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ABSTRACT

In scientific machine learning, models are routinely deployed with parameter val-
ues or boundary conditions far from those used in training. This paper studies
the learning-where-to-learn problem of designing a training data distribution that
minimizes average prediction error across a family of deployment regimes. A theo-
retical analysis shows how the training distribution shapes deployment accuracy.
This motivates two adaptive algorithms based on bilevel or alternating optimization
in the space of probability measures. Discretized implementations using parametric
distribution classes or nonparametric particle-based gradient flows deliver opti-
mized training distributions that outperform nonadaptive designs. Once trained,
the resulting models exhibit improved sample complexity and robustness to distri-
bution shift. This framework unlocks the potential of principled data acquisition
for learning functions and solution operators of partial differential equations.

1 INTRODUCTION

In scientific settings, machine learning models encounter data at deployment time that can differ
substantially from the data seen during training. Standard empirical risk minimization (ERM), which
minimizes an average loss over the fixed training distribution, may yield models that perform well
in-sample yet degrade under distribution shift. This challenge is acute in operator learning for partial
differential equations (PDEs) and infinite-dimensional inverse problems. For example, in data-driven
electrical impedance tomography (EIT), neural operators are trained to map electrical patterns on the
boundary to internal conductivities (Fan & Ying, 2020; Molinaro et al., 2023; Park et al., 2021). The
input is a collection of voltage and corresponding current pairs that represent Dirichlet and Neumann
boundary conditions, respectively. The probability distribution ν that boundary voltages are sampled
from is a user choice. Crucially, the choice of ν shapes how well the trained model generalizes to
new boundary measurement distributions. Fig. 1 illustrates this effect with a variant of the Neural
Inverse Operator (NIO) architecture (Molinaro et al., 2023); see SM E–F for details.

These observations motivate the central premise of the present work: learning where to learn by
designing an optimal training distribution ν for a prescribed family of deployment regimes. Guided
by theoretical and practical considerations, this paper develops a principled and computationally
feasible framework for optimizing ν in function regression and operator learning tasks. It establishes
intelligent data acquisition as a crucial component of scientific machine learning (SciML) workflows.

Contributions. Our main contributions are as follows.

(C1) Lipschitz-based distribution shift bounds. We develop quantitative bounds that connect
out-of-distribution (OOD) error to the training error, Lipschitz continuity of the model and
target map, and the Wasserstein mismatch between training and test distributions.

(C2) Algorithms for training distribution optimization. Motivated by the theory, we develop two
adaptive algorithms that actively optimize the training distribution for general model classes:
(1) a bilevel procedure that directly minimizes OOD error and (2) a computationally efficient
alternating scheme that minimizes an upper bound on the OOD error. We implement (1) and
(2) over the space of probability measures by considering (a) parametric training distribution
families (e.g., Gaussian processes) and (b) nonparametric particle representations of the
training distribution (e.g., that are updated with Wasserstein gradient flows).
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true conductivity 1 2 3 4 true conductivity 1 2 3 4

Figure 1: Two conductivity samples in EIT. The true conductivity is on the left of each panel, followed by
predictions from NIO models trained on four Dirichlet boundary condition distributions {νi}4i=1. Top row:
in-distribution predictions; bottom row: out-of-distribution predictions. See SM E–F for details.

(C3) Empirical performance in SciML tasks. We perform numerical experiments involving
function approximation as well as forward and inverse operator learning for a range of
elliptic, parabolic, and hyperbolic PDEs (EIT, Darcy flow, viscous Burgers’, and radiative
transport). Consistent with our theory, the results show that the training data distribution
strongly governs OOD deployment error. In the experiments, the two proposed adaptive
algorithms efficiently optimize the training distribution, greatly reduce OOD error, and often
outperform adaptive and nonadaptive baselines.

Related work. The careful selection of sampling points for regression appears frequently in
numerical analysis (Barron et al., 2008; Krieg et al., 2022). Weighted least-squares regression with
Christoffel sampling is one prominent example (Cohen & Migliorati, 2017; Adcock et al., 2022).
One of the main findings of these works is that training on samples from the target test distribution is
a suboptimal strategy in general (cf. Canatar et al. (2021)). Instead, a change of measure is derived by
minimizing an upper bound on average error. These ideas have their origin in numerical integration
and Monte Carlo methods (Caflisch, 1998). Some other related design strategies include greedy
Bayesian herding (Huszár & Duvenaud, 2012) and kernel quadrature (Epperly & Moreno, 2023).
However, quadrature-based sampling does not necessarily deliver optimal performance for regression.

In SciML for PDEs, several adaptive sampling and reweighting strategies have emerged, particularly
for unsupervised methods such as physics-informed neural networks (PINNs) (Wu et al., 2023).
Common approaches either reweight a fixed pool of training data samples (Chen et al., 2025a;
McClenny & Braga-Neto, 2023) or sample new data points from a density proportional to the PDE
residual (Gao et al., 2023; Tang et al., 2023). Similar methods based on importance sampling,
reweighting, or coreset selection have been applied to neural operators (Wang et al., 2022b; Toscano
et al., 2025). Others use residual information to move samples directly (Ouyang et al., 2025) or
iteratively expand training datasets (Lye et al., 2021). The current work builds on these advances by
operating at the level of probability distributions. This enables a wide range of parametrizations and
discretizations beyond samples only and provides extra freedom to explore the design space.

For a discussion of broader connections to other areas of machine learning and statistics, see SM A.

Outline. This paper is organized as follows. Sec. 2 provides the necessary background. Sec. 3
establishes motivating theoretical results (C1). Sec. 4 proposes two implementable data distribution
selection algorithms (C2). Sec. 5 performs numerical studies (C3) and Sec. 6 gives concluding
remarks. Proof and implementation details are deferred to the supplementary material (SM).

2 PRELIMINARIES

This section sets the notation, provides essential background on key mathematical concepts, and
reviews the framework of operator learning. SM B contains additional reference material.

Notation. This paper works with an abstract input space (U , ⟨·, ·⟩U , ∥ · ∥U ) and output space
(Y, ⟨·, ·⟩Y , ∥ · ∥Y), both assumed to be real separable Hilbert spaces. We often drop the subscripts
on norms and inner products when the meaning is clear from the context. Unless otherwise stated,
U or Y could be infinite-dimensional. We denote the Lipschitz constant of a map F : U → Y by
Lip(F ) := supu̸=u′∥F (u)− F (u′)∥Y/∥u− u′∥U . For any element ζ of a metric space, the Dirac
probability measure assigning unit mass to ζ is written as δζ . For p ∈ [1,∞], (Bochner) Lp

µ(U ;Y)
spaces are defined in the usual way. We say that a probability measure µ ∈P(U) belongs to Pp(U)
if mp(µ) <∞, where mp : P(U)→ R≥0 ∪ {∞} denotes the uncentered p-th moment defined by
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µ 7→ mp(µ) := Eu∼µ∥u∥pU . We often work with Gaussian measures N (m, C) ∈ P2(U), where
m ∈ U is the mean and C : U → U is the symmetric trace-class positive semidefinite covariance
operator; see Dashti & Stuart (2017, App. A.3) for details in the infinite-dimensional setting.

Background. We review several key concepts that frequently appear in this work.

The pushforward operator maps a measure from one measurable space to another via a measurable
map. Specifically, given measure spaces (X,BX , µ) and (Y,BY , ν) and a measurable map T : X →
Y , the pushforward operator T# assigns to µ a measure T#µ on Y defined by T#µ(B) = µ(T−1(B))
for all B ∈ BY , where T−1(B) = {x ∈ X |T (x) ∈ B} is the pre-image of B. Intuitively, T#

redistributes the measure µ on X to a measure T#µ on Y following the structure of the map T .
Definition 2.1 (p-Wasserstein distance). Consider probability measures µ and ν on a metric
space (X, d) with finite p-th moments, where p ∈ [1,∞). Define the set of all couplings
Γ(µ, ν) :=

{
γ ∈P(X ×X)

∣∣∣π1
#γ = µ, π2

#γ = ν
}

, where π1(x, y) = x and π2(x, y) = y. The

p-Wasserstein distance between µ and ν is Wp(µ, ν) := (infγ∈Γ(µ,ν)

∫
X×X

d(x, y)p γ(dx, dy))1/p.

The cases of p = 1 and p = 2 are often considered, corresponding to the W1 and W2 metrics (Villani,
2021). The case when µ and ν are both Gaussian and X is a Hilbert space is also used frequently.

We will use the notion of random measure (Kallenberg, 2017) to quantify OOD error in Secs. 3–4.
Definition 2.2 (random measure). Let (Ω,F ,P) be a probability space, and let (M,B) be a measur-
able space. A random measure on M is a map Ξ: Ω → P(M), Ξ(ω) := µω, such that for every
A ∈ B, the function ω 7→ µω(A) is a random variable, i.e., measurable from (Ω,F) to (R≥0,B(R)).
Operator learning. Operator learning provides a powerful framework for approximating mappings
G⋆ : U → Y between function spaces. It plays an increasingly pivotal role for accelerating forward
and inverse problems in the computational sciences (Boullé & Townsend, 2024; Kovachki et al.,
2023; 2024b; Morel et al., 2025; Nelsen & Stuart, 2024; Subedi & Tewari, 2025). As in traditional
regression, the learned operator Gθ̂ is parametrized over a set Θ and minimizes an empirical risk

θ̂ ∈ argmin
θ∈Θ

1

N

N∑
n=1

∥∥G⋆(un)− Gθ(un)
∥∥2
Y . (2.1)

The Hilbert norm in (2.1) and discretization-invariant architectures (e.g., DeepONet (Lu et al., 2021),
Fourier Neural Operator (FNO) (Li et al., 2021), NIO (Molinaro et al., 2023)) are points of departure
from classical function approximation. In (2.1), {un} ∼ ν⊗N , where ν is the training distribution
over input functions. The choice and properties of ν are crucial. An inadequately selected ν may
result in Gθ̂(u) being a poor approximation to G⋆(u) for u ∼ ν′, where ν′ ̸= ν (Adcock et al., 2022;
Boullé et al., 2023; de Hoop et al., 2023; Li et al., 2024; Musekamp et al., 2025; Pickering et al.,
2022; Subedi & Tewari, 2024). The present work aims to improve accuracy under distribution shift in
both function approximation and operator learning settings.

