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ABSTRACT

Large language models (LLMs) have recently demonstrated strong capabilities
in generating functional and aesthetic web interfaces directly from instructions.
However, these models often replicate accessibility flaws from their training data,
resulting in interfaces that exclude users with diverse needs and contexts. To ad-
dress this gap, we introduce A11yn, the first method that aligns code-generating
LLMs to reliably produce accessibility-compliant web UIs. A11yn optimizes a
novel reward function that penalizes violations of the Web Content Accessibil-
ity Guidelines (WCAG), with penalties scaled to the severity of each violation
as identified by an accessibility testing engine. To support training, we construct
UIReq-6.8K, a dataset of 6,800 diverse instructions for web UI generation. For
evaluation, we introduce RealUIReq-300, a benchmark of 300 real-world web UI
requests grounded and manually curated from public web pages, spanning a broad
range of use cases. Empirical results show that A11yn significantly outperforms
strong baselines, lowering the Inaccessibility Rate by 60% over the base model
while preserving semantic fidelity and visual quality of generated UIs. These find-
ings demonstrate that accessibility can be systematically optimized within LLMs,
showing the feasibility of aligning code generation for accessibility.

1 INTRODUCTION

Large language models (LLMs) have opened up a new frontier in front-end development. With a
simple prompt, language models can generate complete web interfaces, from static HTML pages to
complex, interactive components (Zhou et al., 2025). Recent benchmarks and systems have shown
that LLMs can synthesize semantically accurate and visually coherent UIs, even emulating modern
design patterns and wide range of front-end frameworks (Xiao et al., 2025; Lu et al., 2025). This
has fueled growing research interest in LLM-based UI generation systems, which aim to improve
layout, fidelity, interactivity, and functional completeness.

However, Accessibility remains a critical yet underexplored dimension in LLM-based web UI de-
velopment. Web accessibility is a key principle that ensures anyone, even people with disabilities to
perceive and navigate web interfaces. For example, blind users rely on screen readers to interpret
content, while people with limited motor control need to navigate without a mouse. For millions
of people, these accommodations determine whether a website is usable or completely inaccessible.
To this end, the W3C defines the Web Content Accessibility Guidelines (WCAG) to formalize ac-
cessibility standards. Yet, audits report widespread non-compliance, with over 90% of public web
pages containing detectable violations (Mowar et al., 2025). These shortcomings disproportionately
affect users with visual or motor impairments, reinforcing barriers to digital participation.

LLMs, trained on massive web corpora with such accessibility flaws, frequently replicate them in the
generated UIs. Prior studies (Suh et al., 2025; Mowar et al., 2025; Aljedaani et al., 2024; Guriţă &
Vatavu, 2025) confirm that LLMs omit key accessibility elements, such as alternative text, semantic
landmarks, and properly labeled form controls, resulting in inaccessible interfaces. This raises a
core research question: Can we align LLMs to natively generate web UIs that are more accessible?

In this work, we introduce A11yn (pronounced align), the first framework to align code LLMs
for accessibility-aware web UI generation. To promote accessibility, we devise a novel reward
function using accessibility violations that are detected using Axe Core (Deque Systems, 2015), a
widely adopted WCAG auditing tool that reports issues across four severity levels. These violations
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 <div class="p-4">

    <p class="text-sm text-gray-300">Welcome to our 
site</p>

    <a href="/about">Click this link!</a>

    <a href="/next">

    <img src="arrow.png" class="w-5" />

    </a>

  </div> Base Model

 <main class="p-4" role="main">

    <p class="text-base text-gray-800">Welcome to 
our site</p>

    <a href="/about">Click this link!</a>

    <a href="/next">

    <img src="arrow.png" alt="Right arrow icon" 
class="w-5"/>

    </a>

  </main>
 A11yn

    No Semantic Landmark

    No Clear Color Contrast

    Image missing Alt text

    Screen Readers can easily navigate

     Text clearly readable by Low Vision

    Image described  
for Low Vision

Accessible UIUI Request Base Model GRPO with Accessibility Reward

Figure 1: A11yn enhances accessibility in UI-generative LLMs. Whereas base models often pro-
duce inaccessible code, A11yn generates web UIs with improved accessibility features, supporting
screen readers with better readability, smoother navigation, and clearer image descriptions.

are mapped to severity-weighted penalties, which are then converted into a bounded reward. The
resulting reward signal is used to directly optimize the code LLM policy through Group-Relative
Policy Optimization (GRPO) (Shao et al., 2024).

To support training, we construct UIReq-6.8K, an instruction-only dataset of 6,800 natural language
UI generation requests spanning diverse domains and component requirements. This dataset en-
ables reinforcement learning without relying on supervised fine-tuning data, which is difficult to
collect at scale due to its scarcity and annotation cost of accessible code examples. For evaluation,
we curate RealUIReq-300, a benchmark of 300 real-world web UI generation tasks, each request
specified with detailed metadata such as purpose, page type, application domain, and required com-
ponents. We empirically demonstrate that A11yn substantially minimizes accessibility violations,
reducing Inaccessibility Rate by 60% compared to the base model, while preserving the appearance
and semantic fidelity of the generated UIs. Our results suggest that accessibility can be effectively
integrated as a learnable behavior within the LLM generation pipeline, bringing us closer to truly
inclusive UI code generation systems.

2 RELATED WORK

LLM-based UI Code Generation. Prior research has applied specialized models to automate
the translation of designs or descriptions into code. Early work like ReDraw (Moran et al., 2018)
used a learned model to assemble mobile UI code from image mock-ups. With the advent of large
language models (LLMs), generating UI code directly from high-level natural language descriptions
has become feasible. For instance, UICoder (Wu et al., 2024) iteratively fine-tunes pre-trained
LMs with SFT on a self-generated SwiftUI training dataset, that is filtered in scale with automatic
compiler feedback and a CLIP-based model. On the web UI generation side, WebGen-Bench (Lu
et al., 2025) provides a benchmark that is designed to evaluate LLM-based agents in generating
fully functional, multi-page web applications, featuring diverse application generation instructions
and automated web navigation tests to assess functionality.

