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Abstract

Natural Language Counterfactual generation001
aims to minimally modify a given text such002
that the modified text belongs to a different003
class. The generated counterfactuals provide004
insights into the reasoning behind a model’s005
predictions by highlighting which words signif-006
icantly influence the outcomes. Additionally,007
they can be used to detect model fairness issues008
or augment the training data to enhance the009
model’s robustness. A substantial amount of010
research has been conducted to generate coun-011
terfactuals for various NLP tasks, employing012
different models and methodologies. With the013
rapid growth of studies in this field, a system-014
atic review is crucial to guide future researchers015
and developers. To bridge this gap, this survey016
comprehensively overview textual counterfac-017
tual generation methods, particularly including018
those based on Large Language Models. We019
propose a new taxonomy that categorizes the020
generation methods into four groups and sys-021
tematically summarize the metrics for evalu-022
ating the generation quality. Finally, we dis-023
cuss ongoing research challenges and outline024
promising directions for future work.025

1 Introduction026

The recent success in Natural Language Processing027

(NLP) comes with a variety of Large Language028

Models (LLMs) such as GPT-3 (175B) (Brown029

et al., 2020), PaLM (540B) (Chowdhery et al.,030

2023), and GPT-4 (1.7T) (Achiam et al., 2023).031

These LLMs have demonstrated superior perfor-032

mance on various downstream tasks. However,033

alongside the performance, there is a rising concern034

about their occasionally unexpected behaviors, like035

hallucinations in their responses (Ji et al., 2023)036

and misalignment with human expectations (Vafa037

et al., 2024). These phenomena coincide with the038

long-standing issue of training deep learning mod-039

els, which were known to be vulnerable to spurious040

correlations with artifacts, shortcuts, and biases,041

prevalent in the real-world training data (Geirhos 042

et al., 2020; Hermann and Lampinen, 2020). Hence, 043

there is a growing demand for AI transparency, par- 044

ticularly in high-stakes applications. This demand 045

underscores the need for research to understand 046

model decisions and enhance their robustness. 047

Counterfactual generation has emerged as effec- 048

tive means to probe and understand the reasoning 049

behind a model’s predictions by highlighting which 050

part of the input influences the outcomes (Wachter 051

et al., 2017; Miller, 2019; Kaushik et al., 2019). 052

It makes minimal modifications to an original in- 053

stance to create counterfactual examples (CFEs) 054

that have different predicted classes from the origi- 055

nal instance. CFEs can help detect model fairness 056

issues against minority groups (Kusner et al., 2017; 057

Russell et al., 2017) and enhancing model robust- 058

ness and generalizability through the augmentation 059

of training datasets (Sen et al., 2021; Wang and 060

Culotta, 2021; Gat et al., 2024). 061

In NLP domain, early studies (Jung et al., 2022; 062

Robeer et al., 2021) were inspired by traditional 063

CFE generators for tabular data. However, due to 064

the vast and discrete perturbation space of each 065

word, directly applying these techniques in NLP 066

domain becomes less effective and inefficient. Ad- 067

ditionally, textual CFEs should adhere to lexicon 068

and grammar rules, and follow the language con- 069

text and logic (Sudhakar et al., 2019b; Wu et al., 070

2021; Ross et al., 2021b). Subsequent research has 071

begun to utilize controlled text generation model 072

conditioning on a sentence and a label (Robeer 073

et al., 2021; Madaan et al., 2021) or replace influen- 074

tial words with proper ones for the target prediction 075

(Ross et al., 2022; Zhu et al., 2023). Recently, the 076

rise of LLMs enable users to craft sophisticated 077

prompts to obtain desired CFEs (Chen et al., 2023; 078

Sachdeva et al., 2024). However, these natural lan- 079

guage counterfactual generation methods are not 080

systematically included in surveys on tabular data 081

(Verma et al., 2020; Stepin et al., 2021; Karimi 082
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et al., 2022; Guidotti, 2022).083

As research in NLP domain rapidly grows, a sys-084

tematic review is crucial to provide clear guidelines085

for future researchers and developers. However,086

comprehensive surveys on this topic are lacking.087

The challenge may stem from the following aspects.088

(1) The approach depends on the specific NLP task.089

Tasks like sentiment analysis, natural language in-090

ference, and story rewriting have domain-specific091

generation strategies. (2) Multiple modifications092

such as word replacements, deletions, insertions,093

reordering, and suggesting sarcasm (Kaushik et al.,094

2019; Wu et al., 2021) can lead to the same desired095

outcome. Different models, such as BERT (Devlin096

et al., 2019a) and T5 (Raffel et al., 2020), operate097

under different mechanisms. This leads researchers098

to address and formulate the generation problem099

from broad perspectives. (3) A broad knowledge100

base including deep generative modeling, causality,101

AI explanation, beyond NLP is required to com-102

prehensively understand different algorithms, in-103

evitably increasing the review burden.104

In this survey, we review past research on natural105

language counterfactual generation and categorize106

these methods into four groups, as shown in Figure107

1: (1) Manual generation, where a human anno-108

tator is asked to edit a limited number of words109

for a given text to change its label (Kaushik et al.,110

2019), (2) Gradient-based optimization involves111

fine-tuning a controlled text generation model us-112

ing gradient descent, given the input sentence en-113

coding and a desired target (Robeer et al., 2021;114

Yan et al., 2024), (3) Identify and then generate, a115

two-stage approach that pinpoints and then substi-116

tutes words to alter the labels (Malmi et al., 2020;117

Gilo and Markovitch, 2024; Martens and Provost,118

2014), and (4) LLMs as counterfactual genera-119

tors, which directly create the counterfactuals via120

prompting LLMs (Bhattacharjee et al., 2024; Gat121

et al., 2024; Sachdeva et al., 2024). We also summa-122

rize the qualitative and quantitative metrics used to123

evaluate the quality of the generated counterfactu-124

als. Finally, we discuss the remaining challenges in125

this field and outline promising research directions,126

particularly in the era of LLMs.127

The rest of this paper is organized as follows:128

Section 2 introduces the definition of CFEs and129

practical considerations during generation. Section130

3 presents our novel taxonomy and describes each131

group. Section 4 summarizes the metrics used to132

evaluate generation quality. Section 5 discusses on-133

Figure 1: Overview of the proposed taxonomy for nat-
ural language counterfactual generation. Refer to Fig-
ure 5 in the Appendix for the complete taxonomy.

