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Abstract

Effective task representations should facilitate compositionality, such that after
learning a variety of basic tasks, an agent can perform compound tasks consisting
of multiple steps simply by composing the representations of the constituent steps
together. While this is conceptually simple and appealing, it is not clear how to
automatically learn representations that enable this sort of compositionality. We
show that learning to associate the representations of current and future states with
a temporal alignment loss can improve compositional generalization, even in the
absence of any explicit subtask planning or reinforcement learning. We evaluate
our approach across diverse robotic manipulation tasks as well as in simulation,
showing substantial improvements for tasks specified with either language or goal
images.

1 Introduction

Compositionality is a core aspect of intelligent behavior, describing the ability to sequence previously
learned capabilities and solve new tasks [1]. In domains involving long-horizon decision-making
like robotics, various learning approaches have been proposed to enable this property, including
hierarchical learning [2], explicit subtask planning [3, 4, 5], and dynamic-programming-based
“stitching” [6, 7]. In practice, these techniques are often unstable or data-inefficient in real-world
robotics settings, making them difficult to scale [8].

By contrast, humans and animals are adept at quickly composing behaviors to reach new goals [1].
Possible explanations for these capabilities have been proposed, including the ability to perform
transitive inference [9], learn successor representations and causal models [10, 11], and plan with
world models [12]. In common among these theories is the idea of learning structured representations
of the world, which inference about which actions will lead to certain goals.

How might these concepts translate to algorithms for robot learning? In this work, we study how
adding an auxiliary successor representation learning objective affects compositional behavior in a
real-world tabletop manipulation setting. We show that learning this representation structure improves
the ability of the robot to perform long-horizon, compositionally-new tasks, specified either through
goal images or natural language instructions. Perhaps surprisingly, we found that this temporal
alignment does not need to be used for training the policy or test-time inference, as long as it is used
as an auxiliary loss over the same representations used for the tasks (Fig. 1).

We compare our method, Temporal Representation Alignment (TRA), against past imitation and
reinforcement learning baselines across a set of challenging multi-step manipulation tasks in the
BridgeData setup [13] as well as the OGBench simulation benchmark [14]. Unlike prior work in
setup, we focus on the compositional capabilities of the robot policies: as a whole, the tasks are
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Figure 1: We show our Temporal Representation Alignment (TRA) method performing a language
task, “put all food items in the bowl.” TRA adds a time-contrastive loss for learning task represen-
tations to use with a goal- and language-conditioned policy. While TRA can implicitly decompose
the task into steps and execute them one by one, the behavioral cloning (BC) and offline RL (AWR)
methods fail at this compositional task. The structured representations learned by TRA enable this
compositional behavior without explicit planning or hierarchical structure.

out-of-distribution, but each distinct subtask can be described through a goal image that lies in
the training distribution. Adding a simple time-contrastive alignment loss improves compositional
performance by >40% across 13 tasks in 4 evaluation scenes, and simulation results show better per-
formance compared to behavioral cloning (i.e., no structured representation learning), and comparable
performance to offline RL methods that explicitly use a learned value function.

2 Related Work

Our approach builds upon prior work on goal- and language-conditioned control, focusing particularly
on the problem of compositional generalization.

Robot manipulation with language and goals. Recent improvements in robot learning datasets
have enabled the development of robot policies that can be commanded with image goals and
language instructions [5, 13, 15]. These policies can be trained with goal- and language-conditioned
imitation learning from human demonstrations [16, 17, 18, 19, 20], reinforcement learning [21, 22],
or other forms of supervision [23, 24]. When trained to reach goals, methods can additionally use
hindsight relabeling [25, 26] to improve performance [13, 27, 28, 29]. Our work shows how the
benefits of goal-conditioned and language-conditioned supervised learning can be combined with
temporal representation alignment to enable compositionality that would otherwise require planning
or reinforcement learning.

Compositional generalization in sequential decision making. In the context of decision making,
compositional generalization refers to the ability to generalize to new behaviors that are composed of
known sub-behaviors [30, 31]. Biological learning systems show strong compositional generalization
abilities [9, 28, 32, 33], and recent work has explored how similar capabilities can be achieved in
artificial systems [34, 35, 36]. In the context of policy learning, exploiting the compositionality of the
behaviors can lead to generalization to unseen and temporarily extended tasks [6, 37, 38, 4, 39, 40].

Hierarchical and planning-based approaches also aim to enable compositional behavior by explicitly
partitioning a task into its components [41, 42, 43, 44]. With improvements in vision-language
models (VLMs), many recent works have explored using a pre-trained VLM to decompose a task
into subtasks that are more attainable for the low-level manipulation policy [5, 45, 46, 47, 42, 48, 49].
These approaches are limited by the need for robust pre-trained models that can be fine-tuned and
prompted for embodied tasks. Our contribution is to show compositional properties can be achieved
without any explicit hierarchical structure or planning, by learning a structured representation through
time-contrastive representation alignment.
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Representation learning for states and tasks. State and task representations for decision making
aim to improve generalization and exploit additional sources of data. Recent work in the robotics
domain have explored the use of pre-trained representations across multimodal data, including
images and language, for downstream tasks [50, 51, 52, 27, 53, 54, 55, 56, 57]. In reinforcement
learning problems, representations are often trained to predict future states, rewards, goals, or
actions [58, 59, 60, 61], and can improve generalization and sample efficiency when used as value
functions [62, 63, 64, 65, 66]. Some recent works have explored the use of additional structural
constraints on representations to enable planning [41, 43, 67, 68, 69], or enforced metric properties
to improve compositional generalization [70, 71, 72].

The key distinction between our approach and past contrastive representation methods for robotics like
VIP [59], GRIF [27], and R3M [53] is that we focus on the real-world compositional generalization
capabilities enabled by simply aligning representations across time in addition to the task modalities,
without using the learned representations for policy extraction or defining a value function.

3 Temporal Representation Alignment

When training a series of short-horizon goal-reaching and instruction-following tasks, our goal is
to learn a representation space such that our policy can generalize to a new (long-horizon) task that
can be viewed as a sequence of known subtasks. We propose to structure this representation space
by aligning the representations of states, goals, and language in a way that is more amenable to
compositional generalization.

