best (Wang et al., 2020). The
results of WaveMix-Lite on several smaller resolution image datasets are provided in the Appendix.
The lower performance of standard models due to lack of image augmentations and learning rate
schedulers is also discussed in Appendix.

We can see from Table 3 that WaveMix-Lite models outperform ResNets on all datasets (28 × 28)
tested. It also establishes a new state-of-the-art by outperforming the previous best results (Kabir
et al., 2020; Pad et al., 2020) by 0.01, 0.08, 0.01, 0.31 and 0.01 percentage points, respectively for
Balanced, Letters, Digits, Byclass and Bymerge subsets within EMNIST (Cohen et al., 2017).

4.5 SEMANTIC SEGMENTATION

WaveMix-Lite can be directly used for semantic segmentation by replacing the classifier head with
deconvolution layers and a linear layer to generate the segmentation maps. On the other hand, ar-
chitectural changes – such as encoder-decoder and UNet structures (Ronneberger et al., 2015) – are
required for base CNNs and transformers, including SegFormer (Xie et al., 2021). The WaveMix-
Lite performs on par with the other models on half-resolution Cityscapes validation set. We can

Table 3: WaveMix-Lite outperforms ResNets (Gavrikov & Keuper, 2022) for image classification on
various EMNIST, MNIST, and Fashion MNIST datasets (28×28) and achieves SOTA on 5 datasets

Models Byclass Bymerge Letters Digits Balanced MNIST Fashion MNIST

ResNet-18 87.98 91.09 94.76 99.67 89.00 99.64 93.97
ResNet-34 88.10 91.13 95.04 99.68 89.17 99.60 93.91
ResNet-50 88.18 91.29 94.64 99.62 89.76 99.56 93.81
WaveMix-Lite 88.43 91.80 95.96 99.80 91.06 99.75 94.32
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Table 4: Results for semantic segmentation on Cityscapes validation dataset show improved mIoU
by WaveMix-Lite without compromising throughput

Architecture mIoU ↑ # Param. ↓ GPU RAM for
batch size 64 ↓

Max batch size
for 16 GB ↑

Throughput (im/s)
Train ↑ Test ↑ Notes

UNet
Siam et al. (2018) 57.90 28.9 M - - 1 - ResNet-18

Encoder
UNet
Siam et al. (2018) 61.00 9.0 M - - - - MobileNetV2

Encoder
DeepLabV2-CRF
Chen et al. (2016) 71.40 20.5 M - - 5 - ResNet-101,

Augmentations
SegFormer (MiT-B0)
Xie et al. (2021) 71.90 3.4 M - - 47 - Augmentations,

ImageNet Pretrained
ConvMixer-512/16 53.40 7.8 M 42 GB 24 10 11 256× 512, 16 GB
SegFormer (MiT-B0) 62.56 7.7 M 232 GB 4 16 16 512× 1024, 40 GB
WaveMix-Lite 128/8 63.33 2.9 M 19 GB 55 18 18 256× 512, 16 GB
WaveMix-Lite 256/12 67.46 16.9 M 38 GB 25 11 12 256× 512, 16 GB
WaveMix-Lite 256/16 71.75 44.1 M 49 GB 21 9 11 256× 512, 16 GB
WaveMix-Lite 256/16 76.79 22.2 M 189 GB 6 14 16 512× 1024, 40 GB

Table 5: WaveMix-Lite needs very few parameters to achieve the benchmark results on the tasks
mentioned below compared to other architectures

Task Model Parameters Expansion

99% accuracy on MNIST WaveMix-Lite-8/10 3,566 Upsampling
90% accuracy on Fashion MNIST WaveMix-Lite-8/5 7,156 Deconvolution
80% accuracy on CIFAR-10 WaveMix-Lite-32/7 37,058 Upsampling
90% accuracy on CIFAR-10 WaveMix-Lite-64/6 520,106 Deconvolution

see from Table 4 that WaveMix-Lite performs better than deep architectures like DeepLabV2 (Chen
et al., 2016) and SegFormer model which uses an encoder pre-trained on ImageNet-1K dataset. The
low mIoU obtained by replacing the classification head of ConvMixer (Trockman & Kolter, 2022)
with segmentation head similar to WaveMix-Lite shows that token-mixing architectures which work
well for classification cannot translate that performance in segmentation tasks without significant
architectural modifications. This shows the versatility of our model which can provide high perfor-
mance efficiently in multiple tasks. See Appendix for detailed results.