going challenges and promising research directions. 134

Finally, Section 6 concludes the paper. 135

2 Definition of Counterfactual Example 136

In machine learning, a counterfactual example 137

(CFE), was initially proposed to explain model de- 138

cisions on tabular data (Wachter et al., 2017; Miller, 139

2019; Verma et al., 2020). CFE explains why the 140

model predicts an instance x as the target y instead 141

of its alternative y′ by making a minimal yet neces- 142

sary change to x to obtain the desired change in its 143

prediction. To better declare the research scope, we 144

clarify two related terms in Section A, Appendix. 145

Mathematically, given an input sentence x ∈ X 146

with its label y ∈ Y . Y represents a set of finite 147

discrete labels for a classification task; whereas 148

for a regression task, Y denotes a continuous real 149

space. A model f : X ⊂ Rd → Y is employed to 150

predict the label of x: f(x) = y. A counterfactual 151

generation method g : f × X → X modifies a 152

minimal subset of the words in x to produce a 153

counterfactual example, c, that alters the model’s 154

prediction to a desired label: f(c) = y′, where y′ ∈ 155

Y . Hence, generating counterfactual examples can 156

be achieved by solving the following constrained 157

optimization problem, 158

argmin
c

dist(x, c) (1) 159

s.t. f(c) = y′, 160

where dist(·, ·) is a distance function that measures 161

the changes required to alter the prediction. This 162

definition describes the essence of the counterfac- 163

tual problem for simple classification or regression 164

tasks. For a detailed introduction of how counter- 165

factuals are defined in different NLP tasks, please 166

refer to Section B in the Appendix. 167

During implementation, researchers often need 168

to consider specific constraints to guide the gen- 169

eration and evaluation of counterfactual examples. 170
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Below, we outline the common desiderata.171

Validity: is often defined as the distance function172

(Verma et al., 2020) between the model’s prediction173

of the counterfactual, f(c), and the desired label,174

y′. Minimizing the differences between f(c) and175

y′ encourages a higher rate of successful label flips,176

indicating that the generated CFE is valid.177

Proximity: It is the key constraint to create “close178

possible worlds” with minimal modifications to179

achieve desired outcomes (Wachter et al., 2017).180

During implementation, proximity is also defined181

as the distance between the original x and its coun-182

terfactual c. This forces the generators to preserve183

most of the original content while altering only the184

critical words.185

Diversity: A diverse set of CFEs contains multi-186

ple possible revisions of a sentence to achieve the187

target prediction where each revision may tell a dif-188

ferent prediction logic. A broad reasoning analysis189

enhances our trust in a model’s prediction (Wachter190

et al., 2017) and allows us to fine-tune the model for191

greater robustness (Joshi and He, 2022). To max-192

imize the separation of CFEs during generation,193

we can incorporate a pair-wise distance function to194

measure inter-discrepancy (Mothilal et al., 2020;195

Chen et al., 2021b). Alternatively, we can heuristi-196

cally guide the generator to modify different spans197

of a sentence (Chen et al., 2023).198

Fluency: measures how smooth and natural a CFE199

reads, akin to the plausibility in tabular CFE gener-200

ation (Gilo and Markovitch, 2024). This constraint201

is typically quantified by metrics like perplexity,202

which computes the log-probability on the full sen-203

tence generated by a language model (Wu et al.,204

2021). Lower perplexity indicates that the text is205

more grammatically correct and coherent, which206

is important to ensure a natural language CFE is207

understandable.208

Other constraints such as controllability (Ribeiro209

et al., 2020; Wu et al., 2021) and stability (Gardner210

et al., 2020; Geva et al., 2022) are also considered211

under specific NLP scenarios. However, these con-212

straints are applied to better control or stabilize213

process of counterfactual generators, not the final214

counterfactual examples (Guidotti, 2022). Due to215

page limit, detailed discussion is omitted.216

3 Generation Methods217

In this section, we introduce 64 publications for218

textual counterfactual generation. The paper collec-219

tion process is illustrated in Section C of Appendix.220

Based to methodology differences, we propose a 221

novel taxonomy that categorize existing methods 222

into four groups, as shown in Figure 1. Within 223

each group, we further divide these methods into 224

fine-grained classes or successive steps, to ensure 225

that this paper is hierarchically organized. The full 226

taxonomic structure is shown in Figure 5 of the 227

Appendix. 228

3.1 Manual Generation 229

Generating fluent textual CFEs proved challenging 230

for early neural network models. Consequently, re- 231

searchers often relied on domain experts or crowd- 232

sourcers from platforms like Amazon Mechanical 233

Turk to manually modify the sentences (Kaushik 234

et al., 2019; Gardner et al., 2020; Yang et al., 2020; 235

Samory et al., 2021). 236

Before editing, human annotators are given de- 237

tailed instructions and examples. The editing prin- 238

ciples are: (1) Minimal Edits: Make only necessary 239

changes, such as deletion, insertion, replacement, 240

and reordering, to minimally edit the original text 241

using domain knowledge. (2) Fluency, Creativity, 242

and Diversity: Ensure the edits maintain fluency 243

and grammatical accuracy and meanwhile make 244

diverse modifications such as changes to adjectives, 245

entities, and events. (3) Adhere to task-specific 246

rules. For instance, in five-sentence story rewriting, 247

revisions must align with the initial sentence and in- 248

fluence the subsequent storyline (Qin et al., 2019). 249

In question-answering (QA) tasks, counterfactual 250

questions should be answerable based on the given 251

context (Khashabi et al., 2020). 252

Multiple annotators are often employed to cross- 253

validate the CFEs created by a single annotator 254

(Gardner et al., 2020). Those with lower consensus 255

are then filtered out. However, creating a high- 256

quality CFE dataset through human labor is both 257

time-consuming and expensive (Sen et al., 2023). 258

For instance, Kaushik et al. (2019) reported that 259

modifying and verifying a single CFE typically 260

takes four to five minutes and costs approximately 261

$0.80. For a detailed discussion on filtering tech- 262

niques, refer to Section 3.5. 263

3.2 Gradient-based Optimization 264

The constrained problem in Equation (1) can be 265

converted to the Lagrange function below, 266

L = dist(x, c) + λ1 · ℓ(f(c), y′), (2) 267

where ℓ(·, ·) describes the difference between the 268

desired target y′ and current prediction f(c), and 269
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λ1 ∈ R+ is the Lagrange multiplier. A larger270

