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ABSTRACT
Open-vocabulary multi-object tracking (MOT) aims to track arbi-
trary objects encountered in the real world beyond the training set.
However, recent methods rely solely on instance-level detection
and association of novel objects, which may not consider the valu-
able fine-grained semantic representations of the targets within key
and reference frames. In this paper, we propose a Global and Lo-
cal Awareness open-vocabulary MOT method (GLATrack), which
learns to tackle the task of real-world MOT from both global and
instance-level perspectives. Specifically, we introduce a region-
aware feature enhancement module to refine global knowledge for
complementing local target information, which enhances seman-
tic representation and bridges the distribution gap between the
image feature map and the pooled regional features. We propose
a bidirectional semantic complementarity strategy to mitigate se-
mantic misalignment arising from missing target information in
key frames, which dynamically selects valuable information within
reference frames to enrich object representation during the knowl-
edge distillation process. Furthermore, we introduce an appearance
richness measurement module to provide appropriate representa-
tions for targets with different appearances. The proposed method
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gains an improvement of 6.9% in TETA and 5.6% in mAP on the
large-scale TAO benchmark.
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1 INTRODUCTION
Multiple Object Tracking (MOT) is recognized as a fundamental
task in computer vision, primarily aimed at detecting and tracking
objects in a video sequence. This task plays a crucial role in vari-
ous applications, such as autonomous driving [20, 39] and video
analysis [29, 48]. While MOT methods [6, 15, 34, 54, 63] have made
significant progress in recent years, they are typically trained on
predefined data distributions. Additional annotations are required
to track unseen targets, which not only restricts the scope of tar-
get perception but also hampers the ability to track novel objects
in the visual world. Consequently, a disparity emerges between
performance evaluation and real-world applications.

https://doi.org/10.1145/3664647.3681530
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Figure 1: Comparison of inference frameworks between OV-
Track and GLATrack. Both methods track unseen objects
by querying the discriminative vision-language model. The
color of the bounding box indicates the track ID of the object.

Several works [24, 30, 31] attempt to address such limitations
by leveraging an open-world context. Ošep et al. [30] integrate a
classifier following the tracking of detections to enhance general
tracking capability in scenarios where no semantic information is
accessible. Liu et al. [24] establish the concept of open-world track-
ing and perform both open and closed-world tracking. Recently,
visual language models (VLMs) pre-trained on large-scale image-
text pairs, such as CLIP [33], have shown remarkable classification
capability in various visual tasks. Li et al. [23] first introduces CLIP
as an open-vocabulary classifier to detect unseen categories and
propose a data hallucination strategy employing static images to
achieve data association. However, there are three inherent difficul-
ties to this setup. First, using CLIP directly in MOT is suboptimal,
as shown in Fig. 1. This is because the region features acquired
by RoI Align [18] suffer from a significant loss of contextual infor-
mation, exacerbating the fine-grained differences between image
regions and text spans. Second, the semantic information in the
appearance of targets exhibits diversity. Therefore, using the same
dimension to represent objects with different appearance semantic
richness is unreasonable. Third, the adjacent frames over a video
contain coherent trajectories and semantic information about the
targets. However, only the target’s information from the key frames
is utilized during the classification phase, neglecting the semantic
information available in the adjacent frames. This underutilization
hinders the potential of CLIP in the task of open-vocabulary MOT.

In this paper, we introduce a novel open-vocabularyMOTmethod,
termed GLATrack, which aims to track unseen objects beyond the
pre-defined training categories from both global and instance-level
perspectives. Specifically, we devise a plug-and-play Region-aware
Feature Enhancement (RFE) module that can be seamlessly inte-
grated into the tracking pipeline, capturing global features from the
FPN to enhance the region features. In detail, the RoI Align with the
max pooling suffers from the loss of details, while Transformer [40]
has considerable potential in capturing contextual information. To
address this issue, we leverage a Transformer encoder to establish
global relationships, with region features serving as the queries of

the decoder. This enables the region features to perceive and com-
prehend the semantic characteristics based on global features. As a
result, we can obtain more discriminative semantic representations
for the objects to strengthen the detection and tracking ability.

To further improve the capability of GLATrack in tracking generic
unknown objects without annotation information, we introduce an
Appearance Richness Measurement (ARM) module. This module
facilitates fine-grained transformations from small to large dimen-
sions, providing scalable representations for diverse target appear-
ances based on their semantic richness and basic attributes. The
ARM module is highly adaptable, avoiding assumptions about fixed
representation dimension, allowing the model to acquire essential
clues through self-learning for accurate judgment autonomously.