Notation. We take the setting of a goal- and language-conditioned MDPM with state space S,
continuous action space A ⊆ (0, 1)dA , initial state distribution p0, dynamics P(s′ | s, a), discount
factor γ, and language task distribution pℓ. A policy π(a | s) maps states to a distribution over actions.
We inductively define the k-step (action-conditioned) policy visitation distribution as:

pπ1 (s1 | s1, a1) ≜ p(s1 | s1, a1),

pπk+1(sk+1 | s1, a1) ≜
∫
A

∫
S
p(sk+1 | s, a) dpπk (s | s1, a1) dπ(a | s)

pπk+t(sk+t | st, at) ≜ pπ(sk | s1, a1). (1)

Then, the discounted state visitation distribution can be defined as the distribution over s+, the state
reached after K ∼ Geom(1− γ) steps:

pπγ (s
+ | s, a) ≜

∞∑
k=0

γkpπk (s
+ | s, a). (2)

We assume access to a dataset of expert demonstrations D = {τi, ℓi}Ki=1, where each trajectory

τi = {st,i, at,i}Ht=1 ∈ S ×A (3)

is gathered by an expert policy πE, and is then annotated with pℓ(ℓi | s1,i, sH,i). Our aim is to learn
a policy π that can select actions conditioned on a new language instruction ℓ. As in prior work [13],
we handle the continuous action space by representing both our policy and the expert policy as an
isotropic Gaussian with fixed variance; we will equivalently write π(a | s, φ) or denote the mode as
â = π(s, φ) for a task φ.

3.1 Representations for Reaching Distant Goals

We learn a goal-conditioned policy π(a | s, g) that selects actions to reach a goal g from expert
demonstrations with behavioral cloning. Suppose we directly selected actions to imitate the expert on
two trajectories in D:

s1 s2 . . . sH w

w s′1 . . . s′H g
τi ∈ D (4)
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When conditioned with the composed goal g, we would be unable to imitate effectively as the
composed state-goal (s, g) is jointly out of the training distribution.

What would work for reaching g is to first condition the policy on the intermediate waypoint w, then
upon reaching w, condition on the goal g, as the state-goal pairs (si, w), (w, g), and (s′i, g) are all
in the training distribution. If we condition the policy on some intermediate waypoint distribution
p(w) (or sufficient statistics thereof) that captures all of these cases, we can stitch together the expert
behaviors to reach the goal g.

Our approach is to learn a representation space that captures this ability, so that a GCBC objective
used in this space can effectively imitate the expert on the composed task. We begin with the
goal-conditioned behavioral cloning [26] loss Lϕ,ψ,ξBC conditioned with waypoints w.

LBC

(
{si, ai, s+i , gi}

K
i=1

)
=

K∑
i=1

log π
(
ai | si, ψ(gi)

)
. (5)

Enforcing the invariance needed to stitch Eq. (4) then reduces to aligning ψ(g)↔ ψ(w). The temporal
alignment objective ϕ(s)↔ ϕ(s+) accomplishes this indirectly by aligning both ψ(w) and ψ(g) to
the shared waypoint representation ϕ(w):

LNCE

(
{si, s+i }

K
i=1;ϕ, ψ

)
= log

(
eϕ(s

+
i )Tψ(si)∑K

j=1 e
ϕ(s+i )Tψ(sj)

)
+

K∑
j=1

log

(
eϕ(s

+
i )Tψ(si)∑K

i=1 e
ϕ(s+i )Tψ(sj)

)
(6)

3.2 Interfacing with Language Instructions

To extend the representations from Section 3.1 to compositional instruction following with language
tasks, we need some way to ground language into the ψ (future state) representation space. We use a
similar approach to GRIF [27], which uses an additional CLIP-style [73] contrastive alignment loss
with an additional pretrained language encoder ξ:

LNCE

(
{gi, ℓi}Ki=1;ψ, ξ

)
=

K∑
i=1

log

(
eψ(gi)

T ξ(ℓi)∑K
j=1 e

ψ(gi)T ξ(ℓj)

)
+

K∑
j=1

log

(
eψ(gi)

T ξ(ℓi)∑K
i=1 e

ψ(gi)T ξ(ℓj)

)
(7)

3.3 Temporal Alignment

Putting together the objectives from Sections 3.1 and 3.2 yields the Temporal Representation Align-
ment (TRA) approach. TRA structures the representation space of goals and language instructions to
better enable compositional generalization. We learn encoders ϕ, ψ, and ξ to map states, goals, and
language instructions to a shared representation space.

LNCE({xi, yi}Ki=1; f, h) =

K∑
i=1

log

(
ef(yi)

Th(xi)∑K
j=1 e

f(yi)Th(xj)

)
+

K∑
j=1

log

(
ef(yi)

Th(xi)∑K
i=1 e

f(yi)Th(xj)

)
(8)

LBC

(
{si, ai, s+i , ℓi}

K
i=1;π, ψ, ξ

)
=

K∑
i=1

log π
(
ai | si, ξ(ℓi)

)
+ log π

(
ai | si, ψ(s+i )

)
(9)

LTRA

(
{si, ai, s+i , gi, ℓi}

K
i=1;π, ϕ, ψ, ξ

)
(10)

= LBC

(
{si, ai, s+i , ℓi}

K
i=1;π, ψ, ξ

)︸ ︷︷ ︸
behavioral cloning

+LNCE

(
{si, s+i }

K
i=1;ϕ, ψ

)︸ ︷︷ ︸
temporal alignment

+LNCE

(
{gi, ℓi}Ki=1;ψ, ξ

)︸ ︷︷ ︸
task alignment

Note that the NCE alignment loss uses a CLIP-style symmetric contrastive objective [73, 67] — we
highlight the indices in the NCE alignment loss (8) for clarity.