λ1 will encourage the CFEs to be closer to the271

desired prediction. Additional desired properties or272

constraints, such as diversity and fluency, can also273

be formulated using corresponding mathematical274

equations, which are appended after Equation (2).275

Neural network models, such as, BERT (Devlin276

et al., 2019b), GPT-2 (Radford et al., 2019), are dif-277

ferentiable, and the distance function dist(·) typ-278

ically uses L1 or L2 norm. We can deliberately279

choose differential equations or models for other280

constraints so that the overall loss function L is also281

differentiable. Consequently, researchers (Madaan282

et al., 2021; Hu and Li, 2021; Jung et al., 2022) can283

employ gradient descent to iteratively minimize the284

total loss until specific stopping conditions are met.285

Following common practices in tabular CFE, this286

loss can be minimized for a specific sentence x287

(Jung et al., 2022), but it is not effective. Therefore,288

most textual generators aim to learn a controlled289

text generation model by optimizing the total loss290

over a collection of training samples (Madaan et al.,291

2021; Hu and Li, 2021; Madaan et al., 2023; Yan292

et al., 2024). These research have the following293

two characteristics:294

(1) Steering controlled text generation models to295

generate CFEs. For example, GYC (Madaan et al.,296

2021) and CASPer (Madaan et al., 2023) leverage297

the controlled text generation framework PPLM298

(Dathathri et al., 2020) and generate CFEs condi-299

tioning on an input x and desired target.300

(2) Selecting proper models to achieve desired prop-301

erties. CounterfactualGAN (Robeer et al., 2021)302

uses the StarGAN (Choi et al., 2018) to ensure that303

the CFEs adhere to the data distribution. To avoid304

model bias toward spurious correlations, Hu and305

Li (2021) develop a causal model using variational306

auto-encoders (VAEs). Yan et al. (2024) disentan-307

gle content and style representations using a VAE308

model. They then intervene in the style variable309

while maintaining the content variable constant,310

enabling the generation of counterfactual explana-311

tions through the decoder model.312

During inference, the original input and the de-313

sired target are fed into the pretrained model. As314

these models are trained in an end-to-end man-315

ner, one limitation is that we cannot control the316

generation process, such as which words should317

be revised. Additionally, the model is trained by318

minimizing the loss over a collection of samples,319

which may compromise the quality of CFEs for320

certain sentences, such as those pertaining to mi- 321

nority groups. Lastly, controlled text generation 322

does not necessarily produce CFEs with minimal 323

and diverse perturbations. 324

3.3 Identify and then Generate 325

A popular family of approaches decomposes the 326

generation task into two steps: (1) identifying the 327

word positions to be revised in the original text, and 328

(2) minimally editing those positions to generate 329

CFE candidates with target predictions, as shown 330

in Figure 2. 331

3.3.1 Identification step 332

The simplest strategy involves either selecting ran- 333

dom word positions (Fu et al., 2023) or revising all 334

word positions (Fern and Pope, 2021). However, 335

such approaches fail to discriminate between word 336

positions that potentially contribute to valid coun- 337

terfactuals and those that do not. Consequently, 338

the subsequent generation step may produce futile 339

results, leading to unnecessary costs. Therefore, re- 340

searchers propose more deliberately designed iden- 341

tifiers, which are summarized as follows: 342

(1) Words statistics. This approach (Madaan et al., 343

2020; Li et al., 2018) first calculates the frequency 344

of words or n-grams that appear in the target do- 345

main corpus using traditional term frequency (TF) 346

and/or inverse document frequency (IDF) measures. 347

It then marks those words or n-grams whose fre- 348

quency scores exceed a specific threshold. 349

(2) Syntactic parser. Syntax plays a crucial role in 350

model predictions across many tasks. For example, 351

adjectives (‘good’, ‘delicious’) and verbs (‘like’, 352

‘hate’) are often considered closely linked to senti- 353

ment polarity. Subjects and objects are important 354

for understanding the logical relationship in the 355

NLI task. Consequently, researchers (Chen et al., 356

2023; Geva et al., 2022) adopt a syntactic parser to 357

split a sentence into spans. Control codes (Ribeiro 358

et al., 2020; Wu et al., 2021) are incorporated into 359

parsers to produce different types of perturbations 360

for various purposes. Additionally, Tailor (Ross 361

et al., 2022) analyzes text syntax to extract high- 362

level and semantic control codes, enabling flexible 363

and meaningful perturbation strategies. 364

(3) Word importance. The approaches in this cat- 365

egory identify important words that significantly 366

contribute to the original prediction. For example, 367

given a positive text such as “It is a fantastic mo- 368

ment,” the word ‘fantastic’ would be identified as 369

the crucial word for the positive label. Compared 370
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Original Text CFE 
CandidatesWord Statistics

Syntactic Parser
Word Importance

Identifier
Semantic Editing
Syntactic Editing

Retrieved Counterfactuals
Heuristic Search

Masked Language Model
Constrained Open-ended Infilling

Generator

Semantic Editing

Analyzed Text

The film was boring.   
(sentiment=negative)

The film was <mask> The film was exciting. 

(sentiment=positive)

. . .

CFE Candidates

Figure 2: Demonstration of the Identify-and-then-Generate CFE generation.

to identifiers based on word statistics and syntac-371

tic parsers that only require an input sentence, the372

word importance-based identifier additionally ne-373

cessitates a pretrained model to judge word impor-374

tance via prediction differences.375

Conveniently, importance scores can be read-376

ily obtained from current feature importance ap-377

proaches such as gradients (Simonyan et al., 2014),378

integrated gradients (Sundararajan et al., 2017),379

LIME (Ribeiro et al., 2016), SHAP (Lundberg and380

Lee, 2017), and CURE (Si et al., 2023). For in-381

stance, MICE (Ross et al., 2021b) uses gradients382

to determine which tokens to mask; LEWIS (Reid383

and Zhong, 2021) identifies style-related tokens384

with above-average attention weights; Polyjuice385

(Wu et al., 2021) and AutoCAD (Wen et al., 2022)386

incorporate LIME and SHAP as plugins to identify387

mask positions; Martens and Provost (2014) iden-388

tify a minimal set of words whose removal would389

revert the current prediction. Typically, a higher390

importance score indicates a greater significance to391

the original prediction, and such tokens are more392

likely to be replaced in the generation step.393

The above techniques can be combined to394

achieve more precise identification of editing lo-395

cations. For instance, AC-MLM (Wu et al., 2019)396

combines word frequency and attention scores to397

obtain accurate locations.398

For word statistics and word importance-based399

identifiers, each word is assigned a score. Then,400

we need to determine how many words should be401

masked. Masking too many words increases CFE’s402

proximity, while masking too few may result in403

void CFEs. Empirically, recent studies often em-404

ploy predefined rules, such as selecting the top-K405

words or spans (Malmi et al., 2020; Wen et al.,406

2022), choosing words whose scores exceed a cer-407

tain threshold (Wu et al., 2019; Hong et al., 2023),408

or adaptively controlling the number of masked to-409

kens (Reid and Zhong, 2021; Madaan et al., 2020).410

3.3.2 Generation step 411

Once the word positions are identified, the next step 412

is to replace the original words at these positions 413

with appropriate replacements to achieve the target 414

prediction. We list common generators below: 415

(1) Semantic editing. An intuitive solution is to 416

substitute the important words with their corre- 417

sponding semantic counterparts such as antonyms. 418

They can be readily obtained with existing lexical 419

databases like WordNet (Chen et al., 2021b; Wang 420

and Culotta, 2021; Chen et al., 2021a). Alterna- 421

tively, they can be searched within the dataset of the 422

target class (Li et al., 2018; Gilo and Markovitch, 423

2024). This strategy is limited to tasks related to 424

semantic understanding (Wen et al., 2022). 425

(2) Syntactic editing. These methods (Li et al., 426

2020a; Zhu et al., 2023; Longpre et al., 2021; Geva 427

et al., 2022) leverage existing language parsers to 428

decompose a sentence into several syntactic spans, 429

then design customized rules to transform each 430

span into the desired output. Examples include in- 431

serting ‘not’ before verbs or adjectives, swapping 432

subjects and objects, modifying tense, substituting 433

a word with another entry from the corpus, or tam- 434

pering with factual evidence. Such approaches are 435

primarily designed for tasks like natural language 436

inference, named entity recognition, and fact veri- 437

fication, where the model predictions are sensitive 438

to the tense, location of passive and subject, and 439

evidence. 440

(3) Retrieved counterfactuals. Retrieval-based 441

approaches (Li et al., 2018) first retrieve an open- 442

source database using the masked original sen- 443

tence. Subsequently, filtering techniques are used 444

to keep valid and minimally revised candidates. 445

RGF (Paranjape et al., 2022) directly generates 446

counterfactual questions based on retrieved context 447

and answers in QA task. Although RGF does not 448

need to identify word positions, we categorize this 449

method here due to its use of retrieval techniques. 450

The major concern with this approach is that the 451

retrieved counterfactuals may not be as similar to 452
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the original sentence as other methods.453

