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Abstract

We investigate an interpretable approach to compare two distributions. The ap-
proach, max-sliced Bures divergence, approximates the max-sliced Wasserstein
distance and projects the distributions into a one-dimensional subspace defined by
a ‘slicing’ vector. Unlike heuristic algorithms for the max-sliced Wasserstein-2
distance that are not guaranteed to find the optimal slice, we detail a tractable
algorithm that finds the global optimal slice and scales to large sample sizes, due to
its expression in terms of second moments. However, it is unable to detect changes
in higher-order statistics. To overcome this, we explore using a non-linear mapping
provided by the internal representation of a pre-trained neural network (Inception
Net). Our approach provides an interpretation of the Fréchet Inception distance
by identifying the instances that are either overrepresented or underrepresented
with respect to the other sample. We apply the proposed measure to detect class
imbalances and underrepresentation within data sets.

1 Introduction

Divergence measures quantify the dissimilarity between probability distributions and are useful for
detecting and correcting covariate shift [Shimodaira, 2000, Quionero-Candela et al., 2009, Lipton
et al., 2018]. Although a variety of divergences exist, not all are easy to both interpret and estimate.
We consider a divergence to be interpretable if it can be expressed in terms of a ‘witness function’
that can be used to identify subsets that contribute most to the divergence between two distributions.
Additionally, rather than allow subsets to come from across the domain, the witness function should
identify localized, ideally contiguous, subsets. This allows the user to pinpoint and understand
specific examples from a subset of the differences between two samples or distributions.

A natural choice for a witness function is the log of the ratio of the probability density functions, as
in the Kullback-Leibler divergence [Kullback and Leibler, 1951] and other f -divergences [Ali and
Silvey, 1966, Rényi, 1961]. However, estimating the densities from samples is challenging [Vapnik,
2013], which motivates alternative approaches such as directly estimating the density ratio [Nguyen
et al., 2008, Kanamori et al., 2009, Yamada et al., 2011, 2013, Saito et al., 2018, Lee et al., 2019] or
via variational formulations [Nguyen et al., 2010, Nowozin et al., 2016].
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Another class of divergences are the integral probability metrics (IPMs) [Müller, 1997]. An IPM
can be expressed as the maximal difference between the first moments of witness function evalua-
tions under each distribution for a given function family Ω, DΩ(µ, ν) = supω∈Ω

∣∣EX∼µ[ω(X)]−
EY∼ν [ω(Y )]

∣∣. Different choices of Ω yield different IPMs; examples include total variation, the dual
formulation of the Wasserstein-1 distance, maximum mean discrepancy (MMD) [Gretton et al., 2007],
and covariance feature matching [Mroueh et al., 2017]. Since ω∗(·) ∈ arg maxω∈Ω EX∼µ[ω(X)]−
EY∼ν [ω(Y )], relatively large evaluations of ω∗(·) are associated to subsets with higher probability
under µ. Restricting Ω to the class of functions whose large evaluations are localized would yield
an interpretable divergence. An alternative option for interpretable witness functions is to consider
restricted subspaces (slices) of the domain.

Before answering the question, ‘Do existing interpretable divergences exist?’ we first consider why
they may not be useful for other tasks—beyond interpretability. A divergence that is restricted to
localized witness functions makes inefficient use of all the instances in a sample in learning and
hypothesis testing (two-sample tests). For the latter, the witness function should collect evidence
across the domain: focusing on a localized subset or low-dimensional subspace limits the evidence
collection. For batch sampling to train a generative model, a localized witness would only provide
feedback for one specific subset at a time, wasting points that fall outside of this subset. For example,
restricting the witness function to a rank-1 subspace would waste differences normal to this subspace.

Nonetheless, such a divergence exists: it is the max-sliced Wasserstein-p distance [Kolouri et al.,
2019, Deshpande et al., 2019], DWp,Ω(µ, ν) = supω∈ΩWp(ω]µ, ω]ν) for an appropriate function
family Ω. The limitations of max-slicing for generative modeling and learning have already been
noted and alternatives proposed [Nguyen et al., 2021]. While not as simple to interpret as the general
case, the distributional form of the sliced Wasserstein distance [Nguyen et al., 2021], which optimizes
the distribution over the slices, can also be used to investigate discrepancies across different subspaces.
A difficulty with the max-sliced Wasserstein-p distance is its computation, since it is a saddle-point
optimization problem that requires solving a one-dimensional optimal transport problem at each
evaluation. Previous works have approximated the max-sliced Wasserstein distance using a first
moment approximation [Deshpande et al., 2019] or a finite number of steps of a local optimizer
[Kolouri et al., 2019]. Neither guarantees obtaining an optimal witness function.