In addition to the localization and association branches, the
classification pipeline also plays a crucial role in open-vocabulary
MOT, which requires identifying targets in scenes with complex
camera and object motion patterns. To effectively address these
challenges, we propose a Bidirectional Semantic Complementarity
(BSC) strategy to optimize semantic representations in key frames.
Specifically, the reference frame contains the appearances of objects
at different time points, which could provide valuable cues for
classification. Consequently, we utilize CLIP to extract semantic
information about the matching targets from the reference frame
and employ it to filter out erroneous information in key frames that
may interfere with object recognition. Subsequently, the refined
representations are used to determine the categories of the targets.

The main contributions are summarized as follows:
•We propose a new open-vocabulary MOT method, GLATrack,

which detects and tracks objects of arbitrary categories in the real
world from both global and instance-level perspectives.

• We propose a flexible plug-and-play RFE module, which ef-
fectively leverages global information from the feature pyramid
network to complement local targets by leveraging the context
modeling ability of the Transformer.

•We propose a novel ARM module to generate adaptive appear-
ance representations for objects with diverse semantic richness.
Additionally, we introduce a BSC strategy, leveraging valuable in-
formation within reference frames to address classification biases
arising from occluded object appearances in key frames.

• Experimental results demonstrate that the proposed method
outperforms the state-of-the-art methods on the large-vocabulary
MOT benchmark TAO, showing significant improvement on both
TETA and mAP metrics.

2 RELATEDWORK
Multi-object Tracking. Some MOT methods [5, 32, 37, 38, 41,
44, 51] typically adopt the tracking-by-detection paradigm [1],
which involve two main stages: detection and association. SORT
[4] utilizes Kalman filters and the Hungarian algorithm for motion
prediction and frame-to-frame data association. ByteTrack [60]
leverages the correlation between detection boxes and tracking
trajectories to maintain high-confidence detection results and re-
store low-confidence detections. Recently, numerous studies have
concentrated on utilizing Transformer to improve motion estima-
tion. For example, MOTR [57] and Trackformer [27] introduce the
Transformer to integrate detection and tracking into a query-based
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Figure 2: The architecture of the proposed GLATrack. Initially, given the key and reference frames, RoIs are extracted from the
backbone through an RPN. These RoIs are then fed into the RFE module for feature enhancement. Subsequently, the enhanced
RoIs are sent to the BSC module, where the image embeddings within the key frames are complemented with those within the
reference frame before undergoing the classification process. To facilitate data association, the enhanced RoIs are represented
at various scales based on their semantic information scores, which are calculated by the proposed ARMmodule.

framework. Most methods mentioned above work well at detecting
and tracking a closed set of categories present in training datasets,
while performing blindly in unseen categories in inference. To ad-
dress this limitation, Dave et al. [10] introduce a large-scale and
diverse benchmark TAO [10]. Based on this benchmark, GTR [68]
takes a brief sequence of frames as input and computes the global
trajectories for all objects. TET [22] computes and compares class
exemplars for each localized object to identify potential matching
candidates, then conducts class-agnostic association based solely on
instance appearance features. However, these methods still suffer
from limitations due to pre-defined object categories. Instead, the
proposed method aims to achieve effective tracking of novel objects
within an open-vocabulary context.
Open-Vocabulary Detection and Tracking. Open-vocabulary
learning is widely applied in the field of computer vision [21, 42, 49,
50, 53, 58, 65, 66], which enables the recognition of unseen classes
by large vocabulary knowledge. OVR-CNN [56] proposes the con-
cept of open-vocabulary object detection, where image captions
are utilized to pre-train the text encoder. Recently, based on the
TAO dataset [10], TAO-OW [24] is proposed as a new benchmark
for open-world tracking. OWL-ViT [19] utilizes the Transformer
decoder to propagate representations through time, enabling the
open-vocabulary detection model [28] to adapt to videos. To tran-
scend pre-defined categories and achieve open-vocabulary MOT,
OVTrack [23] leverages CLIP to locate and classify unseen targets.
However, that method still suffers from the limitation that using
static image classification neglects valuable semantic information
in a given video sequence. In contrast, the proposed GLATrack tries
to leverage the semantic information contained in adjacent frames
to improve the accuracy of object classification.
Learning Tracking from Static Images. Recently, several meth-
ods [14, 46, 59, 61, 67] employ static images directly to train the