4.6 PARAMETER EFFICIENCY

Since WaveMix-Lite heavily uses unlearnable token-mixers, it uses much fewer parameters com-
pared to the commonly used architectures. Table 5 shows that WaveMix-Lite can achieve all the
tasks mentioned with far fewer parameters compared to previous models (Jha et al., 2021; Wu,
2018). We can further reduce the parameter count of WaveMix-Lite by replacing the deconvolution
layers with Upsampling layers using unlearnable interpolation techniques (e.g., IDWT, bilinear or
bicubic).

4.7 ABLATION STUDIES

We performed multiple ablations on WaveMix-Lite using the CIFAR-10 dataset to understand the
effect of each type of layer on performance.

When we removed the 2D-DWT layers from WaveMix-Lite, the GPU RAM requirement of the
model increased by 61.8 % and accuracy fell by 5%. This is due to the MLP receiving the full
resolution instead of the half-resolution feature map from 2D-DWT.

Replacing the 2D-DWT with the real part of a 2D-discrete Fourier transform showed 12% decrease
in accuracy along with 73% increase in GPU consumption as the Fourier transform also does not
downscale an image. Additionally, the Fourier transform has global and spatially smoothly varying

8
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kernels, which do not model objects in images in a sparse manner. Objects have finite and abruptly-
ending spatial extents, which are better modeled by wavelet functions that have the local kernels
(finite support set) with sharp transitions.

GPU RAM consumption increased by 7.8% and accuracy decreased by 5% when we replaced the
2D-DWT with 2D-MaxPooling, indicating that the loss of information by the latter hurts general-
ization.

Additional ablation studies on the number of layers, embedding dimension, MLP dimension, and
multi-level 2D-DWT are included in the Appendix.

5 CONCLUSIONS, FUTURE DIRECTIONS, AND IMPACT

We proposed a novel and versatile neural architecture – WaveMix-Lite – that can generalize at par
with both self-attention networks (transformers), CNNs, and their hybrids for image classification
and segmentation, while needing fewer parameters, GPU RAM, and FLOPs. In addition to con-
volutions, WaveMix-Lite uses a 2D wavelet transform for token mixing in images, which exploits
additional image priors, such as scale-invariance and finite spatial extents of objects. It is also better
tailored for computer vision applications than transformers as it handles the data in a 2D format with-
out unrolling it as a sequence. It is easy to adapt WaveMix-Lite for different image sizes and tasks,
such as image classification and semantic segmentation, without changing its core architecture, as
shown by our experiments on multiple datasets and tasks.

Limitations: Although our own lack of access to a large GPU cluster inspired the objective of de-
signing a neural architecture that can generalize well with limited resources, scalability of WaveMix-
Lite to larger datasets (in terms of image size and the number of images) needs to be tested with
larger compute resources. Additionally, WaveMix-Lite should also be tested on other vision tasks,
such as object detection and image enhancement (e.g., super-resolution, deblurring, denoising, and
inpainting) using task-specific architectural variations.

Impact: The high accuracy of image classification by transformers and CNNs comes with high
costs in terms of training data, computations, GPU RAM, hardware costs, form factors, and energy
consumption Li et al. (2020b). Our research shows that architectural innovations can still reduce
these computational requirements by exploiting priors of natural images, such as scale-invariance
and finite spatial extents (in addition to shift-invariance that is already exploited by convolutional
design elements), without sacrificing accuracy. Such architectures would also be more environment-
friendly due to lower energy consumption and accessible for modification to more researchers who
may not have access to large computational resources. We hope that our research has shed light into
the less traversed area of resource-efficient models that exploit more priors of natural images.

This work can be extended in several directions, some of which are mentioned in its limitations
above. Exploitation of additional properties of images and videos can also be explored. Instead of
using a fixed function (e.g., Haar), we can also make the learning of the wavelet function itself as a
part of the training process.
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A FEEDFORWARD DIMENSION AND MLP MULTIPLICATION FACTOR