As an alternative we propose the “max-sliced Bures divergence” which relaxes the Wasserstein-2
(W2) distance with a second-moment approximation that relies on the Bures distance [Dowson and
Landau, 1982, Gelbrich, 1990]. The Bures distance is a distance metric between positive semidefinite
matrices, which is equivalent to the W2 distance for zero-mean Gaussians [Muzellec and Cuturi,
2018, Zhang et al., 2020, Oh et al., 2020, De Meulemeester et al., 2020, Janati et al., 2020]. We
derive a one-sided version of the max-sliced Bures divergence that

• provides an interpretable witness function that highlight regions of over- and under-
representation in one distribution with respect to the other, especially useful for covariate
shift detection;

• is expressed as an optimization problem that has a globally optimal solution, which can
be computed efficiently (after initial computation of the means and covariance matrices,
calculating the divergence and the optimal witness function is independent of the sample
sizes, enabling it to be applied to large data sets and high-dimensional settings);

• and can be easily extended beyond second-order moments by using a nonlinear mapping, for
example the hidden-layer activations of a pre-trained neural network can be used to create a
task-relevant mapping.

2 Methodology

We consider the set of probability distributions over the domain X and denote them PX . Let
µ, ν ∈ PX denote two probability measures, and let X ∼ µ and Y ∼ ν denote two random
variables X,Y ∈ X . We restrict our attention to probability distributions in the d-dimensional
real-valued vector space X ⊆ Rd with finite second moments and denote them as PL2(X ). Denote by
mX = EX∼µ[X] ∈ X and mY = EY∼ν [Y ] ∈ X the first moments of the random variables. The
family of probability mass functions over the discrete set [n] = {1, . . . , n} is denoted P[n]. Two
samples from µ and ν, {xi = xi}mi=1 and {yi = yi}ni=1, are denoted by their empirical measures µ̂
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and ν̂. The max-sliced Bures divergence requires the matrices ρX and ρY , which can be estimated
from sample means mX ,mY and covariance matrices ΣX ,ΣY : ρX = mXm>X + m−1

m ΣX and
ρY = mY m>Y + n−1

n ΣY , assuming unbiased covariance estimates.

Let Ω = {ω(·) = 〈·,w〉2 : w ∈ S}, where S denotes the unit hypersphere Sd−1. Using E[ω(X)] =
E[〈X,w〉2] = w>E[XX>]w = w>ρXw, the max-sliced Bures divergence (MSB) is

DMSB(µ, ν) = sup
ω∈Ω
|
√
E[ω(X)]−

√
E[ω(Y )]| = sup

w∈S

∣∣∣√w>ρXw −
√

w>ρY w
∣∣∣ (1)

= max

{√
E[ωµ>ν(X)]−

√
E[ωµ>ν(Y )],

√
E[ωµ<ν(Y )]−

√
E[ωµ<ν(X)]

}
, (2)

where ωµ>ν(·) = 〈·,wµ>ν〉2 and ωµ<ν(·) = 〈·,wµ<ν〉2 correspond to the optimal slices wµ>ν

and wµ<ν . In Algorithm 1, we describe how to compute the vector wµ>ν defining the one-sided
max sliced Bures divergence witness function ωµ>ν . It requires solving a one-dimensional bounded
optimization, in which each function evaluation requires solving a maximum eigenvalue problems,
which can be done efficiently using standard linear algebra packages. As an alternative, first-order

Algorithm 1: One-sided max-sliced Bures divergence

Input: ρX = 1
m

∑m
i=1 xix

>
i ,ρY = 1

n

∑n
i=1 yiy

>
i ∈ Rd×d, ε > 0

Define the function v(·) : R→ Rd as v(γ) : γ 7→ arg maxw:‖w‖2≤1 w>(γρX − ρY )w

Solve the 1D bound problem: γ? = arg max0<γ≤1

√
v>(γ)ρXv(γ) −

√
v>(γ)ρY v(γ)

Output: wµ>ν = v(γ?)

constrained algorithms can be applied after the objective of the maximization is made differentiable
by smoothing the negative square root wµ>ν ≈ arg maxw∈S

√
w>ρXw −

√
w>ρY w + ε.

In the Appendix, we formally state and show that the max-sliced Bures divergence is a lower bound
for the max-sliced Wasserstein-2 distance, see Theorem 1. Following previous work on max-sliced
Wasserstein distance by Deshpande et al. [2019] and Nguyen et al. [2021], we show that the statistical
error of approximating the max-sliced Bures divergence from empirical distributions of size n is
O(
√
d log(n)/n) (assuming a compact subset X ⊂ Rd) . This is stated in Theorems 4 and 6.