(4) Heuristic search. These methods (Fern and454

Pope, 2021; Gilo and Markovitch, 2024) employ455

heuristic search to find appropriate replacements456

within a defined search space. The key contribu-457

tions of these methods are the construction of the458

search space and the development of search strate-459

gies. Fern and Pope (2021) first identify the k460

potential substitutions for each word and adopt a461

Shapley-value guided search method. Gilo and462

Markovitch (2024) start from a CFE in the training463

dataset and leverage the weighted A∗ algorithm to464

iteratively reduce the edit cost.465

(5) Masked language models (MLMs). The iden-466

tified word locations can be masked with specific467

tags such as ‘[MASK]’. An MLM can then be468

used to edit these tags to achieve the target pre-469

diction. For example, consider a masked sentence470

like “There is a [MASK] moment,” with a goal to471

generate a negative expression, MLMs might fill in472

the mask with words like ‘terrible’ or ‘dismal’.473

The primary contributions of approaches in this474

family revolve around how they leverage and train475

MLMs for infilling tasks. (1) Some methods476

(Ribeiro et al., 2020; Chen et al., 2022; Chemmen-477

gath et al., 2022) directly leverage the pretrained478

MLMs to infill the blanked words. While conve-479

nient, the generated words may not always align480

with the desired properties, often necessitating post-481

hoc filtering to meet user expectations. (2) Other482

approaches involve finetuning MLMs on target do-483

main data (Malmi et al., 2020; Reid and Zhong,484

2021) and then used to infill the blanks. (3) A485

widely adopted method (Wu et al., 2019; Ross et al.,486

2021b; Hao et al., 2021; Calderon et al., 2022; Wen487

et al., 2022) involves finetuning the MLM to re-488

construct sentences from the masked sentences and489

their original predictions. Here, the MLM learns490

to infill the blank in a way that is consistent with491

a given prediction. During inference, the MLM492

is provided with a masked sentence and the target493

prediction to produce CFEs. (4) Some researchers494

directly finetune an MLM to learn the controlled495

generation from the source domain to the target do-496

main (Wu et al., 2021; Ross et al., 2022). However,497

this approach often requires a substantial amount498

of training data. For instance, (Wu et al., 2021) rec-499

ommends collecting 10,000 instances per control500

code, which can be burdensome.501

The primary drawback of these approaches is502

that MLMs focus solely on revising the masked po-503

sitions, which leads to a lack of linguistic diversity 504

in generated CFEs. 505

(6) Constrained open-ended infilling. This ap- 506

proach aims to infill the masked positions more flex- 507

ibly while restricted by a label flip rate constraint, 508

compared to MLM approaches that strictly infill 509

the mask locations with replacements. For exam- 510

ple, NeuroCFs (Howard et al., 2022) first identify 511

key concepts and then use a GPT-2 model, adapted 512

to the target prediction, to decode these concepts. 513

DeleteAndRetrieve (Li et al., 2018) concatenates 514

the embeddings of the masked original sentence 515

and a retrieved sentence with the target prediction, 516

then adopts a decoder to generate a CFE. 517

3.4 LLMs as Counterfactual Generators 518

In the past two years, LLMs have shown remark- 519

able proficiency in synthesizing natural languages 520

for downstream tasks (Meng et al., 2022; Ye et al., 521

2022; Meng et al., 2023; Yu et al., 2024). Signif- 522

icant research has focused on designing effective 523

prompts to harness the advanced reasoning and un- 524

derstanding capabilities of these models for gener- 525

ating desired content, including CFEs (Dixit et al., 526

2022; Gat et al., 2024; Chen et al., 2023). In recent 527

literature, two key technologies in enhancing the 528

generation results are In-Context Learning (ICL) 529

and Chain-of-Thought (CoT). 530

Introduced with GPT-3 (Brown et al., 2020), 531

ICL improves prompts by including examples that 532

demonstrate the expected type of reasoning or out- 533

put. To generate counterfactuals for a given in- 534

stance, the prompt typically consists of the task 535

requirement and one (Sachdeva et al., 2024) or 536

a few pairs of original and counterfactual exam- 537

ples as demonstrations (Dixit et al., 2022; Chen 538

et al., 2023; Gat et al., 2024; Sachdeva et al., 2024). 539

These in-context counterfactuals are either manu- 540

ally created (Chen et al., 2023; Gat et al., 2024) or 541

retrieved from an external unlabeled corpus (Dixit 542

et al., 2022). 543

CoT prompting, introduced by Wei et al. (2022), 544

elicits the emergent reasoning capability of LLMs 545

by incorporating a series of intermediate reasoning 546

steps into the prompt. For example, in sentiment 547

classification, generating counterfactuals for a pos- 548

itive sentence involves two steps: (1) identifying 549

and (2) altering words that convey positive sen- 550

timent (Bhattacharjee et al., 2024; Nguyen et al., 551

2024; Li et al., 2024). This technique is more evi- 552

dent in question-answering tasks, where Sachdeva 553
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et al. (2024) demonstrate that the counterfactuals554