Post Training LLM for alignment. Fine-tuning LLMs with extra objective signals has become
widespread. Reinforcement Learning from Human Feedback (RLHF) (Christiano et al., 2017;
Ouyang et al., 2022) adopts Proximal Policy Optimization (PPO) (Schulman et al., 2017) for
LLMs to align them with human preferences. However, PPO requires training a critic alongside
the policy, adding both computational overhead and engineering complexity. A recent alternative
simplifies this process: Direct Preference Optimization (DPO) (Rafailov et al., 2023) reformulates
preference learning by directly adjusting the model based on pairwise preferences, eliminating the
need for online training. Meanwhile, Group-Relative Policy Optimization (GRPO) (Shao et al.,
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2024) extends PPO by removing the critic and instead compute advantage as rewards normalized
across a batch of completion samples. GRPO has shown promise in both improving performance
in verifiable domains (Mathematical Association of America, 2025) as well as aligning LLMs with
human values and safety constraints Li et al. (2025).

Improving Web UI Accessibility with LLMs. Real-world web data often contains accessibil-
ity violations, leading LLMs trained on such data to reproduce accessibility flaws in generated UI
code (Martins & Duarte, 2024; Guriţă & Vatavu, 2025; Ahmed et al., 2025; Aljedaani et al., 2024).
While LLMs can sometimes surpass human-written code in accessibility, they still struggle in com-
pliance (Suh et al., 2025). Novice developers using AI assistants also frequently omit key practices,
underscoring current limitations (Mowar et al., 2025). To address these issues, practical tools like
CodeA11y (Mowar et al., 2025), a VS Code plugin (Calı̀ et al., 2025), and ACCESS for real-time
in-DOM correction (Huang et al., 2024) provide LLM-based accessibility support. Feeda11y (Suh
et al., 2025) further improves accessibility by applying feedback loops to iteratively prompt LLMs
for better compliance. Yet such methods remain costly because the inference overhead often exceeds
the training cost. This motivates training models that natively generate accessible code by design.

3 METHODOLOGY

A11yn aligns code-generative LLMs to improve the accessibility of generated web UI code. The
method incorporates a novel accessibility reward through reinforcement learning. Below, we outline
(1) the preliminaries of the approach, (2) the reward function design, and (3) the training pipeline.

3.1 PRELIMINARY

GRPO (Shao et al., 2024) is a policy gradient method that simplifies PPO (Schulman et al., 2017) by
removing the critic network and instead comparing sampled completions. For a prompt q, the policy
πθ samples G candidate completions {o1, . . . , oG}, each assigned a scalar reward ri (section 3.2).
GRPO normalizes these via Âi = ri−r̄

σ , emphasizing relative accessibility improvements rather
than the absolute scores to stabilize updates. At the token level generation, the probability ratio
r
(i)
t (θ) = πθ(oi,t | q, oi,<t)/πθold(oi,t | q, oi,<t) quantifies how the new policy changes the like-

lihood of generating token oi,t conditioned on the prompt q and previously generated tokens oi,<t.
The clipped surrogate loss L

(i)
t (θ), then bounds large ratios to avoid overcorrection. The overall

objective averages these token-level terms with a KL penalty against a frozen reference policy πref:

JGRPO(θ) = Eq,{oi}∼πθold

[
1

G

G∑
i=1

1

|oi|

|oi|∑
t=1

min
(
r
(i)
t (θ)Âi, clip

(
r
(i)
t (θ), 1− ϵ, 1 + ϵ

)
Âi

)
︸ ︷︷ ︸

L
(i)
t (θ)

]

− β DKL(πθ∥πref).
(1)

The KL penalty constrains excessive divergence from the reference policy, preserving general code
generation ability while guiding completions toward accessibility. In our task, GRPO is especially
well-suited due to its data-efficient and stable optimization method, whereas SFT relies on large
paired accessible code datasets and PPO entails an engineering and computation overhead of training
a critic model that estimates value for accessibility.

3.2 ACCESSIBILITY REWARD

To guide the A11yn policy towards generating accessible web UI code, we design a reward function
with Web Content Accessibility Guidelines (WCAG) auditing tool. After current policy model
πθ generating each web UI code output, we run Axe-core (Deque Systems, 2015), a widely used
open-source accessibility engine, to detect violations of the WCAG. For each response completion,
Axe-core returns a list of affected DOM nodes, where each violation is classified by severity v ∈
{Minor, Moderate, Serious, Critical}. For a UI output oi, we let V (oi) denote the set of severity
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Rollouts Accessibility Reward

Update

r1
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UI Code o1

Policy 
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Reference 
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πref

Prompt (q)

UI Code oi
ri = B - pi

Develop an article 
page layout to 

showcase a blog post 
about the latest trends.

UI Code oG
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Figure 2: A11yn optimizes accessibility through reinforcement learning (GRPO). For an in-
struction q, the policy LLM πθ generates candidate UI codes {o1, . . . , oG}. Each code receives an
accessibility reward {r1, . . . , rG}, which is normalized within the set of candidates to compute ad-
vantages. The policy πθ is then updated via policy gradient using these advantages.

levels detected in that output. The number of nodes associated with each violation level is counted
and denoted as Nv . The total penalty pi for a UI output oi is computed by aggregating the affected
DOM nodes, weighting each by its severity:

pi =
∑

v∈V(oi)

Nv · wv (2)

where severity weights are wv ∈ {0.1, 0.2, 0.3, 0.4} corresponding respectively to Minor, Moderate,
Serious, and Critical violations. While the scales are arbitrary, the scheme ensures more severe
violations to incur systematically larger penalties. We then convert this into a bounded reward by
subtracting the penalty from a base score B, where we use B = 2.0 empirically, and clip the reward
to zero for negative values.

ri = B − pi (3)
Under this quantitative reward signaling scheme, a violation-free output converges toward ri ≈ B,
and each violation proportionally lowers the reward. By assigning larger negative weights to more
severe issues, the policy is encouraged to eliminate severe failures first. In practice, the policy model
receives a solid numerical score that reflects the accessibility testing environment that is appropriate
for giving RL feedback.

3.3 TRAINING PIPELINE

We instantiate A11yn as a GRPO based reinforcement learning pipeline with rollout-reward–update
cycle that repeatedly steers the policy toward accessibility-compliant code as illustrated in fig. 2.
We use Qwen2.5-Coder-7B-Instruct (Hui et al., 2024) as our policy model πθ and simultaneously
use its frozen copy as the reference model πref , since it is pre-trained and capable of generating
web contents based on natural language request. In each iteration, a textual UI request prompt q
from training prompt set (section 4.1) is retrieved. The current policy πθ then generates a group of
G candidate completions {oi}Gi=1, producing diverse web UI code alternatives for the same prompt.
Each completion is evaluated with Axe-core (Deque Systems, 2015), where generated web contents
are rendered in a headless Chromium instance and analyzed for WCAG violations. The detected
violations are converted into scalar penalties using the severity-weighted mapping described in sec-
tion 3.2, yielding an accessibility reward ri for each completion. Group statistics, mean r̄ and
standard deviation σ are computed to form normalized advantages. Then, these group-normalized
advantages focus updates on relative improvements among the sampled completions, favoring code
patterns that have minimal WCAG violations in the same group.