track head in MOT and achieve promising performance. For ex-
ample, KDMOT [59] utilizes a pre-trained teacher model to distill
general recognition capabilities into the Re-ID head during the train-
ing while maintaining an efficient architecture during inference.
QDTrack [14] proposes a quasi-dense similarity learning strategy,
achieving competitive tracking performance at the static image
level through contrastive learning for the association process. Li
et al. [23] introduce a data hallucination strategy based on denoising
diffusion probabilistic models [36] to generate pseudo-LVIS videos
and apply a fixed Re-ID [62, 64] feature dimension for similarity
learning. However, it is less reasonable as the semantic richness
of the objects in LVIS that contains 1203 categories varies greatly.
Therefore, we propose an adaptive encoding network that encodes
the objects with different appearance richness into corresponding
Re-ID features for data association.
Knowledge Distillation. Knowledge distillation techniques aim
to distill the knowledge of Vision-and-Language Models (VLMs)
into specific tasks [2, 7, 13, 26]. ViLD [17] employs instance-level
visual-to-visual knowledge distillation to integrate open-vocabulary
knowledge into a two-stage detector. HierKD [26] introduces a
global-level knowledge distillation module, which aligns global-
level image representations with caption semantics. OADP [43]
employs instance-level distillation along with global and block
distillation methods to construct relationship information among
objects during distillation. PCL [8] adopts an image captioning
model to generate detailed labels that describe object instances from
multiple perspectives. Instead of directly applying image knowledge
distillation to open-vocabulary MOT, our GLATrack exploits the
auxiliary role of the reference frames to aggregate the features of
the same target across various spatiotemporal contexts, thereby
obtaining precise and comprehensive object information.
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3 METHODOLOGY
3.1 Overview
The overview architecture of the proposedmethod is shown in Fig. 2.
GLATrack is designed to track objects beyond predefined categories.
Initially, global features 𝐹𝑔 are extracted by a pre-trained backbone,
and then the RPN generates region proposals, which are fed into
the RoI Align to produce fixed-size features denoted as 𝐹𝑟 . Based
on 𝐹𝑔 , the RFE module enables the region features 𝐹𝑟 to retrieve
and restore their prominent characteristics that may have been lost
during the pooling process. Utilizing the enhanced features 𝐹𝑠 as
input, the ARM module and BSC strategy are employed to improve
tracking and classification performance, respectively.

3.2 Problem Formulation
In the training phase, video sequences Xtrain and the corresponding
annotations Atrain including base object categories Cbase ⊂ N are
provided. The input 𝑥𝑖 ∈ Xtrain is fed into the backbone with RoI
Align to obtain the region features 𝐹𝑟 , which are then processed
by the RFE module to obtain refined features 𝐹𝑠 . During classifica-
tion, the distilled CLIP image encoder E𝑑 takes the 𝐹𝑠 as input to
generate image embeddings I, which are then compared with text
embeddings A using cosine similarity to determine the category
of the 𝐹𝑠 . For data association, 𝐹𝑠 is encoded by the ARM module
into image embeddings with different dimensions and sent to the
tracking head for training through contrastive learning.

During the inference phase, the open-vocabulary tracker aims
to track the objects in the given video sequences Xtest belonging
to the classes Cbase ∪ Cnovel. Each trajectory 𝜏𝑡 includes the state
{𝑖𝑑, 𝑙𝑡 , 𝑝𝑡 , 𝑐𝑡 }, where 𝑝𝑡 represents the predicted object confidence
score, 𝑖𝑑 indicates the track id, and 𝑐𝑡 denotes the object class.

3.3 Region-aware Feature Enhancement
The input of the RFE module is the region proposals generated by
RPN for each frame in the video sequences. Specifically, given
the key frame t, RPN generates the object candidates R(𝑛) =

{r1, r2, ..., r𝑛}, represented by the 2D bounding box coordinate
b = [𝑥,𝑦,𝑤,ℎ] and the corresponding object confidence score
p ∈ [0, 1]. Aligning the variable number of detected targets in
each frame to the same dimensions becomes challenging. To ad-
dress this, we introduce a learnable query M of size 𝑁 × 𝐷 , 𝑁 is
the max number of objects in all batches and 𝐷 equals𝑤 × ℎ.

M = [q1, ..., q𝑛,m1, ...,m𝑁−𝑛], (1)

where 𝑛 indicates the number of objects within a batch, q𝑖 denotes
the region query corresponding to r𝑖 , m𝑗 is the masked query. For
the global feature 𝐹𝑔 , we employ a Transformer encoder to model
the global relationship further, obtaining refined features denoted
as 𝐹𝑒 , which are used to enhance the region features. Technically,
we extend region candidates R(𝑛) to region queries within the
Transformer, and the representations of these queries are updated
in the Transformer decoder. Specifically, region queries are updated
through cross-attention with 𝐹𝑒 .

𝐹𝑠 = 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (M𝐹𝑒
⊤

√
𝑑𝑒

)𝐹𝑒 , (2)

Figure 3: The architecture of the BSC module. It achieves effi-
cient image embedding selected from the key and reference
frames through a stack of convolutions and cross-attention.

where the masked queries generate values during the update pro-
cess. These masked queries will be re-masked after each decoder
layer to prevent them from influencing region queries. The updated
region queries are further translated to enhance region features
f𝑠
𝑖
. Such a way ensures that region features capture the global im-

age context comprehensively, significantly reducing the disparity
between the entire image and region distributions.

3.4 Bidirectional Semantic Complementarity
The existing open-vocabulary MOT method, OVTrack [23], con-
nects the Faster R-CNN with CLIP directly, which ignores the rich
target information that adjacent frames may contain. To alleviate
this limitation, the BSC strategy is proposed to incorporate feature
information from the reference frame into the CLIP classification
process, as shown in Fig. 3.

