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ABSTRACT

Unsupervised sentence representation learning is one of the fundamental problems
in natural language processing with various downstream applications. Recently,
contrastive learning has been widely adopted which derives high-quality sentence
representations by pulling similar semantics closer and pushing dissimilar ones
away. However, these methods fail to capture the fine-grained ranking informa-
tion among the sentences, where each sentence is only treated as either positive or
negative. In many real-world scenarios, one needs to distinguish and rank the sen-
tences based on their similarities to a query sentence, e.g., very relevant, moderate
relevant, less relevant, irrelevant, etc. In this paper, we propose a novel approach,
RankCSE, for unsupervised sentence representation learning, which incorporates
ranking consistency and ranking distillation with contrastive learning into a uni-
fied framework. In particular, we learn semantically discriminative sentence rep-
resentations by simultaneously ensuring ranking consistency between two repre-
sentations with different dropout masks, and distilling listwise ranking knowledge
from the teacher. An extensive set of experiments are conducted on both semantic
textual similarity (STS) and transfer (TR) tasks. Experimental results demonstrate
the superior performance of our approach over several state-of-the-art baselines.

1 INTRODUCTION

Sentence representation learning refers to the task of encoding sentences into fixed-dimensional em-
beddings. The sentence embeddings can be leveraged in various applications, including information
retrieval (Le & Mikolov,|[2014), text clustering (Ma et al., 2016) and semantic textual similarity com-
parison (Agirre et al.| 2012)). With the recent success of pre-trained language models (PLMs), such
as BERT/RoBERTa (Devlin et al., 2019; |[Liu et al.| 2019), a straightforward way to generate sentence
representations is to directly use the [CLS] token embedding or the average token embeddings from
the last layer of PLMs (Reimers & Gurevych| 2019). However, several studies (Ethayarajh, 2019; [Li
et al., 2020) have found that the native sentence representations derived by PLMs occupy a narrow
cone in the vector space, and thus severely limits their representation capabilities, which is known
as the anisotropy problem.

Supervised methods like SBERT (Reimers & Gurevych,|[2019) usually generate better sentence rep-
resentations, but require finetuning on a large amount of labeled data. Recent unsupervised models
(Carlsson et al., 2021; Zhang et al.l 2021} |Giorgi et al, 2021} [Yan et al., 2021} |Gao et al. 2021)
adopt contrastive learning framework without any labels, which pulls similar semantics closer and
pushes dissimilar ones away. These methods usually design different augmentation algorithms for
generating positive examples, such as back-translation (Zhang et al. 2021), dropout (Gao et al.,
2021)) and token shuffling or cutoff (Yan et al.l 2021). In-batch negatives are further combined with
the positives. Despite achieving promising results, they treat positives/negatives equally without
capturing the fine-grained semantic ranking information, resulting less effective sentence represen-
tations which fail to distinguish between very similar and less similar sentences. For example, Table
[[]shows an example of a query sentence and five target sentences from a semantic textual similarity
dataset. It is clear that the similarity scores produced by the contrastive learning method SimCSE
are not optimized, where the sentence rankings are not preserved in the learned representations. On
the other hand, our RankCSE generates effective sentence representations with consistent rankings
to the ground-truth labels. More examples are presented in Appendix The fine-grained rank-
ing information is crucial in various real-world applications including search and recommendation.
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Table 1: An example of an input sentence and five other sentences from the STS datasets, with
their similarity scores and rankings. The label scores are from human annotations. The SimCSE
(Gao et al.;|2021) and RankCSE similarity scores are from the model predictions respectively, with
the corresponding ranking positions. It can be seen that sentence rankings based on SimCSE are
incorrect, while RankCSE generates more effective scores with accurate rankings.

Sentences Label SimCSE  RankCSE
e because by measuring voltage, you find the gap where there’s  3.80 (1)  0.86 (1) 0.90 (1)
a difference in electrical states.

e it allows you to measure electrical states between terminals 320(2) 0.64(3) 0.84 (2)
e it checks the electrical state between two terminals. 2.60@3) 0.65(Q2) 0.78 (3)
o find where there are different electrical states 2.60 (3) 0.55(5) 0.78 (3)
e you can see where the gap is 220(5) 0.624) 0.69 (5)

Input Sentence: measuring voltage indicates the place where the electrical state changes due to a gap.

Therefore, it is an important research problem to learn ranking preserving sentence representations
from unsupervised data.

To obtain semantically discriminative sentence representations, we propose a novel approach,
RankCSE , which incorporates ranking consistency and ranking distillation with contrastive learning
into a unified framework. Specifically, our model ensures ranking consistency between two repre-
sentations with different dropout masks, and minimize the Jensen-Shannon (JS) divergence as the
learning objective. In the meanwhile, our model also distills listwise ranking knowledge from the
teacher model to the learned sentence representations. In our work, we explore two listwise ranking
methods, ListNet (Cao et al., | 2007) and ListMLE (Xia et al.| 2008)), and utilize the pre-trained Sim-
CSE (Gao et al.,[2021) models with coarse-grained semantic ranking information as the teachers to
provide pseudo ranking labels. Our RankCSE is able to generalize fine-grained ranking information
from the weak ranking knowledge learned by SimCSE. We conduct an extensive set of experiments
on several semantic textual similarity (STS) and transfer (TR) tasks. Experimental results show that
RankCSE outperforms the existing state-of-the-art baselines.