3 LIPSCHITZ THEORY FOR OUT-OF-DISTRIBUTION ERROR BOUNDS

This section studies how loss functions behave under distribution shifts and the implications of such
shifts on average-case OOD accuracy. The assumed Lipschitz continuity of the target map and the
elements in the approximation class play a central role in the analysis. Although our theoretical
contributions build upon established tools, we are not aware of any existing work that presents these
results in the precise form developed here.

Distribution shift inequalities. In the infinite data limit, the functional in (2.1) naturally converges
to the so-called expected risk, which serves as a notion of model accuracy in this work. The following
result forms the foundation for our forthcoming data selection algorithms in Sec. 4.
Proposition 3.1 (distribution shift error). Let G1 and G2 both be Lipschitz continuous maps from
Hilbert space U to Hilbert space Y . For any ν ∈P1(U) and ν′ ∈P1(U), it holds that

Eu′∼ν′∥G1(u′)− G2(u′)∥Y ≤ Eu∼ν∥G1(u)− G2(u)∥Y +
(
Lip(G1) + Lip(G2)

)
W1(ν, ν

′) . (3.1)

Moreover, for any µ ∈P2(U) and µ′ ∈P2(U), it holds that

Eu′∼µ′∥G1(u′)− G2(u′)∥2Y ≤ Eu∼µ∥G1(u)− G2(u)∥2Y + c(G1,G2, µ, µ′)W2(µ, µ
′) , (3.2)
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where c(G1,G2, µ, µ′) equals(
Lip(G1) + Lip(G2)

)√
4
(
Lip(G1) + Lip(G2)

)2[
m2(µ) +m2(µ′)

]
+ 16

[
∥G1(0)∥2Y + ∥G2(0)∥2Y

]
.

See SM C for the proof. Provided that the maps G1 and G2 are Lipschitz, Prop. 3.1 shows that the
functional µ 7→ Eu∼µ∥G1(u)− G2(u)∥ is globally Lipschitz continuous in the W1 metric. Similarly,
the functional µ 7→ Eu∼µ∥G1(u) − G2(u)∥2 is locally Lipschitz continuous in the W2 metric; in
particular, it is Lipschitz on sets with uniformly bounded second moments. We remark that the
Lipschitz map hypotheses in Prop. 3.1 are invoked for simplicity. Hölder continuity is also compatible
with Wasserstein distances, and the preceding result can be adapted to hold under such regularity.

Average-case performance. OOD performance may be quantified in several ways. This paper
chooses average-case accuracy with respect to the law Q ∈ P(P(U)) of a random probability
measure ν′ ∼ Q. For a ground truth map G⋆ and any hypothesis G, we strive for

EQ(G) := Eν′∼Q Eu′∼ν′
∥∥G⋆(u′)− G(u′)

∥∥2
Y (3.3)

to be small. An equivalent viewpoint in (D.2) from SM D.1 rewrites (3.3) as a single expectation
against a mixture. Other approaches to quantify OOD error are possible, such as worst-case analysis.
We choose average-case accuracy because it is more natural for learning from finite samples and
because the linearity of (3.3) with respect to Q is useful for algorithm development.

The following corollary is useful. It is a consequence of Prop. 3.1 and the Cauchy–Schwarz inequality.

Corollary 3.2 (basic inequality). For any µ ∈P2(U) and maps G⋆ and G, it holds that

EQ(G) ≤ Eu∼µ

∥∥G⋆(u)− G(u)∥∥2Y +
√
Eν′∼Q c2(G⋆,G, µ, ν′)

√
Eν′∼Q W2

2(µ, ν
′) . (3.4)

The upper bound (3.4) on the average-case OOD error EQ is intuitive. We view the arbitrary
probability measure µ as the training data distribution that we are free to select. The first term on
the right-hand side of (3.4) then represents the in-distribution generalization error of G. On the
other hand, the second term can be considered a regularizer that penalizes how far µ is from Q on
average with respect to the W2 metric. The factor involving the quantity c further penalizes the size
of moments of µ and Q as well as the size of the Lipschitz constants of G⋆ and G.

We instantiate Cor. 3.2 in the concrete context of Gaussian mixtures in SM C, Ex. C.1.

Although the preceding OOD results hold in a quite general setting, they do not distinguish between
an arbitrary model and a trained model obtained by ERM (2.1). Sharpening the bounds for a trained
model would require probabilistic estimates on the model’s Lipschitz constant and in-distribution
error. These are challenging theoretical tasks. Instead, we turn our attention to implementable
algorithms inspired by Cor. 3.2 that are designed to reduce OOD error in practice.

4 PRACTICAL ALGORITHMS FOR TRAINING DISTRIBUTION DESIGN

Let G⋆ : U → Y be the target mapping and Q be a probability measure over P2(U). We assume
query access to an oracle that returns the label G⋆(u) ∈ Y when presented with an input u ∈ U . The
idealized infinite data training distribution selection problem that we wish to address is

inf

{
EQ
(
Ĝ(ν)

) ∣∣∣∣ ν ∈P2(U) and Ĝ(ν) ∈ argmin
G∈H

Eu∼ν

∥∥G⋆(u)− G(u)∥∥2Y} , (4.1)

where EQ is the average-case OOD accuracy functional (3.3) andH is the model hypothesis class.

Eqn. (4.1) is a bilevel optimization problem. The inner minimization problem seeks the best-fit model
Ĝ(ν) for a fixed training distribution ν. The outer problem minimizes EQ(Ĝ(ν)) over ν in the space
of probability measures. The map ν 7→ Ĝ(ν) can be highly nonlinear, which poses a challenge to
solve (4.1). To devise practical solution methods, this section considers the bilevel optimization
problem (4.1) in Sec. 4.1 and a computationally tractable relaxation of (4.1) in Sec. 4.2.
Remark 4.1 (finite data). It is necessary to use finite data to estimate the optimal training distribu-
tion (SM D.1). We thus assume sample access to the chosen feasible set of training distributions, e.g.,
i.i.d. sampling or interacting particles. Moreover, we only require sample access to samples from Q.
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4.1 EXACT BILEVEL FORMULATION

This subsection focuses on directly solving the bilevel optimization problem (4.1) to identify the
optimal training distribution. Bilevel optimization has been extensively studied in the literature; see,
for example, the work of Colson et al. (2007); Golub & Pereyra (2003); Van Leeuwen & Aravkin
(2021). For the infinite-dimensional problem (4.1), our approach begins by specifying a Hilbert
spaceH. Using its linear structure, we calculate the gradient of the Lagrangian associated with (4.1)
with respect to the variable ν. This gradient computation leverages the adjoint state method and the
envelope theorem (Afriat, 1971). In what follows, we specialize this general framework to the case
whereH is a reproducing kernel Hilbert space (RKHS) with scalar output space Y = R. The resulting
algorithm can be efficiently implemented using representer theorems for kernel methods (Micchelli &
Pontil, 2005). Additionally, other linear classes of functions can be incorporated into this framework
with minimal effort. Extending the framework to nonlinear, vector-valued function spacesH, such as
neural network or neural operator spaces, is an exciting direction for future research.

RKHS. Let H := (Hκ, ⟨·, ·⟩κ, ∥ · ∥κ) be a separable RKHS of real-valued functions on U with
bounded continuous reproducing kernel κ : U × U → R. For fixed ν ∈ P2(U), let ιν : H ↪→ L2

ν
be the canonical inclusion map (which is compact under the assumptions on κ). The adjoint of the
inclusion map is the kernel integral operator ι∗ν : L

2
ν → H defined by ι∗νh =

∫
U κ( · , u)h(u)ν(du).

We also define the self-adjoint operator Kν := ι∗νιν : H → H, which has the same action as ι∗ν .

Method of adjoints. Assume that G⋆ ∈ L2
ν ≡ L2

ν(U ;R) for every ν ∈P2(U) under consideration;
this is true, for example, if G⋆ is uniformly bounded on U . Define the data misfit Ψ: H → R by
Ψ(G) := 1

2∥ινG−G⋆∥2L2
ν

; this is an abstract way to write the convex inner objective in (4.1) (rescaled

by 1/2). By Lem. D.1, the inner solution Ĝ(ν) solves the equation Kν Ĝ(ν) = ι∗νG⋆ in H. This fact
allows us to define the Lagrangian L : P2(H)×H×H → R for (4.1) by

L(ν,G, λ) = 1
2 Eν′∼Q∥ιν′G − G⋆∥2L2

ν′
+
〈
(KνG − ι∗νG⋆), λ

〉
κ
. (4.2)

Differentiating L with respect to G ∈ H leads to the adjoint equation.

Lemma 4.2 (adjoint state equation). At a critical point of the map G 7→ L(ν,G, λ) for fixed (ν,G),
the adjoint state λ = λ(ν)(G) ∈ H satisfies the compact operator equation

Kνλ
(ν)(G) = Eν′∼Q Eu′∼ν′

[
κ( · , u′)

(
G⋆(u′)− G(u′)

)]
. (4.3)

The preceding results enable us to differentiate L with respect to ν along the constraints of (4.1).

Proposition 4.3 (derivative: infinite-dimensional case). Define J : P2(U) → R by J (ν) :=

L(ν, Ĝ(ν), λ(ν)(Ĝ(ν))). Then, in the sense of duality, (DJ )(ν) = (Ĝ(ν) − G⋆)λ(ν)(Ĝ(ν)) for each ν.

SM D.2 provides the proofs of Lem. 4.2 and Prop. 4.3 and implementation details.
Remark 4.4 (Wasserstein gradient flow). A nonparametric approach to solve the bilevel problem (4.1)
is to derive the Wasserstein gradient flow and its Lagrangian equivalence u̇ = −∇(DJ )(Law(u))(u),
where DJ is as in Prop. 4.3. This leads to a curve of measures t 7→ Law(u(t)) converging to a
steady-state probability distribution. It is important to note that this dynamic requires gradients of the
true map G⋆, which may not be available or could be too expensive to compute even if available. To
implement this mean-field evolution, we can discretize it with interacting particles; see SM F.5.