To accelerate inference speed, we employ the CLIP image en-
coder to supervise the training of the image head, which generates
the embeddings I = {i𝑠

𝑘
, i𝑠𝑟 } ∈ R𝐻×𝑊 ×𝑑 for each enhanced feature

𝑓 𝑠 . To ensure the image embedding fusion at a more granular level,
we separately apply 3×3 filters to i𝑘 and i𝑟 to derive deeper-level em-
beddings e𝑘 and e𝑟 . Subsequently, three independent full-connected
layers transform the visual features as 𝑸 , 𝑲 , and 𝑽 :

𝑸 =𝑾𝑞 (𝒆𝑘 + 𝑝𝑘 ) ∈ R𝐻𝑊 ×𝑑 ,

𝑲 =𝑾𝑘 (𝒆𝑟 + 𝑝𝑟 ) ∈ R𝐻𝑊 ×𝑑 ,

𝑽 =𝑾 𝑣 (𝒆𝑟 + 𝑝𝑟 ) ∈ R𝐻𝑊 ×𝑑 ,

(3)

where 𝑾𝑞,𝑾𝑘 ,𝑾 𝑣 are the learnable weight, 𝑝𝑘 and 𝑝𝑟 are the
position embeddings, respectively. We then perform matrix mul-
tiplication with 𝑄 , 𝐾 , and 𝑉 , followed by weighting the language
features using the resulting similarity matrix. Subsequently, the
e𝑘 are combined with the key frame features influenced by the
reference frame to obtain the fused embeddings e𝑠

𝑘
∈ R𝐻𝑊 ×𝑑 :

e𝑠
𝑘
= 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑄𝐾

⊤
√
𝑑

)𝑉 + e𝑘 , (4)
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where 𝑑 is the feature dimension. Similarly, the features of the
reference frame undergo the process mentioned above to produce
the e𝑠𝑟 ∈ R𝐻𝑊 ×𝑑 .

ê = 𝐷𝑒𝑐𝑜𝑑𝑒𝑟 (𝑐𝑜𝑛𝑐𝑎𝑡 (e𝑠
𝑘
, e𝑠𝑟 )). (5)

By concatenating e𝑠
𝑘
and e𝑠𝑟 along the channel dimension and

decoding them, restored embeddings ê ∈ R𝐻𝑊 ×𝑑 are aligned with
the counterpart embeddings generated by the CLIP image encoder.

3.5 Appearance Richness Measurement
Current MOT methods in open-vocabulary environments heavily
rely on appearance cues for data association where motion cues are
delicate due to various camera and object motion patterns. However,
restricting target appearance to uniform dimensions hampers the
capability of the model to grasp the intrinsic semantic information
in these appearances, making learning robust target appearances
challenging. To address this issue, the proposed ARM module char-
acterizes the target appearance using specific feature dimensions
corresponding to their appearance semantic richness. Specifically,
given the input image pairs (𝑥𝑘𝑒𝑦, 𝑥𝑟𝑒 𝑓 ), we extract corresponding
enhanced RoIs (𝐹𝑠

𝑘
, 𝐹𝑠𝑟 ). As each 𝑓 𝑠 ∈ 𝐹𝑠 encapsulates semantic

features of the target, we convert it into a semantic assessment
score 𝑠𝑐𝑜𝑟𝑒𝑡 .

𝑠𝑐𝑜𝑟𝑒𝑡 = 𝐿𝑖𝑛𝑒𝑎𝑟 (𝑅𝑒𝑠ℎ𝑎𝑝𝑒 (𝐶𝑜𝑛𝑣 (𝑓 𝑠 ))) ∈ R1×𝐷 , (6)

where 𝐷 is the predefined maximum representation scale. However,
as different 𝑓 𝑠 are represented with equal information content, a
single 𝑠𝑐𝑜𝑟𝑒𝑡 cannot fully capture its informational significance in
the input image. Therefore, we introduce 𝑠𝑐𝑜𝑟𝑒𝑠𝑜 , derived from the
fundamental information 𝑁 (𝑤,ℎ,𝑢, 𝑟 ) of 𝑓 𝑠 in the original image,
where𝑤 and ℎ represent the width and height, 𝑢 indicates the area
and 𝑟 denotes the proportion to the entire image. Subsequently,
𝑠𝑐𝑜𝑟𝑒𝑡 is adaptively combined with the computed 𝑠𝑐𝑜𝑟𝑒𝑠𝑜 .

𝑠𝑐𝑜𝑟𝑒𝑑 = 𝜆𝑠𝑐𝑜𝑟𝑒𝑡 + (1 − 𝜆)𝑠𝑐𝑜𝑟𝑒𝑜 . (7)

where 𝜆 serves as a trainable parameter. Finally, 𝑠𝑐𝑜𝑟𝑒𝑑 is utilized
to determine the representation scale, with the position associated
with the highest score indicating the scale of 𝑓 𝑠 .