2 RELATED WORK

Unsupervised Sentence Representation Learning Early works typically augment the idea of
word2vec (Mikolov et al.; [2013) to learn sentence representations, including Skip-Thought (Kiros
et al., 2015)), FastSent (Hill et al., [2016) and Quick-Thought (Logeswaran & Leel [2018)). With the
great success of PLMs, various attempts focus on generating sentence representations by leveraging
the embedding of [CLS] token or applying mean pooling on the last layer of BERT (Reimers &
Gurevych, 2019). However, [Ethayarajh| (2019) identifies the anisotropy problem in language rep-
resentations, which means the native learned embeddings from PLMs occupy a narrow cone in the
vector space. BERT-flow (Li et al.|, [2020) and BERT-whitening (Su et al.| 2021)) propose to resolve
the anisotropy problem through post-processing.

Recently, contrastive learning has been adopted to learn sentence representations by designing dif-
ferent augmentation methods, including IS-BERT (Zhang et al., [2020), CT-BERT (Carlsson et al.,
2021), DeCLUTR (Giorgi et al.,|2021)), ConSERT (Yan et al.,|202 1)), Self-Guided Contrastive Learn-
ing (Kim et al., |2021)), and SimCSE (Gao et al.| 2021)). SimCSE is a simple but extremely effective
method which uses dropout as data augmentation strategy and is also the foundation of many fol-
lowing works. ArcCSE (Zhang et al., 2022) proposes ArcCon loss to enhance the pairwise discrim-
inative power and a new task to capture the entailment relation among triplet sentences. TRANS-
ENCODER (Liu et al., 2021)) combines bi-encoders and cross-encoders learning paradigms into an
iterative joint framework. DCLR (Zhou et al., 2022) generates noise-based negatives to guarantee
the uniformity of the presentation space and punish false negatives. Diff CSE (Chuang et al., [2022)
learns representations that are insensitive to certain types of augmentations and sensitive to oth-
ers. Although achieving promising results, these methods fail to capture the fine-grained ranking
knowledge among the sentences.

Learning to Rank Given a query example, learning to rank aims to rank a list of examples ac-
cording to their similarities with the query. Learning to rank methods can be divided into three
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Figure 1: The framework of RankCSE which consists of three components: (1) standard contrastive
learning object; (2) ranking consistency loss which ensures ranking consistency between two repre-
sentations with different dropout masks; (3) ranking distillation loss which distills listwise ranking
knowledge from the teacher.

categories: pointwise (L1 et al., 2007), pairwise (Burges et al., 2005} 2006) and listwise (Cao et al.,
2007; Xia et al.| 2008} |Volkovs & Zemel, [2009; [Pobrotyn & Biatobrzeskil [2021). Pointwise meth-
ods optimize the similarity between the query and each example, while pairwise approaches learn
to correctly model the preference between two examples. Listwise methods directly evaluate the
ranking of a list of examples based on the ground truth. In our framework, we leverage listwise
ranking objectives for learning effective sentence representations, which have shown better perfor-
mance compared to pointwise and pairwise methods.

3 PRELIMINARY
We provide some conceptual explanations and definitions in learning to rank.

Top One Probability Given the scores of all objects S = {s;}7_,, the top one probability of an

object is the probability of its being ranked at top-1: s; = % where 7 is a hyperparame-
Jj=1 J

ter, usually utilized to smooth the distribution. We simply denote the formulation for calculating the
top one distribution based on the scores S as: S; = softmax(S/7).

Permutation Probability We use 7 = {7 (7)}?_, to denote a permutation of the object indexes,
which represents that the 7(¢)-th sample is ranked i-th. The probability of a specific permutation 7

is given as: P(x|S,7) =[]\, %

4 METHODOLOGY

4.1 PROBLEM FORMULATION

Our goal is to learn sentence representations such that semantic similar sentences stay close while
dissimilar ones should be far away in an unsupervised manner. Specifically, We aim to find an
optimal function f that maps an sentence s € p; to a d-dimensional vector f(s) € p, C R¢, where
ps and p. denote the distributions of sentences and sentence representations, respectively. Supposing
s1 and s are more semantic similar than s; and s3 (s1, s2,S3 € ps), a good mapping function f
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should satisfy that the distance between f(s1) and f(s2) is smaller than that between f(s;) and
f(s3), ie., d(f(s1), f(s2)) < d(f(s1), f(s3)), where d is the distance metric such as Euclidean
distance and cosine similarity. In this way, the similarities among the sentences are preserved in the
learned sentence representations.

The general idea of RankCSE is to learn semantically discriminative sentence representations by
capturing the ranking information among the sentences. As shown in Figure[I] our model consists
of three components: (1) standard contrastive learning objective (§4.2); (2) ranking consistency loss
which ensures ranking consistency between two representations with different dropout masks (§4.3));
(3) ranking distillation loss which distills listwise ranking knowledge from the teacher (§4.4).

4.2 CONTRASTIVE LEARNING

Contrastive learning aims to learn effective representations by pulling similar semantics closer and
pushing away dissimilar ones. SimCSE (Gao et al., 2021) creates positive examples by applying
different dropout masks and takes a cross-entropy object with in-batch negatives (Chen et al.,[2017).
More specifically, for any sentence x; in a min-batch, we send it to the encoder f(-) twice and obtain
two representations with different dropout masks f(z;), f(x;)’. SImCSE use the standard InfoNCE
loss (Oord et al.,[2018)) as the training objective:
N ay

EinfoNCE _ Z log Nexp(d(f(xz)a f(lz) )/Tl , (1)

i=1 Zj:l exp(d(f(z:), f(x;)')/1)

where N is the batch size, 7 is a temperature hyperparameter and d(f(z;), f(x;)) =
% is the cosine similarity used in this work. Essentially, the contrastive learning objec-
y y

tive is equivalent to maximizing the top one probability of the positive sample.