4 DATA

4.1 TRAINING: UIREQ-6.8K

4
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Develop a career page for a 
design studio, featuring 
current job openings …

Design an event calendar UI 
for library events …

Construct a community forum 
page for musicians with 

discussion threads and real-time 
comments …

Develop a shopping 
cart page with AI 

generated product 
recommendations.

Generate a scientific 
conference agenda page with 

personalized schedule …

Mock up a dynamic featured 
stories widget for the news page.

Figure 3: t-SNE visualization of the training
set. Each point represents a UI request, with col-
ors indicating distinct application categories. The
spread shows coverage across multiple domains
with examples in the figure.

To train A11yn, we construct UIReq-6.8K, a re-
inforcement learning training dataset of 6,800
UI generation instructions. As shown in fig. 3,
the dataset spans a wide range of domains and
interaction patterns, supporting broad cover-
age of instruction types. Unlike supervised
datasets, UIReq-6.8K does not fix target UIs
for each request, which enables exploration and
reward optimization without imposing stylis-
tic bias. Each instruction prompt in UIReq-
6.8K describes a desired user interface in nat-
ural language, specifying page type, applica-
tion domain, specific web UI components, or
stylistic intent (e.g. a dark-themed login screen
with email and password inputs). The in-
struction prompts are generated using GPT-4o-
mini (OpenAI et al., 2024) and guided to reflect
diversity and semantic richness. Diversity is
achieved by covering 68 application categories (appendix A). Semantic richness is enforced through
detailed requirements in instruction prompt synthesis, where every request specifies its page type,
application domain, specific web UI components, and stylistic intent.

4.2 EVALUATION: REALUIREQ-300

Dataset Query
Style

UI Intent
Coverage

Component
Details

UI
Source

Query
Length

Number of
Queries

Screen2Words
(Wang et al., 2021)

Single sentence,
Taxonomic ✗ ✗

RICO dataset
(Android UI) 6 words 112k

RealUIReq-300
(Ours)

Multi-sentence,
Request-oriented ✓ ✓

Real-World
Web UI 87 words 300

Table 1: Comparison of REALUIREQ-300 with Screen2Words. REALUIREQ-300 provides
multi-sentence requests with structured intent, detailed UI component specification, and realistic
phrasing grounded in real-world web UIs.

We assess the accessibility of web UI within the broader scope of natural language to web UI code
generation flow. To achieve this, a realistic request-style benchmark dataset was required, one that
could capture authentic user intents and interface specifications instead of relying on fully synthetic
or overly simplified captions.

Screen2Words (Wang et al., 2021) is the most widely adopted dataset for natural language descrip-
tion of user interfaces. Built on the RICO dataset (Deka et al., 2017) of Android application UIs, its
primary objective is to provide concise textual summaries of the UI screen to bridge user interfaces
and natural language. While valuable in scale, the descriptions are short and taxonomic (e.g. sign
in page of a social app, page displaying data status) rather than being detailed and request-oriented.
Evaluating with short summaries risks emphasizing superficial matches over true task alignment.
Such an absence of explicit intent or evaluation points (e.g. UI component details or requirements)
in the descriptions further introduces ambiguity, making the benchmark less reliable.

To address these limitations, we introduce RealUIReq-300, a benchmark of 300 web UI requests in-
versely generated from manually collected webpage screenshots. As shown in fig. 4, each example
was curated through a multi-stage pipeline involving screenshot collection, metadata extraction, and
request generation, with GPT-4.1 (OpenAI et al., 2024) assisting in extraction and request phrasing.
All metadata and requests were manually refined by the authors to correct for truncation, vague
language, or missing context. This process ensured that the final requests faithfully represent the
semantics of original UIs while maintaining natural and realistic phrasing. As compared in ta-
ble 1, RealUIReq-300 offers multi-sentence, request-style instructions with intent, page type, UI
components, and domain context specifications. This makes the evaluation set semantically rich,
structurally aligned for assessing natural language to UI generation.
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Crawl & Screenshot

Page Type

Application Domain

UI Purpose

UI Components

Metadata Extraction

“I need a landing page for a 
website in the wedding services 
domain …” 

“Generate a landing page designed 
for an e-commerce website …” 

“Give me a homepage for a website 
dedicated to scientific research …” 

…

RealUIReq-300

UI Captioning  
& Refinement

Request Generation  
& Refinement

Figure 4: RealUIReq-300 is curated from real web UIs with diverse use-case domains. User
requests are inversely generated from screenshots and metadata extracted, then refined to produce
realistic instructions aligned with the original UIs.

5 EXPERIMENTS

5.1 SETUP

Our objective is to evaluate A11yn and baseline LLMs in generating web UIs with minimal accessi-
bility violations. We further evaluate if A11yn and selected baselines are able to balance accessibility
and semantic alignment with visual appeal in section 6.3.2. Each model is tested on RealUIReq-300
benchmark, an evaluation set of 300 web UI request prompts, designed to ensure consistent and
controlled comparisons. Inference of all model candidates is performed with a temperature of 0.1
for near-deterministic reproducibility.

5.2 METRICS

To assess the accessibility of model-generated responses, we adopt a comprehensive set of evaluation
metrics informed by the principles of the Web Content Accessibility Guidelines (WCAG) from the
accessibility auditing tool. Our evaluation comprises three main metrics designed for robustness and
fairness. First, we measure the average DOM counts with accessibility violations detected across
the evaluation set, categorized by severity: Minor, Moderate, Serious, and Critical. Each severity
level reflects the impact of the violation on user experience, ranging from minor impact issues to
critical barriers that significantly hinder accessibility.

To account for the varying severity of accessibility violations, we propose the Weighted Viola-
tion Score (WVS), which quantifies accessibility violations by assigning severity-based weights to
affected DOM nodes at each severity category. The WVS is formally defined as:

WVS = λMinor ·NMinor + λModerate ·NModerate + λSerious ·NSerious + λCritical ·NCritical (4)
where NMinor, NModerate, NSerious, and NCritical represent the number of violated DOM counts at each
severity level from the generated code with RealUIReq-300 request prompts. The corresponding
weights λ reflect the relative impact of each category, with values of 1 for Minor, 2 for Moderate, 3
for Serious, and 4 for Critical. This formulation provides a single interpretable metric that captures
both the frequency and severity of accessibility issues.