Parametrized training distributions. Although Prop. 4.3 provides the desired derivative of the
bilevel problem (4.1), it does not specify how to use the derivative to compute the optimal ν. This
issue is nontrivial because ν ∈P2(U) belongs to a nonlinear metric space. One approach assumes
a parametrization ν = νϑ, where ϑ ∈ V for some separable Hilbert parameter space V . Typically
V ⊆ RP for some P ∈ N. We then use the chain rule to apply Euclidean gradient-based optimization
tools to solve (4.1). To this end, define J : V → R by ϑ 7→ J(ϑ) := J (νϑ), where J is as in Prop. 4.3.
The following theorem computes the gradient∇J : V → V .

Theorem 4.5 (gradient: parametric case). Suppose there exists a dominating measure µ0 such that
for every ϑ ∈ V , νϑ has density pϑ with respect to µ0. If (u, ϑ) 7→ pϑ(u) is sufficiently regular, then

∇J(ϑ) =
∫
U

(
Ĝ(νϑ)(u)− G⋆(u)

)(
λ(νϑ)(Ĝ(νϑ))

)
(u)
(
∇ϑ log pϑ(u)

)
νϑ(du) . (4.4)

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Algorithm 1 Training Data Design via Gradient Descent on a Parametrized Bilevel Objective

1: Initialize: Parameter ϑ(0), step sizes {tk}
2: for k = 0, 1, 2, . . . do
3: Gradient step: With∇J as in (4.4), update the training distribution’s parameters via

ϑ(k+1) = ϑ(k) − tk∇J(ϑ(k))

4: if stopping criterion is met then
5: Return ϑ(k+1) then break

In Thm. 4.5, µ0 is typically the Lebesgue measure if U ⊆ Rd. SM D.2 contains the proof.
Example 4.6 (Gaussian parametrization). Consider the Gaussian model νϑ := N (mϑ, Cϑ) with µ0

being the Lebesgue measure on U = Rd. Explicit calculations with Gaussian densities show that

∇ϑ log pϑ(u) = −∇ϑΦ(u, ϑ), where Φ(u, ϑ) := 1
2

∥∥C−1/2
ϑ (u−mϑ)

∥∥2
2
+ 1

2 log det(Cϑ). (4.5)

The parameters ϑ of νϑ can now be updated using any gradient-based optimization method. For
instance, a simple gradient flow in Hilbert space is given by ϑ̇ = −∇J(ϑ).
Implementation. A gradient descent scheme for the bilevel optimization problem (4.1) is summa-
rized in Alg. 1. Alternative gradient-based optimization methods can also be explored. We emphasize
that the derived bilevel gradients are exact; in implementation, the only source of error arises from
discretization. Discretization details for the gradient (4.4) are provided in SM D.2; in particular, we
“empiricalize” all expectations.

4.2 UPPER-BOUND MINIMIZATION

Although Alg. 1 is implementable assuming query access to the ground truth map u 7→ G⋆(u), it is so
far restricted to linear vector spacesH. This subsection relaxes problem (4.1) by instead minimizing
an upper bound on the objective, which is no longer a bilevel optimization problem. We then design
an alternating descent algorithm that applies to any hypothesis class H (e.g., neural networks and
neural operators). Empirically, the alternating algorithm converges fast, often in a few iterations.

An alternating scheme. Recall the upper bound (3.4) from Cor. 3.2, which holds for any µ ∈
P2(U). The particular choice µ := ν, where ν is a candidate training data distribution, delivers a
valid upper bound for the objective functional EQ(Ĝ(ν)) in (4.1). That is,

EQ(Ĝ(ν)) ≤ Eu∼ν

∥∥G⋆(u)− Ĝ(ν)(u)∥∥2Y +

√
Eν′∼Q c2

(
G⋆, Ĝ(ν), ν, ν′

)√
Eν′∼Q W2

2(ν, ν
′) . (4.6)

It is thus natural to approximate the solution to (4.1) by the minimizing distribution of the right-
hand side of (4.6). The dependence of the factor c in Prop. 3.1 on the Lipschitz constant of Ĝ(ν)
is hard to capture in practice. One way to circumvent this difficulty is to further assume an upper
bound Lip(Ĝ(ν)) ≤ R uniformly in ν for some constant R > 0. We define cR(G⋆, ν, ν′) to be
c(G⋆, Ĝ(ν), ν, ν′) with all instances of Lip(Ĝ(ν)) replaced by R. The assumption of a uniform
bound on the Lipschitz constant is valid for certain chosen model classes H, e.g., kernels with
Lipschitz feature maps or Lipschitz-constrained neural networks (Gouk et al., 2021). Although such
Lipschitz control in deep neural networks is challenging, there has been substantial recent progress on
architectures with explicit Lipschitz constraints, e.g., spectral normalization, orthogonal/Householder
layers, 1-Lipschitz activations (Miyato et al., 2018; Anil et al., 2019; Wang et al., 2020; Murari et al.,
2025). Thus, expressive neural models with controlled Lipschitz behavior can be made practical.

We denote the candidate set of training distributions by P ⊆ P2(U). Finally, the upper-bound
minimization problem becomes

inf
(ν,G)∈P×H

{
Eu∼ν

∥∥G⋆(u)− G(u)∥∥2Y +
√
Eν′∼Q c2R

(
G⋆, ν, ν′

)√
Eν′∼Q W2

2(ν, ν
′)

}
. (4.7)

Note that since only the first term of (4.7) depends on the variable G, the minimizing G is given by
Ĝ(ν), as defined previously. This observation motivates the alternating scheme outlined in Alg. 2.
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Algorithm 2 Training Data Design via Alternating Model Fitting and Distribution Update Steps

1: Initialize: Training data distribution ν(0), estimate of the constant R > 0
2: for k = 0, 1, 2, . . . do
3: Model training: To obtain the trained model Ĝ(k), solve the optimization problem

Ĝ(k) ← argmin
G∈H

Eu∼ν(k)

∥∥G⋆(u)− G(u)∥∥2Y
4: Distribution update: Update the training distribution by solving

ν(k+1) ← argmin
ν∈P

{
Eu∼ν

∥∥G⋆(u)− Ĝ(k)(u)∥∥2Y +
√
Eν′∼Q c2R

(
G⋆, ν, ν′

)√
Eν′∼Q W2

2(ν, ν
′)
}

5: if stopping criterion is met then
6: Return (Ĝ(k), ν(k+1)) then break

It is important to note that not all alternating algorithms have convergence guarantees, which requires
a detailed understanding of the associated fixed-point operator. In contrast, the proposed Alg. 2 comes
with the following convergence guarantee.
Proposition 4.7 (monotonicity). Under Alg. 2, the objective in (4.7) is always non-increasing.

Proof. Line 3 ensures that the first term of the objective (4.7) does not increase, while keeping the
second term constant. Next, Line 4 minimizes both terms. Iterating this argument, we deduce that the
algorithm maintains a non-increasing objective value for all k.

Remark 4.8 (connection to Wasserstein barycenters). If the set P contains distributions with uniformly
bounded second moments and the first term on the right-hand side of (4.6) is uniformly bounded over
P, then the optimal value of (4.7) is bounded above by the value of another minimization problem
whose solution in P2(U) is the 2-Wasserstein barycenter of Q ∈P2(P2(U)) (Backhoff-Veraguas
et al., 2022, Thm 3.7, p. 444). An analogous bound is even easier to verify for the W1 result (3.1).
Thus, the G⋆-dependent solution of the proposed problem (4.7) over P (and hence also the solution
of Eqn. (4.1)) is always at least as good as the barycenter, which only depends on P and Q.

Implementation. To implement Alg. 2, we simply replace expectations with finite averages over
empirical samples. The number of samples per iteration is a hyperparameter. Line 3 in Alg. 2 is the
usual model training step, i.e., Eqn. (2.1), while the distribution update step in Line 4 can be achieved
in several ways. One way involves interacting particle systems derived from (Wasserstein) gradient
flows over P ⊆P2(U). Alternatively, if the distribution is parametrized, we can optimize over the
parametrization, e.g., transport maps or Gaussian means and covariances. In this case, one can apply
global optimization methods or Euclidean gradient-based solvers.

To apply gradient-based optimization algorithms, we need the derivative of the objective in (4.7) with
respect to ν. Up to constants, the objective takes the form F : P ⊆P2(U)→ R, where

ν 7→ F (ν) := Eu∼ν f(u) +
√
1 +m2(ν)

√
Eν′∼Q W2

2(ν, ν
′) (4.8)

and f : U → R. The next result differentiates F ; the proof is in SM D.3.
Proposition 4.9 (derivative: infinite-dimensional case). Let F be as in (4.8) with f and P sufficiently
regular. Then for every ν ∈ P and u ∈ U , it holds that

(
DF (ν)

)
(u) = f(u) +

1

2

√
Eν′∼Q W2

2(ν, ν
′)

1 +m2(ν)
∥u∥2U +

√
1 +m2(ν)

Eν′∼Q W2
2(ν, ν

′)
Eν′∼Q ϕν,ν′(u) (4.9)

in the sense of duality. The potential ϕν,ν′ : U → R satisfies ϕν,ν′ = 1
2∥ · ∥2U − φν,ν′ , where

∇φν,ν′ = Tν→ν′ and Tν→ν′ is the W2-optimal transport map from ν to ν′.

Taking the gradient of u 7→ DF (ν)(u) in (4.9) yields the Wasserstein gradient, which can be utilized
in Wasserstein gradient flow discretizations; see Rmk. 4.4. In the case of parametric distributions,
combining Prop. 4.9 with the chain rule yields gradient descent schemes similar to those introduced
in Sec. 4.1. Again, the derived gradients are exact and require only discretization for their numerical
evaluation. For further details, see Cor. D.7 and Lem. D.8 and its special case (Rmk. D.9 in SM D.3).
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Table 1: Function approximation with bilevel Alg. 1. Reported values are mean Err for kernel regressors trained
with 1024 labeled data samples from the optimized νϑ (ours) from Alg. 1 with 1000 iterations vs. other adaptive
(aCoreSet) and nonadaptive (Normal, Barycenter, Mixture, Uniform, nCoreSet) sampling distributions. Two
standard deviations from the mean Err over 10 independent runs is also reported. Also see Fig. 10.

g1 (d = 2) g2 (d = 5) g2 (d = 8) g3 (d = 4) g3 (d = 5) g4 (d = 10)

Ours 0.040± 0.010 0.169± 0.007 0.556± 0.007 0.276± 0.019 0.558± 0.009 0.025± 0.000
Normal 0.808± 0.015 0.811± 0.010 0.949± 0.003 0.937± 0.005 0.947± 0.003 0.029± 0.001
Barycenter 0.546± 0.025 0.514± 0.012 0.782± 0.005 0.771± 0.008 0.784± 0.010 0.021± 0.001
Mixture 0.308± 0.011 0.372± 0.015 0.712± 0.011 0.471± 0.037 0.658± 0.011 0.022± 0.001
Uniform 0.983± 0.001 0.971± 0.002 0.993± 0.000 0.976± 0.000 1.000± 0.000 0.121± 0.001
nCoreSet 0.185± 0.000 0.247± 0.002 0.622± 0.002 0.295± 0.002 0.494± 0.002 0.098± 0.012
aCoreSet 0.501± 0.060 0.538± 0.028 0.782± 0.018 0.793± 0.048 0.848± 0.034 0.013± 0.000
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Figure 2: Alg. 1 applied to ground truth g1 : R2 → R. (Left) Evolution of Err over 1000 iterations (N = 250
samples per step) of gradient descent. (Center) Err of model trained on N samples from optimized νϑ (ours) vs.
initial normal N (m0, I2), empirical QW2-barycenter, empirical Q mixture, Unif([0, 1]2), and two pool-based
coresets. (Right) Same as center, except incorporating the additional function evaluation cost incurred from
Alg. 1. Shading represents two standard deviations away from the mean Err over 10 independent runs.