for an answer can be obtained by first generating555

a counterfactual question based on the factual con-556

text and then producing the corresponding answer.557

3.5 Filter558

Since the automatic counterfactual generators may559

produce degenerate counterfactuals (incoherent, il-560

logical, or invalid) for some inputs, post-hoc filter-561

ing is typically employed to filter out these degen-562

erate cases.563

Human filtering (Zhang et al., 2019) ensures564

high-quality filtering but is time-consuming and565

labor-intensive. Therefore, researchers often use566

automated tools to remove undesired outputs.567

These automated methods include eliminating CFE568

candidates that are incorrectly predicted by state-569

of-the-art (SOTA) models (Reid and Zhong, 2021;570

Zhang et al., 2023; Chang et al., 2024); deleting571

degenerations with low fluency scores computed by572

language models (Li et al., 2020a; Wu et al., 2021;573

Ross et al., 2022; Gilo and Markovitch, 2024);574

and selecting human-like counterfactuals based on575

proximity scores (Yang et al., 2021).576

3.6 Summary577

Owing to length constraints, we cannot discuss all578

papers in each group. Instead, we focus on a few of579

the most pertinent studies for each point to ensure580

that the essential information is conveyed clearly.581

Complete references for each group can be found582

in Appendix Section D.583

4 Evaluation Metrics584

Validity. It measures the proportion of CFEs that585

achieve the desired target among all generated586

CFEs. Formally, the validity over N test samples587

is defined by,588

V alidity =
1

N

N∑
i=1

I(f̂(ci) = y′i), (3)589

where y′i is the desired target of a CFE ci. The590

predictor f̂ can be human annotation (Wu et al.,591

2021; Chen et al., 2021b), fined-tuned SOTA mod-592

els (e.g., RoBERTa (Ross et al., 2021b; Wen et al.,593

2022; Betti et al., 2023; Balashankar et al., 2023;594

Gat et al., 2024), or BERT (Betti et al., 2023; Bhat-595

tacharjee et al., 2024) in sentiment analysis, and596

DeBERTa (Chen et al., 2023) in natural language in-597

ference), or voting with multiple models (Sachdeva598

et al., 2024). A higher validity is preferred.599

Similarity. Similarity measures the editing ef- 600

fort of a CFE required during generation (Wu et al., 601

2021; Kaushik et al., 2019), formally defined as, 602

Similarity =
1

N

N∑
i=1

dist(xi, ci). (4) 603

For lexical and syntactic similarity evaluations, 604

widely used methods include the word-level Leven- 605

shtein edit distance (Levenshtein et al., 1966) and 606

the syntactic tree edit distance (Zhang and Shasha, 607

1989). For assessing semantic similarity, models 608

like SBERT (Reimers and Gurevych, 2019) and 609

the Universal Sentence Encoder (USE) (Cer et al., 610

2018) are commonly used. They encode both the 611

CFE and the input text and then calculate the cosine 612

similarity between their sentence representations. 613

Diversity. This score is measured as the average 614

pairwise distance between K returned CFEs for a 615

sentence x, defined as follows, 616

Diversity =
1(
K
2

) K−1∑
i=1

K∑
j=i+1

dist(ci, cj). (5) 617

For lexical diversity, Self-BLEU (Zhu et al., 2018) 618

reports the average BLEU score between any two 619

CFEs, while Distinct-n (Li et al., 2016) gauges di- 620

versity by calculating the ratio of unique n-grams 621

to the total number of n-grams in the generated 622

CFEs. When semantic diversity is assessed, the 623

dist(·) function can be metrics like SBERT em- 624

bedding similarity (Reimers and Gurevych, 2019), 625

BERTScore (Zhang et al., 2020), semantic uncer- 626

tainty (Kuhn et al., 2023). 627

Fluency. As fluency describes the resemblance 628

of a CFE to human writing, a simple measurement 629

is to ask human raters to evaluate a CFE based on 630

cohesiveness, readability, and grammatical correct- 631

ness (Robeer et al., 2021; Madaan et al., 2021). 632

Due to the irreproducibility and high cost of human 633

evaluation, automated fluency evaluations such as 634

the likelihood and the perplexity score have be- 635

come popular in recent studies (Ross et al., 2021b; 636

Sha et al., 2021; Treviso et al., 2023). 637

(1)Likelihood (Salazar et al., 2020). Given a 638

sentence of length n, we create n copies by individ- 639

ually masking each of the n tokens. We then use a 640

masked language model (MLM), such as T5-based 641

models, to compute the loss for both the original 642

sentence and its n masked copies. The likelihood 643

is calculated as the average ratio of the loss of each 644

masked copy to the loss of the original sentence. 645
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(2) Perplexity score (Jelinek et al., 2005). This646

score evaluates whether the produced CFEs are647

natural, realistic, and plausible. In practice, we648

quantified this using the powerful generative LMs649

(e.g., GPT-2 (Radford et al., 2019)), formally de-650

scribed as follows,651

perplexity = exp

[
− 1

n

n∑
i=0

log pθ(ti|t<i)

]
, (6)652

where pθ(ti|t<i) is the probability of the i-th token653

of a CFE c, given the sequence of tokens ahead.654

Model Performance. As modifications in CFEs655

ideally adhere to domain knowledge, we can either656

incorporating CFEs into training to enhance model657

robustness (Chen et al., 2021b; Qiu et al., 2024)658

or leverage CFEs as test sets to evaluate existing659

model’s generalization (Ribeiro et al., 2020; Ross660

et al., 2021b). Researchers then report the classi-661

fication performance, such as accuracy, F1-score,662

and the standard deviation of these metrics on out-663

of-domain datasets or counterfactual test sets664

The commonly used metrics are summarized665

in Appendix Section E. The metrics used in each666

paper are also listed in Appendix Section D.667

5 Challenges and Future Directions668

Fair evaluation. Counterfactuals are inherently669

speculative, making it difficult to compare CFEs670

from different methods due to the absence of671

ground truth. This challenge arises from two main672

aspects: (1) Existing metrics evaluate CFEs from673

various, often non-comparable perspectives. For674

example, prioritizing higher proximity (minimal675

changes to the original text) typically results in676

lower diversity. Optimizing one metric often com-677

promises another, making it difficult to dominate678

across all metrics and conclusively identify the best679

method. (2) Many methods use filtering techniques680

to discard undesired results. Direct comparisons681

between filtered and unfiltered CFEs may introduce682

bias in the evaluation process. For instance, meth-683

ods employing GPT-2 to filter out grammatically684

incorrect or nonsensical sentences (Radford et al.,685

2019; Ross et al., 2022) often outperform those that686

do not use such filters on fluency score.687

Model privacy and security. Model privacy and688

security are crucial considerations in the develop-689

ment and deployment of machine learning systems.690

CFEs, which reveal sensitive changes near the de-691

cision boundary, can be exploited by adversaries692

to extract high-fidelity surrogate models (Aïvodji693

et al., 2020; Wang et al., 2022), posing risks to 694

model integrity. Future research should focus on 695

strategies to mitigate model extraction risks while 696

maintaining the utility of CFEs. 697

Counterfactual multiplicity. Multiple counterfac- 698

tuals can exist with similar evaluation scores. For 699

example, replacing ‘terrible’ with ‘good’ or ‘ex- 700

cellent’ results in similar edit distances and flip 701

rates. While current research often centres on gen- 702

erating CFEs, having diverse CFEs is crucial for 703

understanding models from various perspectives 704

(Wachter et al., 2017), enhancing fairness detection 705

with higher test coverage (Mothilal et al., 2020), 706

and training robust models (Joshi and He, 2022; 707

Qiu et al., 2024). Future work should focus on se- 708

lecting diverse CFEs or incorporating diversity into 709

the objective, possibly with a cardinality constraint. 710

LLM-assisted CFEs. To better leverage LLMs’ 711

understanding and reasoning capabilities, an in- 712

depth task analysis of the counterfactual problem 713

is the premise, which could help design clear and 714

constructive prompts. This is particularly impor- 715

tant when we design prompts for different NLP 716

tasks. Prompts framed in a “What-if” scenario may 717

outperform those framed as optimization problems. 718

On the other hand, LLMs are not without flaws and 719

face several challenges, including bias, fairness 720

issues, hallucinations, and difficulty in retaining 721

long-term context. We should consider integrating 722

debiasing techniques and fairness constraints, de- 723

veloping advanced memory architectures and inte- 724

grating external knowledge to mitigate these issues. 725

6 Conclusion 726

In this survey, we systematically review recent ad- 727

vancements, including the latest LLM-assisted gen- 728

eration approaches. Based on algorithmic differ- 729

ences, we propose a novel taxonomy that catego- 730

rizes these methods into four groups, providing 731

an in-depth comparison, discussion, and summary 732

for each group. Additionally, we summarize the 733

commonly used metrics to evaluate the quality of 734

counterfactuals. Lastly, we discuss research chal- 735

lenges and aim to inspire future directions. With 736

the widespread use of LLMs, model explanation, 737

fairness, and robust training have received increas- 738

ing attention. We believe this survey can serve 739

as an easy-to-follow guideline to motivate future 740

advances that harness these problems. 741
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7 Limitations742

