
GradML: A Gradient-based Loss for Deep Metric
Learning

Bhavya Vasudeva1∗, Puneesh Deora1∗, Saumik Bhattacharya2, Umapada Pal1, Sukalpa Chanda3
1 ISI Kolkata 2 IIT Kharagpur 3 Østfold University College

Abstract

Deep metric learning (ML) uses a carefully designed loss function to learn dis-
tance metrics for improving the discriminatory ability for tasks like clustering and
retrieval. Most loss functions are designed by considering the distance between
the embeddings to induce certain properties without exploring how such losses
would impact the movement of the said embeddings via their gradients during opti-
mization. In this work, we analyze the gradients of various ML loss functions and
propose a gradient-based loss for ML (GradML). Instead of directly formulating
the loss, we first formulate the gradients of the loss and use them to derive the loss
to be optimized. It has a simple formulation and lowers the computational cost as
compared to other methods. We evaluate our approach on three datasets and find
that the performance is data-dependent on properties like inter-class variance.

1 Introduction

Deep metric learning (ML) involves moving samples from similar classes close and dissimilar classes
farther apart in the embedding space. This is done by training a deep network to learn the mapping
from the sample space to the embedding space, using some criterion in the form of a loss function to
be optimized. This has proven to be useful in a variety of applications like face recognition (1; 2),
re-identification (3; 4; 5; 6), image retrieval (7; 8), etc.

Contrastive (1; 9) and triplet loss (2; 10) are two common criteria that consider a pair or a triplet of
samples to learn the embeddings. Other loss functions such as lifted structure (LS) (11) and N-pair
(12) serve as generalizations of triplet loss as they use higher-order relations among the data points.
Angular loss (13) aims to leverage the angular constraints in the loss criterion and multi-similarity
(MS) (14) loss assigns different weights to each pair indicative of their usefulness. Proxy-based
loss functions (15; 16; 17; 18) rely on proxies to overcome some of the issues associated with
sampling-based pair-wise losses, like the tendency to overfit, by introducing proxies.

All the aforementioned works try to improve the learned embeddings by designing loss functions that
use similarity metrics to force the data points to follow a particular criterion. However, the direction
in which the embeddings move during optimization is a critical aspect, determined by the gradients
of the loss function. Simply forcing the negative points away and attracting the positive points close
to each other (under some criterion) may not be sufficient to obtain discriminative regions. To study
this, we formulate a loss function that takes into account the direction of movement of samples. We
start with the expression for the gradient of the loss function with respect to each sample which is
subsequently integrated to obtain the desired loss. The proposed loss function turns out as the kth
power of the `2-norm of the differences between the sample pairs.

The proposed approach is simple as it relies on pair-wise distances, avoids computational complexity
of some of other approaches, and uses fewer samples to achieve competitive performance, when
evaluated on CUB-200-2011 (19), a benchmark dataset. We analyze the gradients of other losses

∗Equal contribution;

I (Still) Can’t Believe It’s Not Better Workshop at NeurIPS 2021.



and compare them with our method to show how it benefits the learning process. Surprisingly, when
evaluated on two other benchmark datasets, it does not perform so well. This might be because the
inter-class variations are not uniform across the entire dataset.

1.1 Related Work
To accelerate the training process, mining-based strategies are used to search for the most informative
samples. Methods like semi-hard mining (2), distance-weighted (Dis-wtd) sampling (20), smart
mining (21), hard-aware cascaded embeddings (HDC) (22), structured clustering (StructClust) (23),
discriminative sampling policy (DE-DSP) (24) have been proposed. Their drawback of is that they
rely on a subset of samples and may induce overfitting and bias in the learned embeddings.

In addition, some methods try to generate new samples which are harder to classify. This can be done
either in the sample space, as in adversarial ML (DAML) (25), hardness-aware ML (HDML) (26),
which requires an additional generative network or directly in the embedding space, as in embedding
expansion (EE) (27), symmetrical synthesis (SymmSyn) (28), looking for optimal hard negatives
(LoOp) (29), which may not always ensure the class belongingness of the generated samples.