Although contrastive learning is effective in separating positive sentences with negative ones, it
ignores the continuity modeling of the similarity. In other words, it is not effective in distinguishing
highly similar sentences with moderate similar ones. To address this issue, we propose to directly
model the ranking information among the sentences, which could enhance the discrimination of
semantic similarity in the learned sentence representations.

4.3 RANKING CONSISTENCY

The main drawback of contrastive learning is that the distinction between the in-batch negatives
is not modeled, resulting in less effective sentence representations in capturing the fine-grained
sentence similarity. Therefore, instead of treating the negatives equivalently, we propose to explicitly
model the ranking information within the sentences by ensuring the ranking consistency between the
two similarity sets (circled by the solid and dashed curves respectively in the right part of Figure|I).

Concretely, by taking a close look at the contrastive modeling in section §4.2] there are two sets of
sentence representations, f(x;) and f(z;)’, derived from different dropout masks. For each sentence
x;, two lists of similarities with other sentences can be naturally obtained from the two representa-
tions, i.e., S(x;) = {d(f(x:), f(2;)")}}L, and S(x)" = {d(f(x:)', f(2;))}]=,. We then enforce
the ranking consistency between these two similarity lists in our modeling. Intuitively, all corre-
sponding elements in S(z;) and S(x;)" should have the same ranking positions.

Given two similarity lists S(x;) and S(z;)’, we can obtain their top one probability distributions
Sr, (x;) = softmax(S(x;)/71), S, (2;) = softmax(S(x;)’/71). The ranking consistency can be
ensured by minimizing the Jensen-Shannon (JS) divergence between the two top one probability
distributions:

N
ﬁconsistcncy = Z JS(Srl (Xi) | |S7'1 (Xi)/) =
1=1

2
N ~ ~
~ QST a?i) ~ 25-,— (xl !
S (G (o) Tog(e—n ) ) 4§ () log(e—2onlt) )
i=1 STl(xi) +571(xi) S‘F1($i) +S7'1(xi)
The reason we choose JS divergence instead of Kullback-Leibler (KL) divergence is that the two
distributions are symmetric rather than one side being the ground truth.
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4.4 RANKING DISTILLATION

Contrastive learning based methods like SimCSE learn effective sentence representations with
coarse-grained semantic ranking information (shown in Appendix [A.6] and Appendix [A.7), which
have demonstrated their effectiveness in various downstream tasks. Orthogonal to ranking consis-
tency, we further introduce ranking distillation by distilling the ranking knowledge from pre-trained
teacher models into our learned sentence representations, to generalize effective ranking informa-
tion from the weak ranking knowledge learned by SimCSE. More specifically, for each sentence in a
min-batch, we obtain the similarity score list from the teacher model, which is then served as pseudo
ranking labels in the ranking distillation. The intuitive idea is to transfer the ranking knowledge from
the teacher to the student as guidance for learning ranking preserved sentence representations. In the
ranking distillation, ListNet (Cao et al.,|2007) and ListMLE (Xia et al., 2008) methods are utilized.
Formally they are defined as:

Erank = Z rank(S(Xi), ST(Xi)) (3)

i=1

where S(z;) and ST (z;) are the similarity score lists obtained from the student and the teacher,
respectively, rank(-, -) is the listwise method.

ListNet The original ListNet minimizes the cross entropy between the permutation probability
distribution and the ground truth as the training objective. However, the computations will be in-
tractable when the number of examples 7 is large, since the number of permutations is n!. To reduce
the computation complexity, the top one probability distribution is usually adopted as a substitute:

N
LlistNet = — Z softmax(ST (x;)/73) - log(softmax(S(x;)/72)) 4

i=1

where 75 and 73 are temperature hyperparametersﬂ

ListMLE Different from ListNet, ListMLE aims to maximize the likelihood of the ground truth
permutation 7} which represents the sorted indexes of the similarity scores calculated by the teacher
model. The training objective of ListMLE can be defined as:

N
Liisomie = — Y _ log P(n]'[S(2:), 72) ®)

i=1

In this work, we propose to use a multi-teacher model from which more listwise ranking knowledge
can be transferred and preserved. In our experiments, we utilize the weighted average similarity
scores of two teachers as pseudo ranking labels: S7(z;) = aST (z;) + (1 — ) ST (x;) where ais a
hyperparameter to balance the weight of the teachers.

The contrastive learning loss LinroncE pushes apart the representations of different sentences to
maximize the representation space, while the ranking consistency 1oss Lconsistency and the ranking
distillation loss L,,nx pull similar negatives closer, thus capturing fine-grained semantic ranking
information. Combining the above three loss functions, we can obtain the overall objective:

Eﬁnal = £infoNCE + 6£consistcncy + fYﬁrank (6)
where [ and ~y are hyperparameters to balance losses.

5 EXPERIMENT

5.1 SETUP

We evaluate our approach on two sentence related tasks, Semantic Textual Similarity (STS) and
Transfer (TR) tasks. The SentEval toolkit (Conneau & Kielal 2018) is used in our experiments. For

'In practice, we exclude the score of the positive pair from the list to calculate the top one distribution used
in Eq.@), to enhance the ranking information of negatives, because the score of the positive pair occupy most
in the full top one distribution calculated by the teacher SimCSE.
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Table 2: Sentence representations performance on STS tasks (Spearman’s correlation). We employ
our method to BERT and RoBERTa in both base and large versions. We directly import the results
from the original papers and mark the best (bold) and second-best (underlined) results among models
with the same PLMs. Results are statistically significant with p-value < 0.005.