3 Experiments

We present various examples of using the proposed max-sliced divergences to identify the discrep-
ancies between two samples. For illustration, we use the MNIST, CIFAR10, and Office data sets,
creating pseudo-real experiments by taking different subsets of real data sets. We also use the witness
function to interpret samples from GANs trained for the stacked MNIST data set.

3.1 Detecting Non-Uniform Labels Distributions

We consider covariate shift on CIFAR10, created through purposeful class imbalance. µ̂ is a uniform
sample from the training set and ν̂ is a sample from the test set with less instances from one class.
Applying the max-sliced Bures witness function ωµ>ν to points from ν̂ should assign larger values to
points from the under-represented class, identifying the top-10 witness points with the largest witness
function evaluations ωµ>ν(yσ̀(1)) ≥ . . . ≥ ωµ>ν(yσ̀(10)), where σ̀ is the required permutation.

For the vector representations of the samples, we use the internal representation of the Inception
Network [Szegedy et al., 2016] as in the Fréchet Inception distance [Heusel et al., 2017] and
Inception score [Salimans et al., 2016]. The witness function is ωµ>ν (x) = 〈wµ>ν , φ(x)〉2, where
φ(x) ∈ R2048 is the Inception code. The results are reported in Figure 1. When the class probabilities
differ by 2% (10.2% for majority and 8.2% for minority), the mean average precision (MAP) is
0.94. This is compared to a MAP of 0.82 for the first-moment-based surrogate of the max-sliced W2
distance [Deshpande et al., 2019].
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Figure 1: Max-sliced Bures divergence using the Inception Network representation are applied to
samples with mismatched class distributions in CIFAR10. The first sample µ̂ consists of the training
set (balanced classes with m=50,000), and the second sample ν̂ is an imbalanced subset of the test set
with n=10,000, wherein the noted class is less prevalent. Each curve is the mean precision@10 (mean
taken across 10 random draws) for test sets with the class noted in the legend being the minority class.

3.2 Detecting Mode Dropping

We use the one-sided max-sliced Bures divergence to monitor mode dropping during GAN training
for the stacked MNIST data set. We create a 3-channel “Stacked MNIST” data set with 500,000
images from the MNIST training set to test mode dropping detection throughout GAN training
(DCGAN architecture). The training set µ̂ = Real has 1000 possible modes corresponding to all
3-digit combinations. At the end of each training epoch (1000 iterations), a sample ν̂ = Fake of
n = 104 synthetic images is generated. Figure 3 shows the top-5 fake and real images for both both
witness functions after 10 epochs. To verify mode coverage we use a 4-layer convolutional network
trained on single-channel MNIST; any missing combination of 3-digit labels is considered a dropped
mode. Figure 2 shows the precision of the approach in detecting the dropped modes.

0 20 40 60 80 100
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0.6

0.8
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Mode coverage
Precision@10 Max-sliced Bures
Precision@10 random 

Figure 2: Detecting dropped modes using one-sided max-sliced Bures divergence. The slice
wReal>Fake is used to identify the top-10 real training images with the largest witness function
values at each epoch. Precision@10 measures the fraction that correspond to dropped modes, as
compared to random selection. The curves are the mean across 100 training trials of different GAN
instances.

3.3 Interpreting the Fréchet Inception Distance

We use a witness function to identify mismatches in domain transfer tasks, specifically the Office
dataset introduced by Saenko et al. [2010]. The data set contains three domains: images from
Amazon.com (A), high-resolution DSLR images (D), and low-resolution webcam images (W). There
are 31 classes and a varying number of images per class. The images are represented by internal
activations of the Inception object classifying network [Szegedy et al., 2016]. We applied both of
witness functions corresponding to the two one-sided max-sliced Bures divergences. Figure 4 shows
the images identified by the witness functions. The results make sense as bicycles and notebooks
with plain white backgrounds are much more common in A than in W. The closest examples are
bicycles in front of white walls. Likewise binders with a wooden table and other background are
common in webcam images but uncommon on Amazon.com.
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Figure 3: Example images identified by the one-sided max-sliced Bures divergence. The real images
for the slice wReal>Fake correspond to a dropped mode 1-1-1 (red-green-blue), as witnessed by the
closest synthetic images which are not from the same mode. The fake images for slice wReal<Fake
highlight a subset of poorly formed synthetic images that are closest to the real mode 8-9-9.

Figure 4: Max-slicing Inception codes to illustrate discrepancies in domain transfer: images from
Amazon.com (A) compared to webcam images (W).