While this survey provides a comprehensive743

overview of counterfactual generation in the NLP744

domain, it has several limitations. Firstly, it fo-745

cuses predominantly on generating CFEs while ex-746

cluding other areas like counterfactual thinking or747

reasoning, which are also applicable to NLP tasks.748

Secondly, although counterfactual generation in749

NLP intersects with fields like causality, linguistics,750

and social sciences, this survey centres on NLP-751

specific aspects and may not fully explore these752

interdisciplinary connections, potentially limiting753

the depth of understanding in those areas. Thirdly,754

the survey outlines general evaluation metrics but755

does not include empirical evaluations or practical756

experiments. The diversity and task-specific na-757

ture of counterfactual generation methods in NLP758

make unified evaluation challenging. However, the759

general automatic evaluation metrics reviewed in760

Section 4 could facilitate comparative experiments761

on different generation strategies. Lastly, although762

this survey mentions issues like bias and fairness, it763

does not delve deeply into the ethical and practical764

implications of deploying CFEs in real-world ap-765

plications. Understanding these impacts is crucial766

but beyond the scope of this paper.767

8 Ethics Statement768

We recognize the importance of ethical considera-769

tions in our research and have adhered to respon-770

sible practices throughout this study. To ensure771

transparency and accountability, we have listed all772

the papers mentioned in our survey in Appendix773

D, including our qualitative classifications and an-774

notations for public scrutiny. To address potential775

bias in categorizing reviewed papers, five indepen-776

dent researchers meticulously validated the catego-777

rizations and definitions, enhancing the reliability778

and accuracy of our analysis. Additionally, CFEs779

can significantly impact decision-making in high-780

stakes applications, affecting fairness and account-781

ability. Therefore, it is crucial to use CFEs respon-782

sibly in real-world deployments. Researchers and783

practitioners should be cautious of unintended con-784

sequences when applying these techniques. Dis-785

closing these ethical considerations underscores786

our commitment to ethical and accountable re-787

search practices.788
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Original Text: The film was boring.  (Negative)

Counterfactual Text: The film was barely boring.  (Positive)

Original Premise:  A child are creating sculptures.
Original Hypothesis: A child painting on canvas.  (Contradiction)

Counterfactual Premise: A child are making something.
Unchanged Hypothesis:  A child painting on canvas.  (Neutral)

Given Premise: ① Kelly was playing her new Mario game..

Condition: (② She had been palying it for weeks.)
Ending: ③ She was playing for so long without beating the level. 
④ Finally she beat the last level.. ⑤ Kelly was so happy to 
finally beat it.

Counterfactua C: (②’ She never beat the gam through.)
Counterfactual E: ③’ She was playing for so long without beating 
the level. ④’ She never beat the last level.  ⑤’ Kelly was so sad to 
be stuck at the end.

Original Text: Wine is in the bottle.  (Content-Container)

Counterfactual Text: Wine is from the bottle.  (Entity-Origin)

(f) Relation Extraction (RE)

(a) Sentiment Analysis (SA)

(b) Natural Language Inference (NLI)

(c) Question Answering (QA)

(d) Story Rewriting

Given Context:  Nintendo and The Pokémon Company debuted in 
the Super Bowl, celebrating Pokémon's 20th anniversary.

Question: What companies debuted in the Super Bowl?
Answer:  (Nintendo and The Pokémon Company)

Counterfactual Q:  What event was celebrated in the Super Bowl?
Counterfactual A: (Pokémon's 20th anniversary)

Original Text: The knife is slightly bent.  (Kitchen)

Counterfactual Text: The ipod is slightly filmsy.  (Electronics)

(e) Domain Adaptation (DA)

Figure 3: Use cases of counterfactuals in different NLP tasks.

A Terminology Clarification1506

In this section, we clarify terms related to Counter-1507

factual Examples (CFEs) to ensure a precise review1508

scope.1509

Adversarial Example v.s. CFE. Both text adver-1510

sarial examples (Li et al., 2020b; Garg and Ramakr-1511

ishnan, 2020) and CFEs aim to change model pre-1512

dictions with minimal modifications. However, ad-1513

versarial examples are designed to deceive human1514

perception, altering only the model’s prediction1515

without necessarily being human-perceivable as1516

different. In contrast, CFEs should ideally change1517

both human and model predictions simultaneously.1518

Style Transfer v.s. CFE. Style transfer (Sudhakar1519

et al., 2019a; Hu et al., 2017) aims to revise the1520

input sentence to achieve a target style. Unlike1521

CFE generation, which sought for minimal per-1522

turbations, style transfer may involve complete1523

sentence modifications to ensure the sentence con-1524

forms to the target style. However, when minimal1525

perturbation is also required in some style transfer1526

research, we treat both tasks the same and include1527

these studies.1528

B CFE Generation in NLP Tasks1529

Here, we present the formulation of CFE genera-1530

tion across various NLP tasks. Figure 3 illustrates1531

examples of corresponding CFE in different tasks,1532

and Figure 4 reports the proportion of papers in1533

each task relative to all reviewed papers.1534
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Figure 4: Proportion of papers in each task among all
reviewed papers. The term ‘CLASS’ refers to papers
applicable to general text classification tasks, including
SA and NLI.

Sentiment Analysis (SA) involves determining the 1535

emotional polarity y given a text x. Counterfactual 1536

generation in SA refers to minimally modify the 1537

input text x such that the new sentence c has a 1538

different prediction y′, i.e., (x, y) → (c, y′). 1539

Natural Language Inference (NLI) is to deter- 1540

mine whether a given hypothesis x1 can be inferred 1541

from a given premise x2, and return a logical rela- 1542

tionship y. CFE generation in NLI aim to revise 1543

hypothesis or premise or both to change current log- 1544

ical relationship y to another different relationship 1545

y′, i.e., (x1,x1, y) → (c1, c2, y
′). 1546

Question Answering (QA) aims to automatically 1547

produce an answer a for a given question q and 1548

context x. The counterfactual QA task seeks to 1549

minimally modifies either the context or the ques- 1550

tion, or both to generate counterfactual context cx 1551
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or question cq such that (cx, cq,a′) holds for a new1552