PLMs Methods STS12 STS13 STS14 STS15 STS16 STS-B SICK-R avg.
Non-BERT GloVe(avg.) 55.14 70.66 59.73 6825 63.66 58.02 5376 61.32
USE 6449 67.80 6461 7683 73.18 7492 76.69 71.22
first-last avg. 39.70 5938 49.67 66.03 66.19 5387 62.06 56.70
+flow 5840 67.10 60.85 75.16 7122 68.66 6447 66.55
+whitening 57.83 6690 6090 75.08 7131 6824 63.73 66.28
+IS 56.77 6924 6121 7523 70.16 6921 6425 66.58
+ConSERT 64.64 7849 69.07 79.72 7595 7397 6731 7274
BERT}ase +SimCSE 68.40 8241 7438 8091 7856 7685 7223 7625
+DCLR 70.81 83.73 75.11 8256 78.44 7831 71.59 7722
+ArcCSE 72.08 8427 7625 8232 7954 7992 7239 78.11
+DiffCSE 7228 8443 7647 8390 80.54 8059 71.23 78.49

+RankCSEjisinet | 74.38 8597 77.51 8446 81.31 8146 7526 80.05
+RankCSEjiscvmie | 7566  86.27 77.81 84.74 81.10 81.80 75.13 80.36

+SimCSE 70.88 84.16 7643 8450 79.76 79.26  73.88 78.41
+DCLR 71.87 84.83 7737 8470 79.81 7955 74.19 78.90
BERTarge +ArcCSE 73.17 86.19 7790 8497 79.43 8045 73.50 79.37

+RankCSEjisinet | 74.75 86.46 78.52 8541 80.62 8140 76.12 80.47
+RankCSEjisivie | 7548  86.50 78.60 8545 81.09 81.58 7553  80.60

+SimCSE 70.16  81.77 7324 8136 80.65 80.22  68.56 76.57
+DCLR 70.01 83.08 75.09 83.66 81.06 81.86 70.33 77.87
RoBERTay, e | +DiffCSE 70.05 8343 7549 8281 8212 8238 71.19 78.21

+RankCSEjisinet | 72.88 8450 76.46 84.67 83.00 8324 71.67 79.49
+RankCSEjisomie | 72.74 8424 7599 84.68 82.88 83.16 7177 79.35
+SimCSE 72.86 8399 7562 8477 81.80 8198 71.26 78.90
+DCLR 73.09 8457 76.13 8515 8199 8235 71.80 79.30
+RankCSEjisine: | 73.23  85.08 77.50 85.67 82.99 8420 7298 80.24
+RankCSEjisovre | 7340 8534 77.25 8545 82.64 84.14 7292 80.16

RoBERTajarge

STS tasks, we evaluate on seven datasets: STS12-16 (Agirre et al., 2012;2013};12014; 20155 2016)),
STS Benchmark (Cer et al., [2017) and SICK-Relatedness (Marelli et al., [2014). These datasets
contain pairs of sentences with similarity score labels from 0 to 5. Following SimCSE, we directly
compute the cosine similarity between the sentence representations which means all the STS exper-
iments are fully unsupervised, and report the Spearman’s correlation. For TR tasks, we evaluate on
seven datasets with the default configurations from SentEval: MR (Pang & Leel |2005), CR (Hu &
Liu} 2004), SUBJ (Pang & Leel |2004), MPQA (Wiebe et al., [2005), SST-2 (Socher et al., |2013)),
TREC (Voorhees & Tice}, 2000) and MRPC (Dolan & Brockett, [2005). We use a logistic regression
classifier trained on top of the frozen sentence representations, and report the classification accuracy.

For fair comparison, we use the same 10° randomly sampled sentences from English Wikipedia
provided by SimCSE. Following previous works, we start from pre-trained checkpoints of BERT
(Devlin et al.,|2019) and RoBERTa (Liu et al., 2019), and utilize [CLS] representation with MLP
during training and [CLS] representation without MLP for evaluation. First we train SimCSE mod-
els including four variants: SimCSE-BERT},,s., SImCSE-BERT) e, SIMCSE-RoBERTay,,5. and
SimCSE-RoBERTay,,¢.. We use the weighted average similarity scores of the first two as pseudo
ranking labels for RankCSE-BERT},,sc and RankCSE-BERT},,¢c, While the last two for RankCSE-
RoBERTay,,5. and RankCSE-RoBERTa,, .. We evaluate our model every 125 training steps on the
dev set of STS-B and keep the best checkpoint for the evaluation on test sets of all STS and TR
tasks. More training details can be found in Appendix

We compare RankCSE with several strong unsupervised sentence representation learning baselines,
including average GloVe embeddings (Pennington et al., 2014}, USE (Cer et al., |2018) and Skip-
thought (Kiros et al., |20135)), average BERT embeddings from the last layer, post-processing methods
such as BERT-flow (Li et al., |2020) and BERT-whitening (Su et al.||2021), and contrastive learning
methods such as IS-BERT, (Zhang et al.| 2020), ConSERT (Yan et al., [2021) and SimCSE (Gao
et al., 2021). We also include the recently proposed methods based on SimCSE such as DCLR
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Table 3: Sentence representations performance on transfer tasks (accuracy). We employ our method
to BERT and RoBERT2 in both base and large versions. The results of Diff CSE! are obtained by
its public available code and checkpoints for STS tasks, while others are imported from the original
papers. We mark the best (bold) and second-best (underlined) results among models with the same
PLMs. Results are statistically significant with p-value < 0.005.