4 Limitations

While the proposed approach yields an interpretable and precise witness function, the utility of a
localized witness function that assesses the differences in second moments along a 1-dimensional
subspace is limited. It is ill-suited to be used in learning, as it focuses only on the worst discrepancy—
ignoring the other discrepancies. Furthermore, the reliance on second moments requires a suitable
non-linear learning representation, such as a pre-trained neural network or random Fourier features.
We note that previous work has shown that MMD operating on top of an untrained convolutional
encoding network can detect covariate shift [Rabanser et al., 2019]. Since MMD with a Gaussian
kernel can be approximated using the norm of the difference of means after random Fourier feature
embedding, we are hopeful that the ability to pinpoint the worst discrepancies will prove useful in
practice.

On the practical side, further testing is needed to see how the method performs on high-dimensional
tabular data. A specific example is to consider sparse bag-of-words representations of corpus of
documents. In this case, the sparsity of the representation may be exploited when computing the
largest eigenvector of the difference of the Gram matrices ρX and ρY .

On the theoretical side, while the max-sliced Bures divergence does not suffer from the curse of
dimensionality, it is only a probability metric amongst distributions completely characterized by
their first and second moments. Further analysis is needed for the convergence rate of the proposed
algorithm and its dependence on the eigenstructure of the Gram matrices.

5 Conclusion

We propose the max-sliced Bures divergence, a lower-bound on the max-sliced W2 distance. The
underlying one-sided max-sliced Bures divergences enable direct interpretation of under- and over-
representation between two samples via the witness functions, which can be used to identify discrep-
ancies. The optimal witness functions can be found through optimization problems posed on the unit
interval, as opposed to the saddle point optimization problem involved in the max-sliced Wasserstein
distance. We show the potential of applying this approach to covariate shift detection.
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A Appendix

These appendices detail the derivation of the proposed divergences; formal results relating them to
existing divergences; and additional experimental results. First, we detail the relationship between
Wasserstein-2 distance the Fréchet distance/divergence and the Bures distance/divergence. Then we
detail statistical guarantees on the convergence of the estimator. Finally, we detail additional synthetic
results.

A.1 Bures, Fréchet, and Wasserstein Distances

The Bures distance generalizes the Hellinger distance to positive semidefinite matrices [Fuchs and
Van De Graaf, 1999, Bhatia et al., 2019]. For a pair of positive semidefinite matrices A,B ∈ Rd×d
the Bures distance is defined as

dB(A,B) ,

√
‖A‖1 + ‖B‖1−2

∥∥∥A 1
2 B

1
2

∥∥∥
1
, (3)

where ‖·‖1 denotes the trace norm (sum of the singular values), ‖A 1
2 B

1
2 ‖1 = tr(A

1
2 BA

1
2 )

1
2 =

tr(B
1
2 AV

1
2 )

1
2 . dB(A,A) ≤ ‖A 1

2−B
1
2 ‖22 = tr(A

1
2 −B

1
2 )2, with equality if the matrices commute.

When the matrices commute they share the same eigenbasis and the Bures distance is proportional to
the Hellinger distance between the eigenvalues. While the Bures distance is a metric between positive
semidefinite matrices, the corresponding divergence,

DB(µ, ν) , dB( EX∼µ[XX>]︸ ︷︷ ︸
ρX=mXm>X+ΣX

, EY∼ν [Y Y >]︸ ︷︷ ︸
ρY =mY m>Y +ΣY

), (4)

is a semi-metric since it relies on the uncentered second moments. Thus, it is a probability metric only
on the subset of distributions defined completely by their first or second moments, such as Gaussian
distributions or other elliptically symmetric distributions.

To compare two Gaussian distributions, it is natural to compare the means and covariance parameters
as in the Fréchet distance [Fréchet, 1957, Dowson and Landau, 1982],

DF(µ, ν) ,
√
‖mX −mY ‖22 + d2

B(ΣX ,ΣY ). (5)

The Fréchet distance is also known as the Wasserstein-Bures [Janati et al., 2020] or Bures-Wasserstein
distance [Bhatia et al., 2019], since it is equal to the Wasserstein-2 distance (W2) between Gaussian
measures, and generally lower bounds the W2 distance [Gelbrich, 1990],

DF(µ, ν) = DF (N (mX ,ΣX),N (mY ,ΣY )) = W2 (N (mX ,ΣX),N (mY ,ΣY )) ≤W2(µ, ν),
(6)

where

W2(µ, ν) ,
√

inf
γ∈Γ(µ,ν)

E(X,Y )∼γ‖X − Y ‖22, (7)
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and Γ(µ, ν) defines the set of all joint distributions with marginals µ and ν.