3.6 Training and Inference
During the process of transferring CLIP knowledge to our task, we
utilize L1 loss to supervise the training of the image head. The goal
is to minimize the distance between ê𝑖 and 𝛽𝑖 .

Limage =
1
|R |

∑︁
𝑟 ∈R

| |ê𝑖 − 𝛽𝑖 | |1, (8)

where 𝛽𝑖 is the corresponding image embedding encoded by the
CLIP image encoder. For the class label of 𝑓 𝑠 , we generate text
prompts A(ĉ), which consists of 𝐿 context vectors c𝑣 and a class
name embedding c𝑛 . Then the CLIP text encoder E takes the input
of the prompt and outputs the corresponding text embedding t𝑐 ,
∀c ∈ Cbase. We calculate the similarity between the predicted
embeddings t𝑝 and their corresponding CLIP embeddings t𝑐 to
synchronize them.

V(𝑟 ) = 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 [cos(t𝑝 , t𝑏 )/𝜆, cos(t𝑝 , t | Cbasc | )/𝜆], (9)

where 𝑐𝑜𝑠 (·, ·) indicates the cosine similarity, 𝜆 denotes a tempera-
ture parameter and t𝑏 represents a learned background prompt.

Ltext =
1
|R |

∑︁
𝑟 ∈R

LCE (V(𝑟 ), 𝑐𝑟 ), (10)

The cross-entropy loss LCE is calculated using 𝑐𝑟 as the class label
of 𝑟 . We employ contrast learning to achieve robust tracking based
on appearance cues. For the matched RoIs in the reference frame
𝑥𝑟𝑒 𝑓 , we group objects with the same identity into 𝐾+ and separate
objects with different identities into 𝐾− .

Sim(r) = exp(𝑟 · k+/𝜏)
𝛼
∑
𝐾+ exp(𝑟 · k+/𝜏) +∑

𝐾− exp(𝑟 · k−/𝜏) , (11)

Ltrack = −
∑︁
𝑟 ∈R

1
|𝐾+ (𝑟 ) |

∑︁
k+∈𝐾+ (𝑟 )

log(Sim(k+)), (12)

where 𝛼 equals 1
|𝐾+ (k) | . 𝑘 is feature embedding of the training

sample in the key frame, 𝑘+ and 𝑘− denote its positive and neg-
ative targets, respectively. During the inference phase, given the
enhanced RoIs, existing trajectories T are directly associated with
targets 𝑟 ∈ R using appearance feature similarity. The similarity
between targets 𝜏 within trajectories and candidate targets 𝑟 is
measured using both bidirectional softmax and cosine similarity.

f (𝜏, 𝑟 ) = 1
2

[
exp(u𝑟 · v𝜏 )∑

𝑟 ′∈R exp(u𝑟 ′ · v𝜏 )
+ exp(u𝑟 · v𝜏 )∑

𝜏 ′∈T exp(u𝑟 · v𝜏 ′ )

]
. (13)

The higher bi-softmax value indicates that the distance between
the two matched objects in the feature space is reduced. If f (𝜏, 𝑟 ) >
𝛼 , the target with the maximum similarity is added to the current
trajectory. If objects 𝑟 fail to match any existing tracks but maintain
a confidence score higher than 𝜎 , a new track will be initiated.
In the classification pipeline, the enhanced features 𝑓 𝑠 serve as
inputs to the distilled image head, generating corresponding image
embeddings ê. These image embeddings, along with generated text
embeddings, are used to compute the similarity for determining
the category of the targets.

4 EXPERIMENTS
4.1 Datasets
We conduct experiments on the publicly available large-vocabulary
MOT benchmark TAO [10]. GLATrack is trained on the hallucinated
LVIS dataset [23] within the base categories. We evaluate GLATrack
on both the validation and test sets of TAO.
LVIS Dataset. Unlike MOT datasets [9, 11, 55] with limited object
classes, LVIS offers annotations for a large vocabulary of object
categories, covering a wide spectrum of real-world objects. Fol-
lowing the OVTrack [23], we use their hallucinated LVIS dataset.
Compared with TAO, this dataset simulates object motion in an
open-world context with a smaller dataset size, making it suitable
for open-vocabulary MOT tasks, especially in scenarios with lim-
ited computational resources. In this dataset, we employ the 886
frequent and common categories as the base classes C𝑏𝑎𝑠𝑒 , while
reserving the 337 rare categories as the novel categories C𝑛𝑜𝑣𝑒𝑙 .
TAO Dataset. The TAO dataset is a comprehensive video dataset
designed to provide rich visual and semantic data for diverse video
analysis tasks. A notable feature of the TAO dataset is its openness,
allowing tracking of any object rather than being limited to specific
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Table 1: Comparison with state-of-the-art methods on both base and novel classes in the validation and test sets of TAO. All
methods use ResNet-50 as the backbone. We indicate the classes and datasets of the training data for each method. Note that
GLATrack and OVTrack are exclusively trained on the static LVIS dataset. The best results are highlighted in bold.

