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Abstract

Conjecture and proof are the twin engines of mathematics. Despite rapid progress
in automated proof, conjecture remains underexplored. Early efforts, beginning
with Graffiti in the 1980s and followed by only a handful of systems, showed
that computer-generated conjectures could enter the literature, but all depended
on user-specified targets and thus assumed domain expertise. To complement
modern large language models and automated proof tools, we need systems that
can autonomously decide what quantities are worth relating. We present GAMBIT
(Generating Automated Mathematical Bounds, Inequalities, and Theorems), which
identifies promising quantities and hypotheses in structured datasets, then applies
optimization-based searches and heuristic filters to propose candidate relations.
Case studies in graphs and Calabi–Yau varieties show that GAMBIT both rediscov-
ers known results and suggests novel ones, illustrating AI-driven conjecturing as a
timely complement to advances in theorem proving and counterexample search.

1 Introduction

Mathematics advances through a dialogue between conjecture and proof. Conjectures articulate
hidden structure and guide exploration, while proofs transform conjectures into knowledge. In
recent years, AI has made remarkable progress on the proving side, through automated theorem
provers [Harrison, 2009, de Moura et al., 2015], interactive proof assistants with rapidly growing
libraries [The mathlib Community, 2019], and large language models that extend formal reason-
ing [Polu and Sutskever, 2020, Yang et al., 2023a]. In contrast, the creative step of conjecturing,
long central to mathematical practice, remains comparatively neglected by the AI community. This
imbalance motivates a renewed effort to explore how computers might generate conjectures.

Early systems demonstrated that computers could propose conjectures worthy of mathematical study.
This line of work began with Graffiti in the 1980s [Fajtlowicz, 1988a, 1987, 1988b, 1990, 1995],
and was later continued by systems such as Graffiti.pc [DeLaViña, 2005], Conjecturing [Larson
and Cleemput, 2016], AutoGraphiX [Caporossi and Hansen, 2000], GraPHedron [Mélot, 2008],
PHOEG [Devillez et al., 2019], and TxGraffiti [Davila, 2024]. These programs generated inequalities
that entered the mathematical literature. Because they required users to nominate a target parameter,
these systems excelled when applied to familiar areas of mathematics. They offered less guidance,
however, in domains where the relevant invariants were not yet clear—an aspect that motivates our
approach.
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We introduce GAMBIT (Generating Automated Mathematical Bounds, Inequalities, and Theorems), a
new class of AI-driven conjecturing system that removes this restriction. Rather than fixing a single
target, GAMBIT systematically considers all available invariants, ranks promising quantities and
structural conditions, and proposes candidate equalities and inequalities through optimization-based
searches. These candidates are filtered by heuristic tests of truth, sharpness, and significance, yielding
statements that resemble the kinds of conjectures mathematicians formulate. In this way, GAMBIT
enables domain-general conjecturing from structured datasets, including graphs, integers, matrices,
and Calabi–Yau varieties, without requiring prior domain knowledge.

The name GAMBIT is deliberate: in chess, a gambit sacrifices a pawn to open new possibilities. Here,
the system sacrifices foreknowledge of what to target, proposing conjectures across all invariants
without fixing a goal in advance. This embodies both the risk and the promise of discovery. This
capability complements recent advances in AI for proof, including Minerva [Lewkowycz et al., 2022],
Llemma [Azerbayev et al., 2024], LeanDojo’s retrieval-augmented proving [Yang et al., 2023b], and
AlphaGeometry for geometry [Trinh et al., 2024]. Whereas these systems extend the proving side
of mathematics, GAMBIT addresses the complementary task: producing plausible statements and
structural conditions that can guide both human reasoning and automated proof search.

The remainder of the paper presents the design of GAMBIT, demonstrates its results on graphs and
Calabi–Yau datasets, and discusses implications for AI in mathematics. More broadly, we suggest
that automated conjecturing should be viewed as a central challenge and a necessary complement to
AI advances in theorem proving and counterexample search.

2 GAMBIT Design

Mathematicians often form conjectures by noticing regularities: one quantity consistently bounds
another, two invariants coincide on special subfamilies, or a relation sharpens under a structural
condition. GAMBIT automates this kind of pattern-seeking on structured datasets. Given a table of
objects annotated with numeric invariants and Boolean predicates, GAMBIT searches for regularities
expressible as precise relations and then filters them for plausibility. The aim is discovery rather than
prediction: crisp, interpretable statements that resemble the conjectures mathematicians formulate.