Our overall objective is to minimize Eq. (10) across states, actions, future states, goals, and language
tasks within the training data:

min
π,ϕ,ψ,ξ

E (s1,i,a1,i,...,sH,i,aH,i,ℓ)∼D
i∼Unif(1...H),k∼Geom(1−γ)

[
LTRA

(
{st,i, at,i, smin(t+k,H),i, sH,i, ℓ}Ki=1;π, ϕ, ψ, ξ

)]
. (11)
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Algorithm 1: Temporal Representation Alignment

1: input: dataset D = ({st,i, at,i}Ht=1, ℓi)
N
i=1

2: initialize networks Θ ≜ (π, ϕ, ψ, ξ)
3: while training do
4: sample batch

{
(st,i, at,i, st+k,i, ℓi)

}K
i=1
∼ D

for k ∼ Geom(1− γ)
5: Θ← Θ− α∇ΘLTRA

(
{st,i, at,i, st+k,i, ℓi}Ki=1; Θ

)
6: output: language-conditioned policy π(at|st, ξ(ℓ)), goal-conditioned policy π(at|st, ψ(g))

3.4 Implementation

A summary of our approach is shown in Algorithm 1. In essence, TRA learns three encoders: ϕ,
which encodes states, ψ which encodes future goals, and ξ which encodes language instructions.
Contrastive losses are used to align state representations ϕ(st) with future goal representations
ψ(st+k), which are in turn aligned with equivalent language task specifications ξ(ℓ) when available.
We then learn a behavior cloning policy π that can be conditioned on either the goal or language
instruction through the representation ψ(g) or ξ(ℓ), respectively.

3.5 Temporal Alignment and Compositionality

We will formalize the intuition from Section 3.1 that TRA enables compositional generalization
by considering the error on a “compositional” version of D, denoted D∗. Using the notation from
Eq. (3), we can say D is distributed according to:

D ≜ DH ∼
K∏
i=1

p0(s1,i)pℓ(ℓi | s1,i, sH,i)
H∏
t=1

πE(at,i | st,i) P(st+1,i | st,i, at,i), (12)

or equivalently

DH ∼
K∏
i=1

p0(s1,i)pℓ(ℓi | s1,i, sH,i)
H∏
t=1

eσ
2∥πE(st,i)−at,i∥2

P(st+1,i | st,i, at,i), (13)

by the isotropic Gaussian assumption. We will define D∗ ≜ DH′
to be a longer-horizon version of

D extending the behaviors gathered under πE across a horizon αH ≥ H ′ ≥ H that additionally
satisfies a “time-isotropy” property: the marginal distribution of the states is uniform across the
horizon, i.e., p0(s1,i) = p0(st,i) for all t ∈ {1 . . . H ′}.
We will relate the in-distribution imitation error ERR(•;D) to the compositional out-of-distribution
imitation error ERR(•;D∗). We define

ERR(π̂; D̃) = ED̃

[ 1

H

H∑
t=1

Eπ̂
[
∥ãt,i − π̂(s̃t,i, s̃H,i)∥2/dA

]]
for {s̃t,i, ãt,i, ℓ̃i}Ht=1 ∼ D̃. (14)

On the training dataset this is equivalent to the expected behavioral cloning loss from Eq. (9).
Assumption 1. The policy factorizes through inferred waypoints as:

goals: π(a | s, g) =
∫
π(a | s, w) P(st = w | st+k = g) dw (15)

language: π(a | s, ℓ) =
∫
π(a | s, w) P(st = w | st+k = g) P(st+k = g | ℓ) dw dg, (16)

where denote by π(s, g) the MLE estimate of the action a.

Theorem 1. Suppose D is distributed according to Eq. (12) and D∗ is distributed according to
Eq. (12). When γ > 1− 1/H and α > 1, for optimal features ϕ and ψ under Eq. (11), we have

ERR(π;D∗) ≤ ERR(π;D) + α− 1

2α
+
(α− 2

2α

)
1{α > 2}. (17)
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We can also define a notion of the language-conditioned compositional generalization error:

ERRℓ(π;D∗) ≜ ED∗

[ 1

H

H∑
t=1

Eπ
[
∥ãt,i − π(s̃t,i, ℓ̃i)∥2

]]
.

Corollary 1.1. Under the same conditions as Theorem 1,

ERRℓ(π;D∗) ≤ ERRℓ(π;D) + α− 1

2α
+
(α− 2

2α

)
1{α > 2}.

The proofs as well as a visualization of the bound are in Appendix F. Policy implementation details
can be found in Appendix B

4 Experiments

We ask the following questions:

1. Can TRA enable zero-shot composition of tasks without additional rewards or planning?
2. Does TRA improve compositional generalization over past methods?
3. How well does TRA capture skills that are less common within the dataset?
4. Is temporal alignment by itself sufficient for effective compositional generalization?

0 0.2 0.4 0.6 0.8

TRA(Ours)
AWR
GRIF
Octo

LCBC

Success Rate

Instruction Following Performance

(a) Language instruction tasks

0 0.2 0.4 0.6 0.8

TRA(Ours)
AWR
GRIF
Octo

GCBC

Success Rate

Goal Reaching Performance

(b) Goal-image conditioned tasks

Figure 2: Aggregated performance on compositional generalization tasks, consisting of instruction-
following and goal-reaching tasks.

4.1 Real-World Experimental Setup

Figure 3: The tabletop manipulation
setup used for the real-world evalua-
tion (see 13).

We evaluate TRA on a collection of held-out
compositionally-OOD tasks — tasks for which the in-
dividual substeps are represented in the dataset, but the
combination of those steps is unseen. For example, in a
task such as “removing a bell pepper from a towel, and then
sweep the towel”, both the tasks “remove the bell pepper
from the towel” and “sweep the towel” have similar entries
within BridgeData, but such a combination of behaviors
is unseen. We utilize a real-world robot manipulation
interface with a 7 DoF WidowX250 manipulator arm with
5Hz execution frequency. We train on an augmented version
of the BridgeDataV2 dataset [13], which contains over 50k
trajectories with 72k language annotations. More details
are in Appendix B.

In order to specifically test the ability of TRA to perform
compositional generalization, we organize our evaluation
tasks into 4 scenes that are unseen in BridgeData, each with increasing difficulty:
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Set A – One-Step: These are the only tasks that are not compositionally-OOD, as all the tasks are
one-step tasks. These tasks involve opening, putting an item in, and closing a drawer, and have been
seen in BridgeData, although at a lower frequency than object manipulation, and with new positions.

Set B – Task Concatenation: These tasks scene involves concatenating multiple tasks of the same
nature in sequence, where a robot must be able to perform all tasks within the same trajectory. During
evaluation, we instruct the policy with instructions such as sweeping multiple objects in the scene
that require composition (though are not sensitive to the order of the composition).