Recently, a direction regularizer (DR)-based method (30) has been proposed, to induce orthogonality
between an anchor-positive pair and a negative sample, used in conjuction with other losses.

2 Methodology
Let x1,x2 and y1,y2 denote embedding vectors belonging to class A and class B, respectively, and
L denote the loss function. x1 − y1,x1 − y2,x2 − x1 denote the direction vectors that would be
used in the gradient updates of x1. ∂L

∂x1
can be formulated as a weighted sum of these vectors:

∂L

∂x1
= 2(f1(x1,x2,y1,y2)(x1−x2)−f2(x1,x2,y1,y2)(x1−y1)−f3(x1,x2,y1,y2)(x1−y2)),

where f ′is are scalar functions of x1,2,y1,2. Writing fi(x1,x2,y1,y2) as fi for conciseness gives:

∂L

∂x1
= 2(f1(x1 − x2)− f2(x1 − y1)− f3(x1 − y2)). (1)

Integrating (1), we get:

L = f1||x1 − x2||22 − f2||x1 − y1||22 − f3||x1 − y2||22 + φ1(x2,y1,y2), (2)

where || · ||2 denotes the l2-norm. Proceeding in the same manner, we write the expression for ∂L
∂x2

and integrate it to get:

L = g1||x2 − x1||22 − g2||x2 − y1||22 − g3||x2 − y2||22 + φ2(x1,y1,y2). (3)

One of the ways to establish the equivalence of (2) and (3) is discussed hereon. Since φ1 is independent
of x1 and φ2 is independent of x2, we get f1 = g1, f2, f3 are independent of x2 and g2, g3 are
independent of x1. Using these, we get:

L = f1||x1 − x2||22 − f2(x1,y1,y2)||x1 − y1||22 − f3(x1,y1,y2)||x1 − y2||22
− f4(x2,y1,y2)||x2 − y1||22 − f5(x2,y1,y2)||x2 − y2||22 + φy(y1,y2). (4)

Proceeding in the same manner for y1,y2, we get:

L = h1||y1 − y2||22 − h2(y1,x1,x2)||y1 − x1||22 − h3(y1,x1,x2)||y1 − x2||22
− h4(y2,x1,x2)||y2 − x1||22 − h5(y2,x1,x2)||y2 − x2||22 + φx(x1,x2). (5)

Comparing (4) and (5), we get h2 = f2 = γ3(x1,y1), h3 = f4 = γ5(x2,y1), h4 = f3 =
γ4(x1,y2), h5 = f5 = γ6(x2,y2). Also, f1 = γ1(x1,x2), h1 = γ2(y1,y2). Using these, we get:

L = γ1(x1,x2)||x1 − x2||22 + γ2(y1,y2)||y1 − y2||22 − γ3(x1,y1)||x1 − y1||22
− γ4(x1,y2)||x1 − y2||22 − γ5(x2,y1)||x2 − y1||22 − γ6(x2,y2)||x2 − y2||22. (6)

Differentiating (6) w.r.t. x1:
∂L

∂x1
= 2(γ1(x1,x2)(x1 − x2)− γ3(x1,y1)(x1 − y1)− γ4(x1,y2)(x1 − y2))

+
∂γ1(x1,x2)

∂x1
||x1 − x2||22 −

∂γ3(x1,y1)

∂x1
||x1 − y1||22 −

∂γ4(x1,y2)

∂x1
||x1 − y2||22.