To make this concrete, GAMBIT represents each conjecture as an invariant–hypothesis–conclusion
triple of the form

h ⇒ f(invariants) ▷◁ g(invariants),

where h is a Boolean condition (possibly trivial), ▷◁∈ {≤,≥,=}, and f, g are affine expressions in
the available invariants. In the dataset, rows correspond to objects, numeric columns to invariants,
and Boolean columns to candidate hypotheses for conditional statements. Let D denote the set of
rows in the dataset (objects). For any Boolean predicate h, the induced slice is

Dh = { i ∈ D : h(i) = true }, c(h)
.
= |Dh|/|D|,

where c(h) denotes the coverage of h, i.e. the fraction of rows it selects. Conjecturing thus reduces to
a systematic search for triples of this form that are satisfied for all objects in Dh.

GAMBIT begins by ranking pairs of invariants and identifying slices Dh under which their relationship
becomes more strongly correlated or tightly bounded. For any subset S ⊆ D (typically S = D
or S = Dh), GAMBIT evaluates the degree of alignment of two invariants by computing two
complementary signals. The first is an absolute correlation measure

corrS(u, v) =

∣∣∣∣∣
∑

i∈S(ui − uS)(vi − vS)√∑
i∈S(ui − uS)2

√∑
i∈S(vi − vS)2

∣∣∣∣∣ ,
computed using only finite entries. The second is a ratio-tightness score,

tightS(u, v) =


mini∈IS |ui/vi|
maxi∈IS |ui/vi|

, if sign(ui/vi) is constant on IS ,

0, otherwise,

where IS = { i ∈ S : |vi| ≥ ε, (ui, vi) finite } and ε = 10−9 avoids division by zero. By
construction, tightS ∈ [0, 1], attaining 1 exactly when the ratio u/v is constant on S.
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This affinity score highlights slices where two invariants exhibit both strong correlation and near-
constant ratios, conditions that often signal underlying mathematical structure. GAMBIT defines
affinity by the weighted geometric mean

affinityS(u, v) = corrS(u, v)
α tightS(u, v)

1−α,

with α ∈ [0, 1] (we use α = 0.7 in all experiments). Not every slice is useful: some may be too small,
too broad, or fail to reveal a stronger structure than the full dataset. A slice induced by h is therefore
considered informative for (u, v) only if (i) its coverage lies in [c, c] with c = 0.05, c = 0.95, and
at least Nmin = 20 rows, and (ii) its affinity improves upon the global dataset by at least η = 0.10.
Informative pairs (u, v) together with their slices h define ranked plans that seed the subsequent
generation of conjectures via linear programming, ratio searches, or convex-hull approximations.

For each informative slice Dh, GAMBIT proposes explicit inequalities and equalities by solving a
linear program restricted to that slice. Fix a target invariant y and a vector of partner invariants
x ∈ Rk. On Dh, GAMBIT solves an ℓ∞ slack–minimization problem to search for affine bounds. For
example, to obtain an upper bound y ≤ a⊤x+ b, it solves

min
a,b,M

M

s.t. a⊤xi + b ≥ yi ∀i ∈ Dh,

(a⊤xi + b)− yi ≤ M ∀i ∈ Dh,

M ≥ 0,

whose solution yields the conditional inequality h ⇒ y ≤ a⊤x + b. The formulation for a lower
bound y ≥ a⊤x + b is symmetric, reversing the inequalities. In both cases, the slack variable M
bounds the maximum violation on the slice, and minimizing M returns the tightest feasible affine
inequality. Equalities arise when both directions hold simultaneously.

Even after slice selection, many raw inequalities are redundant or can be generalized to larger families
of objects. To address this, GAMBIT applies a postprocessing stage. First, inequalities are normalized
for readability: coefficients are simplified, negatives are moved consistently to the left-hand side, and
equalities are inferred when both bounds coincide. The normalized set is then filtered: redundant
statements are discarded, overly specific hypotheses are generalized when possible, and significance is
enforced by requiring that each surviving conjecture provide a strictly better bound than all previously
accepted ones for at least one object. Finally, conjectures are ranked by touch count—the number of
objects on which equality holds—so that sharp and frequently realized statements appear first.

3 Case Studies: Graphs and Calabi–Yau Manifolds

To illustrate the range of GAMBIT, we present results in two contrasting domains: graph theory
and Calabi–Yau geometry. In both cases, the input was simply a table of objects annotated with
numeric and Boolean invariants, with no user-specified targets or hypotheses. All conjectures emerged
automatically from the pipeline. A companion Colab notebook provides reproducibility.1.