Set C – Semantic Generalization: Unlike set B , these tasks require manipulation with different
objects of the same type. We test this using various food items within BridgeData, instructing the
policy within a container.

Set D – Tasks with Dependency: This is the most challenging set: these tasks have subtasks that
require previous subtasks to be completed, such as taking an object out of a drawer.

The complete list of tasks is described in Appendix D.

4.2 Baselines

We compare against the following baselines in our real-world evaluation: GRIF [27] learns a goal-
and language- conditioned policy using aligned goal image and language representations. In our
experiments, this becomes equivalent to TRA when the temporal alignment objective is removed.
GCBC [13] learns a goal-conditioned behavioral cloning policy that concatenates the goal image
with the image observation. LCBC [13] learns a language-conditioned policy that concatenates
the language with the image observation. OCTO [74] uses a multimodal transformer to learn a
goal- and language-conditioned policy. The policy is trained on the Open-X dataset [75], which
incorporates BridgeData in its entirety. AWR [76] uses advantages produced by a value function to
effectively extract a policy from an offline dataset. In our experiments, we use the difference between
the contrastive loss between the current observation and the goal representation and the contrastive
loss between the next observation and the goal representation as a surrogate for value function.

Table 1: Real-world Evaluation

Language-conditioned Goal-conditioned

Task TRA GRIF LCBC Octo AWR TRA GRIF GCBC Octo AWR

(A) open the drawer 0.80(±0.1) 0.20(±0.2) 0.60(±0.2) 0.60(±0.2) 0.40(±0.2) 0.60(±0.2) 0.60(±0.2) 0.40(±0.2) 0.50(±0.2) 0.80(±0.2)

(A) mushroom in drawer 0.80(±0.1) 0.80(±0.2) 0.40(±0.2) 0.00(±0.0) 0.60(±0.2) 0.90(±0.1) 0.40(±0.2) 0.80(±0.2) 0.90(±0.1) 0.60(±0.2)

(A) close drawer 0.60(±0.2) 0.60(±0.2) 0.40(±0.2) 0.60(±0.2) 0.40(±0.2) 1.00(±0.0) 0.40(±0.2) 0.80(±0.2) 0.60(±0.2) 0.40(±0.2)

(D) take the item out of the drawer 0.60(±0.2) 0.00(±0.0) 0.00(±0.0) 0.20(±0.2) 0.00(±0.0) 0.40(±0.2) 0.00(±0.0) 0.00(±0.0) 0.20(±0.2) 0.00(±0.0)

(B) put the spoons on towels 0.80(±0.1) 0.40(±0.2) 0.20(±0.2) 0.00(±0.0) 0.20(±0.2) 1.00(±0.0) 0.20(±0.2) 0.60(±0.2) 0.40(±0.2) 0.60(±0.2)

(B) put the spoons on the plates 0.90(±0.1) 0.20(±0.2) 0.20(±0.2) 0.20(±0.2) 0.00(±0.0) 0.90(±0.1) 0.00(±0.0) 0.40(±0.2) 0.00(±0.0) 0.80(±0.2)

(C) put the corn and sushi on plate 0.90(±0.1) 0.00(±0.0) 0.40(±0.2) 0.00(±0.0) 0.50(±0.2) 0.70(±0.1) 0.00(±0.0) 0.20(±0.2) 0.00(±0.0) 0.30(±0.1)

(C) sushi and mushroom in bowl 0.80(±0.1) 0.00(±0.0) 0.60(±0.2) 0.20(±0.2) 0.60(±0.2) 0.50(±0.2) 0.00(±0.0) 0.20(±0.2) 0.40(±0.2) 0.60(±0.2)

(C) corn, banana, and sushi in bowl 0.80(±0.1) 0.00(±0.0) 0.00(±0.0) 0.00(±0.0) 0.20(±0.1) 0.50(±0.2) 0.00(±0.0) 0.00(±0.0) 0.40(±0.2) 0.50(±0.2)

(D) corn on plate then sushi in pot 0.70(±0.1) 0.00(±0.0) 0.40(±0.2) 0.60(±0.2) 0.20(±0.2) 0.30(±0.1) 0.20(±0.2) 0.00(±0.0) 0.00(±0.0) 0.00(±0.0)

(A) sweep to the right 0.80(±0.1) 0.20(±0.2) 0.40(±0.2) 0.40(±0.2) 0.00(±0.0) 0.70(±0.1) 0.40(±0.2) 0.00(±0.0) 0.80(±0.2) 0.00(±0.0)

(B) fold cloth into the center 1.00(±0.0) 0.20(±0.2) 0.40(±0.2) 0.40(±0.2) 0.40(±0.2) 0.80(±0.1) 0.00(±0.0) 0.00(±0.0) 0.60(±0.2) 0.00(±0.0)

(B) move bell pepper and sweep towel 0.50(±0.2) 0.00(±0.0) 0.00(±0.0) 0.20(±0.2) 0.00(±0.0) 0.60(±0.2) 0.20(±0.2) 0.20(±0.2) 0.40(±0.2) 0.00(±0.0)

(A) One step tasks (B) Task concatenation
(C) Semantic generalization (D) Tasks with dependency

†The best-performing method(s) up to statistical
significance are highlighted

We train GRIF, GCBC, LCBC, and AWR using the same augmented Bridge Dataset as TRA, and we
use an Octo-Base 1.5 model for our evaluation. A more detail approach is detailed in Appendix C.
During evaluation, we give all policies the same goal state and language instruction regardless of
the architecture, as they are trained on the same language instruction with the exception of Octo,
which doesn’t benefit from paraphrased language data, but does benefit from a more diverse language
annotation set across a larger dataset of varying length and complexity.
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4.3 Real-world Evaluation

Our real-world evaluation aims to answer the following questions.

Does TRA enable compositionality? 1 shows the success rates of the TRA method compared to
other methods on real-world robot evaluation tasks. We marked all policies within the task orange if
they achieve the best statistically significant performance, as determined by a one-sided t-test with a
significance level of 0.05 (see Appendix H for details). We first compare the performance against
methods in A . Although TRA performs well with drawer tasks, its performance against baseline
methods is not statistically significant. However, TRA performs considerably better than that of any
baseline methods on compositionally-OOD instruction following tasks.