The feedforward dimension (ff) is the dimension of the embeddings of ouput from the MLP layer
before it is passed to the deconvolution layer. The deconvolution layer then changes the embedding
dimension back to the value set in the model name. Unless otherwise mentioned, the value of feed-
forward dimension is set by default as the embedding dimension specified in the model name. Using
a value higher than embedding dimension as ff dimension increases the number of parameters of the
model and GPU consumption. Feedforward dimension is different from the MLP mulitplication
factor (mul) which describes the increase in embedding dimension within the MLP layer (the first
1×1 convolution increases it by a factor and the second 1×1 convolution decreases it after is passes
through the GELU activation). For example, MLP multiplication factor of 2 in a WaveMix-Lite-128
will use the first 1 × 1 convolutional layer inside MLP to increase the embedding dimension from
128 to 256. After the GELU activation, the second 1 × 1 convolutional layer inside MLP will de-
creases the embedding dimension back to 128. If we specify the ff dimension to be different from
one provided in model name, then the second 1×1 convolutional layer inside MLP will change it to
the ff dimension as specified. Unless otherwise mentioned, an MLP multiplication factor of 2 was
used in all the models.

B IMAGE CLASSIFICATION

B.1 RESULTS ON SMALLER RESOLUTION IMAGE DATASETS

Table 6: Results for image classification on small datasets (32x32, 64x64) show improved accuracy
as well as decreased parameter count and GPU RAM consumption by WaveMix-Lite

Model #Param. ↓ GPU RAM for
batch size 64 ↓

Accuracy (%) ↑
CIFAR-10 CIFAR-100 TinyImNet

ResNet-18 (Hassani et al., 2021) 11.20 M 1.2 GB 90.27 63.41 48.11
ResNet-34 (Hassani et al., 2021) 21.30 M 1.4 GB 90.51 64.52 45.60
ResNet-50 (Hassani et al., 2021) 25.20 M 3.3 GB 90.60 61.68 48.77
MobileNetV2 (Hassani et al., 2021) 8.72 M - 91.02 67.44 -
ViT-128/4×4 0.53 M 13.8 GB 56.81 30.25 26.43
ViT-384/12x6 (Hassani et al., 2021) 85.60 M - 76.42 46.61 -
ViT-Lite-256/6x4 (Hassani et al., 2021) 3.19 M - 90.94 69.20 -
HybridViN-128/4×4 0.62 M 4.8 GB 75.26 51.44 34.05
CCT-128/4×4 0.91 M 15.8 GB 82.23 57.09 39.05
CvT-128/4×4 1.12 M 15.4 GB 79.93 48.29 40.69
MLP-Mixer-512/8 2.41 M 1.0 GB 72.22 44.23 26.83
WaveMix-Lite-16/7 0.04 M 0.1 GB 64.98 23.03 19.15
WaveMix-Lite-32/7 0.15 M 0.3 GB 84.67 46.89 34.34
WaveMix-Lite-64/7 0.60 M 0.6 GB 87.81 62.72 46.31
WaveMix-Lite-128/7 2.42 M 1.1 GB 91.08 68.40 52.03
WaveMix-Lite-144/7 3.01 M 1.2 GB 92.97 68.86 52.38
Wavemix-Lite-160/13 6.90 M 9.4 GB - - 54.76
WaveMix-Lite-256/7 9.62 M 2.3 GB 90.72 70.20 51.37

In Table 6 we see that on CIFAR and TinyImageNet datasets, WaveMix-Lite performs much better
than the other models, giving accuracy higher than ResNets and MobileNets with 4 to 10 times fewer
parameters and less GPU consumption. GPU consumption of WaveMix-Lite is sometimes 50 times
lower for similar performance when compared to transformer models.

B.2 AUGMENTATIONS AND LEARNING RATE TUNING

The previously reported results for the other architectures include the effect of various well-
intentioned incremental training methods (tips and tricks), including RandAugment, mixup, Cut-
Mix, random erasing, gradient norm clipping, learning rate warmup and cooldown. These addi-
tional methods improve the results of the core architectures trained using simple methods by a
few percentage points each. For example, Mixup, Cutmix, Random Erasing, RandAug, Random
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Figure 2: Accuracy scales more efficiently with parameters and GPU RAM for WaveMix-Lite com-
pared to transformers and ResNets

Table 7: State-of-the-art (SOTA) models for the 5 EMNIST Datasets.