Finally, since models differ in scale and generate varying length of web contents, we adopt a normal-
ized metric to enable fair comparison across models. Inspired by the Inaccessibility Rate introduced
in Feeda11y (Suh et al., 2025), we calculate the ratio of weighted violations to the total number of
DOM elements produced when prompted with RealUIReq-300 requests. Given our use of a differ-
ent auditing tool (Axe core Deque Systems (2015)), we adapt the original formulation to incorporate
the WVS, resulting in the following metric:

Inaccessibility Rate =
WVS

No. of Total DOM Elements
(5)

This metric captures the normalized, severity-adjusted density of accessibility violations, allowing
us to evaluate the true accessibility in proportion to UI complexity.

5.3 BASELINES

We compare our work against five baseline models to evaluate its relative performance. (1)
Qwen2.5-Coder-7B-Instruct serves as the base model from which A11yn is GRPO-tuned. It re-
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Model Average Violated DOM Counts (↓) WVS (↓) IR (↓)
Minor Moderate Serious Critical

Qwen2.5-Coder-7B-Instruct 1 (±1) 1149 (±36) 978 (±48) 40 (±0) 5392 (±35) 0.38 (±0.0)
+ Feeda11y 11 (±1) 461 (±37) 841 (±33) 30 (±5) 3576 (±64) 0.21 (±0.0)
Qwen2.5-Coder-14B-Instruct 3 (±2) 846 (±35) 1491 (±32) 49 (±8) 6365 (±158) 0.43 (±0.0)
GPT-4.1 45 (±5) 1925 (±34) 1424 (±21) 105 (±7) 8588 (±100) 0.27 (±0.0)
Claude Sonnet 4 2 (±3) 3388 (±81) 1435 (±14) 282 (±10) 12210 (±117) 0.29 (±0.0)

A11yn (Ours) 0 (±0) 231 (±16) 481 (±23) 24 (±3) 1918 (±65) 0.15 (±0.0)

Table 2: Accessibility measures across models. We report Average Violated DOM Counts at
different severity levels. Weighted Violation Score (WVS) and Inaccessibility Rate (IR) provide
severity-adjusted and normalized aggregate measures, respectively. Lower values indicate better
performance. Best results are shown in bold, and second-best in underline.

flects the model’s raw web UI code generation capability in zero shot setting without any explicit
accessibility optimization. (2) Qwen2.5-Coder-7B-Instruct (+Feeda11y) is used to examine the
impact of accessibility-aware prompting. This variant incorporates Feeda11y (Suh et al., 2025)
prompts using a three-step iterative ReAct prompting (Yao et al., 2023) method with violation re-
port feedbacks. (3) Qwen2.5-Coder-14B-Instruct is included to assess the effect of model scaling,
offering a larger alternative from the same model family. In addition, we evaluate two frontier mod-
els: (4) GPT-4.1 (OpenAI et al., 2024) and (5) Claude Sonnet 4 (Anthropic, 2025), both of which
represent the well performing models in general-purpose code and web UI generation.

6 RESULTS

6.1 QUANTITATIVE RESULTS

Table 2 summarizes the accessibility performance of A11yn against five baselines. Frontier models
like GPT-4.1 and Claude Sonnet 4 yield relatively high inaccessibility rates (0.27 and 0.29), indicat-
ing that strong models do not guarantee accessible outputs. A11yn achieves the lowest Weighted Vi-
olation Score (WVS) and Inaccessibility Rate (IR), significantly outperforming both prompt-based
approaches and frontier models. Compared to the base model, A11yn has critical violations reduced
from 40 to 24 (40% ↓), serious from 978 to 481 (50.8% ↓), moderate from 1149 to 231 (79.9% ↓),
Weighted Violation Score from 5392 to 1918 (64.4% ↓), and Inaccessibility Rate from 0.38 to 0.15
(60.5% ↓), demonstrating substantial improvements in accessibility conformity. Base model with
Feeda11y shows notable improvement, achieving a WVS of 3576 and an Inaccessibility Rate of
0.21, yet remaining behind A11yn. Also, its iterative prompting brings up computational overhead,
averaging 4584 intermediate tokens per request.

6.2 QUALITATIVE EXAMPLES

Figure 5 illustrates the rendered UI and the corresponding accessibility tree pairs for the base model
and A11yn. Beyond the visible improvements, the accessibility tree provides a structural view of
how assistive technologies like screen readers or switch devices interpret and navigate the UI page.

The base model (left) contains several violations across different severity levels, which are reflected
directly in its accessibility tree. The weak color contrast (Serious) issue of the text, visible in the
navigation bar, prevents low vision users from reliably perceiving text. The missing landmark se-
mantics (moderate) issue leaves sections in the middle like “Featured Movies & Shows” to be stated
without clear structural roles, disrupting the navigation for screen-reader users. The iframe elements
with the absence of accessible names cause media contents like embedded videos to be exposed
without meaningful descriptions for non-sighted users. By contrast, A11yn (right) produces UI
output with strong color contrast, sections well positioned in Header–Main–Footer landmarks, and
iframe elements annotated with descriptive accessible names. Its accessibility tree reflects these im-
provements through a coherent hierarchy with properly assigned semantic roles, demonstrating that
A11yn enhances both the visual presentation and the assistive-technology interpretation of the web
UI.
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UI Accessibility Tree Comparison

Document

Page

Main (main)

  Section: Featured Movies & Shows

  Section: What to Watch

  Section: Exclusive Videos

Iframe: Youtube Video Player

Footer

Header

Navigation

  Section: Featured Trailers

Document

Page

Footer

Header

Banner: Watch Now!

    Section: Featured Movies …

    Section: What to Watch

    Section: Exclusive Videos

     Iframe

     Iframe No Accessible Name

No Landmark 
Semantics

     Navigation
Weak Color Contrast

Serious 

Moderate

Serious

Moderate 

Serious

 3 Serious, 3 Moderate Issues

 No Violation Issues

A11YNBase Model

Serious 

Figure 5: Comparison of the base model (left) and A11yn (right) using both rendered UIs and
their corresponding accessibility trees (middle). The accessibility tree reveals the base model’s
weak color contrast, missing landmarks, and unlabeled media nodes, while A11yn provides clear
landmarks, stronger contrast, and descriptive accessible names, resulting in a clean, fully inter-
pretable structure.