The sliced Wasserstein distance [Wu et al., 2019, Deshpande et al., 2018, Kolouri et al., 2018] and
the max-sliced Wasserstein distance [Deshpande et al., 2019], and its generalizations [Kolouri et al.,
2019], evaluate discrepancies along one-dimensional linear, or non-linear, subspaces. They can
be expressed by the Radon transform of integrable functions [Bonneel et al., 2015]. The linear
max-sliced Wasserstein-2 distance (squared) is

D2
MSW2

(µ, ν) = sup
w∈S

inf
γ∈Γ(µ,ν)

E(X,Y )∼γ [〈X − Y,w〉2], (8)

where S can be either the unit hypersphere Sd−1 or its convex hull {w ∈ Rd : ‖w‖2 ≤ 1} (in terms
of the optimization problem the two are equivalent as the optimal solution necessarily lies on the
unit hypersphere). Slicing is motivated by the relative ease of computing the Wasserstein-p distance
in one dimension, since it has a closed form [Santambrogio, 2015, Lemma 2.8] and in the case of
samples only requires a sorting procedure.

While the Bures divergence already has a closed-form solution, the Bures divergence is not easily
interpretable as it cannot be written in terms of witness function. We propose a sliced version
based on projecting a positive semidefinite matrix A ∈ Rn×n to a rank-1 matrix Ωw = ww>. For
compactness we denote the rank-1 projection as

Aw = 〈A,Ωw〉Ωw = 〈A,ww>〉(ww>). (9)

When w ∈ Sd−1, ‖w‖2 = tr(ww>) = 1, tr(Aw) = 〈A,ww>〉 = w>Aw, and

dB(Aw,Bw) =

√
w>(A + B)w−2

√
w>Aw

√
w>Bw (10)

= |
√

w>Aw −
√

w>Bw|. (11)

Let ρX,w = 〈Ωw,ρX〉Ωw and ρY,w = 〈Ωw,ρY 〉Ωw. The max-sliced Bures divergence (MSB) is

DMSB(µ, ν) , sup
w∈S

dB(ρX,w,ρY,w) (12)

= sup
w∈S

∣∣∣√w>ρXw −
√

w>ρY w
∣∣∣ (13)

= sup
w∈S

∣∣∣√E[〈X,w〉2]−
√
E[〈Y,w〉2]

∣∣∣ (14)

The max-sliced Bures divergence is a lower-bound on the max-sliced Wasserstein-2 distance, since
the latter is lower bounded by the max-sliced Fréchet distance. This is stated in the following theorem.

Theorem 1. For µ, ν ∈ PL2(X ), the max-sliced Bures divergence is a lower bound on the max-sliced
Fréchet distance and the max-sliced W2 distance, DMSB(µ, ν) ≤ DMSF(µ, ν) ≤ DMSW2

(µ, ν).

To prove this theorem, we will develop some definitions and intermediate results. Recall that PL2(X )

denotes the set of probability distributions in the d-dimensional real-valued vector space X ⊆ Rd,
with finite second moments. The means of the random variables are denoted mX = EX∼µ[X] ∈ X
and mY = EY∼ν [Y ] ∈ X . The uncentered second moments are denoted ρX = E[XX>] ∈ X × X
and ρY = E[Y Y >] ∈ X × X . The covariances are denoted ΣX = ρX −mXm>X and ΣY =
ρY −mY m>Y .

Let w ∈ Rd denote a slicing vector. Denote the sliced means and rank-1 covariances of the random
variables 〈w, X〉w and 〈w, Y 〉w as mX,w = 〈w,mX〉w ∈ Rd and mY,w = 〈w,mY 〉w ∈ Rd,
and ΣX,w = 〈w,ΣXw〉(ww>) ∈ Rd×d and ΣY,w = 〈w,ΣY w〉(ww>) ∈ Rd×d, respectively.
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The Fréchet difference between the sliced random variables is

DF (N (mX,w,ΣX,w),N (mX,w,ΣX,w))

=
√
‖mX,w −mY,w‖22 + d2

B(ΣX,w,ΣY,w)

=

√
‖(〈w,mX〉 − 〈w,mY 〉)w‖22 + ‖Σ

1
2

X,w −Σ
1
2

Y,w‖2F

=

√
‖(〈w,mX〉 − 〈w,mY 〉)w‖22 + ‖

√
〈w,ΣXw〉(ww>)

1
2 −

√
〈w,ΣY w〉(ww>)

1
2 ‖2F

=

√
‖w‖22〈w,mX −mY 〉2 + ‖w‖22

(√
〈w,ΣXw〉 −

√
〈w,ΣY w〉

)2

.