5 NUMERICAL RESULTS

This section implements Alg. 1 (the bilevel gradient descent algorithm) for function approximation
using kernel methods and Alg. 2 (the alternating minimization algorithm) for several operator learning
tasks using DeepONets. Comprehensive experiment details and settings are collected in SM F.

Bilevel gradient descent algorithm. We instantiate a discretization of Alg. 1 on several function
approximation benchmarks. The test functions G⋆ ∈ {gi}4i=1 each map Rd to R and are comprised
of the Sobol G (g1) and Friedmann functions (g2, g3), and a kernel expansion (g4). We use the kernel
framework from Sec. 4.1 with H the RKHS of the squared exponential kernel with a fixed scalar
bandwidth hyperparameter. Also, Q is an empirical measure with 10 atoms centered at fixed Gaussian
measures realized by standard normally distributed means and Wishart distributed covariance matrices.
A cosine annealing scheduler determines the gradient descent step sizes. The training distribution
νϑ := N (m, C) is parametrized by the pair ϑ = (m, C), which we optimize using Alg. 1.

Tab. 1 shows that models trained on the final iterate νϑ of Alg. 1 nearly always outperforms those
trained on adaptive or nonadaptive baseline distributions in terms of the root relative average OOD
squared error Err := (EQ(Ĝ(ν))/EQ(0))

1/2. Nonadaptive (nCoreSet) and adaptive (aCoreSet) pool-
based coresets from active learning (Musekamp et al., 2025) slightly outperform νϑ on the g3 (d = 5)
and g4 (d = 10) test problems, respectively. Here, the fixed pool of size 5000 consists of the empirical
samples of samples from Q available to Alg. 1. Overall, the performance gap between our bilevel
method and the baselines can close depending on the complexity of Q or G⋆. Fig. 2 specializes to
the G⋆ = g1 case. Although fitting the model on data sampled from the precomputed optimal νϑ
uniformly outperforms baseline distribution sampling for large enough N , when corrected for the
“offline” cost of finding the optimal νϑ, the gains are more modest (Fig. 2, right). Moreover, Fig. 2
(center) shows that the nCoreSet method based on raw kernel feature maps performs better than our
νϑ and empirical Q mixture for very small sample sizes, but eventually saturates to the mixture error
level as N approaches the pool size. In contrast, the error of νϑ continues to decrease.

Alternating minimization algorithm. We apply the alternating scheme Alg. 2 to several important
operator learning problems from the physical sciences. Let Ω ⊂ R2 denote a bounded domain
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Figure 3: (Left) Matrix approximation of NtD map. (Center) After 80 independent runs, decay of the average
relative OOD error of the model when trained on the optimal distribution identified at each iteration of Alg. 2; a
95% confidence interval of the true relative OOD error is provided at each iteration. (Right) Decay of average
AMA loss defined in (4.7) vs. iteration relative to the same loss at initialization.

𝑢𝑎 𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 1 𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 2 𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 3 𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 8→
Figure 4: The first two images show the test conductivity a and true PDE solution u. The next four images
show the absolute error |upred − u| of the model trained on the training distribution from iterations 1, 2, 3, and 8.

with boundary ∂Ω. Consider the elliptic PDE ∇ · (a(x)∇u(x)) = 0, where x ∈ Ω, a = a(x) > 0
is the conductivity, and u = u(x) is the PDE solution. Given a mean-zero Neumann boundary
condition (BC) g = a∂u

∂n |∂Ω, one can obtain a unique PDE solution u and the resulting Dirichlet data
f := u|∂Ω. For a fixed conductivity a, we define a Neumann-to-Dirichlet (NtD) map Λ−1

a : g 7→ f ,
which is also used in the EIT problem (Dunlop & Stuart, 2016); see also Sec. 1. On the other hand,
the map G : a 7→ u with a fixed Neumann or Dirichlet BC (and nonzero source) is the Darcy flow
parameter-to-solution operator, which plays a crucial role in geothermal energy extraction and carbon
storage applications. Another important operator maps the scattering coefficient to the spatial-domain
density in the radiative transport equation, which has key applications in optical tomography and
atmospheric science. Last, we consider the viscous Burgers’ equation with small viscosity; it models
steep shock-like phenomena in fluids. Learning surrogate operators for these mappings can enable
rapid simulations for efficient inference, design, and control.

NtD map learning. In this example, we aim to find the optimal training distribution for learning the
NtD map using the alternating minimization algorithm (AMA). The domain Ω = (0, 1)2 and the
conductivity a is fixed. The meta test distribution is a mixture of K components Q = 1

K

∑K
k=1 δν′

k
,

where each ν′k corresponds to a distribution over g, the Neumann BC. Fig. 3 illustrates the reduction
in both average relative OOD error (3.3) and relative AMA loss (4.7) over 10 iterations of Alg. 2.

Darcy flow forward map learning. We use AMA to identify the optimal training distribution for
learning the Darcy flow parameter-to-solution map. Here, Q is as before except now each ν′k
represents a test distribution over the conductivity. Fig. 4 illustrates improved predictions of the
neural operator trained on distributions obtained from Alg. 2 across various iterations.

Radiative transport operator learning. We apply a nonparametric particle-based version of AMA
to find the optimal training distribution for learning the solution operator of the radiative transport
equation. We vary the Knudsen number which corresponds to different physical regimes. Fig. 5
shows how the model trained on the optimal empirical measure compares to the initial model and a
benchmark model trained on the empirical Q mixture. When the sample size is N = 120 particles,
particle-based AMA reduces the average relative OOD error by 88% compared to its initial value for
a Knudsen number of 8.

Burgers’ equation operator learning. We apply AMA to learn the operator that maps an initial condi-
tion u( · , 0) to the corresponding solution u( · , 1) of the viscous Burgers’ equation. The left and center
panels of Fig. 6 illustrate an example input-output pair for this operator. We compare AMA against
two pool-based active learning methods: Query-by-Committee (QbC) and CoreSet (Musekamp et al.,
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(a) ε = 1/8 (b) ε = 2 (c) ε = 8

Figure 5: Relative OOD error vs. sample size N for learning the radiative transport solution operator. Results
are shown for Knudsen numbers ε ∈ {1/8, 2, 8}. For each N , each panel displays 95% confidence intervals over
10 trials for three DeepONet models trained for 5000 epochs: the initial model, the model after particle-based
AMA, and a benchmark trained the test distribution mixture νQ := 1

3

∑3
k=1 ν

′
k.

Figure 6: (Left) Example of a random initial condition u( · , 0) for the Burgers’ equation. (Center) Correspond-
ing solution u( · , 1) of the Burgers’ equation at time 1 for the given initial condition. (Right) Relative OOD
error vs. sample size N for learning the mapping from the initial condition u( · , 0) to the solution u( · , 1). After
computing the optimal training distribution using a fixed data pool, the model labeled “AMA” is trained on N
samples drawn from this distribution. This model is compared with two models trained using pool-based active
learning methods, QbC and CoreSet. All models share the same DeepONet architecture and differ only in the
training data received. The experiment is repeated 10 times, and the plot shows the 95% confidence interval for
the expected relative OOD error.

2025). Using a fixed pool, we first compute the optimal training distribution from AMA and then
draw N samples from it to train the DeepONet model. The same pool is used to obtain models trained
with each active learning strategy. The right panel of Fig. 6 reports the relative OOD performance
as N increases. The AMA-trained model performs comparably to the active learning baselines and,
in the mid-range of sample sizes, exceeds their performance. When the sample size is small, all
methods begin with randomly selected points, leading to similar performance. For large sample
sizes, the training sets seem to overlap, causing the methods to converge. In the intermediate regime,
however, our model consistently outperforms the other two approaches. Moreover, AMA provides
the additional advantage of generating arbitrarily many high-quality training samples beyond the
fixed pool, yielding not only a stronger learned operator but also a robust training distribution.

6 CONCLUSION

This paper shows how optimizing training distributions using theoretically founded bilevel and alter-
nating optimization algorithms produces more accurate and robust models for function approximation
and PDE operator learning. Numerical experiments instate the methods with parametric distribution
families and nonparametric particle-based discretizations of Wasserstein gradient flows. Though
promising, the proposed approach is limited by distribution family expressivity, global optimization,
and line search steps. Future work will address these limitations by incorporating transport maps
and importance reweighting techniques. Understanding cost versus accuracy trade-offs for sample
allocation and iteration complexity of the methodology is another important future challenge.
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REPRODUCIBILITY STATEMENT

We have taken several steps to ensure the reproducibility of our results. All proposed algorithms are
described in detail in the main text, with pseudocode and additional implementation and discretization
details provided in SM D, E, and F. Complete proofs of all theoretical results from the main text,
together with explicit statements of assumptions, interpretations, and discussion, are included in
SM C and D. The function approximation and PDE benchmarks are introduced in the main text, with
full specifications of parameter ranges, boundary conditions, and discretizations in SM E and F. An
anonymous numerical implementation, including code for training distribution optimization, model
training, and evaluation, is provided in the supplementary material as a zip file. Hyperparameters
and experimental settings are listed in SM F and in configuration files within the code repository.
Together, these resources should enable full replication and extension of our results.
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Supplementary Material for:
Learning where to learn:

Training data distribution optimization for scientific machine learning

A EXPANDED OVERVIEW OF RELATED WORK

Beyond the SciML literature reviewed in Sec. 1, our work also sits alongside research on learning
under distribution shift (Mallinar et al., 2024). This includes meta-learning, domain generalization
and adaptation, and active learning and optimal experimental design (OED). We now explain these
connections.