While TRA completed 88.9% of tasks seen in B , 83.3% of evaluations in C , and 60% of tasks in D
with instruction following, the best-performing baseline for B was 30% with LCBC, 43.3% for C
with AWR, and 33.3% on D with Octo. The same improvement was also present in goal reaching
tasks, although at a lower level, in which C produced 60% success rate and scene D produced a
43.3% success rate, as compared to 46.7% and 20% for the best baselines.

0 0.2 0.4 0.6 0.8

AWR
TRA (Ours)

AWR+TRA

AWR
TRA (Ours)

AWR+TRA

Success Rate

Ablation: Using TRA as Value Signal

Goal Images Language

Figure 4: Aggregated success rate of using AWR as an
additional policy learning metric over all 4 scenes.

How does TRA compare to conven-
tional offline RL? While offline rein-
forcement conventionally is considered
necessary for “stitching” [77], we demon-
strate that TRA still outperforms offline
reinforcement learning on robotic manip-
ulation. TRA performs better than AWR
for both language and image tasks, outper-
forming AWR by 45% on instruction fol-
lowing tasks, and by 25% on goal reaching
tasks, showing considerable improvement
over an offline RL method that promises
compositional generalization via stitching.

The policy trained with AWR often stops
after one subtask, even though the goal in-
struction or image demanded all of the sub-
tasks be completed. We see this in, e.g.,
Fig. 1, where 3 different policies use the same goal image for a task where all 3 food items must be
put in the bowl.

Does TRA help rarely-seen skills within the dataset? We also compare TRA against AWR across
challenging tasks in the dataset. When conditioning on language, AWR struggles to to effectively
generalize to compositionally harder tasks, with average success rate decreasing from 43.3% in to
6.67% from C to D , compared to a decrease of only 83.3% to 60% for TRA. Other agents do not
perform as well as AWR in D , as the lack of such compositional generalization prevented the policies
from achieving all of the tasks at a reliable rate.

Is TRA sufficient in achieving compositional generalization? We demonstrate in our real-
world experiment that only using temporal alignment is sufficient for achieving good compositional
generalization. We evaluate this by comparing a policy trained on only temporal alignment loss (our
method), and another policy trained on such loss and have these losses weighed by AWR. Our AWR
implementation is detailed in Appendix C.

Figure 4 shows that across all evaluation tasks, AWR provides no additional benefit on top of temporal
alignment. In fact, using AWR marginally decreases the efficacy of TRA, unlike when used with
GCBC and LCBC.
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Table 2: OGBench Evaluation
Methods

Task TRA GCBC CRL GCIQL GCIVL QRL

antmaze medium stitch 60.7(±3.0)∗ 45.5(±3.9) 52.7(±2.2) 29.3(±2.2) 44.1(±2.0) 59.1(±2.4)

antmaze large stitch 12.8(±2.0) 3.4(±1.0) 10.8(±0.6) 7.5(±0.7) 18.5(±0.8)† 18.4(±0.7)

antsoccer arena stitch 17.0(±1.2) 24.5(±2.8) 0.7(±0.1) 2.1(±0.1) 21.4(±1.1) 0.8(±0.2)

humanoidmaze medium stitch 46.1(±1.9) 29.0(±1.7) 36.2(±0.9) 12.1(±1.1) 12.3(±0.6) 18.0(±0.7)

humanoidmaze large stitch 8.6(±1.4) 5.6(±1.0) 4.0(±0.2) 0.5(±0.1) 1.2(±0.2) 3.5(±0.5)

antmaze large navigate 35.4(±1.8) 24.0(±0.6) 82.8(±1.4) 34.2(±1.3) 15.7(±1.9) 74.6(±2.3)

cube single noisy 9.2(±0.9) 8.4(±1.0) 38.3(±0.6) 99.3(±0.2) 70.6(±3.3) 25.5(±2.1)

RL methods with a separate value network to update the actor are in gray.
* The best non-RL methods up to significance are highlighted. † We bold the best performance.

4.4 Testing Compositionality in Simulation

We also tested the compositional behavior in simulation using tasks from the OGBench [14] offline
RL benchmark suite. This environment features environments for locomotion and manipulation,
each with multiple offline datasets that can be used for training, including one that explicitly tests
compositional generalization (the “stitch” datasets) by creating multiple short datasets that comprise
a single, larger task. Some environments can be seen in Fig. 5 We modify TRA to account for the
lack of language instructions. See Appendix G for details.

Figure 5: Two environments from the OGBench
suite [14]. Left: a cube stacking environment. Right: a
humanoid maze navigation environment.

We evaluate the performance of TRA on
seven different environments in OGBench.
In 5 of these environments we use the
“stitch” dataset, while two other environ-
ment use a more general goal-reaching
dataset (“navigate” and “noisy”). Table 2
shows the performance of TRA compared
to other non-hierarchical methods on these
environments from OGBench. Consis-
tent with our real-world results Table 1
and Fig. 4, TRA outperforms other imi-
tation and offline RL methods on certain
environments that require compositional
generalizations, including CRL [78] that
also has a separate value and critic network.
In non-stitching environments, while traditional offline RL methods outperform TRA, TRA still
improves on GCBC.

4.5 Failure Cases

Since we use a Gaussian policy, TRA struggles when multimodal behavior is observed, and sometimes
fails to reach the goal due to early grasping or incorrect reaching [37]. While TRA did seem to
provide small improvements on the in-distribution tasks of A , the primary benefits derived from
TRA were seen on compositionally-OOD tasks. We further discuss failure cases in Appendix E.1.