PLMs Methods MR CR SUBJ MPQA SST TREC MRPC avg.
Non-BERT GloVe(avg.) 77.25 7830 91.17 87.85 80.18 83.00 72.87 81.52
Skip-thought 76.50 80.10 93.60 87.10 82.00 9220  73.00 83.50
last avg. 78.66 86.25 9437 88.66 84.40 92.80 69.54 84.94
+IS 81.09 87.18 9496 88.75 8596 88.64 7424 85.83
+SimCSE 81.18 86.46 9445 88.88 8550 89.80 7443 8581
BERT}ase +ArcCSE 7991 85.25 99.58 89.21 8490 8920 7478 86.12
+DiffCSE' 81.76 86.20 94.76 8921 86.00 87.60 75.54 85.87

+RankCSEjsinet | 83.21 88.08 9525 90.00 88.58 90.00 76.17 87.33
+RankCSEjis;vie | 83.07 88.27 9506 8990 87.70 89.40 76.23 87.09

+SimCSE 85.36  89.38 9539 89.63 90.44 91.80 7641 88.34

BERT)..., +ArcCSE 84.34 88.82 99.58 89.79 90.50 92.00 74.78 88.54
aree +RankCSEjigine: | 85.11 89.56 9539 9030 90.77 9320 77.16 88.78
+RankCSEjisovme | 84.63 89.51 9550 90.08 90.61 9320 76.99 88.65

+SimCSE 81.04 87.74 9328 8694 86.60 84.60 73.68 84.84

ROBERTap,c0 +DiffCSE" 82.42 8834 9351 8728 8770 86.60 7635 86.03

+RankCSEjisine: | 83.24 88.71 93.93 8897 89.24 90.20 76.64 87.28
+RankCSEjiscvre | 8291 88.37 9397 8870 88.63 9040 7652 87.07

+SimCSE 8274 87.87 93.66 8822 88.58 92.00 69.68 86.11
RoBERTajarge | +RankCSEjigine: | 84.30 89.06 94.60 89.53 89.46 92.60 7391 87.64
+RankCSEjisive | 83.48 88.64 9420 89.74 88.63 93.00 74.61 87.47

(Zhou et al., [2022)), ArcCSE (Zhang et al., [2022)) and DiffCSE (Chuang et al.| 2022). We don’t
compare with TRANS-ENCODER (Liu et al.| [2021)), because it uses pairs of sentences within STS
datasets which are not general for unsupervised sentence representation learning.

5.2 MAIN RESULTS

Results on STS Tasks As shown in Table [2] it is clear that RankCSE significantly outperforms
the previous methods on all datasets and PLMs, which demonstrates the effectiveness of our ap-
proach. For example, compared with SimCSE, RankCSE has brought noticeable improvements:
4.11% on BERT},6¢, 2.19% on BERT,1g¢, 2.92% on RoBERTay,,s and 1.34% on RoBERTa .
RankCSE-BERT},,sc even outperforms SimCSE-BERT) .4 by nearly 2%. Compared with the previ-
ous state-of-the-art methods, RankCSE still achieves consistent improvements, which validates that
RankCSE is able to obtain more semantically discriminative representations by incorporating rank-
ing consistency and ranking distillation. We also observe that the performances of RankCSEjs¢Net
and RankCSE);s¢ M1 are very consistent across all datasets, which demonstrates the effectiveness
of both listwise ranking methods.

Results on TR Tasks It can be seen in Table [3| that RankCSE achieves the best performance
among all the compared baselines on all PLMs. Note that for DiffCSE, we obtain the results by its
public available code and checkpoints for STS task instead of directly importing the results from
its original paper. DiffCSE uses different dev sets to find the best hyperparameters for the two tasks
(STS-B dev set for STS tasks, dev sets of 7 TR tasks for TR tasks), while other methods only use the
STS-B dev set, which is a not fair comparison. To make a comprehensive comparison with DiffCSE,
we also conduct experiments using dev sets of 7 TR tasks to find best hyperparameters for TR tasks.
More detailed results are provided in Appendix Another observation is that the performance
of the RankCSEjjs¢net 1S slightly better than that of the RankCSEj;s¢vrg. Our hypothesis is that
the inaccurate pseudo ranking labels introduce more errors in the calculation of the permutation
probability than the top one probability. Nevertheless, both listwise methods achieve better results
than the baselines, which is consistent with the results in Table 2}

https://github.com/voidism/DiffCSE
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Table 4: Ablation studies of different loss functions based on BERT}, ¢

Models STS(avg.) TR(avg.)
SimCSE 76.25 85.81
RankCSEjis¢Net 80.05 87.33
w/o £c0nsistency 79.56 86.80
W/0 LinfoNCE 79.72 86.91
w/o Econsistency,ﬁinfoNCE 79.41 86.76
RankCSE)istMmLE 80.36 87.09
w/o Econsistency 79.88 86.65
W/0 LinfoNCE 79.95 86.73
w/o EconsistcncyvcinfoNCE 7973 8624
RankCSE w/o L, a5k 76.93 85.97
RankCSE w/o LinfoNCE7 Acrank 73.74 85.56

Table 5: Comparisons of different teachers. Results are average STS performance using BERT}, -

Teacher RankCSE;;sinet RankCSEjisivLE
SimCSE-BERT},.qc 77.48 77.75
DiffCSE-BERT}, 46c 78.87 79.06
SimCSE-BERTag¢ 79.66 79.81

SimCSE-BERT},, 3 +DiffCSE-BERT) 16 79.10 79.28
SimCSE-BERT}, a4 +SimCSE-BERT g6 80.05 80.36
DiffCSE-BERT}, 5. +SimCSE-BERT 560 80.20 80.47