2



The expressions for γ’s can be obtained by solving:

2γ1(x1,x2)(x1 − x2) +
∂γ1(x1,x2)

∂x1
||x1 − x2||22 = kγ1(x1,x2)(x1 − x2), (7)

where k > 0 is a hyperparameter. Simplifying (7), we get:

∂γ1(x1,x2)

∂x1
= (k − 2)γ1(x1,x2)||x1 − x2||−22 (x1 − x2). (8)

Let γ1(x1,x2) = a1e
f(x1,x2). Substituting in (8), we get:

∂f(x1,x2)

∂x1
= (k − 2)||x1 − x2||−22 (x1 − x2). (9)

Integrating (9), we get f(x1,x2) = (k − 2) log(||x1 − x2||2). Using this, we get:

γ1(x1,x2) = a1e
log(||x1−x2||k−2

2 ) = a1||x1 − x2||k−22 .

Similarly, we can obtain the expressions for the other γi’s. Substituting in (6), we get:

L = a1||x1 − x2||k2 + a2||y1 − y2||k2 − a3||x1 − y1||k2 − a4||x1 − y2||k2
− a5||x2 − y1||k2 − a6||x2 − y2||k2 , (10)

which is the proposed gradient-based loss. The ‘weights’ (ai’s) are hyperparameters. In this work,
we set a1 = a2 = 1 and a3 = a4 = a5 = a6 = w, to get:

L = ||x1−x2||k2+||y1−y2||k2−w(||x1−y1||k2+||x1−y2||k2+||x2−y1||k2+||x2−y2||k2). (11)

3 Experiments and Results
We perform various experiments to evaluate GradML. We report the F1 score, normalized mutual
information (NMI), and Recall@K values for K = 1, 2, 4 for the standardized tasks of image clustering
(31) and retrieval, respectively. We use the Caltech-UCSD Birds-200-2011 (CUB-200-2011) (19),
Cars196 (32), Stanford Online Products (SOP) (11) datasets to evaluate GradML. More details about
the datasets, implementation settings and results for different values of hyperparameters w and k are
in the appendix.

3.1 Analysis of Gradients of Other Losses

Here, we analyze the gradients of existing ML-based losses, namely triplet loss, DR-triplet loss, LS
loss. Considering only 2 samples from 2 classes, the expressions for each loss are given as follows:
Triplet: [||x1 − x2||22 − ||x1 − y1||22 +m]+, where [·]+ denotes hinge loss, and m is the margin.
DR-Triplet: ||x1 − x2||22 − ||x1 − y1||22 +m− g 1−x1·x2

||x1−y1||2||x1−x2||2 , where g is the DR parameter.
LS: [||x1 − x2||22 −D +m]+ + [||y1 − y2||22 −D +m]+, where D = min(D11, D12, D21, D22),
Dij = ||xi − yj||22.
GradML: (11), with k = 2.

Table 1: Expressions for gradients of the loss functions w.r.t each sample.
Loss ∂L

∂x1

∂L
∂x2

∂L
∂y1

∂L
∂y2

Triplet 2(y1 − x2) 2(x2 − x1) 2(y1 − x2) 0

DR- 2(y1 − x2)− g(c(x1 − x2) 2(x2 − x1) 2(x1 − y1) 0Triplet +dk(y1 − x1)) −gc(x2 − x1) −gc(x1 − y1)

LS 2(x1 − x2)− 1D=D11(x1 − y1) 2(x2 − x1)− 1D=D21(x2 − y1) 2(y1 − y2)− 1D=D11(y1 − x1) 2(y2 − y1)− 1D=D12(y2 − x1)
−1D=D12(x1 − y2) −1D=D22(x2 − y2) −1D=D21(y1 − x2) −1D=D22(y2 − x2)

GradML 2w(y1 + y2 − x2) 2w(y1 + y2 − x1) 2w(x1 + x2 − y2) 2w(x1 + x2 − y1)

The derivatives of these expressions w.r.t each sample, when the output of the hinge function is
positive, are listed in Table 1. 1 denotes the indicator function, c = (||y1 − x1||2||x1 − x2||2)−1,
d = ||y1 − x1||−22 , and k = ||x1 − x2||2||y1 − x1||−12 . Fig. 1 illustrates an example with four
samples and their updated positions obtained by using the gradients obtained by these loss functions.
We see that for the first three loss functions, a larger learning rate may cause x1 and x2 to move away
from each other. Further, in the first two cases, involving triplets, y2 remains unused and unchanged.

