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Abstract
Multimodal language modeling has enabled
breakthroughs for representation learning, yet re-
mains unexplored in the realm of functional brain
data for clinical phenotyping. This paper pioneers
EEG-language models (ELMs) trained on clinical
reports and 15000 EEGs. We propose to com-
bine multimodal alignment in this novel domain
with timeseries cropping and text segmentation,
enabling an extension based on multiple instance
learning to alleviate misalignment between irrele-
vant EEG or text segments. Our multimodal mod-
els significantly improve over EEG-only models
across four clinical evaluations and for the first
time enable zero-shot classification as well as re-
trieval of both neural signals and reports. In sum,
these results highlight the potential of ELMs, rep-
resenting significant progress for clinical applica-
tions.

Medical neuroimaging, including electroencephalography
(EEG), has lagged behind other fields in leveraging the
significant advancements of deep learning. While EEG
sees widespread clinical use for clinical phenotyping such
as pathology detection, in particular for epilepsy (Binnie
& Stefan, 1999; Jing et al., 2020) as well as sleep disor-
ders (Malhotra & Avidan, 2013), available annotated data is
scarce. As the impressive scaling properties of deep learn-
ing are now well described (Kaplan et al., 2020; Smith et al.,
2023), self-supervised learning (SSL) is a promising direc-
tion by enabling pretraining with unlabeled data and thereby
increasing available training sample sizes (Hadsell et al.,
2006; Chen et al., 2020). Various such approaches have
shown initial success when applied to EEG. These include
methods relying on data-augmentations (Mohsenvand et al.,

1Charité – Universitätsmedizin Berlin, Department of Psychia-
try and Psychotherapy, Berlin, Germany 2Hertie Institute for AI in
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2020; Yang et al., 2021), the temporal ordering of EEG data
(Banville et al., 2021), subject identities of EEG crops (Gi-
jsen & Ritter, 2025), as well as masking and reconstruction
(Jiang et al., 2024). However, these are hindered by the
difficulty of creating appropriate data augmentations and,
especially reconstruction techniques, by low signal-to-noise.
Thus, progress in the medical context has lagged, likely fur-
ther exacerbated by the modality displaying high similarity
between pathologies.

Meanwhile, important further progress was made in com-
puter vision by leveraging natural language as a signal dur-
ing pretraining (Radford et al., 2021). Specifically, con-
trastive approaches which aim to align embeddings of image-
text pairs have shown to yield representations powerful for
downstream tasks in radiology (Zhang et al., 2022a; 2023).
Given that success in radiology is also believed to be bottle-
necked by the availability of labeled data and the reliance
on fine-grained information (Zhang et al., 2022a), this joint
modeling approach is a particularly interesting and novel
application for the challenging problem of medical EEG.
Fortunately, this is made possible by the clinical reports of
physicians which accompany hospital EEG recordings and
contain information about the patient and recording itself
(Obeid & Picone, 2016).

However, language-EEG pretraining also entails unique
challenges. First, datasets are generally smaller than those
used in radiology and especially computer vision. Second,
the clinical reports tend to be highly heterogeneous. While
previous applications have paired natural and medical im-
ages with short captions (Radford et al., 2021; Zhang et al.,
2022a), EEG reports tend to span multiple paragraphs and
include information irrelevant to downstream clinical tasks,
potentially hindering the pretraining process. Moreover,
they do not contain temporal information about when events
occurred during the recording.

The current work presents the application of aligning func-
tional brain data with medical textual information for the
first time by training EEG-language models (ELMs). To
overcome the challenging formats of modalities, constitut-
ing long timeseries and multiparagraph reports, we propose
sub-unit alignment. To address inconsistent relevance of
EEG-text pairs, we additionally propose an extension draw-
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Figure 1. Overview of the methodology. (Left) The ELM-MIL approach allows flexible multimodal alignment by cropping EEG and
segmenting medical reports. We sample multiple positives in a cross-modal fashion, such that each EEG crop can be aligned with any
number of segments from the paired report (l|e). Vice versa, text can be aligned selectively to crops across the EEG recording (e|l),
illustrated by the differently shaded arrows. (Middle) An overview of investigated methods by visualizing the cross-modal similarity
matrices. (Right) To evaluate models, we perform bidirectional retrieval analyses and perform multiple pathology detection tasks.

ing on insights from the field of multiple instance learning
(MIL). Furthermore, we investigate how to best handle the
heterogeneity of medical EEG reports. Specifically, we filter
reports and perform content-based text segmentation, en-
abling inference on the relative importance of the different
information sources. Our approach allows us to provide
the first evidence of considerable retrieval capabilities for
clinical reports and EEG. We furthermore test downstream
performance of ELMs on classifying pathological EEG,
which is a widespread clinical task, using four evaluations.
These tests include zero-shot classification, leveraging lan-
guage capabilities to show our approach’s flexibility. Our
results constitute considerable increases in pathology detec-
tion performance, especially in scenarios with few labels.
These are particularly relevant for clinical contexts, which
tend to operate with smaller datasets compared to many
common areas of deep learning applications.

1. Related work
• Self-supervised learning with EEG data. SSL with

EEG data has been predominantly applied to emotion
recognition (Zhang et al., 2022b; Wang et al., 2023), mo-
tor imagery (Cheng et al., 2020; Rommel et al., 2022),
sleep staging (Yang et al., 2021; Rommel et al., 2022),
as well as pathology detection. For the latter applica-
tion, the temporal order of EEG crops was used ini-
tially to demonstrate label-efficient representation learn-
ing (Banville et al., 2021). Augmentation-based con-
trastive learning, combined with larger EEG encoders
trained on multiple datasets, further improved pathology
detection (Mohsenvand et al., 2020). Still, using subject
identities as proxy labels during pretraining was found to
improve disease detection over augmentation-based meth-
ods (Gijsen & Ritter, 2025). Recent studies have explored

the use of transformers (Yang et al., 2024; Jiang et al.,
2024), with a focus on scaling while adopting tokeniza-
tion in an attempt to improve the challenge of effective
cross-dataset EEG training.

• Using EEG for pathology detection. While SSL shows
good performance for pathology detection, it is partic-
ularly in contexts with little annotated data that it per-
forms well. When more labeled data is available, expert-
based feature extraction combined with traditional ma-
chine learning classifiers are competitive together with
supervised deep learning (Roy et al., 2019; Gemein et al.,
2020; Western et al., 2021; Kiessner et al., 2023; Darvishi-
Bayazi et al., 2024). This trend has also been observed in
other EEG applications (Schirrmeister et al., 2017; Lotte
et al., 2018). This may indicate that inter-rater variability
in EEG classification may create a performance ceiling
(Engemann et al., 2018; Gemein et al., 2020), highlighting
the importance of improving classification with limited
labels.

• Medical multimodal language modeling. Medical
vision-language modeling aims to guide self-supervised
pretraining on medical images using textual information
in reports, with performance on a variety of downstream
tasks benefiting as a result (Huang et al., 2021; Wang
et al., 2022; Zhang et al., 2022a). Due to less available
data in the medical domain, using a pretrained, frozen
language encoder was found to boost downstream perfor-
mance while considerably reducing computational cost
(Liu et al., 2023a). Nevertheless, this line of work has
focused mainly on the ECG, X-ray, CT images, and struc-
tural MRI images (Chen et al., 2023; Lalam et al., 2023;
Liu et al., 2023b). Recent advances outside the medical
domain include multi-task strategies, both during pretrain-
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ing by integrating contrastive learning and self-supervised
losses (Tang et al., 2025; Tschannen et al., 2025), as well
as finetuning on multiple downstream tasks (Dai et al.,
2023; Liu et al., 2024). Further exploration involves mov-
ing compute from unimodal encoding to multimodal fu-
sion (Kim et al., 2021).