6.3 ANALYSIS

6.3.1 ACCESSIBILITY IMPROVEMENT OF A11YN OVER BASELINES

Figure 6: Per-category violation counts across
models. Colors are normalized per row for visual-
ization. (lighter = fewer violations, darker = more
violations).

Figure 6 demonstrates a comparison of average
accessibility violation distribution among the
Base model, Feeda11y and A11yn across mul-
tiple violation types in rendering of the evalu-
ation set UI requests. It reveals that A11yn re-
duces a range of key accessibility issues, and
the most notable improvements are observed in
the following violation categories:

Region - All page content must be contained
by landmarks A11yn reduces average Region
violations from 894 to 143. These violations
indicate failures to encapsulate page content
within landmark regions like <main>, <nav>,
<header> tags. Proper use of HTML5 and
ARIA landmarks is critical for screen reader
users, allowing them to move directly to key
sections of a webpage, facilitating efficient con-
tent navigation. It shows how A11yn has im-
proved structural accessibility of the generated
web UIs.

Color Contrast - Elements must meet min-
imum color contrast ratio thresholds As
demonstrated in fig. 5, weak color contrast re-
lates to insufficient contrast between text and
its background. This poses a major barrier for

users with low vision. WCAG recommends a minimum contrast ratio of 4.50:1. A11yn reduces the
count from 702 to 418, showing enhancement in awareness of visual accessibility standards.

8
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Landmark-one-main - document should have one main landmark To enhance the browsing ex-
perience for screen readers, Web UI design must allow quick and easy identification and navigation
to the page’s main content. With such aim, each page must include a single <main> landmark to
clearly designate the primary content area. Using multiple or omitting the <main> tag can cause
confusion for assistive technologies. A11yn enforces this guideline, reducing the count from 164 to
17, ensuring interpretable content hierarchies.

Link-name - Links must have discernible text Every hyperlink should have a clear, descriptive
label to guide screen readers to understand its destination or action. Common issues include empty
anchor tags or overly generic text like “click here.” A reduction from 129 to 47 violations sug-
gests A11yn reliably assigns accessible and descriptive link texts, mitigating issues like empty or
duplicated links that confuse users.

6.3.2 ACCESSIBILITY WITH SEMANTIC ACCURACY AND AESTHETICS OF USER INTERFACES

Web UI generation task is multi-dimensional, where diverse design objectives must be considered.
Effective user interfaces must guarantee accessibility while preserving semantic fidelity and visually
appealing designs. Prior studies highlight that accessibility and aesthetics are often perceived in
tension (Anthony, 2019), yet must be balanced rather than being treated as opposing forces (Kurosu
& Kashimura, 1995; Mbipom & Harper, 2011; Le-Cong et al., 2021). Therefore, while our work
primarily focuses on accessibility enhancement, it is equally important that improvements do not
compromise semantic fidelity or aesthetics. To this end, we additionally evaluate appearance quality
to verify whether accessibility gains are achieved without harming other key dimensions.

Model Inaccessibility
Rate (↓)

Appearance
Score (↑)

Base model 0.38 3.6/5
Feeda11y 0.21 3.7/5
A11yn (Ours) 0.15 3.6/5

Table 3: Comparison of models in terms of Accessibil-
ity (Inaccessibility Rate) alongside Semantic Fidelity
and Aesthetics (Appearance Score on a 5-point Likert
scale).

For this evaluation, we adopt the Ap-
pearance Score from WebGen-Bench (Lu
et al., 2025), a 5-point Likert scale rated
by GPT-4.1 on rendering quality, content
relevance, layout harmony, and moder-
nity. The Appearance Score serves as
a core metric capturing both semantic fi-
delity and aesthetics. As shown in table 3,
A11yn achieves the lowest inaccessibility
rate, marking a 60.5% reduction over the
base model, while maintaining an appear-
ance score of 3.6. This demonstrates that
A11yn substantially improves accessibil-
ity while preserving aesthetics and fidelity,
achieving a balanced outcome.

By comparison, Feeda11y achieves a higher appearance score (3.7) but retains a relatively high
inaccessibility rate (0.21). This indicates that Feeda11y’s improvements incidentally enhance vi-
sual quality rather than systematically addressing accessibility, reflecting a shifted emphasis. In
contrast, A11yn achieves lower inaccessibility rate (0.15) while maintaining the Appearance Score
intact (3.6), offering stronger evidence of accessibility enhancement with balance. Moreover, A11yn
attains such outcome in a single forward pass, whereas Feeda11y relies on iterative prompting.

7 CONCLUSION

Web accessibility is not merely a design preference but a foundational requirement for equitable
digital access. While prior efforts have explored ways to support accessibility in LLM-based code
generation through prompting, feedback loops or IDE-based assistance, they remained external or
computationally intensive. Furthermore, such works concluded with future calls for the need of
training LLMs to inherently generate accessible web UI code. Through introducing A11yn, we take
a complementary but novel path by empirically suggesting that accessibility can be systematically
optimized in code-generating LLMs through post-training with reward-driven alignment. Looking
ahead, we believe this paradigm can be extended beyond web UI code and into broader human-
computer interaction systems such as mobile applications, AR/VR environments, and multimodal
interaction platforms.

9
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ETHICS STATEMENT

This work aims to improve digital equity by aligning code-generating LLMs to produce
accessibility-compliant web UIs, thereby reducing barriers for users with disabilities. All training
data were synthetically generated through controlled prompting, and evaluation data were curated
from publicly available web pages with manual refinement with sensitive or personally identifiable
content removed. No human subjects or private data were involved. While misuse could enable
mass generation of low-quality web pages, we mitigate this risk by committing to open release of
data, code, and documentation to guide responsible, accessibility-focused research.