3.2 Complexity Analysis
Table 2 lists the orders of computations per iteration for computing various loss functions. BS denotes
the batch size, N is the number of samples per class, and n controls the number of generated points.
It can be seen that GradML is one of the losses with the lowest complexity.

3



Figure 1: An example showing four samples and the gradients obtained by (a) triplet, (b) DR-triplet,
(c) LS, and (d) GradML losses, used to obtain the updated positions of the samples.

Table 2: Comparison of computations per iteration for various ML-based loss functions.
Methods Computations per Iteration

GradML, Proxy NCA, Triplet O(BS)
HPHNTriplet, LS O((BS −N)BS)

Binomial O(B2
S)

EE O(n2B2
S)

MS O(N(BS −N)BS)

3.3 Comparison with Other Methods

We compare GradML with several other approaches - the ones discussed in Section 1, and losses
like histogram (33), binomial deviance (BinomDev) (33). For methods presented in Section 1.1,
triplet loss is used. The results (with k = 2 and w = 1) are shown in Table 3. We see that GradML
outperforms all other methods on the CUB dataset but shows weak performance on Cars196 and SOP.

Table 3: Clustering and retrieval performance of various methods for the three benchmark datasets.
Bold numbers indicate the best values.

CUB-200-2011 Cars196 SOP

Method NMI F1 R@1 R@2 R@4 NMI F1 R@1 R@2 R@4 NMI F1 R@1 R@10 R@100

Triplet 49.8 15.0 35.9 47.7 59.1 52.9 17.9 45.1 57.4 69.7 86.3 20.2 53.9 72.1 85.7
DAML 51.3 17.6 37.6 49.3 61.3 56.5 22.9 60.6 72.5 82.5 87.1 22.3 58.1 75.0 88.0
Semi-hard 53.4 17.9 40.6 52.3 64.2 55.7 22.4 53.2 65.4 74.3 86.7 22.1 57.8 75.3 88.1
DE-DSP 53.7 19.8 41.0 53.2 64.8 55.0 22.3 59.3 71.3 81.3 87.4 22.7 58.2 75.8 88.4
HDML 55.1 21.9 43.6 55.8 67.7 59.4 27.2 61.0 72.6 80.7 87.2 22.5 58.5 75.5 88.3
Dis-wtd 56.3 25.4 44.1 57.5 70.1 58.3 25.4 59.4 72.3 81.6 87.9 23.4 58.9 77.2 89.6
EE 55.7 22.4 44.3 57.0 68.1 60.3 25.1 57.2 70.5 81.3 87.4 24.8 62.4 79.0 91.0
SmartMin 58.1 - 45.9 57.7 69.6 58.2 - 56.1 68.3 78.0 - - - - -
StructClust 59.2 - 48.2 61.4 71.8 59.0 - 58.1 70.6 80.3 89.5 - 67.0 83.7 93.2
SymmSyn 59.6 26.2 51.4 63.0 74.4 62.4 31.8 69.7 78.7 86.1 88.9 30.6 65.7 81.4 91.7
HDC - - 53.6 65.7 77.0 - - 73.7 83.2 89.5 - - 69.5 84.4 92.8
DR - - 54.2 66.1 72.5 - - - - - - - - - -

LS 56.4 22.6 46.9 59.8 71.2 57.8 25.1 59.9 70.4 79.6 87.2 25.3 62.6 80.9 91.2
HPHNtri 58.1 24.2 48.3 61.9 73.0 57.4 22.6 60.3 73.4 83.5 91.4 43.3 75.5 88.8 95.4
DAML (LS) 59.5 26.6 49.0 62.2 73.7 63.1 31.9 72.5 82.1 88.5 89.1 31.7 66.3 82.8 92.5
Proxy NCA 59.5 - 49.2 61.9 67.9 64.9 - 73.2 82.4 86.4 - - - - -
BinomDev - - 50.3 61.9 72.6 - - - - - - - 65.5 82.3 92.3
MS 59.3 26.0 50.9 63.0 74.1 63.3 31.7 71.0 80.8 87.5 89.3 33.7 75.0 88.7 95.7
Histogram - - 52.8 64.4 74.7 - - - - - - - 63.9 81.7 92.2