5 Conclusions and Limitations

In this paper, we studied a temporal alignment objective for the representations used in (goal- and
language-conditioned) behavior cloning. This additional structure provides robust compositional
generalization capabilities in both real-world robotics tasks and simulated RL benchmarks. Perhaps
surprisingly, these results suggest that generalization properties usually attributed to reinforcement
learning methods may be attainable with supervised learning with well-structured, temporally-
consistent representations.
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Limitations and Future Work While TRA consistently outperformed behavior cloning in real
world and simulation evaluations, the degree of improvement degrades when behavior cloning cannot
solve the task at all. Future work could examine how to improve compositional generalization in
such cases through additional structural constraints on the representation space. To scale to more
complex settings, similar approaches with more complex architectures such as transformers and
diffusion policies may be needed for policy and/or representation learning. Methods like TRA that
learn compositional task representations could be used with more complex models like VLMs [73],
VLAs [79], or LLMs [80] to improve their generalization capabilities. In these settings, future work
should examine safety of task generalization when interacting with humans and avoid emergent
misalignment [81].
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A Code and Website

An implementation of TRA is available at https://anonymous.4open.science/r/
ogcrl-43A4/.

B TRA Implementation

In this section, we provide details on the implementation of temporal representation alignment (TRA)
and its training process.

B.1 Dataset Curation

We use an augmented version of BridgeData. We augment the dataset by rephrasing the language
annotations, as described by [27], with 5 additional rephrased language instruction for each language
instruction present in the dataset, and randomly sample them during training.

During data loading process, for each observation that is sampled with timestep k, we also sample
k+ ≜ min(k + x,H), x ∼ Geom(1− γ), and load sk along with sk+ . We employ random cropping,
resizing, and hue changes during training process image robustness. We set γ = 0.95 for policy
training on BridgeData.

B.2 Policy Training

We use a ResNet-34 architecture for the policy network. We train our policy with one Google V4-8
TPU VM instance for 150,000 steps, which takes a total of 20 hours. We use a learning rate of
3× 10−4 with the ADAM optimizer [82], 2000 linear warm-up steps, and a MLP head of 3 layers of
256 dimensions after encoding the observation representations as well as goal representations.
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C Baseline Implementations

We summarize the implementation details of the baselines discussed in Section 4.2.

C.1 Octo

We use the Octo-base 1.5 model publicly available on HuggingFace for evaluating Octo baselines. We
use inference code that is readily available for both image- and language- conditioned tasks. During
inference, we use an action chunking window of 4 and an execution horizon window of 4.

C.2 Behavior Cloning

We use the same architecture for LCBC and GCBC as in Walke et al. [13], Myers et al. [27]. During
the training process we use the same hyperparameters as TRA.

C.3 Advantage Weighted Regression

In order to train an AWR agent without separately implementing a reward critic, we follow Eysenbach
et al. [78] and use a surrogate for advantage:

A(st) = LNCE
(
f(st), f(g)

)
− LNCE

(
f(st+1), f(g)

)
. (18)

Here, f can be any of the encoders ϕ, ξ, ψ. L is the same InfoNCE loss defined Section 3, and g is
defined as either the goal observation or the goal language instruction, depending on the modality.

And we extract the policy using advantage weighted regression (AWR) [83]:

π ← argmax
π

Es,a∼D

[
log π(a|s, z) exp

(
A(s, a)/β

)]
. (19)

During training, we set β to 1, and we use a batch size of 128, the same value as policy training for
our method.

D Experiment Details

In this section, we go through our experiment details and how they are set up. During evaluation, we
randomly reset the positions of each item within the table, and perform 5 to 10 trials on each task,
depending on whether this task is important within each scene. We examine tasks that are seen in
BridgeData, which include conventionally less challenging tasks such as object manipulation, and
challenging tasks to learn within the dataset such as cloth folding and drawer opening.

D.1 List of Tasks

Table 3 describes each task within each scene, and the language annotation used when the policy
is used for inference. Every task that is outside of the drawer scene are multiple step, and require
compositional generalization.

D.2 Inference Details

During inference, we use a maximum of 200 timesteps to account for long-horizon behaviors, which
remains the same for all policies. We determine a task as successful when the robot completes the
task it was instructed to within the timeframe. For evaluating baselines, we use 5 trials for each of the
tasks.

E Additional Visualizations

In this section, we show additional visualizations of TRA’s execution on compositionally-OOD tasks.
We use folding, taking mushroom out of the drawer, and corn on plate, then sushi in the pot as
examples which require compositionality Fig. 6 and Appendix E.
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Table 3: Task Instructions
Scene Count Task Description Instruction

Drawer
10 open the drawer “open the drawer”

10 put the mushroom in the drawer “put the mushroom in the drawer”

10 close the drawer “close the drawer”

Task Generalization

10 put the spoons on the plates “move the spoons onto the plates.”

10 put the spoons on the towels “move the spoons on the towels”

10 fold the cloth into the center from all corners “fold the cloth into center”

10 sweep the towels to the right “sweep the towels to the right of the table”

Semantic Generalization
10 put the sushi and the corn on the plate “put the food items on the plate”

10 put the sushi and the mushroom in the bowl “put the food items in the bowl”

10 put the sushi, corn, and the banana in the bowl “put everything in the bowl”

Tasks With Dependency

10 take mushroom out of drawer “open the drawer and then take the mush-
room out of the drawer”

10 move bell pepper and sweep towel
“move the bell pepper to the bottom right
corner of the table, and then sweep the
towel to the top right corner of the table”

10 put the corn on the plate, and then put the sushi in the pot “put the corn on the plate and then put
the sushi in the pot”

“move the bell pepper to the bottom right of the table, 
and then move the towel to the top right of the table”

LCBC

TRA (OURS)

Figure 6: Example rollouts of a task with TRA and LCBC. While TRA is able to successfully
compose the steps to complete the task, LCBC fails to ground the instruction correctly.

E.1 Failure Cases

We break down failure cases in this section. While TRA performs well in compositional generalization,
it cannot counteract against previous failures seen with behavior cloning with a Gaussian Policy.

F Analysis of Compositionality

We prove the results from Section 3.5.

F.1 Goal Conditioned Analysis

Theorem 1. Suppose D is distributed according to Eq. (12) and D∗ is distributed according to
Eq. (12). When γ > 1− 1/H and α > 1, for optimal features ϕ and ψ under Eq. (11), we have

ERR(π;D∗) ≤ ERR(π;D) + α− 1

2α
+
(α− 2

2α

)
1{α > 2}. (17)

Proof. We have from Eq. (14) for K ∼ Geom(1− γ):

ERR(π;D∗) ≜ ED∗

[ 1

H ′

H′∑
t=1

∥ãt,i−π(s̃t,i,g̃i)∥2

ndA

]
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“open the drawer, and then take the 
mushroom out of the drawer”

“fold the towel into center”

“open the drawer, and then take the 
mushroom out of the drawer”

“fold the towel into center”

“put the corn on the plate, and then 
put the sushi in the pot”

Figure 7: TRA performs compositional generatlization over a variety of tasks seen within BridgeData.