Dataset Model #Params SOTA Accu. (%)

By Class WaveMix-Lite-128/7 2.4 M 88.43
Balanced WaveMix-Lite-128/7 2.4 M 91.06
Letters WaveMix-Lite-112/16 4.1 M 95.96
Digits WaveMix-Lite-112/16 4.1 M 99.80
By Merge WaveMix-Lite-128/16 (ff =256) 10.1 M 91.80

Scaling and Gradient Norm Clipping improved accuracy of ConvMixer by 9.55 percentage points
in image classification Trockman & Kolter (2022). However, experimenting with these additional
training methods requires extensive hyperparameter tuning. On the other hand, by excluding these
methods, we were able to compare the contribution of the base architectures in a uniform man-
ner. The accuracy obtained in our experiments for the other architectures are thus slightly lower
than the previously reported numbers, but the results are still within the expected range when such
training methods are not used. We noticed an improvement of 1.16 percentage point (68.87) just
by using RandAugment (Cubuk et al., 2019) in ImageNet-1K classification using WaveMix-Lite.
WaveMix-Lite should be able to outperform the reported results of other models when we use all
the augmentations and learning rate tuning mentioned above.
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Figure 3: Visualisation of outputs after each layer shows that the image representation is different in
WaveMix-Lite and ResNet.
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Figure 4: The results of occlusion analysis to find the significance of each pixel in the output decision
shows that WaveMix-Lite identifies all the right pixels in an image for making the classification
decision. The darker pixels in the image contribute more to the decision than lighter ones. The
numbers show the probability of class output when the pixel is occluded.

Table 8: Variation of performance and resource consumption of WaveMix-Lite-144/7 on classifica-
tion of CIFAR-10 dataset using different levels of 2D-DWT.

Level of
2D-DWT Accu. (%) # Params GPU for batch

size of 1024

1 91.61 3 M 19.6 GB
2 87.39 5.9 M 14.2 GB
3 78.07 15.2 M 13.7 GB
4 65.40 47.7 M 13.2 GB

B.3 ABLATION STUDIES

Influence of levels of 2D-DWT. Table 8 shows the variation of performance and resource con-
sumption as we use higher levels of 2D-DWT. Level-1 2D-DWT reduced image resolution by half,
reducing the computational cost and GPU consumption compared to convolutional layers. Using
further levels of 2D-DWT could further reduce the image resolution to one-fourth, one-eight and
so on which can further reduce the computational costs. But the deconvolution layer used to resize
the output back to input size will need a lot more parameters. This will consume more resources in
terms of GPU and time. Each increment in the level of 2D-DWT results in doubling of the number
of parameters, but provides only a very small reduction in GPU consumption, especially when we
go to higher levels of 2D-DWT. In each of the higher level decompositions, when the approxima-
tion and detail coefficients are concatenated as a tensor, the noise intensity in the detail coefficients
would be stronger than that of useful details (object edge, texture, or contour, etc.) which could be
the cause of degradation in the performance.

Influence of number of layers. The performance of WaveMix-Lite models generally improve as
the number of layer increases. The behaviour observed in smaller datasets show that the accuracy
increases with increase in number of layers, peaks at a particular value and then do not show any
increase for any further addition of layers.

Influence of the Embedding Dimension. Our experiments showed that increasing the embedding
dimension of a model usually improved the model performance, but the resource-utilization also
increased significantly. Doubling the embedding dimension of model from 128 to 256 results in an
increase of parameter count by more than three times and doubles the GPU RAM consumption.
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Table 9: Results for semantic segmentation using WaveMix-Lite models on Cityscapes validation
dataset at different image resolutions in V100 and A100 GPUs.