5.3 ANALYSIS AND DISCUSSION

Ablation Study To investigate the impact of different losses in our approach, we conduct a set of
ablation studies by removing LintoNCE> Lconsistency and Lyank from Eq.@. The average results on
STS and TR tasks are reported in Table 4] There are several observations from the results. First,
when L,k is removed, the performance significantly drops in both STS and TR tasks, which indi-
cates the effectiveness of L, in our modeling. Second, it is also clear that without £;,toNCcE OF
Lconsistency» the model performance also decreases, especially on TR tasks. Third, it is worth men-
tioning that RankCSE with only L.,k can also outperform the teachers on STS tasks. The reason
is that RankCSE is able to preserve ranking knowledge from multiple teachers, and generalize fine-
grained ranking information from multiple coarse-grained representations. Fourth, since Leonsistency
does not explicitly distingish the positives from negatives, RankCSE with only Lconsistency Will pre-
serve inaccurate rankings leading to significant performance drop. Finally, the RankCSE with all
components achieves the best performance on both STS and TR tasks.

Comparisons of Different Teachers We conduct experiments to explore the impact of different
teachers on the performance of RankCSE. As shown in Table [5} RankCSE outperforms the teacher
model which indicates that incorporating ranking consistency and ranking distillation leads to more
semantically discriminative sentence representations. Comparing the performance of RankCSE us-
ing different teachers, we observe that better teacher leads to better RankCSE , which is consistent
with our expectation since accurate ranking labels yield more effective ranking knowledge transfer.
Another observation is that the performance of RankCSE with multi-teacher is better than that with
single teacher, which verifies that RankCSE is able to preserve listwise ranking knowledge from
more than one teacher. It is also interesting to see that using DiffCSE-BERT},,se and SimCSE-
BERT]a;ge as multi-teacher leads to even higher performance than the results in Table@ We plan to
conduct more investigation along this direction to explore the upper bound of improvements.

Effect of Hyperparameters To study the effect of temperature hyperparameters, we conduct ex-
periments by setting different 7 and 73. As shown in Figure [2a] we find that large discrepancy
between 79 and 73 leads to significant drop in the performance of RankCSEry,;stnet. The best tem-
perature setting for RankCSEp isynet 18 72 : 73 = 2 : 1. The performance of RankCSEysivrE
has similar trends based on different PLMs, as shown in Figure @ For both RankCSEr,isinet and
RankCSEj istm1E, the temperature should be set moderate.
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. sentation methods based on
Figure 2: Effect of the temperatures 75 and 73. Results are aver- BERT},,ec, Which are all mea-

age STS performance, and RankCSEj;s¢net is based on BERThase  gured on the STS-B dev set.
while RankCSEj;stmLE is based on different PLMs. We do not  cojor of points represent aver-
demonstrate results below 78 to make the variation obvious. age STS performance.

Table 6: Mean and standard deviation across five different runs of RankCSE and SimCSE.

PLMs RankCSElistNet RankCSElist MLE SimCSE
STS(avg.) TR(avg.) STS(avg.) TR(avg.) STS(avg.) TR(avg.)

BERThase 80.00+0.13  87.28+0.19  80.39£0.04 87.05£0.06 75.52£0.70  85.44+0.47
BERTarge 80.41£0.10  88.74£0.14  80.59+0.05 88.63£0.06 77.79£0.64 88.10 £0.36
RoBERTapase | 79.4240.15 87.26£0.20 79.36+0.03 87.06+0.04 76.45+0.56  84.74+0.38
RoBERTajarge | 80.18+£0.13  87.504+0.18  80.07+0.12  87.46+0.11 78.53+0.49  86.29+0.33

Robustness of RankCSE  We conduct 5 runs of models training with the hyperparameter settings
which can be referred to Appendix [A.T| with different random seeds, and then calculate the mean
and standard deviation values. The results provided in Table[6]demonstrate both the superior perfor-
mance and the robustness of our model. It can also be seen that RankCSE;;si v, achieves similar
performance but more stable results compared with RankCSEj;stnet -

Alignment and Uniformity Following previous works (Wang & Isola, 2020), we use alignment
and uniformity to measure the quality of representation space. Alignment measures the distance
between similar instances, while uniformity measures how well the representations are uniformly
distributed (detailed in Appendix [A.4). For both measures, the smaller value indicates the better
result. We plot the distribution of £atign-Cuniform for different models using BERT},,5. Which are
measured on the STS-B dev set. As shown in Figure [3] RankCSE effectively improves both align-
ment and uniformity compared with average BERT embeddings, while SimCSE and DiffCSE only
improves uniformity and alignment respectively. Since RankCSE pulls similar negatives closer dur-
ing incorporating ranking consistency and ranking distillation, RankCSE has smaller alignment and
bigger uniformity than SimCSE. When compared with DiffCSE, RankCSE has smaller uniformity
whereas similar alignment. We consider that RankCSE achieves a better trade-off than SimCSE.

6 CONCLUSION

In this work, we propose RankCSE, an unsupervised approach to learn more semantically dis-
criminative sentence representations. The core idea of RankCSE is incorporating ranking consis-
tency and ranking distillation with contrastive learning into a unified framework. When simul-
taneously ensuring ranking consistency and distilling listwise ranking knowledge from the teacher,
RankCSE can learn how to make fine-grained distinctions in semantics, leading to more semantically
discriminative sentence representations. Experimental results on STS and TR tasks demonstrate that
RankCSE outperforms previous state-of-the-art methods. We also conduct thorough ablation study
and analysis to demonstrate the effectiveness of each component and justify the inner workings of
our approach. We leave what is the upper bound of improvements of the teacher for future work.
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Table 7: The Hyperparameters for RankCSE Training.