answer a′, i.e., (x, q,a) → (cx, cq,a
′).1553

Story Rewriting (SR). The example in SR task in-1554

cludes a 5 sentence tuple {s1, s2, s3, s4, s5} where1555

s1 is the story premise, s2 is the initial context, and1556

s3−5 are original story endings. Given a contrastive1557

context s′2, counterfactual SR aims to minimally1558

revise the original endings, such that the revised1559

endings s′3−5 still keep narrative coherency to the1560

new context and original premise.1561

Domain Adaptation (DA). Given a sentence x1562

that belongs to the source domain ds, counterfac-1563

tual DA aims to minimally intervene the original1564

sentence such that the edited sentence c belongs to1565

a different target domain dt.1566

Relation Extraction (RE) involves extracting the1567

relationship r between entities in a given sentence1568

x. In counterfactual RE, we aim to minimally re-1569

vise the x such that a different relationship r′ can1570

be obtained between these entities from the revised1571

sentence c.1572

C Paper Collection1573

This section outlines the approach we employed1574

to collect relevant papers in this survey. We first1575

retrieve papers from arXiv and Google Scholar1576

with keywords “counterfactually augmented data”,1577

“counterfactual explanation”, “contrast set”, and1578

“knowledge conflict”, and finally we obtain over1579

200 publications. We then filter out papers that1580

merely apply CFE on specific applications or gen-1581

erally discuss CFE, retaining approximately 40 pa-1582

pers as our seed references. We then applied back-1583

ward and forward snowballing techniques, examin-1584

ing the references and citations of these seed papers1585

to identify additional relevant studies. We carefully1586

reviewed all identified papers, focusing on those in-1587

troducing novel counterfactual generation methods,1588

which finally form this survey.1589

Our research paper list is available on GitHub1.1590

D Summary of CFE Generation1591

In this section, we summarize all collected papers1592

for each group in Section 3. Due to the distinct1593

characteristics of different method groups, we have1594

organized them into four separate tables, rather1595

than merging them into one large table. For meth-1596

ods within a table, we can conveniently understand1597

a method or compare it with another. The detailed1598

1https://anonymous.4open.science/r/Awesome-CF-
Generation-70FF

Table 1: Commonly used metrics for evaluating coun-
terfactuals, where ↑ (↓) indicates higher (lower) values
are better, and (→ 1) indicates closer to 1 is better.

Property Metric Trend

Validity Flip Rate ↑

Proximity

Lexical

BLEU (Papineni et al., 2002) ↑
ROUGE (Lin, 2004) ↑
METEOR (Denkowski and Lavie, 2011) ↑
Levenshtein Dist. (Levenshtein et al., 1966) ↓
Syntax Tree Dist. (Zhang and Shasha, 1989) ↓

Semantic
MoverScore (Zhao et al., 2019) ↑
USE Sim. (Cer et al., 2018) ↑
SBERT Sim. (Reimers and Gurevych, 2019) ↑

Diversity

Lexical
Self-BLEU (Zhu et al., 2018) ↓
Distinct-n (Li et al., 2016) ↑
Levenshtein Dist. (Levenshtein et al., 1966) ↑

Semantic
SBERT sim. (Reimers and Gurevych, 2019) ↓
BERTScore (Zhang et al., 2020) ↓

Fluency
Likelihood Rate (Salazar et al., 2020) (→ 1)
Perplexity Score (Radford et al., 2019) ↓

Model Performance
Accuracy / F1-Score ↑
Std of accuracy / F1-score in multiple runs ↓

summary are shown in Table 2, Table 3, Table 4, 1599

and Table 5. 1600

E Summary of Evaluation Metrics 1601

The evaluation metrics for comparing different 1602

CFEs are summarized in Table 1. Here, we only 1603

list metrics that have been used in at least three 1604

publications. 1605
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Table 2: Summary of CFE generation based on manual annotation.

Method Task: Dataset Annotators Project Link

(Kaushik et al., 2019) SA: IMDB; NLI: SNLI Crowd worker https://github.com/acmi-lab/counterfactually-augmented-data

(Qin et al., 2019) SR: TIMETRAVEL Crowd worker https://github.com/qkaren/Counterfactual-StoryRW

(Khashabi et al., 2020) QA: BOOLQ Master worker https://github.com/allenai/natural-perturbations

(Gardner et al., 2020)

SA: IMDB;

NLI: PERSPECTRUM;

QA: DROP,QUOREF,ROPES,

MC-TACO, BOOLQ;

RE: MATRES

Domain expert https://allennlp.org/contrast-sets

(Sathe et al., 2020) NLI: WIKIFACTCHECK Crowd worker http://github.com/WikiFactCheck-English

(Samory et al., 2021) Sexism: CMSB Crowd worker https://doi.org/10.7802/2251

(Sha et al., 2021) QA: WIKIBiOCTE linguistics https://sites.google.com/view/control-text-edition/home

Table 3: Summary of CFE generation based on gradient-based optimization. ‘MP’ means model performance. For
the unique formula in validity evaluation, we list the models applied. Symbols ✗ and ✓ depict “not included” and
“included” respectively. Papers are organized chronologically.

Method Task
Solution Evaluation

Objectives Filter Validity Diversity Proximity Fluency MP

GYC (Madaan et al., 2021) CLASS Val.+Pro.+ Div. ✗ XL-Net BERTScore ↓ Syntax Dist. ↓
SBERT Sim. ↑ Human ✓

CounterfactualGAN (Robeer et al., 2021) CLASS Val.+Pro. Val. BERT 1-USE ↑ ✗ Human ✗

Hu and Li (2021) CLASS Val.+Pro.+Flu. ✗
GPT-2
Human

Distinct-2 ↑ BLEU ↑ GPT-2 Perplexity ↓ ✗

GradualCAD (Jung et al., 2022) CLASS Val.+Pro. ✗ ✗ ✗ ✗ ✗ ✓

CASPer (Madaan et al., 2023) CLASS Val.+Flu.+Pro. ✗ ✗ BLEU ↓ SBERT Sim. ↑ GPT-2 Perplexity ↓ ✓

MATTE (Yan et al., 2024) SA Val.+Pro.+Flu. ✗ CNN Diversity-2 ↑ BLEU ↑
Human

GPT-2 Perplexity ↓
Human

✓

Table 4: Summary of CGE generation based on LLM prompting. ‘MP’ represents model performance, and for
the unique formula in validity evaluation, we list the models applied. Symbols ✗ and ✓ depict “not included” and
“included” respectively. Papers are listed chronologically.

Method Task
Solution Evaluation

Prompting Filter Validity Diversity Proximity Fluency MP

CORE (Dixit et al., 2022) CLASS ICL ✗ Human
Self-BLEU ↓
#Perturb Type ↑ Levenshtein ↓ ✗ ✓

DISCO (Chen et al., 2023) CLASS ICL Val.+Flu. Human
Self-BLEU ↓
OTDD ↑ ✗ ✗ ✓

(Zhou et al., 2023) CLASS ICL ✗ ✗ ✗ ✗ ✗ ✓

(Sachdeva et al., 2024) QA
ICL
+ CoT

Val.

FLAN-UL2
+ GPT-J
+ GPTNeoX
+ LLaMA

Self-BLEU ↓
Levenshtein ↑
SBERT Sim. ↓
Semantic Equ.↓

✗ ✗ ✓

(Gat et al., 2024) CLASS ICL Val. ✗ ✗ ✗ ✗ ✓

(Nguyen et al., 2024) CLASS ICL+CoT ✗ BERT ✗ Levenshtein ↓ GPT-2 Perplexity ↓ ✓

(Li et al., 2024) CLASS CoT Val.+Flu. ✗ ✗ ✗ ✗ ✓

(Bhattacharjee et al., 2024) CLASS CoT ✗ DistilBERT ✗
Levenshtein ↓
USE ↑ ✗ ✗
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Table 5: Summary of CFE generation within Identify-and-Generate framework. “W.I.” means word importance
techniques, “W.S.” is the word statistic techniques, and “ALL” is to leverage all words of a text. Papers are listed
chronologically.