Method Classes Data Base Novel

Validation set Base Novel LVIS TAO TETA LocA AssocA ClsA TETA LocA AssocA ClsA

QDTrack [14] ✓ ✓ ✓ ✓ 27.1 45.6 24.7 11.0 22.5 42.7 24.4 0.4
TETer [22] ✓ ✓ ✓ ✓ 30.3 47.4 31.6 12.1 25.7 45.9 31.1 0.2
DeepSORT (ViLD) [45] ✓ − ✓ ✓ 26.9 47.1 15.8 17.7 21.1 46.4 14.7 2.3
Tracktor++ (ViLD) [3] ✓ − ✓ ✓ 28.3 47.4 20.5 17.0 22.7 46.7 19.3 2.2
OVTrack [23] ✓ − ✓ − 35.5 49.3 36.9 20.2 27.8 48.8 33.6 1.5

GLATrack (Ours) ✓ − ✓ − 37.9 54.3 38.7 20.8 31.0 53.2 37.2 2.6

Method Classes Data Base Novel

Test set Base Novel LVIS TAO TETA LocA AssocA ClsA TETA LocA AssocA ClsA

QDTrack [14] ✓ ✓ ✓ ✓ 25.8 43.2 23.5 10.6 20.2 39.7 20.9 0.2
TETer [22] ✓ ✓ ✓ ✓ 29.2 44.0 30.4 10.7 21.7 39.1 25.9 0.0
DeepSORT (ViLD) [45] ✓ − ✓ ✓ 24.5 43.8 14.6 15.2 17.2 38.4 11.6 1.7
Tracktor++ (ViLD) [3] ✓ − ✓ ✓ 26.0 44.1 19.0 14.8 18.0 39.0 13.4 1.7
OVTrack [23] ✓ − ✓ − 32.6 45.6 35.4 16.9 24.1 41.8 28.7 1.8

GLATrack (Ours) ✓ − ✓ − 35.7 51.3 37.3 18.4 26.3 46.5 29.0 3.3

object categories. It consists of three partitions: train, validation,
and test, encompassing 500, 988, and 1419 videos, respectively. In
the test set of the TAO, 324 object classes overlap with the LVIS, and
we define 33 of these classes as rare, which is denoted as C𝑛𝑜𝑣𝑒𝑙 .

4.2 Evaluation Metrics
TETA. TETA [22] is built upon the HOTA [25], extending its func-
tionality to address challenges posed by long-tail scenarios. TETA
is composed of three parts: localization score (LocA), classification
score (ClsA), and association score (AssocA). The TETA score is
obtained by the arithmetic mean of these three scores.
Track mAP. Track mAP [52] offers a comprehensive evaluation by
considering both the detection accuracy and the ability to associate
targets. This assessment involves measuring the overlap between
the predicted bounding boxes and the ground truth.

4.3 Implementation Details
Weuse Faster R-CNN [35]with ResNet-50 [16] as the open-vocabulary
detector. The model is trained on 4 GPUs, with 2 images per GPU.
Our training process consists of two stages. Initially, we train the
open-vocabulary object detector following [13, 17]. Then we fine-
tune the model for tracking, assigning loss weights of 0.25 forLtrack
and 1.0 for Laux based on [14, 23]. During training, non-maximum
suppression (NMS) is applied to filter boxes 𝑅 with an IoU thresh-
old of 0.7, and we randomly select |𝑅 | boxes per image (|𝑅 | = 256).
For inference, boxes with an IoU threshold of 0.5 are selected. We
employ the SGD optimizer with an initial learning rate of 0.02 and
set the weight decay and momentum to 0.0001 and 0.9, respectively.
In terms of track management, each track maintains a history of 10
frames, with parameters 𝛼 = 0.5 and 𝜎 = 0.0001.

Table 2: Comparison with Closed-set MOT methods in TETA,
LocA, AssocA, and ClsA. We compare GLATrack with exist-
ing trackers on the TAO validation set. Both GLATrack and
OVTrack employ ResNet-50 as the backbone, while other
competing methods mainly utilize ResNet-101, except for
AOA. All methods employ Faster R-CNN as the detector.