A central methodological distinction between automated conjecturing and standard machine learning
lies in data usage. Whereas machine learning pipelines typically partition data into training, validation,
and test sets, automated conjecturing systems operate on the complete dataset. This reflects a
mathematical rather than statistical rationale: like a human mathematician, an automated conjecturer
benefits from considering all known examples when seeking new relationships. Omitting portions of
the data risks excluding extremal or atypical instances that may reveal structural boundaries or point
toward counterexamples. Although conjectures formed in this manner may not generalize beyond the
current dataset, they often expose meaningful patterns and motivate further theoretical inquiry.

Graph theory conjectures

Experiments used an open-source PyPI package providing a dataset of 340 graphs annotated with
over twenty numerical invariants and a dozen Boolean predicates. The invariants span structural,

1https://colab.research.google.com/drive/1nGGso4B7_4GtUSY4sETBIgpg0d74u0X5?usp=
sharing
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domination, spectral, and forcing parameters, while the predicates capture properties such as con-
nectedness, bipartiteness, chordality, planarity, and subcubic degree. Although all features were
made available, the system automatically deprioritized those that did not yield informative slices.
Conjectures are evaluated by touch count, the number of graphs on which equality holds, with higher
counts indicating sharper and more frequently realized statements.

Category Representative conjectures (touch count)

Coloring/cliques χ ≥ ω (296); chordal ⇒ χ = ω (296)
Domination γ ≤ i (321); γ ≥ sl (224); γ ≤ γt (114);

γt ≤ 2 sl (93); γ ≥ 1
2
i+ 1

4
γt (73);

planar ⇒ sl ≥ 1
6
γ + 1

6
i+ 2

3
(54);

i ≤ 7
8
γ + 5

8
sl − 1

2
(49)

Matching/vertex cover µ ≤ ν (175); bipartite ⇒ µ = ν (175); µmin -max ≥ 1
2
ν (67);

µmin -max ≤ − 1
3
ν + 4

3
+ µ (17); m ≥ 2ν − 1 (24)

Ann./independence/residue a ≥ α (138); α ≥ R (105); chordal ⇒ R ≥ 1
2
α+ 1

2
(99);

a ≤ 1
2
α+ 1

2
n− 1

2
(45)

Distance rad ≥ 1
2
diam (115); diam ≥ 1

3
tri (74);

tri ≥ 4 (diam− rad) (16); chordal ⇒ rad ≤ 1
3
diam + 1

2
sl + 1

3
(45)

Harmonic index H ≤ 1
2
n (134); subcubic ⇒ m ≤ 3H (121)

Table 1: Representative conjectures on graph invariants generated by GAMBIT. Numbers in parenthe-
ses denote touch counts, the number of graphs on which equality holds.

Table 1 shows representative conjectures spanning domination, coloring, matching, and distance
theory. Several textbook theorems appeared prominently [West, 2001], including χ ≥ ω, Kőnig’s
theorem (µ = ν in bipartite graphs), and the radius–diameter inequality rad ≥ 1

2diam, as well
as specialized and technical theorems such as γ ≥ sl [Haynes et al., 1998], diam ≥ 1

3 tri [Das,
2021], a ≥ α [Pepper, 2009], and α ≥ R [Favaron et al., 1991, Griggs and Kleitman, 1999, Triesch,
1996]. In addition, GAMBIT proposed candidates that appear to be new, such as γ ≥ 1

2 i+
1
4γt and

rad ≤ 1
3diam + 1

2sl +
1
3 in chordal graphs. In fact, γ ≥ 1

2 i+
1
4γt holds in the claw-free graphs.

This mixture of rediscoveries, less familiar results, and novel conjectures illustrates how the system
converts raw tabular data into statements that warrant mathematical scrutiny. At the same time,
many invariants did not yield conjectures, which underscores that GAMBIT is selective rather than
exhaustive.

Calabi–Yau conjectures

For Calabi–Yau hypersurfaces, we used an open-source PyPI package that derives features from
cy-tools [Demirtas et al., 2022]. Each row corresponds to a generic anticanonical hypersurface
in a toric variety X∆. The dataset provides algebraic invariants (h1,1, h2,1, χ), graph statistics from
intersection and Mori-ray angle graphs, matrix-derived features from intersection forms, and Boolean
predicates such as connectivity and density > 0.5. In total, it includes 175 Calabi–Yau threefolds
with 44 numerical and 19 Boolean features; see Appendix A for exact definitions.