Method Task
Solution Evaluation

Identify Generate Filter Validity Diversity Proximity Fluency MP

SEDC (Martens and Provost, 2014) CLASS W.I. Delete ✗ SVM ✗ #Delete Word ↓ ✗ ✗

DeleteAndRetrieve (Li et al., 2018) CLASS W.S.
Retrieve
Semantic Edit
Open Infilling

Flu.
Bi-LSTM
Human

✗
BLEU ↑
Human

Human ✗

AC-MLM (Wu et al., 2019) SA W.S.+W.I. MLM Infilling ✗
Bi-LSTM
Human

✗ BLEU ↑ Human ✗

PAWS (Zhang et al., 2019) NLI Parser MLM Infilling Val. Human ✗ ✗ Human ✓

Tag-and-Generate (Madaan et al., 2020) SA W.S. MLM Infilling ✗
AWD-LSTM
Human

✗

BLEU ↑
ROUGE ↑
METEOR ↑
Human

Human ✗

MASKER (Malmi et al., 2020) CLASS W.I. MLM Infilling ✗ BERT ✗ BLEU ↑ ✗ ✗

LIT (Li et al., 2020a) NLI Parser Syntax Edit Flu. Human ✗ ✗ Human ✓

CheckList (Ribeiro et al., 2020) CLASS Parser
MLM Infilling
Semantic Edit

✗ ✗ ✗ ✗ ✗ ✓

REP-SCD (Yang et al., 2020) CLASS W.I. MLM Infilling ✗ ✗ ✗ ✗ Human ✓

(Ramon et al., 2020) CLASS W.I. Delete ✗ SVM ✗ #Delete Word ↓ ✗ ✗

(Asai and Hajishirzi, 2020) QA Parser Semantic Edit Val. ✗ ✗ ✗ ✗ ✓

LEWIS (Reid and Zhong, 2021) SA W.I. MLM Infilling Val.
RoBERTa
Human

✗

BLEU ↑
BERTScore ↑
Human

Human ✓

Polyjuice (Wu et al., 2021) CLASS Parser MLM Infilling Flu. Human Self-BLEU ↓ Levenshtein ↓
Syntax Dist. ↓ Human ✓

MiCE (Ross et al., 2021b) CLASS W.I. MLM Infilling ✗ RoBERTa ✗ Levenshtein ↓ T5 Likelihood ✗

(Wang and Culotta, 2021) SA W.I. Semantic Edit ✗ ✗ ✗ ✗ ✗ ✓

CrossAug (Lee et al., 2021) NLI W.I.
Open Infilling
+Syntactic Edit

✗ ✗ ✗ ✗ ✗ ✓

SentimentCAD (Yang et al., 2021) SA W.I. MLM Infilling Pro. ✗ ✗ ✗ ✗ ✓

(Longpre et al., 2021) QA Parser Syntactic Edit ✗ Human ✗ ✗ Human ✓

SMG (Sha et al., 2021) QA W.I. MLM Infilling ✗ Human ✗ BLEU ↑ KNM Perplexity ↓
Human

✗

KACE (Chen et al., 2021b) NLI W.I. Semantic Edit
Val.+Pro.
+Div.

Human ✗ Human ✗ ✓

RCAD (Chen et al., 2021a) SA Parser Semantic Edit ✗ ✗ Distinct-2 ↑ ✗ ✗ ✓

PARE (Ross et al., 2021a) CLASS Parser Semantic Edit ✗ ✗ ✗ ✗ ✗ ✓

CLOSS (Fern and Pope, 2021) CLASS ALL Heuristic Search ✗
RoBERTa
BERT

✗
BLEU ↑
Edit Fraction ↓ GPT-J Perplexity ↓ ✗

Sketch-and-Customize (Hao et al., 2021) SR W.I. MLM Infilling ✗ Human ✗

BLEU ↑
ROUGE-L ↑
Human

✗ ✗

Tailor (Ross et al., 2022) CLASS Parser MLM Infilling Flu. Human Edit Fraction ↑ F1 Score ↓ GPT-2 Likelihood
Human

✓

RGF (Paranjape et al., 2022) QA ✗
Retrieved Context
+ Open Infilling

Val. + Pro.
T5
Human

#Edit Type ↑ Levenshtein ↓ Human ✓

BPB (Geva et al., 2022) QA Parser
Syntactic Edit
Open Infilling

✗ Human ✗ ✗ ✗ ✓

AutoCAD (Wen et al., 2022) CLASS W.I. MLM Infilling Val. RoBERTa Distinct-n ↑ ✗ ✗ ✓

CAT (Chemmengath et al., 2022) CLASS W.I. MLM Infilling
Val.+Div.
+Flu.+Pro.

RoBERTa
Human

✗
Levenshtein ↓
BERTScore ↑ GPT-2 Likelihood ✗

NeuroCFs (Howard et al., 2022) SA Parser Open Infilling ✗ ✗ Distinct-n ↑
Levenshtein ↓
BLEU-2 ↑
MoverScore ↑

GPT-J Perplexity ↓ ✓

DoCoGen (Calderon et al., 2022) DA W.S. MLM Infilling Val.+Pro. Human ✗ Human Human ✓

EDUCAT (Chen et al., 2022) SR W.I. MLM Infilling ✗
RoBERTa
Human

✗

BLEU ↑
BERTScore ↑
Human

✗ ✗

RACE (Zhu et al., 2023) NLI W.I.
Syntactic Edit
+Open Infilling

Val.+Pro.
RoBERTa
Human

1/BLEU ↑
Human

MoverScore ↑
Human

GPT-2 Perplexity ↓
Human

✓

RELITC (Betti et al., 2023) CLASS W.I. MLM Infilling ✗ RoBERTa ✗

Levenshtein ↓
BLEU ↑
SBERT Sim ↑
Mask Fraction↓

GPT-2 Likelihood ✓

CREST (Treviso et al., 2023) CLASS W.I. MLM Infilling ✗
RoBERTa
Human

Self-BLEU ↓ Levenshtein ↓ GPT-2 Perplexity ↓
human

✓

CoCo (Zhang et al., 2023) RE Parser Syntax Edit Val.
PA-LSTM
AGGCN
R-BERT

✗ ✗ ✗ ✓

SCENE (Fu et al., 2023) QA Random MLM Infilling Val. ✗ ✗ ✗ ✗ ✓

CCG (Miao et al., 2023) RE W.I.+Parser MLM Infilling Flu.+Val. Human ✗ Human Grammarly Tool ✓

Remask (Hong et al., 2023) DA W.S.+W.I. MLM Infilling ✗ Human ✗ Human Human ✓

CLICK (Li et al., 2023) SR W.I. MLM Infilling ✗ RoBERTa ✗
BLEU ↑
BERTScore ↑ ✗ ✗

TCE-Search (Gilo and Markovitch, 2024) CLASS W.I. Heuristic Search Flu.
RoBERTa
Human

✗

Levenshtein ↓
Syntax Dist. ↓
SBERT Sim. ↑

GPT-2 Likelihood
Human

✗

(Wu et al., 2024) SA W.I. MLM Infilling Val. ✗ ✗ ✗ ✗ ✓

CEIB (Chang et al., 2024) SA Random MLM Infilling Val. ✗ ✗ ✗ ✗ ✓
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Figure 5: The complete taxonomy proposed for existing literature on natural language counterfactual generation.
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