• Multiple instance learning. MIL has seen only limited
exploration for EEG. Initial studies have investigated the
framework by casting crops of EEG as instances and train-
ing classifiers for emotion recognition (Caicedo-Acosta
et al., 2019), motor imagery (Collazos-Huertas et al.,
2020), mental disorders (Sadatnejad et al., 2019), and
sleep apnea (Sadatnejad et al., 2019). Of these, only the
latter has relied on deep learning.

2. Methods
2.1. Pretraining

2.1.1. EEG-LANGUAGE PRETRAINING

Here we detail the setup for pretraining ELMs. Whereas
vision-language models are typically trained by aligning a
2D image with a short caption (Radford et al., 2021; Zhang
et al., 2022a), EEG-language modeling is confronted with
long EEG time series and multi-paragraph medical reports.
To overcome this, we employ text segmentation and time
series cropping to create multiple non-overlapping samples
per modality and subject. Next, we propose sub-unit align-
ment by pretraining on these cropped samples. In addition
to considerably increasing sample size, this enables the ex-
tension of successful approaches in vision-language models.
We initially describe two strategies for sub-unit alignment.
First, EEG and text representations may be projected us-
ing neural networks to a new, shared latent space prior to
alignment (as in CLIP; (Radford et al., 2021; Zhang et al.,
2022a)), denoted henceforth as ELMe,l. Alternatively, the
EEG embeddings may be projected into the output space of
the language model (as in M-FLAG by Liu et al. (2023a)),
denoted as ELMl and trained using a bespoke loss function.
This approach was found to reduce latent collapse in smaller
data settings (Liu et al., 2023a). Following a description of
these models, we will introduce an extension based on MIL.

For EEG-language pretraining we assume the paired input
(xe,i,xl,i). Here xe,i ∈ Rc×s denotes one or a batch of
crops of EEG signal with c channels and s time samples
belonging to EEG recording i. Meanwhile, neural signals of
recording i as well as patient information is described in xl,i,
which represents a natural language text report. The main
goal is to train the EEG encoder function fe, which projects
a crop of EEG signal into a vector of lower dimensionality.
Following pretraining, this encoder function fe can be used
for downstream applications such as pathology detection.

Dropping the recording subscript i for brevity, each pair

(xe,xl) is projected into the vectors e ∈ Rd and l ∈ Rd

respectively. For every xe, text of the associated report is
sampled according to x̃l = zl (xl), where zl represents the
language sampling function detailed below. First, both the
EEG crop xe and text x̃l are encoded into vectors he and
hl. For ELMe,l, we use projectors ge and gl to yield vectors
e and l, whereas for ELMl the text embeddings are not
projected:

e = ge (fe (xe)) (1)

l =

{
gl (fl (x̃l)) if ELMe,l

fl (x̃l) if ELMl

(2)

To enable multimodal pretraining, the projectors ge and gl
map e and l to a shared latent space with identical dimen-
sionality d. For ELMl, this is achieved by having ge project
to the native dimensionality of the text encoder fl.

As paired medical EEG data and clinical reports are scarce,
training the text encoder function fl from scratch is unlikely
to be successful. Furthermore, employing an existing lan-
guage model and finetuning the model during multimodal
pretraining can lead to training instability and collapse of the
latent space (Jing et al., 2021; Liu et al., 2023a). To prevent
resulting information loss, we follow the recommendations
by Liu et al. (2023a) to use a pretrained language model
for fl and freeze its weights during training. For ELMl, we
adopt their proposed composite loss to learn fe and ge:

Ltotal = Lalign + Lorth (3)

Lalign = ∥ê− l̂∥22 = 2− 2ê⊤ l̂ (4)

Lorth =
∑
j=1

(
1−

(
ĥ⊤
e · ĥe

)
jj

)2

(5)

+
∑
j ̸=k

(
ĥ⊤
e · ĥe

)2

jk
(6)

where {j, k} ∈ {1, ...,dim
(
ĥe

)
}2, ĥe denotes a batch of

ℓ2-normalized EEG embeddings prior to projection and ê
denotes the normalized projected embeddings. Text embed-
dings l̂ are likewise normalized. Whereas Lalign minimizes
the difference between ê and l̂, Lorth promotes indepen-
dence between latent dimensions of ĥe. More specifically,
the latter is achieved by manipulating the empirical correla-
tion matrix, where the diagonal and off-diagonal elements
are pushed to 1 and 0 respectively (Liu et al., 2023a).

Meanwhile, ELMe,l relies on the cosine similarities between
normalized EEG and text embeddings, se2lj,j = ê⊤j l̂j , and
between text and EEG, sl2ej,j = l̂⊤j êj , with j = 1, 2, 3, ..., B
for batch size B (Radford et al., 2021). The multimodal
contrastive InfoNCE loss uses a temperature hyperparameter
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τ and is formulated as:

Le2l
j,k = − log

exp
(
se2lj,k/τ

)
∑B

m=1 exp
(
se2lj,m/τ

) (7)

Ll2e
j,k = − log

exp
(
sl2ej,k/τ

)
∑B

m=1 exp
(
sl2ej,m/τ

) (8)

Lalign =
1

2B

B∑
j=1

B∑
k=1

(
Le2l
j,k + Ll2e

j,k

)
(9)

Multiple instance learning. While previous approaches
aim to align text and EEG crops uniformly, certain text
segments likely describe specific EEG sections more accu-
rately than others. Therefore, we introduce a MIL alignment
strategy that builds on ELMe,l and accommodates multiple
positive samples, allowing for more nuanced multimodal
relationships. Whereas MIL approaches often rely on op-
erations such as max-pooling to focus on single positive
samples, we rely on insights from the video-text alignment
approach (MIL-NCE) by Miech et al. (2020). For a given
text sample xl, we sample multiple positive EEG crops xe

from the paired recording to approximate the P (e|l) dis-
tribution, while for an EEG crop, multiple text segments
are sampled to model the P (l|e) distribution. We combine
these and sample positives for each EEG and text report
respectively to approximate P (e, l) via bidirectional align-
ment. This approach effectively relaxes the assumption of
strong alignment for each individual (xe,xl) pair, instead
assuming that, on average, positive samples should have
higher similarity scores than negative samples. To this end,
we extend the InfoNCE loss to multiple instances:

Le|l = − 1

Bl

Bl∑
k=1

log

1
|Pk|

∑
j∈Pk

exp(se2lj,k/τ)∑Be

j=1 exp(s
e2l
j,k/τ)

(10)

Ll|e = − 1

Be

Be∑
k=1

log

1
|Qk|

∑
j∈Qk

exp(sl2ej,k/τ)∑Bl

j=1 exp(s
l2e
j,k/τ)

(11)

with |Pk| ≤ N and |Qk| ≤ M, (12)

Le,l =
1

2

(
Le|l + Ll|e

)
(13)

and where Pk and Qk are sets of positive EEG and text
segments respectively. Be and Bl are the batch sizes for
EEG and text respectively, for which we sample up to N
EEG and M text segments for B

N subjects. We normalize
using |Qk| or |Pk| to account for the varying number of
crops across subjects.

2.1.2. EEG-ONLY SELF-SUPERVISED LEARNING

We compare the representations learned by EEG-language
pretraining to those obtained via EEG-only pretraining us-
ing the same pretraining dataset and EEG encoder. We

emphasize that “EEG-only” refers to pretraining without
text, while ELMs use text solely during pretraining to guide
EEG representation learning. At test time, neither method
uses clinical reports, ensuring alignment with standard EEG-
based clinical practice. We provide further information
on the following methods in Appendix B.5: Bootstrap-
Your-Own-Latent (BYOL; (Grill et al., 2020)), Variance-
Invariance-Covariance Regularization (VICReg; (Bardes
et al., 2021)), Contrast with the World Representation (Con-
traWR; (Yang et al., 2021)), Relative Positioning (RP;
(Banville et al., 2021)), Temporal Shuffling (TS; (Banville
et al., 2021)), Contrastive Predictive Coding (CPC; (Banville
et al., 2021)).