RankCSE-BERT RankCSE-RoBERTa
base large base large
listNet listMLE listNet listMLE listNet listMLE listNet listMLE
Batch size 128 128 128 128 128 128 128 128

Learning rate | 3e-5 2e-5 3e-5 2e-5 3e-5 3e-5 2e-5 3e-5

T 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
) 0.025 0.05 0.05 0.05 0.025 0.025 0.025 0.025
T3 0.0125 - 0.025 - 0.0125 - 0.0125 -
o 1/3 1/3 1/3 173 173 1/3 1/3 1/3
Ié] 1 1 1 1 1 1 1 1

¥ 1 1 1 1 1 1 1 1

A APPENDIX

A.1 TRAINING DETAILS

We implement all experiments with the deep learning framework PyTorch on a single NVIDIA Tesla
A100 GPU (40GB memory). We carry out grid-search of learning rate € {2e-5, 3e-5} and temper-
atures 7o, 73 € {0.0125,0.025,0.05}, while setting batch size to 128, temperature 71 to 0.05, « to
173, to 1, v to 1 and the rate of linear scheduling warm-up to 0.05 for all the experiments. We
train our models for 4 epochs, and evaluate the model every 125 steps on the dev set of STS-B and
keep the best checkpoint for the final evaluation on test sets of all STS and TR tasks. The hyper-
parameter settings we adopt are shown in Table|/| Following SimCSE, we utilize [CLS] represen-
tation with MLP during training and [CLS] representation without MLP for evaluation. We utilize
the weighted average similarity scores of SimCSE-BERT},,s. and SimCSE-BERT},,,. as pseudo
ranking labels for RankCSE-BERT}, 5. and RankCSE-BERT ., While the weighted average sim-
ilarity scores of SimCSE-RoBERTay,,s. and SimCSE-RoBERTay,,¢. as pseudo ranking labels for
RankCSE-RoBERTay,,e. and RankCSE-RoBERTay, ;.

A.2 TRANSFER TASKS

For a more comprehensive comparison with DiffCSE on TR tasks, we also use dev sets of 7 TR tasks
to find the best hyperparameters and checkpoints. As shown in Table |8} RankCSE still outperforms
DiffCSE in this setting.

A.3 TRAINING EFFICIENCY

We list the training time of SimCSE and RankCSE in Table [9} which are all tested on a single
NVIDIA Tesla A100 GPU (40GB memory). All RankCSE base models can be trained within 2
hours and large models can be trained within 3.7 hours. Since RankCSE need to calculate pseudo
ranking labels of the teacher, it has longer training time per epoch than SimCSE.

A.4 ALIGNMENT AND UNIFORMITY

Wang & Isola (2020) propose to use two properties related to contrastive learning, alignment and
uniformity, to measure the quality of representation space. Alignment calculates expected distance
between normalized representations of positive pairs ppos:

latign = B [If(2) = f(a)II%, ©)

(xvar)Nppos

while uniformity measures how well the normalized representations are uniformly distributed:

Cuniform = log E 217 @ =W, ®

i.i.d.
Z,Y ~ Pdata
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Table 8: Sentence representations performance on TR tasks (accuracy) using the dev sets of 7 TR
tasks to find the best hyperparameters. The results of DiffCSE are from its original paper. We mark
the best (bold) and second-best (underlined) results among models with the same PLMs.

PLMs Methods MR CR SUBJ MPQA SST TREC MRPC avg.
+DiffCSE 82.69 8723 9523 8928 86.60 9040 76.58 86.86

BERT}ase +RankCSEjsinet | 83.64 88.32 9526 89.99 89.02 90.80 77.10 87.73
+RankCSEjisime | 83.05 88.03 95.13  90.00 8841 90.60 76.81 87.43
+DiffCSE 82.82 88.61 9432 87.71 88.63 9040 76.81 87.04

RoBERTapase | +RankCSEjsine: | 83.09 88.72 94.26  89.04 89.79 91.20 7832 87.77
+RankCSEiscve | 8316 88.74 9413  89.01 89.73 90.60 77.22 87.51

Table 9: Training efficiency of SimCSE and RankCSE. SimCSEy,s. and SimCSE;j,g provide
pseudo ranking labels for every RankCSE model.

SimCSE RankCSE
BERT RoBERTa BERT RoBERTa
base large base large base large base large
Batch size 64 64 128 128 128 128 128 128
Epoch 1 1 1 1 4 4 4 4
Time 32min  65min  20min 45min 120min 220min  120min  220min
Time per epoch | 32min  65min  20min 45min  30min  55min  30min  55min

where pgata denotes the distribution of sentence pairs. Smaller alignment means positive instances
have been pulled closer, while smaller uniformity means random instances scatter on the hyper-
sphere. These two measures are smaller the better, and well aligned with the object of contrastive
learning.

A.5 COSINE SIMILARITY DISTRIBUTION

We demonstrate the distribution of cosine similarities for sentence pairs of STS-B dev set in Figure
[] We can observe that cosine similarity distributions from all models are consistent with human rat-
ings. However, the cosine similarities of RankCSE are slightly higher than that of SimCSE under the
same human rating, as RankCSE pulls similar negatives closer during incorporating ranking consis-
tency and ranking distillation, and shows lower variance. Compared with DiffCSE, RankCSE shows
a more scattered distribution. This observation further validates that RankCSE can achieve a better
alignment-uniformity balance.

A.6 RANKING TASKS

We build the ranking task based on each STS dataset to verify that RankCSE can capture fine-grained
semantic ranking information. For one sentence x;, if there are more than three sentence pairs

(a) SImCSE (b) DiffCSE (c) RankCSE

Figure 4: The distribution of cosine similarities for sentence pairs of STS-B dev set. Along the
y-axis are 5 groups of pairs split based on ground truth ratings, and x-axis is the cosine similarity.