Meta-learning aims to learn models or priors that adapt rapidly across tasks drawn from a task
distribution (Hospedales et al., 2021; Mouli et al., 2023). While related in spirit, meta-learning
typically treats the data-generating distribution per task as given; in contrast, we optimize the training
distribution itself to improve average performance across deployment regimes. Both frameworks
involve a two-level structure: an inner optimization that optimizes the model over a training dataset,
and an outer optimization that adjusts a higher-level quantity beyond model parameters, guided by
generalization performance. In optimization-based meta-learning methods, the outer loop adjusts
the model initialization or update rules, allowing for rapid adaptation across new tasks. On the other
hand, the outer loop in our work optimizes the training data distribution.

Domain generalization seeks representations that transfer across multiple source domains without
access to target data (Wang et al., 2022a; Deng et al., 2024; Gagnon-Audet et al., 2023; Eastwood et al.,
2022; Singh et al., 2024; Wei et al., 2022). Instead, domain adaptation leverages (often unlabeled)
target data to reduce source-target discrepancy (Fang et al., 2023). Both paradigms assume a fixed
training set and focus on achieving robustness during training. Common benchmarks for unsupervised
domain adaptation only assume access to samples from a single target domain (ν′ in Q = δν′) and
do not have the ability to generate new labels (Setinek et al., 2025); this setting is orthogonal to
our work. Robust domain generalization methods, such as distributionally robust optimization and
invariant risk minimization (Lin et al., 2022a; Rahimian & Mehrotra, 2022; Arjovsky et al., 2019;
Kamath et al., 2021; Lin et al., 2022b; Zhou et al., 2022), modify objectives or constraints to ensure
stability across domains given the training data. In contrast, we design the training distribution before
learning: we retain standard training objectives but actively shape where data are drawn for improved
sample complexity and robustness to distribution shift in regression problems. We do so with bilevel
(or alternating) optimization in the space of probability measures, guided by theoretical bounds. In
particular, the minimizing training data distribution depends not just on the chosen model architecture
and the accuracy metric, but also on the target map itself.

The perspective presented in our paper naturally connects to active learning and OED. Active learning
selects informative samples from a given data pool to improve label efficiency (Deng et al., 2023; Jain
et al., 2025; Musekamp et al., 2025; Settles, 2009; Yang et al., 2023); however, it typically operates
reactively over a fixed unlabeled set during training. As a result, the support of the underlying
distribution remains fixed as well. We instead study the a priori optimization of the sampling
distribution itself. Like our work, there are active learning algorithms that are adaptive to labels
(Zhu et al., 2019). However, this approach is pool-based, involves joint optimization instead of
bilevel optimization, applies only to classification instead of regression, and adopts a worst-case
instead of average-case perspective. On the other hand, OED explicitly reasons about where to
make measurements, often through A- or D-optimality or Bayesian and sequential criteria (Atkinson
et al., 2007; Fedorov, 2010; Foster et al., 2019; Huan et al., 2024). The classical OED problem
emphasizes parameter inference and uncertainty reduction. In contrast, we target distributions that
minimize the average OOD prediction error for function and operator learning, a design principle
not commonly prioritized in OED. Nevertheless, our work shares similarities with modern measure-
centric OED (Hellmuth et al., 2025; Jin et al., 2024a), in which the design variable is a probability
measure over the design space instead of a fixed number of sample points. In the nonlinear case,
measure-based OED requires the formulation of a bilevel optimization problem (Jin et al., 2024b).
The difference is that our inner loop involves the supervised training of a machine learning model,
while for OED it typically involves solving a PDE-constrained inverse problem.

Other related work includes ridge leverage score and randomly pivoted Cholesky sampling for kernel
regression (Rudi et al., 2018; Chen et al., 2025b) as well as Bayesian optimization for sequential
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point-by-point dataset updates (Shahriari et al., 2015). These techniques provide principled but
typically label-independent sampling rules that do not depend on the target map to be learned. Instead,
the present paper proposes adaptive, target-dependent, and supervised distribution design methods.

B ADDITIONAL MATHEMATICAL BACKGROUND

This appendix provides more mathematical background for the present work.

We begin with two comments about Gaussian distributions on Hilbert spaces. First, we remark that
the 2-Wasserstein metric between Gaussian measures has a closed-form expression.
Example B.1 (2-Wasserstein metric between Gaussians). Let µ = N (mµ, Cµ) and ν = N (mν , Cν)
be Gaussian measures on a real separable Hilbert space (H, ⟨·, ·⟩, ∥ · ∥). Then Gelbrich (1990) gives

W2
2(µ, ν) = ∥mµ −mν∥2 + tr

(
Cµ + Cν − 2

(
C1/2µ CνC1/2µ

)1/2)
. (B.1)

The square root in (B.1) is the unique self-adjoint positive semidefinite (PSD) square root of a self-
adjoint PSD linear operator. The trace of an operator A : H → H is given by tr(A) =

∑
j∈N⟨ej , Aej⟩

for any orthonormal basis {ej}j∈N of H . If A is PSD, then we can also write tr(A) = ∥A1/2∥2HS,
where B 7→ ∥B∥2HS :=

∑
j∈N∥Bej∥2 is the squared Hilbert–Schmidt norm.

We frequently invoke (B.1) in this paper. When H is infinite-dimensional, the Karhunen–Loève
expansion (KLE) is often useful in calculations (Stuart, 2010, Thm. 6.19, p. 533).
Lemma B.2 (KLE of Gaussian measure). Let m ∈ (H, ⟨·, ·⟩, ∥ · ∥) and C : H → H be self-adjoint,
PSD, and trace-class. Let {λj}j∈N ⊆ R≥0 be a non-increasing rearrangement of the eigenvalues
of C and {ϕj}j∈N ⊆ H be the corresponding orthonormal set of eigenvectors. If {ξj}j∈N is an
independent and identically distributed sequence with ξ1 ∼ N (0, 1), then

Law

(
m+

∑
j∈N

√
λjξjϕj

)
= N (m, C) . (B.2)

Generalizing Lem. B.2, there exist Karhunen–Loève expansions of non-Gaussian measures. In
this case, the {ξj}j∈N are non-Gaussian, have mean zero and variance one, and are only pairwise
uncorrelated instead of independent and identically distributed (i.i.d.); still, the KLE “diagonalizes”
the probability measure.

Next, we turn our attention to general probability measures on abstract spaces. This allows us to
define probability measures over the space of probability measures.
Definition B.3 (spaces of probability measures). Let (X,B) be a measurable space. The space of
probability measures on X is defined by

P(X) := {µ : B → [0, 1] |µ is a probability measure} .
It is equipped with the σ-algebra B(P(X)) generated by the evaluation maps eA : P(X)→ [0, 1]
given by eA(µ) := µ(A) for all A ∈ B. Similarly, the space of probability measures on P(X) is

P
(
P(X)

)
:=
{
Q : B

(
P(X)

)
→ [0, 1]

∣∣Q is a probability measure
}
.

Now suppose that (P(X), d) is a metric space. For p ∈ [1,∞), we say that Q ∈ Pp(P(X)) if
Q ∈P(P(X)) and Eµ∼Q[d

p(µ, µ0)] <∞ for some (and hence for all) µ0 ∈P(X).

Def. B.3 can be related to the notion of random measure from Def. 2.2 as follows. Let (Ω,F ,P) be a
probability space. Recall that a random probability measure on X is a measurable map

Ξ: (Ω,F)→
(
P(X),B(P(X))

)
.

Then the law (or distribution) of Ξ is the pushforward measure Law(Ξ) ∈P(P(X)) defined by

Law(Ξ)(E) := P
(
{ω ∈ Ω |Ξ(ω) ∈ E}

)
for all E ∈ B

(
P(X)

)
.

In this paper, we typically do not distinguish between a random measure and its law.1

We now provide three examples of random measures.
1Both concepts are closely related to Markov kernels (Kallenberg, 2017).
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Example B.4 (empirical measure). Given i.i.d. random variables X1, . . . , XN taking values in
measurable space (M,B) with X1 ∼ µ, the empirical measure is the random probability measure
µ(N) := 1

N

∑N
n=1 δXn , where δx ∈P(M) is the Dirac measure at x ∈M . For each measurable set

A ∈ B, the number µ(N)(A) ∈ [0, 1] counts the fraction of samples that fall in A. The measure µ(N)

is random because the samples {Xn}Nn=1 are random.
Example B.5 (Dirichlet process). Let α be a finite nonnegative measure on (M,B). A Dirichlet
process µ ∼ DP(α) is a random probability measure such that for every k and every measurable
partition {A1, . . . , Ak} of M , it holds that(

µ(A1), . . . , µ(Ak)
)
∼ Dirichlet

(
α(A1), . . . , α(Ak)

)
.

Example B.6 (random Gaussian measures). In the infinite-dimensional state space setting, a canonical
example is that of a random Gaussian measure defined through the KLE (B.2) of its mean and
covariance. Let (H, ⟨·, ·⟩, ∥ · ∥) be infinite-dimensional, {ϕj} be an orthonormal basis of H , and
{λj} ⊂ R≥0 and {σij} ⊂ R≥0 be summable. Define the random measure N (m, C) by

m
Law
:=
∑
j∈N

√
λjξjϕj and C := R∗R, where R Law

:=
∑
i∈N

∑
j∈N

√
σijζijϕi ⊗ ϕj . (B.3)

The {ξj} and {ζij} are zero mean, unit variance, pairwise-uncorrelated real random variables. The
outer product in (B.3) is defined by (a⊗ b)c := ⟨b, c⟩a. Since R is a KLE in the space of Hilbert–
Schmidt operators on H , it follows that C = R∗R is a valid self-adjoint PSD trace-class covariance
operator with probability one. Since {ϕj} is fixed, the degrees of freedom in Q := Law(N (m, C))
are the choice of eigenvalues {λj} and {σij} and the distribution of the coefficients {ξj} and {ζij}.
Typically the coefficients are chosen i.i.d. from some common distribution such as the standard
normal distribution N (0, 1) or the uniform distribution on the interval [−

√
3,
√
3]. The preceding

construction of N (m, C) immediately extends to mixtures of Gaussian measures.