Method TETA LocA AssocA ClsA

SORT-TAO [10] 24.8 48.1 14.3 12.1
Tracktor [3] 24.2 47.4 13.0 12.1
DeepSORT [45] 26.0 48.4 17.5 12.1
AOA [12] 25.3 23.4 30.6 21.9
Tracktor++ [10] 28.0 49.0 22.8 12.1
QDTrack [14] 30.0 50.5 27.4 12.1
TETer [22] 33.3 51.6 35.0 13.2
OVTrack [23] 34.7 49.3 36.7 18.1

GLATrack 37.1 54.1 38.5 18.6

4.4 Comparison with State-of-the-Art Methods
Open-vocabulary MOT. We compare GLATrack with other meth-
ods on the challenging MOT benchmark TAO [10]. Closed-set track-
ers, such as QDTrack [14] and TETer [22], are trained on the en-
tire LVIS dataset, while DeepSORT [45] and Trackor++ [10] are
integrated with the open-vocabulary detector ViLD [17] for open-
vocabulary MOT. OVTrack [23], along with the aforementioned
methods, are trained only on the base categories of LVIS. The evalu-
ation results on the validation and test sets of TAO are presented in
Tab. 1, which are divided into two parts: base categories and novel
categories. The proposed method achieves significant performance
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Table 3: Comparison with Closed-set MOT methods in
Track mAP50, Track mAP75, and Track mAP. We compare
GLATrack with existing trackers on the validation set of TAO.
∗ indicates the use of static images for training.

Method Track mAP50 Track mAP75 Track mAP

SORT-TAO [10] 13.2 - -
QDTrack [14] 15.9 5.0 10.6
GTR∗ [68] 20.4 - -
TAC [47] 17.7 5.80 7.30
BIV [46] 19.6 7.30 13.6
OVTrack∗ [23] 21.2 10.6 15.9

GLATrack∗ 22.2 11.5 16.8

Table 4: Ablation studies on the validation set of TAO to eval-
uate the contribution of modules in the proposed GLATrack.

Base RFE ARM BSC TETA LocA AssocA ClsA

✓ 34.7 49.3 36.7 18.1
✓ ✓ 36.2 54.1 37.2 17.2
✓ ✓ 34.9 49.5 37.3 17.6
✓ ✓ ✓ 36.3 53.8 37.9 17.3
✓ ✓ ✓ ✓ 37.1 54.1 38.5 18.6

on the benchmark, outperforming comparison methods across the
base and novel categories on all metrics. Specifically, GLATrack
achieves the highest score of 37.9 TETA in base classes and 31.0
TETA in novel classes on the validation set. Although QDTrack
[14] and TETer [22] are trained on both C𝑏𝑎𝑠𝑒 and C𝑛𝑜𝑣𝑒𝑙 , their
performance is unsatisfactory compared with GLATrack, which is
trained only on base classes yet achieves superior detection results
on both base and novel classes. Additionally, GLATrack outperforms
the first open-vocabulary tracker, OVTrack [23], by a substantial
margin, achieving +2.4 TETA on base classes and +3.2 TETA on
novel classes, respectively. Similarly, GLATrack also achieves ex-
cellent performance on the TAO test set. The competitive results
demonstrate that GLATrack can effectively tackle object tracking
in complex scenarios.
Closed-set MOT.We evaluate GLATrack against existing methods
on the TAO validation set using TETA and Track mAP, as shown in
Tab. 2 and 3. GLATrack and OVTrack [23] are both trained on the
base categories using static images, while other closed-set trackers
are trained on video datasets, which include these unseen cate-
gories. As AOA [12] integrates multiple few-shot detection and
Re-ID models trained on other datasets, it achieves a higher classifi-
cation score than other methods. However, GLATrack outperforms
previous methods in almost all evaluation metrics. Specifically,
GLATrack achieves the highest TETA score of 37.1 and AssocA
score of 38.5, surpassing OVTrack by 2.4 points in TETA and 1.8
points in AssocA. For Track mAP, GLATrack achieves 22.2 Track
mAP50 and 11.5 Track mAP75 on the validation set, which are 1.0
points and 0.9 points higher than the baseline, respectively, result-
ing in an overall performance improvement of 0.9 points. These
improvements show that GLATrack exhibits excellent performance

Table 5: Zero-shot generalization. GLATrack is tested on the
BDD100K [55] MOT validation split. We provide an expla-
nation of the training data corresponding to each model. ∗
denotes logit masking of classes not present in BDD100K.

Method Training TETA LocA AssocA ClsA

QDtrack∗ [14] LVIS, TAO 35.6 38.1 28.5 40.2
TeTer∗ [22] LVIS, TAO 36.1 36.4 31.9 40.2
QDTrack [14] LVIS, TAO 32.0 25.9 27.8 42.4
TETer [22] LVIS, TAO 33.2 24.5 31.8 43.4
OVTrack [23] LVIS 42.5 41.0 36.7 49.7

GLATrack LVIS 45.2 42.8 40.6 52.4

compared with other methods, especially when trained solely on
static images.
Zero-shot Generalization.We evaluate the ability of GLATrack
to generalize zero-shot learning compared with closed-set track-
ers by conducting experiments on the MOT benchmark BDD100K
[55]. In our experiments, we condition the proposed tracker on
textual prompts containing class names sourced from the BDD100K
dataset. Additionally, we report the results with masked logits for
classes absent in BDD100K. Tab. 5 presents TETA results on the
BDD100K dataset, where GLATrack achieves the best performance
across all metrics. Specifically, compared with OVTrack, GLATrack
outperforms 1.8 points in localization, 3.9 points in association,
and 2.7 points in classification, respectively. These results demon-
strate the robust performance of GLATrack, even when applied to
a challenging large-scale benchmark.