REPRODUCIBILITY STATEMENT

We ensure reproducibility by documenting all datasets, training details, and evaluation procedures.
Training data (UIReq-6.8K) and the evaluation benchmark (RealUIReq-300) are fully described,
along with synthesis prompts. Model training used Qwen2.5-Coder-7B-Instruct with Group-
Relative Policy Optimization, with detailed hyperparameters and hardware setups provided in ap-
pendix C. Accessibility compliance was measured using the open-source axe-core engine (Deque
Systems, 2015), which is distributed under the Mozilla Public License 2.0, to detect WCAG vio-
lations and compute reward signals. Upon acceptance, we will release all code, data, and model
configurations to allow independent verification and replication of results.
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A UIREQ-6.8K APPLICATION DOMAINS

The training dataset covers 68 diverse application categories. Examples include:

• Business & Enterprise
• Health & Wellness
• Education & E-Learning
• Data & Analytics
• Communication & Social
• E-Commerce & Retail
• Finance & FinTech
• Real Estate & Property
• Media & Entertainment
• Food & Beverage
• Travel & Hospitality
• Developer Tools & Technology
• Science & Research
• Legal & Compliance
• Automotive & Mobility
• Government & Public Services
• Environment & Sustainability
• Security & Identity
• Non-Profit & Social Impact
• AI & Machine Learning
• Books & Reference
• Comics
• Dating
• Entertainment
• Events
• Finance
• Food & Drink
• Health & Fitness
• House & Home
• Libraries & Demo
• Lifestyle
• Maps & Navigation
• Medical
• Music & Audio

• News & Magazines
• Parenting
• Personalization
• Photography
• Productivity
• Shopping
• Social
• Sports
• Tools
• Travel & Local
• Video Players & Editors
• Weather
• Auto & Vehicles
• Beauty
• Art & Design
• Board
• Card
• Casino
• Casual
• Educational (Games)
• Music (Games)
• Puzzle
• Racing
• Role Playing
• Simulation
• Sports (Games)
• Strategy
• Trivia
• Word
• Augmented Reality
• Developer Tools
• Magazines & Newspapers
• Utilities
• Graphics & Design

B REALUIREQ-300 DOMAIN DISTRIBUTION
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Domain Count Domain Count
Education 30 Technology/Software 23
E-commerce 19 News / Media 16
Non-profit / Humanitarian 13 Software development 12
Social media 12 Tourism 10
Web development 10 Software as a Service

(SaaS)
9

Entertainment / Media 9 Entertainment ticketing 8
Business consulting 6 Professional services 6
Academic publishing 6 Food / Cooking 5
Personal development 5 Travel / Lifestyle 5
Finance / Investing 4 Tech product discovery and

launch platform
4

Government services 4 Academic research 4
Environmental activism 4 Health and wellness 4
Community forum 4 Art and design 4
B2B marketing / Business
services

4 Creative/Portfolio 3

Business communication
and collaboration

3 Content publishing plat-
form

3

Medical research 3 Personal blog / Thought
leadership

3

Financial Services 3 Technology / Consumer
Electronics

2

Crowdfunding 2 Outdoor recreation / Ad-
venture sports

2

Music streaming and shar-
ing

2 Education/Interactive me-
dia

2

Wedding Planning 2 Events and entertainment 2
Creative Network-
ing/Showcase

2 Film and photography 2

Parenting / Community 2 Job board / Recruitment 2
Advocacy/Activism 2 Healthcare technology 2
Cloud computing / AI de-
velopment

2 Retail / Fashion 1

Search engine 1 Social media for developers 1
Culture/History 1 Community/Women’s em-

powerment
1

Freelance marketplace 1 Education/Science museum 1
Service industry (barber-
shop)

1 Gaming / Media 1

Microfinance / Social im-
pact

1 Cloud storage and collabo-
ration

1

Space exploration 1 Humor/Lifestyle 1
Religious/Charitable Orga-
nization

1

Table 4: 61 Domain Distribution of RealUIReq-300 dataset
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C TRAINING CONFIGURATION

We trained Qwen/Qwen2.5-Coder-7B-Instruct on 8 NVIDIA A6000 GPUs (48GB VRAM each) us-
ing GRPO with vLLM-based sampling and reward modeling. Training was conducted in bfloat16
mixed-precision with gradient checkpointing enabled. Each prompt was expanded into G = 6 sam-
pled completions, with a per-device batch size of 2 and gradient accumulation set to 6. To stabilize
optimization, KL divergence regularization was applied with β = 0.001. Below is a summary of the
key configurations used; for full details, please refer to the provided training scripts and configura-
tion files.

Component Configuration
Framework HF Transformers, TRL (GRPOTrainer), Accelerate, DeepSpeed
Learning rate 5× 10−5

Optimizer Adam (β1 = 0.9, β2 = 0.99, ϵ = 10−8)
Weight decay 0.1
LR Scheduler Cosine (warmup ratio 0.01)
Gradient accumulation 6
Batch size 96 (2 per device × 8 processes × accumulation 6)
Epochs 2
Gradient checkpointing Enabled
Precision bfloat16
Loss type grpo
KL β value 0.001
use peft Enabled

Table 5: Optimization and training parameters.

Parameter Value
Engine vLLM (colocated mode)
GPU memory utilization 60%
Min-p 0.1
Top-p 1.0
Top-k -1
Temperature 0.7
Repetition penalty 1.1
Stop sequence </answer>
Max tokens 3072
Number of Generations 6
Seed 3407

Table 6: GRPO sampling parameters.

D ICON ATTRIBUTION

Icons in the figures are sourced from Flaticon (https://www.flaticon.com) and are credited
to their respective creators in accordance with Flaticon’s licensing requirements.

E USE OF LLM

We employed a large language model (LLM) to enhance the clarity and accuracy of our writing, par-
ticularly in identifying and correcting grammatical errors, typographical mistakes, and in rephrasing
sentences for improved readability. Furthermore, the LLM was utilized in the data generation pro-
cess to provide supplementary material in support of our study.

15

https://www.flaticon.com


810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Figure 7: Accessibility reward curve throughout training, showing a steady increase that indi-
cates reduced WCAG violation occurrences over time.

F WCAG VIOLATIONS

Below is the full list of WCAG violations.

Table 7: WCAG 2.0 — ARIA(Accessible Rich Internet Applications) Rules
Rule ID Impact Description
aria-allowed-attr Serious, Critical ARIA attributes are allowed for an element’s role
aria-command-name Serious Every ARIA button, link, and menuitem has an accessible name
aria-hidden-body Critical aria-hidden=’true’ is not present on the <body> element
aria-hidden-focus Serious aria-hidden elements are not focusable nor contain focusable el-

ements
aria-input-field-name Moderate, Serious Every ARIA input field has an accessible name
aria-meter-name Serious Every ARIA meter node has an accessible name
aria-progressbar-name Serious Every ARIA progressbar node has an accessible name
aria-required-attr Critical Elements with ARIA roles have all required ARIA attributes
aria-required-children Critical Elements with ARIA roles that require child roles contain them
aria-required-parent Critical Elements with ARIA roles that require parent roles are contained by

them
aria-roles Minor–Critical Elements with a role use a valid value
aria-toggle-field-name Moderate, Serious Every ARIA toggle field has an accessible name
aria-tooltip-name Serious Every ARIA tooltip node has an accessible name
aria-valid-attr-value Serious, Critical All ARIA attributes have valid values
aria-valid-attr Critical Attributes beginning with aria- are valid ARIA attributes