3. Experimental Setup
3.1. Datasets and evaluation tasks

• TUEG. The Temple University Hospital (TUH) EEG Cor-
pus is the largest available corpus of hospital EEG data
with varying montages, channel counts, and sampling fre-
quencies (n=26846 (Obeid & Picone, 2016)). For most of
the dataset, no labels are available beyond patient age and
sex. However, many EEG sessions are associated with a
natural-language clinical report.

• TUAB. The TUH Abnormal EEG corpus is a subset of
TUEG which was manually labeled by clinicians indicat-
ing whether the EEG displays pathological abnormalities
(Lopez et al., 2015). This enables the binary classification
task of predicting the status of {normal, abnormal} on a
recording-level. Following the literature, we use the pro-
vided evaluation set as the hold-out test set.

• NMT. We leverage the NMT Scalp EEG Dataset (Khan
et al., 2022) in order to validate our results for recording-
level abnormality classification out-of-distribution. The
NMT dataset deviates considerably from TUEG. Data was
recorded from a South Asian population in Pakistan, using
a different EEG recording setup. Furthermore, the NMT
participants are considerably younger, feature more males
(66.6%), and their EEG recordings are labeled predomi-
nantly normal (83.8% in the training set, while the test set
is balanced). We use the provided train/test split.

To further evaluate learned representation, we use tasks
requiring classification of single, short 5-second EEG crops.

• TUSZ. The TUH Seizure Detection Corpus (Shah et al.,
2018) is a subset of TUEG which has sections labeled to
contain either seizure or background activity. We perform
binary classification using 5-fold cross validation on the
provided train and dev sets (n=6491), while testing on the
eval set.

• TUEV. An Events Corpus (Obeid & Picone, 2016) con-
taining annotated EEG with six classes, of which three are
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clinical (spike and slow wave, generalized periodic epilepti-
form discharge, periodic lateralized epileptiform discharge)
as well as eye movements, artifacts, and background activity.
We only use the provided train set (5-fold CV) due to the
test set not including the TUEG subject identifiers, which
would have prevented the exclusion of these subjects from
the pretraining data. For each 1-second event, we include
two seconds of context before and after (Jiang et al., 2024).

3.2. Preprocessing

3.2.1. TEXT PROCESSING

In order to categorize the textual content in the clinical
reports, we employed regular expressions matching for
commonly-occurring headings (an overview is provided
in Appendix E.4). These enabled the segmentation of indi-
vidual reports into their respective headings with associated
text paragraphs, providing insight into which information in
physician reports is encoded in the EEG. We cluster head-
ings into four categories, while filtering out headings which
are irrelevant such as information on the EEG system, techni-
cal issues, or general disclaimers. First, the clinical history
cluster of headings contains demographic information in
terms of patient age and sex, as well as a brief description
of relevant current and/or past pathology. The record de-
scription cluster includes the physician’s observations of
the EEG traces, which describes both normal and abnormal
features, often in terms of oscillatory brain activity. The
medication cluster contains the patient’s current medication
information. Finally, the interpretation cluster summarizes
a physician’s thoughts, often including the impression of
whether the EEG is normal or pathologically abnormal, as
well as a clinical correlation. To investigate whether EEG-
language models can learn richer representations by being
exposed to a larger variety of text, we also train models by
sampling text from these four aforementioned clusters.

Due to the heterogeneity of the clinical reports, we further
test the utility of summarizing the pathological status indi-
cated by the clinical report using a large language model
(LLM). Due to the sensitive nature of the clinical reports,
we use the Llama-3 8B model (Meta, 2024) locally and in-
struct for the production of a single-sentence summary of a
report, which should include whether the EEG was deemed
abnormal and for which reasons (Appendix E.4).

Language encoding. Given a sampled section from a clini-
cal report or the LLM-generated summary, we encode this
text by relying on the embedding of the [cls] token which
aggregates the representations across all tokens. As such,
given a clinical report xl, the transformation function zl
corresponds to text segmentation or summarization yielding
x̃l. Following tokenization, we embed into the [cls] token
using fl. The resulting text embedding hl may be used for
multimodal pretraining.

3.2.2. EEG PROCESSING

EEG data received minimal preprocessing, with our ap-
proach detailed in Appendix C.1. We describe the selection
of our pretraining dataset in Appendix C.2, which avoids
data leakage by excluding any data of subjects present in
any of the evaluation data. The resulting sample sizes are
shown in Table 1. To enable fair comparisons between meth-
ods, the optimal crop-length for recording-level pathology
detection was determined out of {5,10,20,30,60} seconds
without data-leakage (Appendix B.2), yielding 20 and 60
second crops for EEG-only and EEG-language modeling
respectively. For TUSZ and TUEV evaluations, we addition-
ally pretrain models using 5-second crops and drop subjects
which feature in either TUEV or TUSZ-test.

3.3. Pretraining setup

We set the temperature parameter τ to 0.3 using evaluation
on a holdout set (Appendix B.4). For ELM-MIL, the number
of sampled EEG and text crops per subject depend on the
targeted downstream context. When using 60 second crops
for subject-level prediction we set the number of sampled
EEG crops N = 32 and text crops M = 8 paragraphs as
this covers the available samples for a majority of subjects.
For tasks using single 5-second crops, we increase N to
120 and sample single sentences instead of paragraphs with
M = 24 to accommodate the more finegrained nature of
these tasks.

Language encoder. For fl we use a transformer model
which was pretrained with medical data in a contrastive
manner on PubMed search logs (MedCPT; (Jin et al., 2023)).
See Appendix B.3 for a comparison of language models.
ELMl adopts the language model’s native hidden dimen-
sionality (768), while for ELMe,l and ELM-MIL we project
to a dimensionality of 256.

EEG encoder. For the EEG encoder fe we use a randomly
initialized residual convolutional neural network, with an
identical backbone architecture across all comparisons. We
use nonlinear MLPs with a single-hidden layer for ge and gl,
as well as for the projector head in EEG-only self-supervised
learning. More details are provided in Appendix B.2.

4. Experimental Results
4.1. Pretraining comparisons

Given the novelty of the studied domain, we extensively in-
vestigate the information represented in the learned embed-
dings resulting from EEG-language training as a function
of both text selection and alignment strategy. To this end,
we perform retrieval analyses as well as pathology detection
using linear probes and zero-shot classification (Figure 2).

Retrieval analyses. Given a medical report describing
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Figure 2. A,B) A set of EEG-Language models are evaluated on their retrieval ability using top-k accuracy out of 437 patients. C) Linear
probing performance on TUAB with 1% of labels and D) zero-shot classification. Error bars indicate standard deviations over five model
training runs.

Table 1. Dataset sample sizes. Crop lengths are indicated for
ELM/EEG-only models.

Data subset EEG files Reports Crop Length

TUEG Pretrain 15144 11785 Variable
TUAB train 2712 Not used 60/20s
TUAB test 276 Not used 60/20s
Retrieval test 437 437 60/-
NMT Train 2216 - 60/20s
NMT Test 183 - 60/20s
TUSZ Train+Dev 6491 - 5/5s
TUSZ Test 865 - 5/5s
TUEV Train 359 - 5/5s

the patient and their EEG recording, we probe the abil-
ity to recover the patient’s EEG by rank-ordering candi-
date EEG based on embedding similarity, as well as vice
versa. We average embeddings of EEG and text segments
within-modality, yielding one EEG and report embedding
per recording, which we use for rank-ordering based on
cosine similarity.

Top-K retrieval accuracy, assessing if the correct EEG or re-
port ranks within the top K (Figure 2A,B), shows that many
models perform well above chance. This indicates success-
ful generalization of multimodal EEG-language learning.
Text sampling significantly impacts report retrieval; clus-
ters lacking direct EEG descriptions (clinical history, med-
ication) score lowest. Including descriptive information
improves retrieval, but pathology-relevant contexts (inter-

pretation, LLM summary) are most effective, highlighting
pathology as a key source of variation. Combining multi-
ple text clusters further enhances results, suggesting unique
information capture and the model’s ability to integrate di-
verse patient data.