The second equality follows from the fact that trace norm ‖·‖1 is equal to the Frobenius norm ‖·‖F
for rank-1 matrices. The last equality uses the fact that ‖(ww>)

1
2 ‖2F = tr

(
(ww>)

1
2 (ww>)

1
2

)
=

tr(ww>) = tr(w>w) = ‖w‖22.

We now state the max-sliced Fréchet distance and an upper bound.

DMSF(µ, ν) = sup
w∈Sd−1

DF (N (mX,w,ΣX,w),N (mX,w,ΣX,w))

= sup
w∈Sd−1

‖w‖2︸ ︷︷ ︸
1

√
〈w,mX −mY 〉2 +

(√
〈w,ΣXw〉 −

√
〈w,ΣY w〉

)2

= sup
w∈Sd−1

√
〈w,mX −mY 〉2 + (σX,w − σY,w)

2
, (15)

where σX,w =
√
E[(〈w, X〉 − 〈w,mX〉)2] is the standard deviation of 〈w, X〉, and, similarly,

σY,w =
√
E[(〈w, Y 〉 − 〈w,mY 〉)2].

The following upper bound uses a separate slice for the means and covariances:

DU
MSF(µ, ν) =

(
sup

w∈Sd−1

〈w,mX −mY 〉2 + sup
w∈Sd−1

d2
B(ΣX,w,ΣY,w)

) 1
2

=
√
‖mX −mY ‖2 + sup

w∈Sd−1

(σX,w − σY,w)
2
. (16)

Clearly, DMSF(µ, ν) ≤ DU
MSF(µ, ν).

We now consider the relationship between the Gauss-Wasserstein or Fréchet distance—which com-
bines the distances between the first and second-order moments—with the max-sliced Bures when it
is applied directly to the uncentered covariance matrices. For this we need the following lemma that
states the reverse triangle inequality in R2.

Lemma 2 (Reverse triangle inequality). For two vectors in u,v ∈ R2, the difference between their
Euclidean norms is less than or equal to the Euclidean norm of their differences |‖u‖ − ‖v‖| ≤
‖u− v‖. For u = [a, b]>,v = [c, d]>,

∣∣√a2 + b2 −
√
c2 + d2

∣∣ ≤√(a− c)2 + (b− d)2.

Theorem 3 (Sliced Fréchet and sliced Bures divergence inequality). The max-sliced Bures divergence
based on the uncentered covariance matrices is less than or equal to the max-sliced Fréchet distance,
DMSB(µ, ν) ≤ DMSF(µ, ν).

Proof. To relate the sliced Bures divergence and sliced Fréchet distances, we note that
EX∼µ[〈X,w〉2] = 〈mX ,w〉2 + σ2

X,w and, likewise, EY∼ν [〈Y,w〉2] = 〈mY ,w〉2 + σ2
Y,w. Then,∣∣∣∣√EX∼µ[〈X,w〉2]−

√
EY∼ν [〈Y,w〉2]

∣∣∣∣ =
∣∣∣√〈mX ,w〉2 + σ2

X,w −
√
〈mY ,w〉2 + σ2

Y,w

∣∣∣
≤
√

(〈mX ,w〉 − 〈mY ,w〉)2 + (σX,w − σY,w)2,
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where the inequality relies on the reverse triangle inequality (Lemma 2), with u = [a, b]> =
[〈mX ,w〉, σX,w]>, v = [c, d]> = [〈mY ,w〉, σY,w]>. Taking the supremum over slices of both
sides yields the desired inequality,

sup
w∈Sd−1

∣∣∣∣√EX∼µ[〈X,w〉2]−
√
EY∼ν [〈Y,w〉2]

∣∣∣∣︸ ︷︷ ︸
DMSB(µ,ν)

≤ sup
w∈Sd−1

√
(〈mX ,w〉 − 〈mY ,w〉)2 + (σX,w − σY,w)2︸ ︷︷ ︸

DMSF(µ,ν)

.

Using these results we can now state the proof of Theorem 1.