“put everything in the bowl”

“open the drawer, and then take the 
mushroom out of the drawer”

Figure 8: Most of the failure cases came from the fact that a policy cannot learn depth reasoning,
causing early grasping or late release, and it has trouble reconciling with multimodal behavior.
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[∥ãt,i−pπ(s̃t,i|ψ(s̃H′−K,i))∥

2

ndA

]]
+
(α− 2

2α

)
1{α > 2}

≤ ERR(π;D∗) +
1

H ′ ED∗

[1− γH
1− γ

]
+

(α− 2

2α

)
1{α > 2}

≤ ERR(π;D∗) +
α− 1

2α
+
(α− 2

2α

)
1{α > 2}. (20)

F.2 Language Conditioned Analysis

Corollary 1.1. Under the same conditions as Theorem 1,

ERRℓ(π;D∗) ≤ ERRℓ(π;D) + α− 1

2α
+
(α− 2

2α

)
1{α > 2}.

The proof is similar to Appendix F.1, but over the predictions of ξ instead of ψ.

F.3 Visualizing the Bound

We compare the bound from Theorem 1 with the “worst-case” bound of ERR(π;D∗)− ERR(π;D)
in Fig. 9. The bound from Theorem 1 is tighter than the worst-case bound, and it shows that the
compositional generalization error decreases as α increases.

G OGBench Implementation Details

To implement TRA in OGBench, which does not have a corresponding language label for all goal-
reaching tasks, we make the following revision to TRA to accommodate the lack of a language task.
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Figure 9: Visualizing the bound (Eq. 17 from Theorem 1) on the compositional generalization error.

Table 4: Success Rate for Different GCBC Architectures in OGBench.

Environment GCBC GCBC-ϕ

antmaze medium stitch 45.5±(3.9) 48.7±(2.7)

antmaze large stitch 3.4±(1.0) 6.8±(1.3)

antsoccer arena stitch 24.5±(2.8) 1.4±(0.3)

humanoidmaze medium stitch 29.0±(1.7) 34.4±(1.7)

humanoidmaze large stitch 5.6±(1.0) 3.5±(1.1)

antmaze large navigate 24±(0.6) 16.1±(0.8)

cube single noisy 8.4±(1.0) 8.7±(0.9)

Table 5: TRA hyperparameters.

Hyperparameter Value
State and goal encoder dimensions (64, 64, 64)
State and goal encoder latent dimension 64
Discount factor γ 0.995 (large locomotion environments), 0.99 (other)
Alignment coefficient α 60 (medium locomotion), 100 (large locomotion), 20 (non-stitch)
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Table 6: Statistical comparisons of language-conditioned success rates
t-values p-values

Task Best Score TRA GRIF LCBC Octo AWR TRA GRIF LCBC Octo AWR

(A) open the drawer 0.80 0.00 2.50 0.72 0.72 1.43 0.500 0.038 0.498 0.498 0.198
(A) mushroom in drawer 0.80 0.00 0.00 1.43 6.00 0.72 0.500 1.000 0.198 <0.001 0.498
(A) close drawer 0.60 0.00 0.00 0.58 0.00 0.58 0.500 1.000 0.580 1.000 0.580
(D) take the item out of the drawer 0.60 0.00 3.67 3.67 1.55 3.67 0.500 0.005 0.005 0.155 0.005

(B) put the spoons on towels 0.80 0.00 1.43 2.50 6.00 2.50 0.500 0.198 0.038 <0.001 0.038
(B) put the spoons on the plates 0.90 0.00 3.13 3.13 3.13 9.00 0.500 0.020 0.020 0.020 <0.001

(C) put the corn and sushi on plate 0.90 0.00 9.00 1.89 9.00 2.06 0.500 <0.001 0.113 <0.001 0.058
(C) sushi and mushroom in bowl 0.80 0.00 6.00 0.72 2.50 0.95 0.500 <0.001 0.498 0.038 0.356
(C) corn, banana, and sushi in bowl 0.80 0.00 6.00 6.00 6.00 3.18 0.500 <0.001 <0.001 <0.001 0.005
(D) corn on plate then sushi in pot 0.70 0.00 4.58 1.04 0.35 1.99 0.500 0.001 0.332 0.739 0.079

(A) sweep to the right 0.80 0.00 2.50 1.43 1.43 6.00 0.500 0.038 0.198 0.198 <0.001
(B) fold cloth into the center 1.00 0.00 4.00 2.45 2.45 2.45 0.500 0.016 0.070 0.070 0.070
(B) move bell pepper and sweep towel 0.50 0.00 3.00 3.00 1.15 3.00 0.500 0.015 0.015 0.277 0.015

For each task the reported t-values compare the candidate method to the best-performing method. We bold the t/p-values
corresponding to methods that do not significantly (p ≥ 0.05) differ from the best-performing method on each task.

We train a policy π(a|ϕ(s), ψ(g)), in which we propagate the behavior cloning loss throughout the
entire network. Both the state and goal encoders are MLPs with identical architecture. We detail the
configuration in 5. This is to simulate the ResNet architecture and CLIP embeddings we use from
real-world policy training. We define separate state and goal encoder ϕ(s) and ψ(g), and we modify
LTRA as:

LTRA = LBC({si, ai, s+i }
K
i=1;π, ϕ, ψ) + αLNCE({si, s+i }

K
i=1;ϕ, ψ) (21)

The rest of the implementation are carried over from OGBench. We evaluate each method with 10
seeds, and we take the final 3 evaluation epoch per seed to calculate the average success rate, the
same way OGBench calculates success rate for its baselines. While we used α = 1 in real world
experiments, consistent with implementation from [27], we adjust our α value in OGBench, as it is a
hyperparameter. We report our optimal α configuration in Table 5.