ELMe,l models tend to outperform ELMl models, particu-
larly for report retrieval. This is likely due to omission of a
text projection head in ELMl, which may therefore lack the
flexibility to appropriately separate the EEG reports in latent
space. Due to the benefit of pretraining when sampling from
the four text clusters, we pretrain our ELM-MIL models in
this manner only. We observe that our MIL extension further
improves retrieval performance, benefiting from sampling
multiple positives jointly (e, l) and performing bidirectional
alignment. These results indicate for the additional flexibil-
ity of a MIL-based approach to aid in multimodal alignment,
supporting the hypothesis that not all EEG and text pairs are
equally informative.

Clinical phenotyping. We study the learned representations
in their relevance to clinical pathology by training linear
probes on TUAB (Figure 2C). Here we observe similar pat-
terns for recording-level classification, with bidirectional
ELM-MIL scoring best. Interestingly, good classification
was possible with many of the models, causing us to investi-
gate whether the strategy of sub-unit multimodal modeling
provides inherent benefits. We provide this additional set
of analyses in Appendix A.3, which indicates that our sub-
unit alignment strategy promotes the encoding of between-
subject information even in the absence of semantically
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Table 2. Pathology detection via zero-shot (ZS) and linear probing at 1%, 10%, and 100% labeled data of the TUAB training set. The
(second) best scores are printed (underlined) bold. Standard deviations over five model training runs are included. Supervised serves as a
reference and refers to training end-to-end directly on labels.

Balanced Accuracy AUROC

Method ZS 1% 10% 100% ZS 1% 10% 100%

Supervised - 71.36±1.10 81.06±0.30 84.13±0.29 - 79.87±1.30 89.23±0.51 91.83±0.32

BYOL - 72.69±0.57 79.03±1.16 79.94±2.14 - 78.85±0.81 86.75±0.76 88.82±0.70

VICReg - 71.76±0.81 79.6±1.07 82.46±0.96 - 78.7±1.11 86.04±0.80 88.78±1.04

ContraWR - 73.30±1.44 80.72±1.69 82.44±1.22 - 80.30±1.91 86.67±1.32 88.44±1.20

RP - 74.52±1.06 82.16±0.38 83.36±0.42 - 82.63±0.87 89.78±0.43 91.43±0.34

TS - 74.99±0.86 82.16±0.64 84.10±0.66 - 82.51±0.91 89.58±0.55 91.50±0.32

CPC - 73.20±0.79 78.44±1.00 79.95±1.49 - 81.48±1.02 86.44±1.07 87.92±1.14

ELM-MIL l|e 68.86±7.89 82.53±1.80 86.38±0.77 87.62±0.43 75.23±9.28 89.88±1.47 92.92±0.54 93.52±0.34

ELM-MIL e|l 79.10±2.93 83.71±0.59 84.37±0.97 85.65±0.97 87.26±3.19 92.37±0.43 93.25±0.27 93.65±0.16

ELM-MIL e, l 84.31±0.57 83.10±0.56 84.21±0.82 87.11±0.76 91.56±1.31 91.54±0.44 93.14±0.24 93.91±0.17

Table 3. Linear probing for abnormality classification on the NMT
dataset using 1%, 10%, and 100% labeled training data.

AUROC

Method 1% 10% 100%

BYOL 63.78±1.70 76.48±2.10 80.65±2.50

ContraWR 65.72±1.01 72.47±0.95 75.42±1.01

VICReg 61.57±1.49 74.19±0.63 78.50±1.60

TS 64.90±0.70 81.36±1.53 87.08±1.02

RP 64.92±0.81 80.42±1.83 86.50±2.17

CPC 65.24±2.06 77.84±1.12 79.98±1.60

ELM-MIL 69.49±2.26 81.42±1.15 89.77±0.21

relevant text. This allows ELMe,l to nearly match the best
EEG-only pretraining strategy for pathology detection when
reports are randomly shuffled.

Next, we investigate the unique ability of multimodal lan-
guage modeling to leverage the language modality to per-
form ‘zero-shot’ classification (Figure 2D). Without any
explicit labels for downstream training, EEG may be clas-
sified by computing its similarity in latent space to text
prompts representing the candidate classes. As suggested
by Radford et al. (2021), we create a prompt ensemble over
21 variations of the phrasing ”The EEG is normal, abnor-
mal” (Appendix D). Despite a small dataset, EEG-language
models can reach high levels of zero-shot pathology detec-
tion if: 1) they include a text projector, 2) include at least
the clinician interpretation, and 3) do bidirectional align-
ment. These models, especially ELM-MILe,l, score highly
consistent across different weight initializations, suggest-
ing sound alignment between modalities. Pretraining using
exclusively one of the other text clusters yielded poor perfor-
mance, which follows from these models not being exposed
to the explicit phrasing indicating the EEG status as normal
or abnormal per se. Their capability likely can be improved

by designing appropriate prompts. Having identified the
requirements for stable alignment, we focus on the ELM-
MILe,l model for EEG-only baseline comparisons due to its
consistent performance across tasks and seeds.

4.2. Baseline comparisons

4.2.1. ABNORMALITY CLASSIFICATION

We compare our ELM-MIL models on the TUAB dataset to
six EEG-only methods (Table 2). We pretrain using these
methods on the same pretraining dataset as ELMs and, to-
gether with the supervised baseline, also an identical EEG
encoder architecture. This enabled accurate inference on
the effectiveness of the pretraining strategy per se. We
find ELMs yield large improvements for pathology detec-
tion over EEG-only pretraining, with multimodal models
being particularly effective at small sample sizes: at 1%
of exposed labels, performance increases reach 8.7% bal-
anced accuracy and 9.7% AUROC. To validate our results
out-of-distribution, we evaluate learned representations on
the NMT dataset without finetuning (Table 3). We find
ELM-MILe,l (henceforth ’ELM-MIL’) to still perform well,
especially with few labels, where they yield an improvement
of at least 3.8% AUROC.

Next, we further contextualize our results in the literature.
By probing ELM-MIL representations for 10 second crop-
level abnormality classification on TUAB with 80% labels
we are able to compare to previously reported evaluations
(Yang et al., 2024; Jiang et al., 2024; Dimofte et al., 2025).
However, we note that methods use significantly different
pretraining data and architectures, which complicates in-
terpretation. Nevertheless, ELM-MIL scores highest and
improves over LaBraM-Huge +0.83% on average across
scores (Table 4). This is despite LaBraM-Huge requiring
finetuning, being pretrained on a large number of datasets
(including TUEG), and featuring 369M parameters com-
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Table 4. Crop-level performance on TUAB (80% labels) of super-
vised and self-supervised methods using different training datasets
and EEG encoders. Model sizes refer to trainable parameters for
the EEG encoders.

Methods Fine
tuned

Model
Size

B. Acc. AUROC

SPaRCNet Y 0.79M 78.96±0.18 86.76±0.12

ContraWR Y 1.6M 77.46±0.41 84.56±0.74

CNN-Transformer Y 3.2M 77.77±0.22 84.61±0.13

FFCL Y 2.4M 78.48±0.38 85.69±0.51

ST-Transformer Y 3.5M 79.66±0.23 87.07±0.19

BIOT Y 3.2M 79.59±0.57 88.15±0.43

CEReBrO Y 3.58M 79.40±0.19 87.49±0.33

CEReBrO Y 40.0M 81.29±0.15 88.67±0.06

CEReBrO Y 85.2M 81.67±0.23 89.16±0.38

LaBraM-Base Y 5.8M 81.40±0.19 90.22±0.09

LaBraM-Large Y 46M 82.26±0.15 91.27±0.05

LaBraM-Huge Y 369M 82.58±0.11 91.62±0.16

ELM-MIL N 0.93M 84.42±0.21 91.44±0.11

pared to 0.9M of our EEG encoder. To further compare the
quality of learned representations, we apply our linear prob-
ing pipeline to the LaBraM-Base model (Appendix 7-9).
We find gains for our ELM of up to 5.7–13.4% depending
on the dataset, highlighting the improved semantic content
in ELM representations. This stark discrepancy is likely due
to the clinical specificity of ELMs, enabling much smaller
models that do not need to be finetuned. As a result, our
methodology is also significantly cheaper and faster to train
(50 epochs in under 12 hours with 24GB of memory).