Proof of Theorem 1. For w ∈ Rd, let w(·) = 〈·,w〉. Let X ∼ µ and Y ∼ ν, then define the
zero-mean random variables w̃(X) = 〈X −mX ,w〉 and w̃(Y ) = 〈Y −mY ,w〉. By definition,
E[w̃2(X)] = σ2

X,w and E[w̃2(Y )] = σ2
Y,w. The squared Fréchet distance between random variables

w(X) = 〈mX ,w〉+ w̃(X) and w(Y ) = 〈mY ,w〉+ w̃(Y ) is

D2
F(w]µ,w]ν) = (E[w(X)]− E[w(Y )])2 + (σX,w − σY,w)2 = 〈mX −mY ,w〉2 + (σX,w − σY,w)2

= 〈mX ,w〉2 − 2〈mX ,w〉〈mY ,w〉+ 〈mY ,w〉2 + σ2
X,w − 2σX,wσY,w + σ2

Y,w

= 〈mX ,w〉2 + σ2
X,w︸ ︷︷ ︸

E[w2(X)]

+ 〈mY ,w〉2 + σ2
Y,w︸ ︷︷ ︸

E[w2(Y )]

−2

〈mX ,w〉︸ ︷︷ ︸
E[w(X)]

〈mY ,w〉︸ ︷︷ ︸
E[w(Y )]

+ σX,wσY,w︸ ︷︷ ︸√
E[w̃2(X)]E[w̃2(Y )]


= E[w2(X)] + E[w2(Y )]− 2

(
E[w(X)]E[w(Y )] +

√
E[w̃2(X)]E[w̃2(Y )]

)
≤ E[w2(X)] + E[w2(Y )]− 2 (E[w(X)]E[w(Y )] + E[w̃(X)w̃(Y )])

= E[w2(X)] + E[w2(Y )]− 2E[w(X)w(Y )] = E[(w(X)− w(Y ))
2
],

which follows from Hölder’s inequality,

E[w̃(X)w̃(Y )] ≤
√
E[w̃2(X)]E[w̃2(Y )] =⇒ −2

√
E[w̃2(X)]E[w̃2(Y )] ≤ −2E[w̃(X)w̃(Y )] = 0.

As this holds for any joint distribution, taking the infimum over all possible joint distributions
(X,Y ) ∼ γ that are within the coupling distribution γ ∈ Γ(µ, ν), yields the Wasserstein-2 distance
(squared) between the sliced distributions

D2
F(w]µ,w]ν) ≤ inf

γ∈Γ(µ,ν)
E(X,Y )∼γ [(w(X)− w(Y ))

2
] = D2

W2
(w]µ,w]ν).

Maximizing over possible slices, yields
D2

MSF(µ, ν) = sup
w∈Sd−1

D2
F(w]µ,w]ν) ≤ sup

w∈Sd−1

D2
W2

(w]µ,w]ν) = D2
MSW2

(µ, ν).

Combining with Theorem 3 yields the desired result.

Theorem 4. Given a probability measure µ ∈ PL2(X ) supported on a compact subset X ⊂ Rd.
Assume that {Xi}ni=1 are i.i.d. random variables with distribution µ. For the empirical measure

µn = 1
n

n∑
i=1

δXi
,

E[DMSB(µ, µn)] ≤ E[DMSW2
(µ, µn)] ≤ c

√
d log n

n
, (17)

where c > 0 is some universal constant.

Proof. First we note that for all µ, ν ∈ PL2(X ), DMSW2
(µ, ν) ≤ DMSW1

(µ, ν) due to the inequality
between the L1-norm and the L2-norm. Then Nguyen et al. [2021] show that

DMSW1(µ, µn) ≤ diam(X )

√
32

n
[(d+ 1) log(n+ 1) + log(8/δ)], (18)

with probability at least 1− δ, for any δ ∈ (0, 1), which yields E [DMSW1
(µ, µn)] ≤ c

√
d logn
n for

some universal constant c > 0. From Theorem 1, we have that E[DMSB(µ, µn)] ≤ E[DMSW2
(µ, µn)].

Combing these two results using E[DMSW2
(µ, ν)] ≤ E[DMSW1

(µ, ν)] yields the desired result.
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Lemma 5. The max-sliced Bures divergence obeys the triangle inequality, DMSB(µ, ν) ≤
DMSB(µ, ξ) +DMSB(ξ, ν) for any µ, ν, ξ ∈ PL2(X ).

Proof. Using |a − c| ≤ |a − b| + |b − c|, it is trivial to note that the sliced Bures distance obeys
the triangle inequality dB(Aw,Cw) = |

√
w>Aw −

√
w>Cw| ≤ |

√
w>Aw −

√
w>Bw| +

|
√

w>Bw −
√

w>Cw| = dB(Aw,Bw) + dB(Bw,Cw) for w ∈ Sd−1.