15



Under review as a conference paper at ICLR 2023

Table 10: Sentence representations performance on ranking tasks (KCC and NDCG) using
BERT}a5¢. The results of SimCSE and DiffCSE are obtained by their public available codes and
checkpoints. We mark the best (bold) and second-best (underlined) results.

Metrics | Methods STS12 STS13 STS14 STS15 STS16 STS-B  SICK-R avg.
+SimCSE 36.08 36.60 44.14  49.02 54.66 58.44 54.65 47.66
KCC +DiffCSE 38.59 41.89 42.37 51.19 58.90 59.21 53.42 49.37
+RankCSE | 42.79  46.26  44.53 52.00 57.21 63.64 57.40 51.98
+SimCSE 97.30 89.33 92.71 96.93 94.28 96.49 98.44 95.14
NDCG | +DiffCSE 98.35 90.22  93.05 96.91 94.79 97.05 98.34 95.53
+RankCSE | 98.20  92.27 93.46 97.21 95.24 9745 98.67 96.07

Table 11: Three examples of an input sentence and other sentences from the STS datasets, with
their similarity scores and rankings. The label scores are from human annotations. The SimCSE
and RankCSE similarity scores are from the model predictions respectively, with the corresponding
ranking positions. It can be seen that sentence rankings based on SimCSE are incorrect, while
RankCSE generates more effective scores with accurate rankings.

Sentences Label SimCSE RankCSE

e Broccoli are being cut by a woman 4.80(1) 0.82(2) 0.95(1)
e A woman is slicing vegetables 420 (12) 0.83(1) 0.91 (2)
e A woman is cutting some plants 3.50(3) 0.74 (5) 0.87 (3)
e There is no woman cutting broccoli 3404) 0.76 (3) 0.85 4)
e A woman is cutting some flowers 287(06) 071 (7 0.81 (5)
e A man is slicing tomatoes 2.60(6) 0.754) 0.79 (6)
e A man is cutting tomatoes 240(7) 0.73(6) 0.76 (7)
Input Sentence: A woman is cutting broccoli

e A woman is breaking eggs 4.80 (1) 0.93(2) 0.97 (1)
e A man is cracking eggs 3.60(2) 094() 0.91 (2)
e A woman is talking to a man 1.60 (3) 0455 0.65 (3)
e A man and a woman are speaking 1.40(4) 0470) 0.61 (4)
e A man is talking to a boy 1.00(5) 0.464) 0.56 (5)
Input Sentence: A woman is cracking eggs

e a and c are on the same closed path with the battery 3.60 (1) 0.81(1) 0.90 (1)
e bulb a and bulb c affect each other. 2.80(12) 0.58(3) 0.75 (2)
e the are on the same wire 1.60 (3) 0.60(2) 0.68 (3)

e becuase breaking one bulb then affects the ability of the 1.20 (4) 0.37 (5) 0.59 (4)
others to light up.
e if one bulb is removed , the others stop working 0.60(5) 0.3814) 0.54 (5)

Input Sentence: a and c are in the same closed path

(24, 2] ) containing x; with similarity score label y in the dataset, we view {x;, 2],y }¥_, (k > 3)
as a sample of the ranking task, as shown in Table [TT} We adopt KCC (Kendall’s correlation coef-
ficient (Abdi, 2007)) and NDCG (normalized discounted cumulative gain (Clarke et al.| [2008)) as
evaluation metrics for ranking tasks, and demonstrate the results in Table RankCSE outperforms
SimCSE and DiffCSE on both KCC and NDCG, which validates that RankCSE can capture fine-
grained semantic ranking information by incorporating ranking consistency and ranking distillation.
Another observation is that SimCSE and DiffCSE also achieve moderate results, which shows they
can distinguish coarse-grained semantic differences via contrastive learning.

A.7 CASE STUDY

We present another three examples of an input sentence and other sentences from the STS datasets,
with their similarity scores and rankings in Table[IT] It is obvious that the similarity scores produced
by RankCSE are more effective than SimCSE, with consistent rankings to the ground-truth labels.
It further demonstrates that SImCSE only captures coarse-grained semantic ranking information
via contrastive learning, while RankCSE can capture fine-grained semantic ranking information.
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Table 12: A listing of train/dev/test stats of  Table 13: A listing of train/dev/test stats of

STS datasets. TR datasets.

Dataset Train Dev  Test Dataset Train Dev  Test
STS12 - - 3108 MR 10662 - -
STS13 - - 1500 CR 3775 - -
STS14 - - 3750 SUBJ 10000 - -
STS15 - - 3000 MPQA 10606 - -
STS16 - - 1186 SST 67349 872 1821
STS-B 5749 1500 1379 TREC 5452 - 500

SICK-R 4500 500 4927 MRPC 4076 - 1725

For example, SimCSE can distinguish between similar and dissimilar sentences, while it can not
distinguish between very similar and less similar sentences as RankCSE.

A.8 DATA STATISTICS

The complete listings of train/dev/test stats of STS and TR datasets can be found in Table |12| and
[13] respectively. Note that for STS tasks, we only use test sets for the final evaluation and dev set
of STS-B to find best hyperparameters and checkpoints. The train sets of all STS datasets are not
used in our experiments. For TR tasks, we follow the default settings of SentEval toolkit (Conneau
& Kielal 2018)) to use 10-fold evaluation for all TR datasets except SST. We can directly use the
already split datasets to evaluate on SST.
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