4.2.2. SEIZURE AND EVENT CLASSIFICATION

We additionally investigated classification performance
based on single, five second EEG crops. Although recording-
level classification was the focus of our work, we find ELM
to score better than the investigated EEG-only methods also
on both seizure detection (TUSZ) and 6-class event detec-
tion (TUEV; Table 6). We provide per-class performance in
Appendix A.2.

4.2.3. FURTHER ABLATION ANALYSES

Whereas for InfoNCE the temperature parameter sets the
relative focus across negative samples (Wang & Liu, 2021),
for MIL-InfoNCE it does so too for positive samples. We
therefore test the sensitivity of our methods to the parameter
(Figure 3). We find that MIL-InfoNCE is more robust to
changes of τ for pathology detection, while retrieval perfor-
mance can be further improved by lowering τ . This may
be explained as retrieval being subject-based rather than
class-based (see Appendix 13). Moreover, performance in-
creases from τ < 1 indicates the utility of this additional
hyperparameter of InfoNCE, which is absent in NCE.

Figure 3. Model comparisons across EEG retrieval and pathology
detection under different values of the temperature parameter τ .

We perform additional ablations to investigate crucial as-
pects of the ELM-MIL e, l model. First, we find that addi-
tional positive EEG and text samples improve downstream
performance (Table 5). We additionally ablate the aggre-
gation method for positive samples and find MIL-InfoNCE
to outperform considered alternatives. We compare to
aligning only the most similar positive sample (denoted
Max+InfoNCE), using attention to create a weighted av-
erage across positive samples based on similarity values
(Attn+InfoNCE; (Ilse et al., 2018)), as well as taking the sum
instead of mean across log-probabilities (Sum+InfoNCE).
The latter does not account for the varying amount of text
and EEG crops across subjects.

4.2.4. ALIGNMENT VISUALIZATIONS

For model interpretability, we visualize temporal multi-
modal alignment in example hold-out recordings (Figure 4).
We compute cosine similarity between all EEG crop embed-
dings in a recording and an embedded snippet from its paired
clinical report, then plot crops with the highest and lowest
similarity. We observe distinct periods of stronger/weaker
alignment, where strong alignment corresponds to relevant
clinical events. This indicates our ELMs achieve temporally
selective alignment of clinical EEG events without explicit
temporal event information or labels, consistently across in-
dependent pretraining runs. Additional examples, including
failure cases, are in Appendix E.3.

5. Discussion
This paper presents a first application of multimodal pretrain-
ing combining natural language and functional brain data
in a medical context. The proposed methodology achieves
significantly improved clinical representations compared to
EEG-only SSL, while being inexpensive to pretrain. This
improvement stems from our novel sub-unit alignment ap-
proach in combination with MIL-InfoNCE to address in-
herent data misalignment challenges. Notably, these mul-
timodal models enabled zero-shot pathology detection and
label-efficient linear probing with improvements up to 9.7%.
We additionally show generalization of ELMs via external
validation and clinical event detection tasks. Our pathology-
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Table 5. Ablation studies (Means over five training runs). Ret: EEG Retrieval (Top-10 accuracy), LP: Linear Probe (Balanced accuracy at
100%), ZS: Zero-shot classification (F1).

(a) Aggregation
Method Ret. LP ZS

Max+InfoNCE 3.9 77.5 43.2
Attn+InfoNCE 8.3 84.9 17.5
Sum+InfoNCE 24.7 86.0 78.8
MIL-InfoNCE 27.1 87.1 82.1

(b) Positive EEG Samples
N Ret. LP ZS

2 19.8 85.9 78.8
4 21.8 85.9 79.2
8 25.3 86.5 80.0
16 26.5 86.9 78.5
32 27.1 87.1 82.1

(c) Positive Text Samples
M Ret. LP ZS

2 28.1 85.8 80.4
4 27.1 86.0 80.4
8 27.1 87.1 82.1

Figure 4. Left, top: The cosine similarity between EEG embeddings of 5-second crops and the embedding of the paired text ”seizures
arising from the right hemisphere” shows distinct periods of stronger and weaker alignment. Shading indicates the standard deviation
across 5 random weight initializations. Green and purple dots mark the two crops with the highest and lowest similarity respectively. Left,
bottom: EEG traces of the crops indicated by the coloured dots. Electrodes are colored based on their position (left: red, right: blue) and
clearly reveal right-lateral seizure activity. Right: As left-sided plot, but for a different recording with the text ”poly spike and slow wake”.

Table 6. Linear probing for seizure and event classification on the
TUSZ and TUEV datasets respectively.

AUROC TUSZ TUEV

Method 1% 10% 100% 100%

Supervised 84.00±0.90 87.33±0.93 90.38±0.39 86.28±0.78

BYOL 77.45±3.14 86.60±0.79 88.89±1.02 82.40±1.60

ContraWR 68.86±3.13 82.75±1.66 85.68±0.74 84.11±1.64

VICReg 69.61±1.82 82.01±0.93 86.17±0.98 83.26±1.83

TS 78.60±1.90 87.63±0.58 89.77±0.72 84.86±1.32

RP 64.41±2.50 76.72±1.37 79.52±1.26 78.95±1.59

CPC 72.01±1.00 81.77±2.24 85.91±2.00 81.94±1.75

ELM-MIL 78.98±5.18 88.98±0.86 91.51±0.33 87.69±1.01

sensitive multimodal alignment is a critical step toward
automated report generation (e.g. Biswal et al. 2020), ensur-
ing EEG-text representations capture clinical information
for future documentation tasks.

Some considerations of this study deserve mention. The
current limitation of publicly available paired EEG-report
datasets presents a challenge for scaling pretraining data.
Future work could address this through the generation of
synthetic text captions based on clinical metadata. Further-
more, due to computational constraints, analyses on scaling
model sizes are yet to be performed. However, we find
highly favourable performance of ELMs compared to signif-
icantly larger EEG foundation models pretrained on a large
number of datasets. We provide code and pretrained models
at https://github.com/SamGijsen/ELM.
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Impact Statement
Performance across both recording-level classification and
event detection tasks suggests that our model learns clin-
ically relevant features at multiple temporal scales. With
further progress, this capability may support various future
clinical applications, from rapid screening of prolonged
recordings to real-time event detection. Whereas the present
study focuses on establishing an initial application to ex-
plore viability, future work may benefit from focusing on im-
proving the interpretability of these representations through
techniques such as channel-specific attribution. The multi-
modal nature of our approach, by aligning EEG with clinical
reports in a pathology-sensitive manner, not only enhances
detection but also lays an important foundation for auto-
mated report generation. Specifically, such generation may
greatly benefit from an aligned latent space which contains
clinical information. This could facilitate clinical documen-
tation by translating EEG signals into structured summaries.
These can constitute highly valuable future efforts given the
time-intensive nature of manual reporting. Certain clinical
limitations also deserve further attention, such as a careful
study of how the frequency of specific pathology and clini-
cal events in reports impacts model performance. Finally,
biases present in language models may impact multimodal
pretraining, which should be investigated in future work.
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A. Additional Results
A.1. Linear probing comparisons with LaBraM

We apply our linear probing pipeline to the LaBraM-Base model and find significant performance drops, highlighting its
requirement for downstream finetuning and the improved clinical representations of ELMs. We perform these analyses for
NMT (Table 7), TUAB (Table 8), and TUEV (Table 9), while omitting TUSZ as this data was included in LaBraM pretraining.
Standard deviations indicate variability across five repetitions of 10-fold cross-validation. Whereas for ELM-MIL we use
a model trained with different weight initialization for each repetition, for LaBraM only one pretrained model is made
available which we use for every repetition.