Note that α = 0 turns the formulation into a version of GCBC with different architecture; we
denote this GCBC-ϕ. We compare the performance of GCBC and GCBC-ϕ here across the 7
environments using table 4. Although the second formulation is parameterized than the original
GCBC configuration, they have similar performances across the environments that we have evaluated
on — the performance of TRA does not rely on extra parameterization, but learning a structured
temporal representation.

We report the value of hyperparameters in table 5. The rest of the relevant hyperparameters are
implemented from OGBench unless specified in the table.

H Statistical Analysis

Statistical significance in Table 1 was computed with a one-sided Welch’s t-test, comparing the
success rates of the highest scoring method with the other methods for each task. Highlighting was
then determined using a p-value of 0.05. The p- and t- values for the language conditioned evaluations
in Table 1 are included in Table 6, and those for the goal conditioned evaluations in Table 7.

We also report the aggregated statistical comparisons of language-conditioned and image-conditioned
performance across task sets in Table 8 and Table 9, respectively.
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Table 7: Statistical comparisons of image-conditioned success rates
t-values p-values

Task Best Score TRA GRIF AWR GCBC Octo TRA GRIF AWR GCBC Octo

(A) open the drawer 0.80 0.77 0.63 0.00 1.26 1.15 0.229 0.273 0.500 0.121 0.139
(A) mushroom in drawer 0.90 0.00 1.89 1.13 0.45 0.00 0.500 0.057 0.152 0.335 0.500
(A) close drawer 1.00 0.00 2.45 1.00 2.45 2.45 0.500 0.035 0.187 0.035 0.018
(D) take the item out of the drawer 0.40 0.00 2.45 2.45 2.45 0.77 0.500 0.018 0.018 0.018 0.229
(B) put the spoons on towels 1.00 0.00 4.00 1.63 1.63 3.67 0.500 0.008 0.089 0.089 0.003
(B) put the spoons on the plates 0.90 0.00 9.00 0.45 1.89 9.00 0.500 <0.001 0.335 0.057 <0.001

(C) put the corn and sushi on plate 0.70 0.00 4.58 1.85 1.99 4.58 0.500 0.001 0.040 0.040 0.001
(C) sushi and mushroom in bowl 0.60 0.43 3.67 0.00 1.55 0.68 0.337 0.003 0.500 0.077 0.258
(C) corn, banana, and sushi in bowl 0.50 0.00 3.00 0.00 3.00 0.34 0.500 0.007 0.500 0.007 0.372
(D) corn on plate then sushi in pot 0.30 0.00 0.40 1.96 1.96 1.96 0.500 0.350 0.041 0.041 0.041

(A) sweep to the right 0.80 0.40 1.26 4.00 4.00 0.00 0.350 0.121 0.008 0.008 0.500
(B) fold cloth into the center 0.80 0.00 6.00 6.00 6.00 0.72 0.500 <0.001 <0.001 <0.001 0.249
(B) move bell pepper and sweep towel 0.60 0.00 1.55 3.67 1.55 0.68 0.500 0.077 0.003 0.077 0.258

For each task the reported t-values compare the candidate method to the best-performing method. We bold the t/p-values
corresponding to methods that do not significantly (p ≥ 0.05) differ from the best-performing method on each task.

Table 8: Statistical comparisons of language-conditioned performance aggregated across task sets
t-values p-values

Task Set Best Score TRA LCBC GRIF Octo AWR TRA LCBC GRIF Octo AWR

A – One-Step 0.77 0.00 2.38 2.38 2.78 3.22 0.500 0.0229 0.0229 0.0087 0.0028
B – Task Concatenation 0.80 0.00 5.36 5.36 5.36 6.25 0.500 0.0000 0.0000 0.0000 0.0000
C – Semantic Generalization 0.83 0.00 3.48 -12.04 7.98 3.47 0.500 0.0021 0.0000 0.0000 0.0010
D – Dependency 0.65 0.00 2.61 5.94 1.27 3.71 0.500 0.0165 0.0000 0.2203 0.0010

For each set of tasks indicated, we report the t-values and p-values comparing the candidate method to the best-
performing method, aggregated across all tasks in the set. We bold the t/p-values corresponding to methods that do
not significantly (p ≥ 0.05) differ from the best-performing method on each task set.

Table 9: Statistical comparisons of image-conditioned performance aggregated across task sets
t-values p-values

Task Set Best Score TRA AWR GCBC GRIF Octo TRA AWR GCBC GRIF Octo

A – One-Step 0.77 0.00 2.38 2.00 2.38 0.80 0.500 0.0115 0.0265 0.0115 0.2137
B – Task Concatenation 0.82 0.00 3.79 4.32 7.89 4.03 0.500 0.0003 0.0001 0.0000 0.0001
C – Semantic Generalization 0.57 0.00 0.77 3.35 6.16 2.00 0.500 0.2234 0.0009 0.0000 0.0270
D – Dependency 0.35 0.00 3.20 3.20 1.69 1.69 0.500 0.0024 0.0024 0.0519 0.0519

For each set of tasks indicated, we report the t-values and p-values comparing the candidate method to the best-
performing method, aggregated across all tasks in the set. We bold the t/p-values corresponding to methods that do
not significantly (p ≥ 0.05) differ from the best-performing method on each task set.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Yes, we provide the theoretical and experimental results to show that we can
learn task representations that enable compositionality.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Yes, we discuss the limitations of our work in Section 5.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: Theoretical claims and assumptions are in Section 3.5, and proofs are in
Appendix F.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Experimental details are in Section 4, and the code is linked in Appendix A.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: Yes, the code is linked in Appendix A, and experimental details are in Appen-
dices B and C.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/

public/guides/CodeSubmissionPolicy) for more details.
• While we encourage the release of code and data, we understand that this might not be

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The experimental details are in Section 4, and the code is linked in Appendix A.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Significance is marked in figures and tables, with details in Appendix H.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: This is provided in Appendix B.2.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Yes, all research conducted in this paper conforms with the NeurIPS Code of
Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Yes, in Section 5 we discuss the societal implications of future work based on
TRA.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: We discuss safety in the context of future work, but the actual models used in
this paper are pose no feasible risk.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: Yes, see citations and licenses in Appendix A.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: See Appendix A.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: No human subjects were involved in this research.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: No human subjects were involved in this research.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: Pre-trained models used for data augmentation and representations are de-
scribed in the paper.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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