Table 8: WCAG 2.0 — Text Alternatives & Captions
Rule ID Impact Description
area-alt Critical <area> elements of image maps have alternate text
image-alt Critical <img> has alt text or role of none/presentation
input-image-alt Critical <input type=image> has alternate text
object-alt Serious <object> elements have alternate text
role-img-alt Serious role="img" elements have alternate text
svg-img-alt Serious <svg> with img/graphics roles have accessible text
video-caption Critical <video> elements have captions
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Table 9: WCAG 2.0 — Keyboard, Focus & Navigation
Rule ID Impact Description
bypass Serious Page has a mechanism to bypass navigation
nested-interactive Serious Interactive controls are not nested
scrollable-region-focusable Serious Scrollable content regions are keyboard accessible
server-side-image-map Minor Server-side image maps are not used

Table 10: WCAG 2.0 — Frames & Embeds
Rule ID Impact Description
frame-focusable-content Serious <frame>/<iframe> with focusable content do not have

tabindex=-1
frame-title-unique Serious <iframe>/<frame> contain a unique title attribute
frame-title Serious <iframe>/<frame> have an accessible name

Table 11: WCAG 2.0 — Forms & Names
Rule ID Impact Description
button-name Critical Buttons have discernible text
input-button-name Critical Input buttons have discernible text
label Minor–Critical Every form element has a label
select-name Minor–Critical <select> has an accessible name
form-field-multiple-labels Moderate Form field does not have multiple label elements

Table 12: WCAG 2.0 — Structure & Semantics
Rule ID Impact Description
definition-list Serious <dl> elements are structured correctly
dlitem Serious <dt> and <dd> are contained by a <dl>
list Serious Lists are structured correctly
listitem Serious <li> elements are used semantically
document-title Serious Each HTML document contains a non-empty <title>

Table 13: WCAG 2.0 — Parsing & Uniqueness
Rule ID Impact Description
duplicate-id-active Serious Every id of active elements is unique
duplicate-id-aria Critical Every id used in ARIA and in labels is unique
duplicate-id Minor Every id attribute value is unique

Table 14: WCAG 2.0 — Color & Visual Presentation
Rule ID Impact Description
color-contrast Serious Foreground/background colors meet WCAG 2 AA contrast thresholds
link-in-text-block Serious Links are distinguishable from surrounding text without relying on

color
meta-viewport Critical <meta name="viewport"> does not disable text scaling and

zooming
blink Serious <blink> elements are not used
marquee Serious <marquee> elements are not used
link-name Serious Links have discernible text

Table 15: WCAG 2.0 — Language
Rule ID Impact Description
html-has-lang Serious Document has a lang attribute
html-lang-valid Serious lang attribute on <html> has a valid value
html-xml-lang-mismatch Moderate lang and xml:lang agree on base language
valid-lang Serious lang attributes have valid values

Table 16: WCAG 2.0 — Data Tables
Rule ID Impact Description
td-headers-attr Serious Cells using headers refer only to cells in the same table
th-has-data-cells Serious <th> and header roles have data cells they describe

Table 17: WCAG 2.0 — User Control & Timing
Rule ID Impact Description
meta-refresh Critical <meta http-equiv="refresh"> is not used for delayed re-

fresh
no-autoplay-audio Moderate <video> or <audio> elements do not autoplay audio for more than

3 seconds without a control mechanism to stop or mute the audio
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Table 18: Best Practices — ARIA(Accessible Rich Internet Applications)
Rule ID Impact Description
aria-allowed-role Minor role attribute has an appropriate value for the element
aria-dialog-name Serious ARIA dialog/alertdialog nodes have accessible names
aria-text Serious role=text used only on elements with no focusable descendants
aria-treeitem-name Serious ARIA treeitem nodes have accessible names
presentation-role-conflict Minor Presentational elements do not have global ARIA or tabindex
label-title-only Serious Every form element has a visible label and is not solely labeled using

hidden labels, or the title or aria-describedby attributes
tabindex Serious tabindex attribute values are not greater than 0

Table 19: Best Practices — Landmarks & Regions
Rule ID Impact Description
landmark-banner-is-top-level Moderate Banner landmark is top level
landmark-complementary-is-top-
level

Moderate Complementary/aside landmark is top level

landmark-contentinfo-is-top-level Moderate Contentinfo landmark is top level
landmark-main-is-top-level Moderate Main landmark is top level
landmark-no-duplicate-banner Moderate At most one banner landmark
landmark-no-duplicate-
contentinfo

Moderate At most one contentinfo landmark

landmark-no-duplicate-main Moderate At most one main landmark
landmark-one-main Moderate Document has a main landmark
landmark-unique Moderate Landmarks have unique role/name/title combinations
region Moderate All page content is contained by landmarks
skip-link Moderate All skip links have a focusable target

Table 20: Best Practices — Headings & Structure
Rule ID Impact Description
empty-heading Minor Headings have discernible text
heading-order Moderate Heading order is semantically correct
page-has-heading-one Moderate Page (or a frame) contains a level-one heading
empty-table-header Minor Table headers have discernible text
accesskeys Serious Every accesskey attribute value is unique
image-redundant-alt Minor Image alternative is not repeated as text
meta-viewport-large Minor <meta name="viewport"> can scale a significant amount

Table 21: Best Practices — Tables
Rule ID Impact Description
scope-attr-valid Moderate, Critical scope attribute is used correctly on tables
table-duplicate-name Minor <caption> text differs from summary attribute
frame-tested Critical <iframe> and <frame> elements contain the axe-core script
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G PROMPT DETAILS

We provide the details of the prompt used in our work.

G.1 PROMPTS FOR DATASET SYNTHESIS

Prompt for Generating Training Data

Your task is to generate 100 different possible UI request
queries for a certain application domain category.

The application category is:
{category}
Requirements for queries:
1. Each query should include different page types possible

within the app in the application domain
2. Each queries should be specific about widget requirements

and context rich (side navigation, collapsible menus, etc.)
3. Each query must be different from the others
4. Queries should be realistic and natural like real user

requests
5. Queries should be in some length and semantically rich,

not just a few words
6. Queries should have solid use case or purpose, not random

requests
7. Do not consider interactivity or animations or hovering

effects focus on static UI elements
8. Queries require some ambience or style requests like

color scheme, typography, etc.