Table 7. Linear probing for abnormality classification comparing ELM-MIL and LaBraM on the NMT dataset using 1%, 10%, and 100%
labeled training data.

Balanced Accuracy AUROC

Method 1% 10% 100% 1% 10% 100%

LaBraM 59.40±1.07 69.12±0.73 67.52±0.11 66.13±1.77 78.03±0.59 82.02±0.21

ELM-MIL 60.60±0.54 68.57±0.90 81.00±1.18 69.49±2.26 81.42±1.15 89.77±0.21

Table 8. Linear probing for abnormality classification comparing ELM-MIL and LaBraM on the TUAB dataset using Zero-Shot, 1%,
10%, and 100% labeled training data.

Balanced Accuracy AUROC

Method ZS 1% 10% 100% ZS 1% 10% 100%

LaBraM - 72.71±1.46 80.33±0.23 82.18±0.11 - 80.18±0.81 87.98±0.35 89.61±0.01

ELM-MIL 84.31±0.57 83.10±0.56 84.21±0.82 87.11±0.76 91.56±1.31 91.54±0.44 91.91±0.17 93.14±0.24

Table 9. Linear probing for abnormality classification comparing ELM-MIL and LaBraM on the TUEV dataset using 80% labeled training
data.

BACC AUROC

Method 80% 80%

LaBraM 43.08±1.65 83.22±1.09

ELM-MIL 48.83±2.80 87.69±1.01

A.2. TUEV: Per-Class analysis

We additionally investigated per-class performance as TUEV includes distinctly different event categories (Figure 5). We
observe that ELM-MIL scores well across the three clinical events (SPSW, GPED, PLED) with over 3.5% better average
scores. However, the model underperformed on artifact and eye movement detection, which may indicate models may
lose sensitivity to events not described in the text. Interestingly, a portion of reports include sections on such technical
problems, but these were segmented out for the current study. Follow-up research is needed to further investigate the effects
of including such text.

A.3. Language-independent effects of sub-unit alignment.

Language-independent effects of sub-unit alignment. Given the broad outperforming of ELMs compared to EEG-only
models, especially for ELMe,l, we further investigate whether the general setup of multimodal pretraining provides inherent
benefits. EEG recordings are split into multiple crops, which in turn are all aligned to the same clinical report during
pretraining. It follows that EEG crops of a single recording are indirectly aligned to one another to some extent (Figure 1C).
We investigated this hypothesis by shuffling reports between patients prior to pretraining. We find that while embeddings of
single EEG crops of an untrained encoder are only minimally more similar within-subject than between-subject (ratio of
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Figure 5. Per-class scores for TUEV show that ELM-MIL outperforms for the clinical events. SPSW: Spike and sharp wave, GPED:
generalized periodic epileptiform discharges, PLED: periodic lateralized epileptiform discharges.

∼1.1x), this effect is much more pronounced after pretraining ELMe,l on correctly paired reports (∼6.3x), and even more
so after pretraining on shuffled reports (∼15.7x; figure 6). Linear probing reveals that training ELMe,l on shuffled reports
clearly boosts pathology detection over using an untrained encoder and manages to almost match EEG-only pretraining
without the need for augmentations (mean accuracies of 73.70%, 81.04%, 83.69%). On the contrary, the ratios for ELMl are
close to 1 after training using paired and shuffled reports, with the latter resulting in decreased pathology detection accuracy.

Conceptually, while shuffling reports destroys the semantic relevance of reports, it still provides a unique subject-specific
reference to which the EEG embeddings are aligned to. Pretraining then reduces to promoting invariance to within-subject
information, as all EEG crops of a patient are aligned to the same report. However, while for ELMl these reports occupy
arbitrary positions in the latent language space due to the absence of the text projector, ELMe,l exhibits additional dynamics.
Namely, for a given EEG crop (or text paragraph) in a batch belonging to subject i (that is, id = i), nearly all negative
contrastive samples will belong to a different patient (P (id = i) ≪ P (id ̸= i)). The negative contrast therefore largely
amounts to minimizing similarity between patients. This can be viewed as encoding between-subject information and these
results imply that training with this objective is a useful pretext task for EEG timeseries. Naturally, this will depend on
the downstream tasks, but both retrieval and pathology detection require between-subject information. The advantage of
retrieval and linear probing of ELMe,l may thus be, at least in part, due to the inherent utility of our extension of multimodal
language modeling to timeseries by using sub-unit alignment, independent of language. Still, pathology detection with
only few annotations is considerably better using paired reports, indicating the importance of relevant clinical language for
label-efficiency.

A.4. Post-hoc investigation of data leakage

To maximize the amount of data available in this data-scarce setting, the TUAB training set was included during pretraining.
We investigate whether this gave a disproportionate advantage to linear probes trained on ELM representations by repeating
the “1% labels” context using unseen subjects as follows: Given only the TUAB test set, we train linear probes using 10-fold
cross validation (times five random seeds), each time splitting 10-20-70% of the test set into train/validation/test. This gives
the same labeled sample size as 1% of the TUAB training set without relying on samples seen during pretraining. As seen in
Table 10, results are highly similar, strongly suggesting that the advantage of ELMs is not due to the inclusion of the TUAB
training set in the pretraining set.
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Figure 6. A-C, E-G) We investigate the distributions of cosine similarity values of EEG crop embeddings between- and within subjects
(denoted BS and WS respectively). We plot these for an untrained encoder (one example run), as well as EEG encoders of ELMs trained
with paired or shuffled reports. We find that ELMe,l produces dissimilar between-subject EEG embeddings, while ELMl does not. E)
shows the ratio between WS and BS similarity values across five runs (with standard deviations). D,H) The downstream performance via
linear probing is shown on the right, with error bars representing standard deviations across five training runs.

Table 10. Effect of overlap in subjects used for pretraining and linear probing. Higher standard deviations result from a smaller test set.

Method Overlap Balanced Accuracy

TS Yes 74.99±0.86

TS No 74.56±1.12

ELMe,l 4 Clusters Yes 82.64±0.24

ELMe,l 4 Clusters No 82.28±0.64

B. Training Details
In this section, we provide further detailed information of the model training. Unless stated otherwise, ablation and
hyperparameter analyses were performed on a data subset consisting of 5000 and 500 EEG recordings divided into a training
and test set respectively. To prevent data leakage, this data had no overlap with the patients used for evaluation of the main
results.

B.1. Optimization

All models are pretrained using the LARS optimizer (You et al., 2017) with a cosine decay learning rate schedule over
50 epochs, with a warm-up of 4 epochs. The base learning rate is set to 0.3 for EEG-only, 0.01 for ELMs, and 0.06 for
ELM-MIL, scaled with the batch size (BaseLR × BatchSize/256; (Grill et al., 2020)). When training on 5-second crops, we
lower the learning rate for EEG-only to 0.1 and ELM-MIL to 0.02 to avoid instability. We use a weight-decay parameter of
1 × 10−4. Models were trained on either an Nvidia Geforce GTX 3090 or Tesla V100 GPU and require less than 24GB of
memory. Training took approximately 9 hours for EEG-language modeling or 18 hours for EEG-only modeling due to data
augmentations. We used CUDA v11.3 and PyTorch v1.12.1.