Ours 60.4 26.8 54.7 67.0 77.5 40.9 10.8 45.3 56.9 68.4 84.8 14.9 52.4 68.5 82.1

This can be attributed to data dependent properties. It appears that a global hyperparameter w (11) is
not sufficient to capture all the inter-class variances in SOP, Cars196 datasets, i.e. in these datasets the
inter-class variance between all classes might not be the same. A small inter-class variance between a
pair of classes would require a large w in the loss and vice-versa. We believe that in order to calculate
w in such instances, we need to use information of the pair of classes involved.

4 Conclusion
We propose a novel loss for deep metric learning (ML) that focuses on the direction of movement of
the data points in the embedding space. This is done by formulating the loss function using gradients
of the loss. We observe that the performance of our loss is influenced by data-dependent properties.
For datasets where inter-class variances are similar across all pairs of classes our we see multiple
benefits of our approach: considerable boost in performance and a lower computational complexity.

4



References
[1] S. Chopra, R. Hadsell, and Y. LeCun, “Learning a similarity metric discriminatively, with

application to face verification,” in IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), vol. 1, pp. 539–546, 2005.

[2] F. Schroff, D. Kalenichenko, and J. Philbin, “Facenet: A unified embedding for face recognition
and clustering,” in IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 815–823, 2015.

[3] D. Yi, Z. Lei, S. Liao, and S. Z. Li, “Deep metric learning for person re-identification,” in
International Conference on Pattern Recognition, pp. 34–39, 2014.

[4] W. Li, R. Zhao, T. Xiao, and X. Wang, “DeepReID: Deep filter pairing neural network for
person re-identification,” in IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 152–159, 2014.

[5] J. Zhou, P. Yu, W. Tang, and Y. Wu, “Efficient online local metric adaptation via negative
samples for person re-identification,” in IEEE International Conference on Computer Vision
(ICCV), pp. 2439–2447, 2017.

[6] F. Wang, W. Zuo, L. Lin, D. Zhang, and L. Zhang, “Joint learning of single-image and cross-
image representations for person re-identification,” in IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 1288–1296, 2016.

[7] J. Wang et al., “Learning fine-grained image similarity with deep ranking,” in IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1386–1393, 2014.

[8] A. Gordo et al., “Deep image retrieval: Learning global representations for image search,” in
European Conference on Computer Vision (ECCV), (Cham), pp. 241–257, Springer International
Publishing, 2016.

[9] R. Hadsell, S. Chopra, and Y. LeCun, “Dimensionality reduction by learning an invariant
mapping,” in IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
vol. 2, pp. 1735–1742, 2006.

[10] K. Q. Weinberger and L. K. Saul, “Distance metric learning for large margin nearest neighbor
classification,” Journal of Machine Learning Research, vol. 10, p. 207–244, 2009.

[11] H. Song, Y. Xiang, S. Jegelka, and S. Savarese, “Deep metric learning via lifted structured
feature embedding,” in IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 4004–4012, 2016.

[12] K. Sohn, “Improved deep metric learning with multi-class N-pair loss objective,” in Advances
in Neural Information Processing Systems (D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and
R. Garnett, eds.), vol. 29, Curran Associates, Inc., 2016.

[13] J. Wang, F. Zhou, S. Wen, X. Liu, and Y. Lin, “Deep metric learning with angular loss,” in
Proceedings of the IEEE International Conference on Computer Vision (ICCV), Oct 2017.

[14] X. Wang, X. Han, W. Huang, D. Dong, and M. R. Scott, “Multi-similarity loss with general pair
weighting for deep metric learning,” in IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 5022–5030, 2019.