Category Representative conjectures (touch count)

Rediscoveries nmori_nodes = nmori_rays (175); h1,1 = 1
2
nint +

1
2
dtip (175)

Structural intersection_rank ≤ 1
2
h1,1 + 1

2
dtip (174);

αint ≥ Rint (102); γint ≤ Rint (71);
χ ≥ −2h2,1 + 2 + 2dint (57); h2,1 ≥ − 1

2
χ+ 1 + dint (57)

Hybrids int_density > 0.5 ⇒ intersection_rank ≥ 7
10
h1,1 − 4 + 7

10
dtip (26);

Mori forest ⇒ γmori ≤ 1
3
nmori_components +

2
3
+ 24

17
cos θmax (4);

intersection_sum_abs ≤ 17
7
+ Strace +

3
7
nintersections (2)

Table 2: Representative conjectures from Calabi–Yau datasets. Numbers in parentheses denote touch
counts, the number of instances on which equality holds.
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Here, GAMBIT rediscovers exact identities that serve as consistency checks, surfaces structural
inequalities linking algebraic and graph-theoretic quantities, and proposes hybrid conditional state-
ments tied to density or spectral features. As in the graph case, several invariants did not produce
conjectures, highlighting the system’s selectivity.

4 Discussion

Our contribution is twofold. First, GAMBIT treats conjecturing as a task distinct from prediction
and proof: the aim is to surface sharp, interpretable regularities rather than forecast outcomes or
verify statements. Second, it shows domain-general scope: from structured datasets alone, the system
both rediscovers textbook theorems and suggests relations that appear new. The next challenge
is not only to expand the range of domains but to deepen the evaluation of conjectures: deciding
which statements are genuinely structural, how significance should be measured, and how automated
conjecturing might interact with proof systems. Addressing these questions will determine whether
conjecturing can become a systematic component of mathematical discovery. For now, GAMBIT
should be seen as a first move—an opening that sets the stage for further play.

A Definitions of Graph-Based Features for Calabi–Yau Datasets

In this section we describe the graphs and associated invariants used in the conjectures of Table 2.

A.1 Algebraic invariants

• h1,1: number of Kähler parameters (divisor classes).
• h2,1: number of complex structure deformations.
• χ = 2(h1,1 − h2,1): Euler characteristic of the threefold.
• dtip: Kähler tip dimension, i.e., the dimension of the cone tip in the nef cone.

A.2 Graph Constructions

• Intersection graph. Let {Di}h
1,1

i=1 denote the divisor classes on the Calabi–Yau threefold
X . The intersection graph Gint has vertex set V (Gint) = {Di}, with an edge {Di, Dj} ∈
E(Gint) whenever the intersection number

κijk =

∫
X

DiDjDk

is nonzero for some k. Thus, divisors that intersect nontrivially are adjacent in Gint.
• Mori graph. Let {rj} denote the primitive rays generating the Mori cone of X . The Mori

graph Gmori has vertex set V (Gmori) = {rj}, with an edge {ri, rj} present when the angle
between rays ri and rj is acute. We record both the unweighted structure (edges only) and
angle-based statistics, including

cos θmax = max
i̸=j

cos∠(ri, rj).

A.3 Graph Invariants

For a graph G = (V,E) with |V | = n and |E| = m, we use the following invariants:

• n: number of vertices.
• Independence number α(G): maximum size of a set of pairwise nonadjacent vertices.
• Domination number γ(G): minimum size of a set S ⊆ V such that every v ∈ V \ S has a

neighbor in S.
• Residue R(G): the terminal value obtained by iteratively applying the Havel–Hakimi

degree-reduction process.
• Density ρ(G) = 2m

n(n−1) : proportion of possible edges present.
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• Components c(G): number of connected components.

Dataset notation:

• nint: vertices in the intersection graph.

• nmori_nodes: vertices in the Mori graph.

• nmori_rays: Mori cone rays (equal to nmori_nodes).

• nmori_components: components of the Mori graph.

• αint: independence number of the intersection graph.

• γint: domination number of the intersection graph.

• Rint: Havel-Hakimi residue of the intersection graph.

• γmori: domination number of the Mori graph.

• ρint: density of the intersection graph.

• cos θmax: maximum cosine of a pairwise Mori ray angle.

• dint: average degree of the intersection graph.

A.4 Matrix-Derived Features

From the totally symmetric triple intersection tensor κijk =
∫
X
DiDjDk, we form contracted

intersection matrices and extract:

• intersection_rank: rank of the intersection matrix.

• intersection_sum_abs: sum of absolute values of matrix entries.

• Strace: trace of the squared intersection matrix.

• nintersections: number of nonzero entries in the intersection matrix.

A.5 Boolean Predicates

• Mori forest: the Mori graph Gmori is acyclic.

• Intersection density > 0.5: ρ(Gint) > 0.5.

• Connectivity: the graph is connected.

• Acyclicity: the graph contains no cycles.
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