Let A = ρX = EX∼µ[XX>], B = ρY = EY∼ν [Y Y >], and C = ρZ = EZ∼ξ[ZZ>], then

DMSB(µ, ν) = sup
w∈S

dB(ρX,w,ρY,w) ≤ sup
w∈S
{dB(ρX,w,ρZ,w) + dB(ρZ,w,ρY,w)} (19)

≤ sup
w∈S

dB(ρX,w,ρZ,w) + sup
w∈S

dB(ρZ,w,ρY,w) = DMSB(µ, ξ) +DMSB(ξ, ν). (20)

Using the triangle inequality and Theorem 4, we have the following result directly.
Theorem 6. Given probability measures µ, ν ∈ PL2(X ) supported on a compact subset X ⊂ Rd.
Assume that {Xi}ni=1 are i.i.d. random variables with distribution µ and {Yi}ni=1 are i.i.d. random

variables with distribution ν. For the empirical measures µn = 1
n

n∑
i=1

δXi and νn = 1
n

n∑
i=1

δYi ,

|DMSB(µ, ν)−DMSB(µn, νn)| ≤ DMSB(µ, µn) +DMSB(ν, νn) (21)

≤ 2diam(X )

√
32

n
[(d+ 1) log(n+ 1) + log(8/δ)], (22)

with probability at least 1− δ, for any δ ∈ (0, 1).

A.2 Synthetic Data

We start by comparing the proposed max-sliced Bures divergence to the max-sliced W2 distance
for two-dimensional data. We compare Algorithm 1 for solving each one-sided max-sliced Bures
divergence with gradient-based approaches for it and the max-sliced W2 distance using ADAM
with parameters lr = 1e-3, beta1 = 0.9, beta2 = 0.999, epsilon = 1e-08, capping the
number of iterations at 1000 or until the change in the slice is minimal ‖w −wold‖∞ < 10−6.

In two-dimensions, a near optimal slice can be obtained by a fine grid search of the sliced Bures and
sliced W2 distance as shown in Figure 5 for two zero-mean Gaussian distributions.

A.3 Pseudo-real Data: Detecting Non-Uniform Labels Distributions

We investigate the precision of the witness functions in detecting covariate shift caused by class
imbalances. µ̂ is a uniform sample from the training set and ν̂ is a sample from the test set with less
instances from one class, the minority class. Using the one-sided max-sliced Bures divergence we
obtain the optimal witness function ωµ>ν , which should have larger evaluations for at least a subset
of points in the under-represented class.

We can use this witness function to identify the minority class in the test set by examining the
training set instances and their labels with the largest witness function evaluations. We apply ωµ>ν
to the sample µ̂, identifying the top-10 witness points with the largest witness function evaluations
ωµ>ν(xπ̀(1)) ≥ . . . ≥ ωµ>ν(xπ̀(10)). {xπ̀(i)}Ki=1 are theK = 10 points from µ̂ with the largest norm
after projection to this subspace defined by wµ>ν . The performance is quantified by the precision of
the labels of these instances. Ideally, these points should all be from the minority class.

We illustrate this simple case of covariate shift detection on the MNIST data set. Figure A.3 details
a comparison of the max-sliced versions of the Bures, Fréchet, and W2 distances in terms of the
divergence value estimates, the runtime, and the witness function’s precision.
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Figure 5: Sliced and max-sliced Bures and Wasserstein-2 distances are compared on population
statistics and samples of varying sizes. µ = N (0,C) and ν = N (0, I), where C = ZZ>, and
Z ∈ R2×2 with entries that are originally standard normals and then row normalized such that C
is a correlation matrix. In the population case and for zero-mean Gaussians, the Bures divergence
is equivalent to the W2 distance [Gelbrich, 1990]. In the sample case, it is a lower bound. At both
m = 100 and m = 104 the gradient optimization of the max-sliced W2 distance fails to obtain the
global optimal slice (instead obtaining a local optimum).
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Figure 6: Max-sliced distances applied to two samples from MNIST. The first sample µ̂ consists of
m images drawn uniformly from the training set, such that each digit has prevalence of 10%, and
the second sample ν̂ is n images from the test set where one digit is a minority class l ∈ {0, . . . , 9}
with prevalence of 5%. (Left) Divergence estimates across sample size with l = 7. For m < 2000,
gradient-based approach (ADAM) for the max-sliced W2 distance fails to obtain the optimal slice as it
should upper bound the max-sliced Fréchet distance. (Center) Computation time. (Right) Each curve
is the average precision@10 (averaged across the 10 classes). The one-sided max-sliced Bures yields
the witness function ωµ>ν(·) = 〈w, ·〉2, which is applied to µ̂ and reliably identifies points from the
minority class for m ≥ 1000. In this case the witness function corresponding to the difference of
means ω(·) = 〈w, ·〉|w=mX−mY

also works, but with lower precision for m ≥ 1000.
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