4.5 Ablation Studies
We conduct ablation studies on the validation set of TAO to assess
the effectiveness of the modules in the proposed GLATrack, using
TETA as the main evaluation metrics for the ablation experiments.
Impact of Region-aware Feature Enhancement Module.We
validate the effectiveness of the RFE module, as shown in Tab.
4. Compared with the baseline method, RFE improves TETA by
1.5 points, LocA by 4.8 points, and AssocA by 0.5 points. These
significant improvements in metrics indicate that the proposed
RFE module effectively improves the embeddings extracted by RoI
Align from global image features. As illustrated in Fig. 5, GLATrack
focuses on the bird and its environment. However, incorporating
enhanced features into the frozen image head decreases ClsA by
0.9 points due to feature inconsistency.
Impact of Appearance Richness Measurement Module. The
ARM module quantifies semantic information in diverse visual
representations, as shown in Tab. 4. Compared with encoding the
objects with uniform Re-ID feature dimensions, the ARM module
results in a notable improvement of 0.7 in AssocA. The significant
improvement in AssocA indicates the effectiveness of the proposed
ARM module. Furthermore, we conduct extensive experiments to
explore the impact of different representation scales on tracking
performance. Fig. 6 shows that increasing representation dimen-
sions initially improves basic category metrics but later decreases,
while novel category metrics show the opposite trend. Given the
long-tail distribution of the TAO dataset, excessively large or small
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(a) OVTrack

(b) GLATrack

Figure 4: Qualitative comparison between OVTrack [23] (top) and GLATrack (bottom) on the TAO dataset. Tracking targets
from classes that are not encountered during the training. The identical box color indicates the same object.

(a) OVTrack (b) GLATrack

Figure 5: Two different heat maps obtained by OVTrack
and GLATrack. OVTrack emphasizes the background, while
GLATrack primarily focuses on the entire target and com-
prehends the surrounding environment.

dimensions are not conducive to overall appearance representation.
Therefore, we set the maximum dimension to 1024.
Impact of Bidirectional Semantic Complementarity Strategy.
Replacing the original image head with BSC improves TETA by 0.8
points, LocA by 0.3 points, and ClsA by 1.5 points, as shown in the
fourth row of Tab. 4. This indicates that supplementing semantic
information further enhances classification accuracy. Specifically,
compared to the original image head, BSC enhances the semantic
representation ofmatching targets in key frames, which is beneficial
to the model in identifying targets in complex scenes. Furthermore,
the utilization of BSC leads to a notable enhancement in the classi-
fication metric involving both the first and second modules. This
also explains the observed decrease in classification performance
in ablation experiments.

4.6 Qualitative Analysis
The qualitative comparison results illustrated in Fig. 4 demonstrate
the capabilities of both OVTrack and GLATrack in tracking novel
targets. However, in the left side results, OVTrack encounters an
ID switch and target loss when the squirrels are occluded and
blend with the background color in the second and third frames,
respectively. In contrast, GLATrack maintains a correct ID and
successfully locates the targets. Additionally, the right side results
depict challenges of fine-grained classification in target occlusion
scenarios. OVTrack exhibits an unclear position of the elephant in
the first frame and loses its position in the third frame, whereas
GLATrack accurately localizes the target. We present the failure
cases of the proposed method: throughout the tracking process,

Figure 6: The visualization of TETA and AssocA on the TAO
dataset using different dimensions to represent object ap-
pearance, which contains base classes and novel classes.

GLATrack struggles to differentiate the tree trunk next to the pool
due to limited valuable information, yet it maintains stable tracking.

5 CONCLUSION
In this paper, we propose GLATrack, a novel open-vocabulary multi-
object tracking framework. Recognizing the importance of robust
semantic representation, we designed an RFE module that utilizes
the powerful contextual modeling capability of Transformer to
enhance pooled region features. To efficiently and accurately detect
novel objects, we propose a BSC module to distill knowledge from
large-scale vision-language models, leveraging information from
both key and reference frames. Additionally, we introduce an ARM
module to determine the representation scale of the target based on
fundamental attributes and semantic richness, facilitating robust
data association relying on appearance cues. Extensive experiments
on the large-scale, large-vocabulary TAO benchmark demonstrate
that the proposedmethod outperforms existing trackers in detecting
and tracking objects across both base and unseen novel classes,
achieving state-of-the-art performance.
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