To conclude SM B, we connect back to the barycenters described in Rmk. 4.8.
Definition B.7 (Wasserstein barycenter). Fix p ∈ [1,∞). Given a probability measure Q ∈
Pp(Pp(U)) and a set P ⊆Pp(U), a (p,P)-Wasserstein barycenter of Q is any solution of

inf
µ∈P

Eν∼Q Wp
p(µ, ν) . (B.4)

If P = Pp(U), then we simply write p-Wasserstein barycenter for brevity.

When Q is supported on Gaussian measures, the 2-Wasserstein barycenter of Q can be characterized.
Example B.8 (Gaussian barycenter). Let Q := Law(N (m, C)) ∈P2(P2(U)), where m ∈ U and
C : U → U are the random mean vector and random covariance operator of a random Gaussian
measure. Then the solution µ to infµ∈P2(U) E[W2

2(µ,N (m, C))] is the Gaussian µ = N (E[m], C)
(Álvarez-Esteban et al., 2016, Thm. 2.4), where C is a non-zero PSD solution to the nonlinear equation

C = E
[(
C1/2CC1/2

)1/2]
. (B.5)

One can replace the expectation with an empirical sum and employ fixed-point iterations to approxi-
mately solve (B.5) for C.

C DETAILS FOR SECTION 3: LIPSCHITZ THEORY FOR OUT-OF-DISTRIBUTION
ERROR BOUNDS

This appendix provides the proof of Prop. 3.1 and expands on Cor. 3.2 with Ex. C.1. We begin with
the proof.

Proof of Prop. 3.1. We begin by proving the first assertion, which is similar to the result and proof of
Benitez et al. (2024, Lem. 7.2, p. 23). Let ϕ(u) := ∥G1(u)− G2(u)∥. For any u and u′, the triangle
inequality yields

|ϕ(u)− ϕ(u′)| ≤ ∥G1(u)− G2(u)− (G1(u′)− G2(u′))∥
≤ ∥G2(u)− G2(u′)∥+ ∥G1(u)− G1(u′))∥
≤
(
Lip(G1) + Lip(G2)

)
∥u− u′∥ .
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Thus, Lip(ϕ) ≤ Lip(G1) + Lip(G2) =: C. By Kantorovich–Rubenstein duality, Eu′∼ν′ ϕ(u′) −
Eu∼ν ϕ(u) ≤ CW1(ν, ν

′) as asserted.

For the W2 result, note that ∥Gi(u)∥ ≤ Lip(Gi)∥u∥+ ∥Gi(0)∥. This and the previous estimate gives

ϕ2(u′)− ϕ2(u) =
(
ϕ(u′) + ϕ(u)

)(
ϕ(u′)− ϕ(u)

)
≤
(
∥G1(u)∥+ ∥G1(u′)∥+ ∥G2(u)∥+ ∥G2(u′)∥

)
C∥u− u′∥

≤
(
C∥u∥+ C∥u′∥+ 2∥G1(0)∥+ 2∥G2(0)∥

)
C∥u− u′∥ .

Let π be the W2-optimal coupling of µ and µ′. By the Cauchy–Schwarz inequality, the expectation
Eu′∼µ′ ϕ2(u′)− Eu∼µ ϕ

2(u) = E(u,u′)∼π[ϕ
2(u′)− ϕ2(u)] is bounded above by

C

√
E(u,u′)∼π

(
C∥u∥+ C∥u′∥+ 2∥G1(0)∥+ 2∥G2(0)∥

)2√E(u,u′)∼π∥u− u′∥2

≤ C
√
4C2

(
m2(µ) +m2(µ′)

)
+ 16∥G1(0)∥2 + 16∥G2(0)∥2 W2(µ, µ

′) .

The last line is due to (a+ b+ c+ d)2 ≤ 4(a2 + b2 + c2 + d2). The second assertion is proved.

Next, we apply Cor. 3.2 in the context of Gaussian mixtures.

Example C.1 (Gaussian mixtures). Consider the random Gaussian measure ν′ = N (m, C) ∼ Q ∈
P2(P2(U)), where (m, C) ∼ Π and Π is the mixing distribution over the mean (with marginal Π1)
and covariance (with marginal Π2). Define the Gaussian mixture ν := E(m,C)∼ΠN (m, C) ∈P2(U)
via duality. Let µ := E(m′,C′)∼Π′ N (m′, C′) be another Gaussian mixture with mixing distribution
Π′ (with marginals denoted by Π′

1 and Π′
2). By linearity of expectation and Fubini’s theorem,

EQ(G) = Eδν (G); that is, average-case accuracy with respect to Q is equivalent to accuracy with
respect to the single test distribution ν; also see (D.2). This fact and Cor. 3.2 yield EQ(G) ≤
Eu∼µ∥G⋆(u)−G(u)∥2+ c(G⋆,G, µ, ν)W2(µ, ν). The factor c(G⋆,G, µ, ν) can be further simplified
using the closed-form expression for second moments of Gaussian measures. For the W2 factor,
Lem. C.2 and coupling arguments imply that

EQ(G) ≤ Eu∼µ

∥∥G⋆(u)− G(u)∥∥2Y + c
(
G⋆,G, µ, ν

)√
W2

2(Π1,Π′
1) +W2

2(Π2,Π′
2) . (C.1)

The two W2 distances between the marginals may be further bounded with (B.1) in SM B under
additional structural assumptions on the mixing distributions; see Rmk. C.3. We often invoke this
example in numerical studies with Q =

∑K
k=1 wkδν′

k
(where K ∈ N, i.e., a finite mixture), weights∑K

k=1 wk = 1, Gaussian test measures {ν′k}, and degenerate training mixture µ := N (m0, C0).

The following lemma is used in Ex. C.1; it is an independently interesting result.

Lemma C.2 (Lipschitz stability of mixtures in Wasserstein metric). Let p ∈ [1,∞). If Q and Q′

belong to Pp(Pp(U)), then Wp(Eµ∼Q µ,Eν∼Q′ ν) ≤Wp(Q,Q′).

Proof. Let Π ∈ Γ(Q,Q′) ⊆ P(Pp(U) ×Pp(U)) be a Wp-optimal coupling with respect to the
ground space (Pp(U),Wp). By the joint convexity of the functional Wp

p and Jensen’s inequality,

Wp
p(Eµ∼Q µ,Eν∼Q′ ν) = Wp

p(E(µ,ν)∼Π µ,E(µ,ν)∼Π ν) ≤ E(µ,ν)∼Π Wp
p(µ, ν) = Wp

p(Q,Q′) .

Taking p-th roots completes the proof.

In Lem. C.2, the Wasserstein distance Wp(Q,Q′) uses (Pp(U),Wp) as the ground metric space in
Def. 2.1. Thus, it is a Wasserstein metric over the Wasserstein space.

Last, we remark on structural assumptions that allow us to further bound (C.1) in Ex. C.1.
Remark C.3 (KLE mixing distributions). Instate the setting and notation of Ex. C.1. Furthermore, let
m ∼ Π1 and m′ ∼ Π′

1 have centered (possibly non-Gaussian) KLEs

m
Law
=
∑
j∈N

√
λjξjϕj and m′ Law

=
∑
j∈N

√
λ′
jξ

′
jϕj , where ξj

i.i.d.∼ η and ξ′j
i.i.d.∼ η′ .
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In the preceding display, we further use the notation from (B.3) in Ex. B.6; thus, {ξj} and {ξ′j} have
zero mean and unit variance, with laws in P2(R). Let ρ ∈ Γ(η, η′) be the W2-optimal coupling.
Similar to Garbuno-Inigo et al. (2023, Lem. 4.1, pp. 13–14), let π ∈ Γ(Π1,Π

′
1) be a coupling with

the property that π = Law(h, h′), where h =
∑

j∈N
√
λjzjϕj and h′ =

∑
j∈N

√
λ′
jz

′
jϕj in law and

(zj , z
′
j)

i.i.d.∼ ρ. Then by (B.1) and the triangle inequality,

W2
2(Π1,Π

′
1) ≤ E(m,m′)∼π∥m−m′∥2

≤ 2Eρ

∑
j∈N

λj |ξj − ξ′j |2 + 2Eη′

∑
j∈N
|ξ′j |2

∣∣∣√λj −
√
λ′
j

∣∣∣2
= 2W2

2(η, η
′)
∑
j∈N

λj + 2
∑
j∈N

∣∣∣√λj −
√
λ′
j

∣∣∣2 .
This estimate shows that Π1 and Π′

1 are close in W2 if η and η′ are close in W2 and {
√
λj} and

{
√
λ′
j} are close in ℓ2(N;R). We conclude this remark by upper bounding the term W2

2(Π2,Π
′
2)

appearing (C.1). Following (B.3) from Ex. B.6, suppose that C = R∗R and C′ = (R′)∗R′, where

R Law
=
∑
i∈N

∑
j∈N

√
σijζijϕi ⊗ ϕj , R′ Law

=
∑
i∈N

∑
j∈N

√
σ′
ijζ

′
ijϕi ⊗ ϕj , ζij

i.i.d.∼ ϱ, and ζ ′ij
i.i.d.∼ ϱ′

are KLE expansions in the Hilbert space HS(U) of Hilbert–Schmidt operators from U into itself.
Using (B.1) and Cockayne & Duncan (2021, Lem. SM1.2, p. SM2), it holds that

W2
2(Π2,Π

′
2) = inf

γ∈Γ(Π2,Π′
2)
E(C,C′)∼γ W

2
2

(
N (0, C),N (0, C′)

)
≤ inf

γ∈Γ(Π2,Π′
2)
Eγ

∥∥R−R′∥∥2
HS

.