B.2. EEG Encoder

We use a CNN architecture with a residual stream as the EEG encoder for all analyses (Figure 7). The model uses parallel
convolutions, involving reflection padding and 1D-convolutions with kernel sizes {4, 8, 16} with 32 filters each. These
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outputs are concatenated, resulting in a 96 dimensional representation and 747K trainable parameters. We compare input
lengths of EEG crops varying from 5 to 60 seconds. This presents a trade-off where longer crops result in a greater
information content per crop, while reducing the total sample size. As EEG-only pretraining relies on data augmentations,
this introduces an additional influence of crop length. Specifically, longer crop lengths likely make the pretraining task
easier, as augmentations introduce relatively lesser distortion due to the greater information content. We therefore compare
performance of different crop lengths for both EEG-language and EEG-only pretraining. As the EEG encoder progressively
downsamples the signal, we adjust the pooling layers to the input length. These adjustments are shown in Table B.2. For
EEG-language pretraining we evaluate zero-shot pathology detection, while for EEG-only pretraining we are required
to compare the performance of a linear probe. Results are shown in Figure 8. Due to computational resources, we only
compare crop lengths for BYOL and ELMl as representations of EEG-only and EEG-language modeling. We observe
that for EEG-only pretraining an intermediate crop-length of 20 seconds performs best, which matches the findings by
Mohsenvand et al. (2020). Meanwhile, zero-shot pathology detection is found to be relatively insensitive to crop lengths of
at least 10 seconds, with 60 second crops scoring highest, while the shortest crop length showed unstable learning. For
TUSZ and TUEV evaluations, this was solved by lowering the learning rate.

For the EEG projector, we use a linear layer with an output dimension of 512 followed by batch normalization, exponential
linear units, and a final linear layer with output size 256.

Figure 7. An identical EEG encoder architecture is used across all analyses. The size of the max pool operation depends on the input
length. These are detailed in table B.2. K: Kernel size, D: Output dimensionality.

Table 11. Multiple input lengths for the cropped EEG timeseries were compared, which included adjustments to the pooling layer.

Model Setups Batch Size

Input Dim. Max Pool Size Intermediate Dim. EEG+Text EEG

500 [2,2,2,2] [166, 55, 18, 6] 2048 2048
1000 [3,3,3,3] [333, 111, 37, 12] 2048 2048
2000 [3,3,3,3] [666, 222, 74, 24] 2048 1024
3000 [4,4,4,4] [750, 187, 46, 11] 1024 800
6000 [4,4,4,4] [1500, 375, 93, 23] 800 400
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Figure 8. Comparison of pathology detection based on EEG input crop length, ranging from 5 to 60 seconds, via averaged balanced
accuracy scores. Error bars indicate the standard deviation across five random seeds.

B.3. Language Encoder

We compare three pretrained language models in their ability to perform zero-shot pathology detection following EEG-
language pretraining (Table 12). We find that MedCPT performs best (Jin et al., 2023), which is trained using contrastive
learning with 255 million user click logs from PubMed.

For the text projector of ELMe,l, we use a linear layer with output size 1024 followed by batch normalization, rectified linear
units, and a final linear layer with output size 256 and batch normalization.

Table 12. Zero-shot classification comparison between language models for ELMe,l.

Language Model Balanced Accuracy AUROC

BiomedBERT (Gu et al., 2021) 78.61±2.90 85.78±2.58

Bio-ClinicalBERT (Alsentzer et al., 2019) 80.86±1.19 87.33±0.68

MedCPT (Jin et al., 2023) 82.58±0.25 88.37±0.39

B.4. Temperature parameter

For ELMe,l, the softmax operation used in the loss computation includes a temperature hyperparameter τ . We compare
zero-shot pathology detection for multiple values. We observe poor performance for low temperature values, but stable
zero-shot classification for higher parameter values. We set τ = 0.3 for all further analyses.

Figure 9. Comparison of temperature values for ELMe,l on zero-shot pathology detection. Error bars indicate the standard deviation
across three random seeds.

B.5. EEG-Only Pretraining

We implement the following methods for EEG-only SSL:
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Bootstrap-Your-Own-Latent. BYOL relies on two encoder models: an online and a target network (Grill et al., 2020).
During pretraining, the online network is trained to predict the target model’s output. Meanwhile, the weights of the target
network are updated using a moving average of the weights of the online network, which has been empirically shown
to prevent collapse of the latent space. For alignment, ℓ2 normalization is applied to the EEG embeddings {h′

e,h′′
e} and

the mean square distance is minimized. We adopt the recommended parameter value for the exponential moving average
(Grill et al., 2020). The projection head is a 2-layer non-linear MLP with a hidden dimension of width 256 and an output
dimension of 32.

Variance-Invariance-Covariance Regularization. VICReg allows for the use of a single encoder model and prevents
collapse by applying two explicit regularization terms to each of the embedding batches {h′

e,h′′
e} (Bardes et al., 2021). The

’variance’ term maintains the standard deviation (computed batch-wise) of every embedding dimension above a threshold,
thereby avoiding a trivial solution. In addition, latent collapse is avoided through the ’covariance’ term which decorrelates
pairs of embedding dimensions. The method minimizes the mean square distance between {h′

e,h′′
e}. Hyperparameters

are set to their recommended values (Bardes et al., 2021). The projection head is a 2-layer non-linear MLP with a hidden
dimension of width 256 and an output dimension of 256.

Contrast with the World Representation. ContraWR was proposed to improve augmentation-based SSL for EEG (Yang
et al., 2021). The method, which is contrastive in nature, maximizes similarity between {h′

e,h′′
e} while preventing collapse

by minimizing similarity with ’negative’ samples. ContraWR forms a negative representation by aggregating across all
negative batch elements, aiming to compensate for the low signal-to-noise of EEG data by creating a more reliable negative
contrast. It relies on a triplet loss based on Info-NCE (Gutmann & Hyvärinen, 2010). We also here set the hyperparameters
to the values recommended by the authors (Yang et al., 2021). The projection head is a 2-layer non-linear MLP with a
hidden dimension of width 256 and an output dimension of 32.

Relative Positioning. Pairs of EEG crops are sampled and assigned binary labels based on their temporal proximity
(Banville et al., 2021). Crops close in time are labeled positive, while those far apart are labeled negative. We use the same
EEG encoder as for all other methods to create representations and use the suggested contrastive module to compute the
element-wise absolute difference between representations. A logistic regression model then predicts the label. The method
is trained using binary logistic loss. For all methods by (Banville et al., 2021), we use the hyperparameters reported to work
best on TUAB, including between-subject sampling of EEG crops.

Temporal Shuffling. An extension of Relative Positioning by sampling triplets of EEG crops. The task is to determine
whether the crops are in temporal order or shuffled (Banville et al., 2021). The contrastive module concatenates absolute
differences between representations. As with Relative Positioning, a logistic regression model is used for prediction, and the
method is trained end-to-end using binary logistic loss.

Contrastive Predictive Coding. This method uses an autoregressive encoder to summarize a sequence of EEG crops into a
context vector (Banville et al., 2021). The task is to predict which future crop actually follows the context, among negative
samples. A bilinear model is used for prediction at each future step. The method is trained end-to-end using the InfoNCE
loss.

B.5.1. DATA AUGMENTATIONS

For EEG-only pretraining, we adapt the data augmentations proposed by Mohsenvand et al. (2020), which were found to
perform well on the TUAB dataset. For a given EEG crop, we apply the same augmentation to each channel. Parameters
are sampled independently for each EEG crop and uniformly from the ranges displayed in table 13. Augmentations are
visualized for a single EEG channel in figure 10.
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Figure 10. Data augmentations visualized for a single channel of EEG data.

Table 13. Data augmentation parameter ranges; adapted from Mohsenvand et al. (2020).

Data Augmentation Min Max

Amplitude Scale 0.5 1.5
Time Shift in samples -60 60
DC shift in microvolts -10 10
Zero-Masking in samples 0 200
Additive Gaussian Noise (sigma) 0 0.2
Band-Stop Filter (5Hz width, Hz) 2.8 47

C. Details on EEG Data
C.1. EEG preprocessing

From the EEG dataset, recordings longer than 2.5 hours were omitted to filter out a small subset of very long, potentially
overnight recordings. For training efficiency, only the first 45 minutes of a recording were used. Any recording files shorter
than 70 seconds were also omitted.