Prompt for Captioning metadata for evaluation set curation

Caption given UI screenshot with
1. Main purpose and intent of the UI, regarding the target

audience and actual use case.
2. Page type of the UI, such as a landing page, blog post,

product page, etc. (in short-answer format)
3. Domain of the UI, such as e-commerce, social media,

education, etc. (in short- answer format)
4. Top 5 important visual elements in the UI design, that are

crucial for more user engagement and usability. But you
should EXCLUDE any elements about the EXACT IMAGES in the
UI.

Answer in such format:
1. <Purpose/Intent>
2. <Page Type>
3. <Domain>
4. (a) <Element (a)>
(b) <Element (b)>
(c) <Element (c)>
...
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Prompt for generating RealUIReq-300 evaluation set queries

SYSTEM PROMPT:
You are a helpful assistant that generates realistic user
requests for web UI development.

USER PROMPT:
Based on the following web page specifications, generate a
user request that mentions EVERY DETAIL provided, including
the purpose, page type, domain, and all listed components.

Purpose: {purpose}
Page Type: {page_type}
Domain: {application_domain}
Required Components: {required_components}

The request should be 3-5 sentences long and sound realistic.
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G.2 PROMPTS FOR INFERENCE AND EVALUATION

Prompt for Inference of models for web UI generation

You are an expert UI designer assistant.
You should plan the design based on the user request.
Show the plan in the ‘<think>‘ tag.

- You must think about the html structure and widgets
needed to fulfill the user request.

- You must think about the Tailwind CSS classes to use
for styling.

Then, you should generate a complete HTML document that
includes:

- A ‘<head>‘ section with a ‘<meta charset="UTF-8">‘ tag
- A ‘<meta name="viewport" content="width=device-width,

initial-scale=1.0">‘ tag
- A proper tailwind css link tag to load Tailwind CSS

from CDN
- A ‘<body>‘ section that contains the complete HTML

structure and content
The HTML document should be visually appealing, well-
structured, and content/semantically-rich.
You must strictly follow the output format shown below:
<think>
...
</think>

<answer>
‘‘‘html
<html>
<head>

<meta charset="UTF-8" />
<meta name="viewport" content="width=device-width,
initial-scale=1.0" />
...

</head>
<body>
...
</body>
</html>
‘‘‘
</answer>

User: {user_request}
Assistant:
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WebGen-Bench Appearance Score Evaluation Prompt (Lu et al., 2025)

Instruction: You are tasked with evaluating the functional
design of a webpage that had been constructed based on the
following instruction: {instruction}

Grade the webpage’s appearance on a scale of 1 to 5 (5 being
highest), considering the following criteria:

- Successful Rendering: Does the webpage render correctly
without visual errors? Are colors, fonts, and components
displayed as specified?

- Content Relevance: Does the design align with the
webpage’s purpose and user requirements? Are elements
(e.g., search bars, report formats) logically placed and
functional?

- Layout Harmony: Is the arrangement of components (text,
images, buttons) balanced, intuitive, and clutter-free?

- Modernness & Beauty: Does the design follow contemporary
trends (e.g., minimalism, responsive layouts)? Are
colors, typography, and visual hierarchy aesthetically
pleasing?

Grading Scale:
- 1 (Poor): Major rendering issues (e.g., broken layouts,

incorrect colors). Content is irrelevant or missing.
Layout is chaotic. Design is outdated or visually
unappealing.

- 2 (Below Average): Partial rendering with noticeable
errors. Content is partially relevant but poorly
organized. Layout lacks consistency. Design is basic
or uninspired.

- 3 (Average): Mostly rendered correctly with minor flaws.
Content is relevant but lacks polish. Layout is
functional but unremarkable. Design is clean but lacks
modern flair.

- 4 (Good): Rendered well with no major errors. Content is
relevant and logically organized. Layout is harmonious
and user-friendly. Design is modern and visually
appealing.

- 5 (Excellent): Flawless rendering. Content is highly
relevant, intuitive, and tailored to user needs. Layout
is polished, responsive, and innovative. Design is
cutting-edge, beautiful, and memorable.

Task: Review the provided screenshot(s) of the webpage.
Provide a detailed analysis and then assign a grade (from 1
to 5) based on your analysis. Highlight strengths, weaknesses,
and how well the design adheres to the specifications, but
don’t mind the absence of images or cards for specific data
because they are not the target for evaluation.

IMPORTANT: Please end your response with a clear grade in the
format "Grade: X" where X is a number from 1 to 5.

Your Response Format:
Analysis: [from 2 to 4 paragraphs addressing all criteria,

referencing the instruction]
Grade: [from 1 to 5]
Your Response:
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H QUALITATIVE WEB UI STYLE DIVERSITY OF A11YN

Figure 8: Style Diversity of A11yn for the UI Generation Prompt: I want a landing page for 3L
Barber Co., a barbershop located in Boston’s South End. The page should attract and inform
potential customers about our services and atmosphere, featuring a bold, contrasting color scheme
of black, white, and red. I’d like to see large, eye-catching typography for the main headline, along
with a clear navigation menu that includes essential sections. Additionally, please include a detailed
list of services with prices and a section for customer testimonials and ratings.

Figure 9: Style Diversity of A11yn for the UI Generation Prompt: Please make a landing page
designed to promote Slack as a collaborative workspace platform for teams. The page should feature
a bold, attention-grabbing headline that says ”Where Work Happens,” along with prominent ”GET
STARTED” and ”FIND YOUR PLAN” call-to-action buttons. Additionally, please include logos of
well-known companies that use Slack, a clean and minimalist design with ample white space, and
an interactive product demo or screenshot that showcases key features. The domain should focus on
business communication and collaboration.

Figure 10: Style Diversity of A11yn for the UI Generation Prompt: I would like to have a login page
for our productivity and collaboration platform that provides a sign-in interface for users to access
membership content. This page should include multiple authentication options such as Google,
Apple, Microsoft, passkey, and SSO for convenience and security. Additionally, please ensure there
is a clear and concise page title explaining the purpose, an email input field for manual login, a
large, prominent ”Continue” button, and a link to the terms and conditions for transparency.
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Figure 11: Style Diversity of A11yn for the UI Generation Prompt: I want a landing page for Super’s
service that creates custom websites from Notion pages. The purpose of the page is to attract and
inform potential users about the ease of use, speed, and professional results of our service. It should
include a clear, prominent headline explaining our core value proposition, a concise subheading
detailing key benefits, and a prominent call-to-action button to get started. Additionally, please
include a navigation menu with sections like Templates, Features, and Pricing, along with example
website previews to showcase our capabilities. The domain is web development/SaaS.
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