Then a nearly identical coupling argument to the one used for W2(Π1,Π
′
1) delivers the bound

W2
2(Π2,Π

′
2) ≤ 2W2

2(ϱ, ϱ
′)
∑
i∈N

∑
j∈N

σij + 2
∑
i∈N

∑
j∈N

∣∣∣√σij −
√
σ′
ij

∣∣∣2 .
D DETAILS FOR SECTION 4: PRACTICAL ALGORITHMS FOR TRAINING

DISTRIBUTION DESIGN

This appendix expands on the content of Sec. 4 and provides the deferred proofs of the theoretical
results from that section. It begins in SM D.1 by identifying a degeneracy of the bilevel problem
formulation when infinite data are available. SM D.2 concerns the bilevel minimization algorithm
from Sec. 4.1 and SM D.3 pertains to the alternating minimization algorithm from Sec. 4.2.

D.1 NECESSITY OF FINITE DATA

Although Secs. 3 and 4 are formulated at the infinite data level, i.e., with full access to Q and the
candidate training distribution ν, the proposed formulation is only advantageous when ν is accessible
from a finite number of samples. Of course, this is the case in practice (and moreover Q will often
only be accessible from samples as well); recall Rem. 4.1. Our optimize-then-discretize approach of
Secs. 3 and 4 simplifies the exposition and notation, while allowing us to derive continuum algorithms
that still work at the finite data level. Regardless, it is instructive to see how the necessity of finite
data emerges from a theoretical viewpoint.

To this end, recall the functional EQ from (3.3). Define the infinite mixture probability measure

νQ := Eν′∼Q[ν
′] (D.1)

via duality with bounded continuous test functions. By linearity, one can check that

EQ(G) = Eu′∼νQ∥G⋆(u′)− G(u′)∥2Y . (D.2)
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This display shows that the average OOD accuracy with respect to Q is equal to the standard test
error with respect to the test mixture distribution νQ.

Now define the optimal value V ⋆
Q := infG∈H EQ(G). By the definition of the trained model in (4.1),

it holds that V ⋆
Q = EQ(Ĝ(νQ)). The inequality V ⋆

Q ≤ infν EQ(Ĝ(ν)) holds because V ⋆
Q is the optimal

value over all elements fromH. Moreover, infν EQ(Ĝ(ν)) ≤ EQ(Ĝ(νQ)) = V ⋆
Q due to optimality over

training distributions. We deduce that

inf
ν
EQ(Ĝ(ν)) = inf

G∈H
EQ(G) . (D.3)

That is, the optimal value of the objective over distributions versus the objective over models coincide.
Write ν̂ for a solution of infν EQ(Ĝ(ν)) from (4.1). The preceding display then says

EQ(Ĝ(ν̂)) = EQ(Ĝ(νQ)) . (D.4)

This does not imply that ν̂ equals νQ. Indeed, these infinite-dimensional optimization problems over
possibly noncompact sets could admit multiple minima. What (D.4) does suggest is that the mixture
νQ (which only depends on Q) is an equally good solution for making the OOD accuracy small
compared to the adaptive measure ν̂ (which depends on G⋆,H, and Q), assuming full knowledge of
Q and infinite training data. In this case, there is no reason to construct ν̂ if νQ is known.

However, for each N , writing νN = 1
N

∑N
n=1 δun

for the empirical measure corresponding to i.i.d.
samples un ∼ ν, we can instead consider

ν̂N ∈ argmin

{
EQ
(
Ĝ(ν)N

) ∣∣∣∣ ν ∈ P ⊆P2(U) and Ĝ(ν)N ∈ argmin
G∈H

Eu∼νN

∥∥G⋆(u)− G(u)∥∥2Y}
(D.5)

for some search space P. The preceding argument leading to the degenerate behavior shown in
(D.4) no longer holds for the empirical bilevel problem (D.5) due to the finite data constraint. It is
now possible that models trained on samples from ν̂N can outperform models trained on samples
from the mixture νQ. Indeed, we observe the superiority of ν̂N over νQ even for simple Gaussian
parametrizations in Secs. 5 and F.1. More generally, the test distribution νQ is not the optimal
distribution from which to generate training data for regression problems. This fact is known to the
numerical analysis community (Adcock, 2024; Cohen & Migliorati, 2017), building off of variance
reduction and importance sampling ideas (Agapiou et al., 2017) for Monte Carlo and quasi-Monte
Carlo methods (Caflisch, 1998; Dick et al., 2013). It remains true for (linear) operator learning, where
de Hoop et al. (2023) suggests that one should pick a training data distribution over input functions
whose samples are rougher than function samples from the test distribution. This implies that the
training distribution support should (strictly) contain the support of the test distribution. However,
there are fundamental limits on how much improvement one can expect to obtain by adjusting the
training data distribution (Grohs et al., 2025; Kovachki et al., 2024a).

Another practical takeaway from the preceding discussions is that if data from Q are very limited and
fixed once and for all, then a finite sample approximation will not capture the mixture νQ well. This
could lead to a poor performing model when trained on the aggregate empirical mixture samples. On
the other hand, the proposed approach delivers a distribution ν̂N that ideally can be sampled from at
will (leading to many more training samples, e.g., a generative model) and uses information about G⋆
andH to compensate for limited information about Q.

D.2 DERIVATIONS FOR SUBSECTION 4.1: EXACT BILEVEL FORMULATION

Proofs. Recall the use of the adjoint method in real (i.e., Y = R) RKHS H with kernel κ from
Sec. 4.1. For a fixed ν ∈P2(U), the data misfit Ψ: H → R for this ν is

G 7→ Ψ(G) := 1

2
∥ινG − G⋆∥2L2

ν(U) = Eu∼ν |G(u)− G⋆(u)|2 . (D.6)

This is the inner objective in (4.1). In the absence of RKHS norm penalization, typically one must
assume the existence of minimizers of Ψ (Rudi et al., 2015, Assump. 1, p. 3). The next lemma
characterizes them.
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Lemma D.1 (inner minimization solution). Fix a set P ⊆P2(U) of probability measures. Suppose
that for every ν ∈ P, there exists Ĝ(ν) ∈ H such that Ψ(Ĝ(ν)) = infG∈H Ψ(G), where Ψ is as in
(D.6). Then Ĝ(ν) satisfies the compact operator equation Kν Ĝ(ν) = ι∗νG⋆ inH.

Proof. The result follows from convex optimization in separable Hilbert space. Since we assume
minimizers of Ψ exist, they are critical points. The Frechét derivative DΨ: H → H∗ is

G 7→ DΨ(G) = ⟨ι∗ν(ινG − G⋆), · ⟩κ .
At a critical point G, we have DΨ(G) = 0 inH∗. This means

⟨ι∗ν(ινG − G⋆), h⟩κ = 0 for all h ∈ H .

By choosing h = ι∗ν(ινG − G⋆), it follows that ι∗νινG = KνG = ι∗νG⋆ inH as asserted.

Next, recall the Lagrangian L from (4.2). We prove Lem. 4.2 on the adjoint state equation.

Proof of Lem. 4.2. The action of the Frechét derivative with respect to the second coordinate is

D2L(ν,G, λ) = Eν′∼Q⟨ι∗ν′(ιν′G − G⋆), · ⟩κ + ⟨Kνλ, · ⟩κ ∈ H∗ .

Setting the preceding display equal to 0 ∈ H∗, we deduce that

Kνλ = Eν′∼Q
[
ι∗ν′(G⋆ − ιν′G)

]
in H .

Simplifying the right-hand side using the definition of ι∗ν completes the proof.

We are now in a position to prove Prop. 4.3, which computes the first variation of J : ν 7→
L(ν, Ĝ(ν), λ(ν)(Ĝ(ν))) in the sense of Santambrogio (2015, Def. 7.12, p. 262).

Proof of Prop. 4.3. The first variation (Santambrogio, 2015, Def. 7.12, p. 262) of L with respect to
the variable ν is given by the function

D1L(ν,G, λ) = (G − G⋆)λ
that maps from U to R, which is independent of ν given G and λ. Now let Ĝ(ν) be as in Lem. D.1 and
λ(ν) be as in Lem. 4.2. Due to the smoothness of L (4.2) with respect to both G and ν—in particular,
L is convex in G and linear in ν—the envelope theorem (Afriat, 1971) ensures that

(DJ )(ν) =
(
D1L

)∣∣
(ν,G,λ)=(ν,Ĝ(ν),λ(ν)(Ĝ(ν)))

=
(
Ĝ(ν) − G⋆

)
λ(ν)(Ĝ(ν))

as asserted.

Remark D.2 (Wasserstein gradient). As discussed in Rmk. 4.4, it is clear that

∇
[
(DJ )(ν)

]
=
(
∇Ĝ(ν) −∇G⋆

)
λ(ν)(Ĝ(ν)) +

(
Ĝ(ν) − G⋆

)
∇
(
λ(ν)(Ĝ(ν))

)
is the Wasserstein gradient of J (Santambrogio, 2015, Chp. 8.2). Its computation requires the usual
U-gradient of the trained model Ĝ(ν), the true map G⋆, and the optimal adjoint state λ(ν)(Ĝ(ν)).
We now turn to the parametric training distribution setting. Let ν = νϑ, where ϑ ∈ V and
(V, ⟨·, ·⟩V , ∥ · ∥V) is a parameter Hilbert space as introduced in Sec. 4.1. The main result of Sec. 4.1
is Thm. 4.5. Before proving that theorem, we require the following lemma.
Lemma D.3 (differentiation under the integral). Let the density pϑ := dνϑ/dµ0 be such that
(u, ϑ) 7→ pϑ(u) is sufficiently regular. Then for all bounded continuous functions ϕ ∈ Cb(U) and all
ϑ ∈ V , it holds that

∇ϑ

∫
U
ϕ(u)νϑ(du) =

∫
U
ϕ(u)

(
∇ϑ log pϑ(u)

)
νϑ(du) . (D.7)

Proof. By the assumed smoothness and absolute continuity with respect to µ0,

∇ϑ

∫
U
ϕ(u)νϑ(du) =

∫
U
ϕ(u)∇ϑpϑ(u)µ0(du) .

Shrinking the domain of integration to the support of νϑ, multiplying and dividing the rightmost
equality by pϑ(u), and using the logarithmic derivative formula delivers the assertion.
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With the preceding lemma in hand, we are now able to prove Thm. 4.5.

Proof of Thm. 4.5. We use the chain rule for Frechét derivatives to compute DJ : V → V∗ and hence
the gradient∇J : V → V . Define Z : V →P2(U) by Z(ϑ) = νϑ. Then Lem. D.3 and duality allow
us to identify DZ with the (possibly signed) V-valued measure(

DZ(ϑ)
)
(du) =

(
∇ϑ log pϑ(u)

)
Z(ϑ)(du) .