EEG data received minimal preprocessing (using MNE (Gramfort et al., 2013)). First, the initial 10 seconds were removed
to reduce the impact of set-up artefacts. Afterwards, a bandpass filter of 0.1-49 Hz was applied and all recordings were
resampled to 100 Hz. To reduce the impact of signal artefacts, all EEG signals had their amplitude clipped to ± 800 µV. As
a large majority of recordings used an average-reference (AR) or linked-ear reference (LE), we only used these recordings
and standardized them via transformation to the 20-channel Temporal Central Parasagittal (TCP) montage.
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C.2. Subsampling

TUEG contains considerably more abnormal than normal EEGs. As vision-language models have been shown to be sensitive
to imbalanced classes (Wang et al., 2024), we subsample the data to create approximately equal class representation. We
rely on the LLM summaries of reports, which were more consistent in their phrasing regarding the normal or abnormal
status. This allowed for a more reliable classification using regular expressions. All reports for which no clear classification
was made were omitted. 5015 reports in the potential training set were classified as normal, which were associated with
7526 EEG recordings. For our ‘pretrain’ data subset, we subsampled the abnormal EEGs to match the amount of normal
EEG recordings. This resulted in 7526 abnormal EEG recordings, with 6770 reports. Although only a minor subset of these
preliminary classifications was manually verified, it is important to note that this process was solely to alleviate severe class
imbalance and was not used for further analysis.

For EEG-language modeling, the pretrain subset was effectively smaller, as a report had to be omitted from pretraining
when it did not contain at least one relevant heading. Out of the 15144 total EEG files, this resulted in pretrain sample sizes
of: 14836 (clinical history cluster), 14320 (medication cluster), 14800 (description cluster), 14794 (interpretation cluster),
and 14946 (four clusters).

To test for retrieval performance, we supplemented the TUAB test set with data from the TUH EEG Epilepsy Corpus (Veloso
et al., 2017) in an attempt to create a larger, roughly balanced evaluation set of those with and without pathology. For this,
we only selected the first recording of a subject so that no multiple files from the same subject were present. Additionally,
we only included reports which had at least one heading from each text cluster to allow for a fair comparison.

D. Classification
To study the predictive capability of learned representations after pretraining, we train linear probes and perform zero-shot
classification.

Linear probe

For linear evaluation, we train logistic linear regression models using 10-fold cross validation for each pretrained model
using sklearn (Pedregosa et al., 2011). We perform grid-search over 45 logarithmically-spaced values for L2 regularization
between 10−6 and 105 via a validation set.

Supervised Learning

For the supervised learning baseline, we use the identical EEG encoder backbone as used for all other analyses and use 60
second crops. We add an MLP (hidden dimensionality of 256) with dropout p = 0.5 and output dimensionality equal to
the amount of classes. The ADAM learning rate is set to 0.001 and we use the validation set to select weight decay out of
[0.1, 0.01, 0.0001]. We use a batch size of 256 and train using the cross entropy loss. When using 100% labels, we first train
on the training set for up to 50 epochs (with early stopping after 5 epochs without improvement) and select the epoch which
resulted in the best validation loss. Subsequently, we continue training on the train and validation sets together until the loss
has decreased below the best validation loss.

Zero-shot classification

For zero-shot pathology detection, we perform an ensemble over 21 binary prompts, listed in Table 14. Prompt ensembling
was shown to improve performance (Radford et al., 2021), but we employ it here also as the limited data is likely to lead to
less stable representations, which may lead to sensitivity to phrasing. To inspect whether results are sensitive to changes
to the prompt set, we perform a post-hoc analysis using the held-out test set that iteratively leaves one prompt out of the
ensemble (Figure 11). We observe that results are consistent across such reduced prompt sets, except for the ELMl model
trained on the clinical history or interpretation clusters, although neither model reaches competitive performance. This set
was only initially verified on the training set to enable model- and parameter-comparisons using zero-shot performance.
Tuning is likely to enable further performance improvements, although the flexibility of the zero-shot approach may
introduce severe risk of overfitting on the TUEG dataset.
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Figure 11. Analysis of the sensitivity to prompts in the ensemble used for zero-shot classification. We plot the average F1-score across
five random seeds. Note that for ELMl, multiple models have a consistent F1-score of 0 and are therefore not individually visible.

Table 14. Prompt ensemble used for zero-shot classification.
Normal EEG Prompts Abnormal EEG Prompts

Normal EEG. Abnormal EEG.
No pathology present. Pathology present.

No abnormalities. Abnormalities observed.
Normal routine EEG. Markedly abnormal EEG.
Normal awake record. Abnormal awake record.
Normal EEG record. Abnormal EEG record.
This EEG is normal. This EEG is abnormal.

This is a normal EEG. This is an abnormal EEG.
This EEG is within normal limits This EEG is mildly abnormal.

Normal awake EEG. Abnormal awake EEG.
Normal asleep EEG. Abnormal asleep EEG.

Normal awake and asleep EEG. Abnormal awake and asleep EEG.
Normal EEG in wakefulness and drowsiness. Abnormal EEG in wakefulness and drowsiness.

No pathology. Abnormal EEG due to:
EEG shows no pathology. Abnormal EEG for a subject of this age due to:

No abnormalities. Abnormalities in the EEG.
No abnormalities observed. Abnormalities observed.

EEG shows no abnormalities. EEG shows abnormalities.
No clinical events detected. Clinical events detected.

No indications of pathology observed. Indications of pathology observed.
The EEG is normal. The EEG is pathologically abnormal.

E. Additional visualisations
E.1. EEG embeddings of pathology

We provide t-SNE (complexity=40, (Van der Maaten & Hinton, 2008)) visualisations of the averaged EEG embeddings
per subject after pretraining. These are post-hoc plots for which we use models trained on the entire pretraining subset
and display embeddings of hold-out TUAB patients. ELMe,l and ELM-MIL show the clearest visual separation between
abnormal and normal EEGs, which is in line with the linear probing results.
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Figure 12. Example EEG embeddings averaged within-subject of pretrained models on the TUAB hold-out data (red: abnormal, blue:
normal). The data is projected using t-SNE. The ‘untrained’ and ‘shuffled reports’ plots feature the same setup as the ELMe,l model, with
the latter being trained on reports randomly shuffled between subjects.

E.2. Within-subject EEG embeddings

We provide additional visualizations of t-SNE projections of EEG crops (Figure 13). Specifically, we compare ELMe,l

using InfoNCE and ELM-MIL using MIL-InfoNCE across three temperature parameters τ = [0.1, 0.3, 1.0]. To do so, we
randomly sample three normal (blue shades) and three abnormal (red shades) subjects. We observe that whereas both
methods exhibit diminished subject clustering at a higher temperature (τ = 1.0), at low temperatures (τ = 0.1) this
only occurs for InfoNCE. Meanwhile, subject clustering gets more pronounced for MIL-InfoNCE. This may explain the
observation that retrieval performance increases by reducing τ for MIL-InfoNCE, which as a task requires subject rather
than class separation per se.

Figure 13. A comparison of subject clustering using t-SNE projections of embeddings of EEG crops. Red (blue) shades indicate three
randomly sampled abnormal (normal) subjects.
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E.3. Alignment visualizations

Figure 14. Additional alignment visualizations as in Figure 4.

Figure 15. Additional alignment visualizations as in Figure 4.

Figure 16. Additional alignment visualizations as in Figure 4, but for two observations which were not well aligned. Both feature a narrow
range of similarity values, indicating a lack of temporal localization. Whereas mild diffuse slowing may have not been pronounced
enough, left frontotemporal spikes are very rarely described in the dataset.
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Figure 17. Additional alignment visualizations as in Figure 4, but for two recordings which were classified as normal by the physician.

E.4. Report and content segmentation

Figure 18. An example set of headings which may make up a clinical report. Paragraphs are extracted from the reports into content-based
clusters or an LLM-generated summary.
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