Architecture mIoU ↑ # Param. ↓ Max batch size
for 16 GB ↑

Throughput (im/s)
Train ↑ Test ↑

Image resolution 256× 512 on 16 GB V100 GPU

WaveMix-Lite-128/8 63.33 2.9 M 55 18 18
WaveMix-Lite-128/20 (mul 3) 67.76 7.5 M 32 17 17
WaveMix-Lite-160/12 65.08 6.6 M 45 18 18
WaveMix-Lite-192/12 65.92 9.5 M 40 19 19
WaveMix-Lite-224/12 66.67 12.9 M 32 18 18
WaveMix-Lite-256/7 (ff 160) 65.30 7.2 M 45 18 18
WaveMix-Lite-256/7 (ff 160, mul 3) 64.34 7.9 M 40 19 19
WaveMix-Lite-256/7 (ff 192, mul 3) 65.27 8.9 M 30 17 17
WaveMix-Lite-256/12 (ff 160) 67.11 11.5 M 30 18 18
WaveMix-Lite-256/12 (ff 192) 65.46 13.3 M 25 18 17
WaveMix-Lite-256/12 (ff 224) 66.75 15.0 M 30 18 18
WaveMix-Lite-256/12 67.46 16.9 M 25 11 12
WaveMix-Lite-256/12 (ff 1024, mul 3) 62.39 63.2 M 22 14 17
WaveMix-Lite-256/16 (ff 272, mul 3) 67.46 25.5 M 20 17 17
WaveMix-Lite-256/16 (ff 512, mul 3) 71.75 44.2 M 18 17 18
WaveMix-Lite-256/16 (ff 512, mul 4) 67.17 47.3 M 18 17 18
WaveMix-Lite-256/16 (ff 1024, mul 3) 69.94 84 M 18 11 17
WaveMix-Lite-256/18 (ff 512, mul 3) 65.16 49.6 M 16 15 17
WaveMix-Lite-256/20 (mul 3) 67.65 30.1 M 16 18 18
WaveMix-Lite-256/20 (ff 512, mul 3) 67.80 55.0 M 16 14 17
WaveMix-Lite-272/16 67.48 25.0 M 22 17 17
WaveMix-Lite-288/16 67.90 28.0 M 20 17 17
WaveMix-Lite-304/16 67.76 31.2 M 18 17 18
WaveMix-Lite-320/16 (ff 512, mul 3) 67.94 56.5 M 15 13 16
WaveMix-Lite-512/12 (ff 1024, mul 3) 65.09 133.2 M 11 6 17

Image resolution 512× 1024 on 40 GB A100 GPU

WaveMix-Lite-128/8 67.55 2.9 M 32 16 16
WaveMix-Lite-256/7 70.43 10.2 M 18 16 16
WaveMix-Lite-256/10 72.54 14.2 M 17 16 16
WaveMix-Lite-256/12 73.01 16.9 M 16 16 16
WaveMix-Lite-256/14 73.86 19.5 M 15 15 16
WaveMix-Lite-256/16 76.79 22.2 M 13 14 16
WaveMix-Lite-256/17 74.26 23.5 M 12 14 16
WaveMix-Lite-256/18 74.67 24.9 M 12 14 16
WaveMix-Lite-256/20 74.42 27.5 M 11 12 16
WaveMix-Lite-240/16 74.45 19.5 M 15 14 16
WaveMix-Lite-272/16 73.21 25.1 M 12 12 16
WaveMix-Lite-288/16 73.06 28.1 M 11 12 16

C SEMANTIC SEGMENTATION

C.1 DETAILED RESULTS

The original input image resolution of 1024 × 2048 could not be used in our experiments due to
resource constraints. Experiments which used strided convolutions to process the 1024×2048 input
performed worse than using downsized 512 × 1024 images as input. Even with 512 × 1024 input,
two strided convolutional layers will reduce it to 128 × 256 before it reaches the WaveMix-Lite
layers. The 512 × 1024 input size was only used in 40 GB A100 GPU and 256 × 512 input size
was used for16 GB V100 GPU. Table 9 shows the detailed results of our experiments in Cityscapes
dataset. Few examples of qualitative results are provided in Figure 5.
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Ground truth Model PredictionInput

Figure 5: Qualitative results of semantic segmentation on Cityscapes dataset by WaveMix-Lite.

C.1.1 ABLATION STUDIES

Influence of input image size. From the Table 9 we can see that for the same model size, larger
input image resolution gave better results. The results for 512 × 1024 input was 6-8% better than
the corresponding results obtained while using input size of 256× 512.

Influence of number of layers. The number of layers that could be tested were limited due to the
GPU constraints as well as the batch size requirements. We observed an increase in mIoU as the
number of layers increases, then it peaks at around 16 layers for both the 512× 1024 and 256× 512
input and then gradually decreases for each additional layer.

Influence of embedding dimension. We varied the embedding dimension from 128 to 512 in the
V100 GPU. The number of layers were adjusted to keep the model fit in the single GPU. For the
A100 GPU, it was varied from 128 to 288. Variation of embedding dimension showed a behaviour
similar to that shown by increasing the number of layers where mIoU first increases with increase
in embedding dimension, then peaks at around 256, and then starts to decrease for both the input
image sizes.

Influence of the MLP multiplication factor. The Table 9 shows that increasing the multiplication
factor (mul) does not increase the parameter count significantly. It can be used to vary the parameter
count slightly for a marginal increase the performance. Increasing the MLP multiplication factor
beyond 3 showed slight deterioration in performance with input images of size 256× 512.
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