[15] Y. Movshovitz-Attias, A. Toshev, T. K. Leung, S. Ioffe, and S. Singh, “No fuss distance metric
learning using proxies,” in Proceedings of the IEEE International Conference on Computer
Vision (ICCV), Oct 2017.

[16] N. Aziere and S. Todorovic, “Ensemble deep manifold similarity learning using hard proxies,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), June 2019.

[17] Y. Movshovitz-Attias, A. Toshev, T. K. Leung, S. Ioffe, and S. Singh, “No fuss distance metric
learning using proxies,” in Proceedings of the IEEE International Conference on Computer
Vision (ICCV), Oct 2017.

5



[18] Q. Qian, L. Shang, B. Sun, J. Hu, H. Li, and R. Jin, “Softtriple loss: Deep metric learning without
triplet sampling,” in Proceedings of the IEEE/CVF International Conference on Computer Vision
(ICCV), October 2019.

[19] C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie, “The Caltech-UCSD Birds-200-
2011 Dataset,” tech. rep., 2011.

[20] R. Manmatha, C. Wu, A. Smola, and P. Krahenbuhl, “Sampling matters in deep embedding
learning,” in IEEE International Conference on Computer Vision (ICCV), pp. 2859–2867, 10
2017.

[21] B. Harwood, V. Kumar B.G., G. Carneiro, I. Reid, and T. Drummond, “Smart mining for deep
metric learning,” in IEEE International Conference on Computer Vision (ICCV), pp. 2840–2848,
2017.

[22] Y. Yuan, K. Yang, and C. Zhang, “Hard-aware deeply cascaded embedding,” in IEEE Interna-
tional Conference on Computer Vision (ICCV), pp. 814–823, 11 2017.

[23] H. O. Song, S. Jegelka, V. Rathod, and K. Murphy, “Learnable structured clustering framework
for deep metric learning,” CoRR, vol. abs/1612.01213, 2016.

[24] Y. Duan, L. Chen, J. Lu, and J. Zhou, “Deep embedding learning with discriminative sam-
pling policy,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), June 2019.

[25] Y. Duan, W. Zheng, X. Lin, J. Lu, and J. Zhou, “Deep adversarial metric learning,” in IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2780–2789, 2018.

[26] W. Zheng, Z. Chen, J. Lu, and J. Zhou, “Hardness-aware deep metric learning,” in IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 72–81, 2019.

[27] B. Ko and G. Gu, “Embedding expansion: Augmentation in embedding space for deep metric
learning,” in IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 7255–7264, 2020.

[28] G. Gu and B. Ko, “Symmetrical synthesis for deep metric learning,” Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 34, pp. 10853–10860, Apr. 2020.

[29] B. Vasudeva, P. Deora, S. Bhattacharya, U. Pal, and S. Chanda, “Loop: Looking for optimal
hard negative embeddings for deep metric learning,” arXiv preprint arXiv:2108.09335, 2021.

[30] D. D. Mohan, N. Sankaran, D. Fedorishin, S. Setlur, and V. Govindaraju, “Moving in the
right direction: A regularization for deep metric learning,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), June 2020.

[31] C. D. Manning, P. Raghavan, and H. Schütze, Introduction to Information Retrieval. USA:
Cambridge University Press, 2008.

[32] J. Krause, M. Stark, J. Deng, and L. Fei-Fei, “3d object representations for fine-grained
categorization,” in IEEE International Conference on Computer Vision Workshops (ICCVW),
p. 554–561, 2013.

[33] E. Ustinova and V. Lempitsky, “Learning deep embeddings with histogram loss,” in Advances in
Neural Information Processing Systems (NeurIPS) (D. Lee, M. Sugiyama, U. Luxburg, I. Guyon,
and R. Garnett, eds.), vol. 29, pp. 4170–4178, Curran Associates, Inc., 2016.

[34] J. Deng, W. Dong, R. Socher, L. Li, K. Li, and L. Fei-Fei, “Imagenet: A large-scale hierarchical
image database,” in IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 248–255, 2009.

[35] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint
arXiv:1412.6980, 2017.

6



Appendix

4.1 Implementation Details

We use PyTorch to implement our proposed approach. The experiments were carried out using one
NVIDIA GeForce RTX 2080 Ti GPU with 11 GB memory. We use an ImageNet ILSVRC (34)
pre-trained ResNet50 [check this one out] with frozen Batch-Normalization layers as the feature
extracting network. We use 512-dimensional feature embedding vectors. For pre-processing, we
randomly resize and crop images to 224×224 and horizontally flip them left or right for training, and
center crop to the same size for testing. We use the Adam optimizer (35) for training with a learning
rate of 10−7 and a constant weight decay of 4×10−4. We use a batch size of 32.

4.2 Dataset details

Table 4: Summary of the three benchmark datasets used for evalution.
Training Testing Total

Dataset No. of classes No. of images No. of classes No. of images No. of classes No. of images

CUB-200-2011 100 5864 100 5924 200 11,788
Cars 196 98 8054 98 8131 196 16,185

SOP 11,318 59,551 11,316 60,502 22,634 120,053

4.3 Effect of Hyperparameters

In this section, we carry out two experiments to observe the effect of k and w on the performance of
our approach.

Effect of k: To check the effect of k, we set w as 0.5 (this value is obtained by equating the sum of
the weights of the positives to that the of the negatives). We vary k from 1 to 4 and the values are
listed in Table 5. It can be seen that higher values are centered around k=2.5. To further illustrate
this, we plot the variation in NMI and R@1 in Figs. 2(a) and (b), respectively. It can be seen that a
higher range of values occurs when k lies between 2 and 3.

Table 5: Variation in clustering and retrieval performance for different values of k. Bold and
underlined numbers indicate the best and second-best values, respectively.

k 1 1.5 2 2.25 2.5 2.75 3 4

NMI 58.71 58.63 59.20 59.21 59.21 59.40 59.29 59.08
F1 24.85 23.80 24.47 24.73 24.88 24.98 24.87 24.76

R@1 53.39 53.63 54.12 54.10 54.14 53.88 53.92 53.34
R@2 66.17 65.72 66.10 66.12 66.15 66.04 66.12 65.68
R@4 76.82 76.76 76.50 76.60 76.54 76.86 76.99 76.81

Figure 2: Variation in (a) NMI, (b) R@1 for different values of k.

Table 6: Variation in clustering and retrieval performance for different values of k and w. Bold and
underlined numbers indicate the best values for each k and the overall best values, respectively.

k 2 2.5 3

w 0.5 1 2 0.5 1 2 0.5 1 2

NMI 59.20 60.35 59.48 59.21 59.89 59.38 59.29 59.83 59.36
F1 24.47 26.80 25.82 24.88 26.00 25.91 24.87 26.01 26.42

R@1 54.12 54.73 54.15 54.14 54.90 54.25 53.92 54.30 53.65
R@2 66.10 66.95 66.53 66.15 66.73 66.51 66.12 66.10 65.87
R@4 76.50 77.48 77.23 76.54 77.40 77.07 76.99 77.01 76.79

7



Figure 3: Variation in (a) NMI, (b) R@1 for different values of w for k = 2, 2.5, 3.

Effect of w: To check the effect of w, we set it as 0.5, 1, and 2. We also vary k between 2 and 3, in
keeping with the observations of the previous experiments. The values are reported in Table 6. It can
be seen that for a fixed k, the best values occur for w=1, and k=2 results in overall best performance,
other than R@1. This can also be seen from the plots of NMI and R@1, shown in Figs. 3(a) and (b),
respectively.

8


	Introduction
	Related Work

	Methodology
	Experiments and Results
	Analysis of Gradients of Other Losses
	Complexity Analysis
	Comparison with Other Methods

	Conclusion
	Implementation Details
	Dataset details
	Effect of Hyperparameters