We next apply the chain rule for Frechét derivatives to the composition J = J ◦ Z. This yields

DJ(ϑ) = (DJ )(Z(ϑ)) ◦ (DZ)(ϑ) ∈ V∗

for any ϑ ∈ V . To interpret this expression, let ϑ′ ∈ V be arbitrary. Then formally,(
DJ(ϑ)

)
(ϑ′) =

∫
U

(
Ĝ(Z(ϑ))(u)− G⋆(u)

)(
λ(Z(ϑ))(Ĝ(Z(ϑ)))

)
(u)
〈(

DZ(ϑ)
)
(du), ϑ′

〉
V

=

〈∫
U

(
Ĝ(νϑ)(u)− G⋆(u)

)(
λ(νϑ)(Ĝ(νϑ))

)
(u)
(
∇ϑ log pϑ(u)

)
νϑ(du), ϑ

′
〉

V
.

The formula (4.4) for ∇J follows.

Discretized implementation. A practical, discretized implementation of the parametric bilevel
gradient descent scheme Alg. 1 further requires regularization of compact operator equations and
finite data approximations. When the inner objective of (4.1) is approximated over a finite data
set, we have the following regularized solution for the model update obtained from kernel ridge
regression. The lemma uses the compact vector and matrix notation U = (u1, . . . , uN )⊤ ∈ UN ,
G⋆(U)n = G⋆(un) for every n, and κ(U,U)ij = κ(ui, uj) for every i and j.

Lemma D.4 (model update). Fix a regularization strength σ > 0. Let {un}Nn=1 ∼ ν⊗N . Then

Ĝ(ν,σ)N :=

N∑
n=1

κ( · , un)βn ≈ Ĝ(ν) , where β =
(
κ(U,U) +Nσ2IN

)−1G⋆(U) ∈ RN . (D.8)

Proof. To numerically update G by solving KνG = ι∗νG⋆ in H for fixed ν, we first regularize the
inverse with a small nugget parameter σ > 0. Then we define

Ĝ(ν,σ) := (Kν + σ2 IdH)−1ι∗νG⋆ = ι∗ν(ινι
∗
ν + σ2 IdL2

ν
)−1G⋆ ≈ Ĝ(ν) .

The second equality is due to the usual Woodbury push-through identity for compact linear operators.
Let ν(N) := 1

N

∑N
n=1 δun

be the empirical measure with un
i.i.d.∼ ν. We identify L2

ν(N) with RN

equipped with the usual (i.e., unscaled) Euclidean norm. The action of Kν(N) on a function h ∈ H is

Kν(N)h =
1

N

N∑
n=1

κ( · , un)h(un) =:
1

N
κ( · , U)h(U) (D.9)

and similar for ι∗
ν(N) acting on RN . Define Ĝ(ν,σ)N := Ĝ(ν(N),σ). By the preceding displays,

Ĝ(ν,σ)N =

N∑
n=1

κ( · , un)βn , where β =
(
κ(U,U) +Nσ2IN

)−1G⋆(U) ,

which recovers standard kernel ridge regression under square loss and Gaussian likelihood. This
implies the asserted approximation Ĝ(ν,σ)N ≈ Ĝ(ν).

In Lem. D.4, we expect that Ĝ(ν,σ)N → Ĝ(ν) as N → ∞ and σ → 0. This lemma takes care of the
finite data approximation of the model. Next, we tackle the adjoints.

When discretizing the integral in the gradient (4.4) with Monte Carlo sampling over the training data,
we recognize that only the values of λ = λ(ν)(Ĝ(ν)) at the training points are needed and not λ ∈ H
itself. That is, we never need to query λ away from the current training data samples. The next lemma
exploits this fact to numerically implement the adjoint state update.
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Lemma D.5 (adjoint state update). For J ∈ N and a sequence {Mj} ⊆ N, define Q(J) :=
1
J

∑J
j=1 δµ(Mj)

j

, where µ
(Mj)
j := 1

Mj

∑Mj

m=1 δvj
m

, V j := {vjm}
Mj

m=1 ∼ µ
⊗Mj

j , and {µj}Jj=1 ∼ Q⊗J .

Then with Ĝ(ν,σ)N and U as in (D.8), the adjoint values (λ(ν)(Ĝ(ν)))(U) ∈ RN are approximated by

λ̂
(ν,σ)
N,J (U) :=

(
κ(U,U) +Nσ2IN

)−1N

J

J∑
j=1

1

Mj
κ(U, V j)

(
G⋆(V j)− Ĝ(ν,σ)N (V j)

)
. (D.10)

Proof. Let µ ∼ Q, where Q ∈ P2(P2(U)) is fixed. For some M , let µ(M) = 1
M

∑M
m=1 δvm be

the empirical measure with V = {vm}Mm=1 ∼ µ⊗M . Consider the case J = 1 so that Q(1) = δµ(M) ;
the general case for J > 1 as asserted in the lemma follows by linearity. With ν = ν(N) being
the empirical data measure corresponding to U ∈ UN , G = Ĝ(ν,σ)N being the trained model from
Lem. D.4, and Q(1) in place of Q, the adjoint equation (4.3) from Lem. 4.2 is

Kν(N)λ =
1

M

M∑
m=1

κ( · , vm)
(
G⋆(vm)− Ĝ(ν,σ)N (vm)

)
.

By evaluating the preceding display at the N data points U = {un}Nn=1 and using (D.9), we obtain

1

N
κ(U,U)λ(U) =

1

M
κ(U, V )

(
G⋆(V )− Ĝ(ν,σ)N (V )

)
.

This is a linear equation for the unknown λ(U) ∈ RN . Finally, we regularize the equation by replacing
κ(U,U) with κ(U,U) + σ2IN . We denote the solution of the resulting system by λ̂

(ν,σ)
N,1 (U), which

is our desired approximation (D.10) of (λ(ν)(Ĝ(ν)))(U) ∈ RN .

In Lem. D.5, the vector λ̂(ν,σ)
N,J (U) ∈ RN depends on ν (through the empirical measure ν(N) :=

1
N

∑N
n=1 δun

), the regularization parameter σ, the current model Ĝ(ν,σ)N , and the random empirical
measure Q(J) (which itself depends on the sequence {Mj}Jj=1). The formula (D.10) requires the
inversion of the same regularized kernel matrix as in the model update (D.8). Thus, it is advantageous
to pre-compute a factorization of this matrix so that it may be reused in the adjoint update step.

Finally, we perform the numerically implementable training data distribution update by inserting
the approximations Ĝ(ν,σ)N and λ̂

(ν,σ)
N,J (U) from Lems. D.4–D.5 and empirical measure ν

(N)
ϑ into the

exact gradient formula (4.4) for∇J. This yields the approximate gradient

∇̂J(ϑ) :=
∫
U

(
Ĝ(νϑ,σ)
N (u)− G⋆(u)

)
λ̂
(νϑ,σ)
N,J (u)

(
∇ϑ log pϑ(u)

)
ν
(N)
ϑ (du) , (D.11)

where ν
(N)
ϑ is the empirical measure of the same training data points used to obtain both the

trained model and adjoint state vector, and we identify the vector λ̂(ν,σ)
N,J (U) ∈ RN with a function

λ̂
(ν,σ)
N,J ∈ L2

ν
(N)
ϑ

. This leads to Alg. 3. In this practical algorithm, we allow for a varying number Nk

of training samples from νϑ(k) and a varying regularization strength σk at each iteration k in Line 4.
The integrals in (D.11) and Line 4 of Alg. 3 are with respect to the empirical measure; hence, they
equal the equally-weighted average over the finite data samples that make up the empirical measure.

One limitation of the practical bilevel gradient descent scheme Alg. 3 as written is that it is negatively
impacted by overfitting in the model update step, as discussed in the following remark.
Remark D.6 (overfitting and vanishing gradients). A drawback of approximating the integral in the
exact gradient (4.4) with a Monte Carlo average over the i.i.d. training samples in (D.11) and Line 4
of Alg. 3 is that the resulting gradient approximation incorporates the training error residual. If the
trained model overfits to the data, then this residual becomes extremely small, which slows down
the convergence of gradient descent significantly. In the extreme case, the gradient vanishes if the
model perfectly fits the training data. Thus, the proposed method as currently formulated would
likely fail for highly overparametrized models. To address this problem, one solution is to hold out a
“validation” subset of the training data pairs for the adjoint state and Monte Carlo integral calculations;
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Algorithm 3 Gradient Descent on a Parametrized Bilevel Objective: Discretized Scheme

1: Initialize: Parameter ϑ(0), step sizes {tk}, nuggets {σk}, sample sizes {Nk}, measure Q(J)

2: for k = 0, 1, 2, . . . do
3: Sample and label: Construct the empirical measure ν

(Nk)

ϑ(k) and label vector G⋆(U) ∈ RNk

4: Gradient step: Update the training distribution’s parameters via

ϑ(k+1) = ϑ(k) − tk

∫
U

(
Ĝ(νϑ(k) ,σk)

Nk
(u)− G⋆(u)

)
λ̂
(ν

ϑ(k) ,σk)

Nk,J
(u)
(
∇ϑ log pϑ(k)(u)

)
ν
(Nk)

ϑ(k) (du)

5: if stopping criterion is met then
6: Return ϑ(k+1) then break

the remaining data should be used to train the model. Another approach is to normalize the size of
the approximate gradient by its current magnitude. This adaptive normalization aims to avoid small
gradients. In the numerical experiments of Sec. 5, we use kernel ridge regression with strictly positive
regularization; this prevents interpolation of the data and helps avoid the vanishing gradient issue.

D.3 DERIVATIONS FOR SUBSECTION 4.2: UPPER-BOUND MINIMIZATION

Recall the alternating minimization algorithm Alg. 2 from Sec. 4.2. We provide details about its
numerical implementation. For gradient-based implementations, the first variation of the upper bound
objective (4.8) is required. This is the content of Prop. 4.9, which we now prove.

Proof of Prop. 4.9. Since the first term
∫
U f(u)ν(du) in the objective F in (4.8) is linear in the

argument ν, the first variation of that term is simply f itself (Santambrogio, 2015, Def. 7.12, p. 262).
The chain rule of Euclidean calculus and a similar first variation calculation delivers the second term
in the asserted derivative (4.9). The third and final term arising from the chain rule requires the
first variation of ν 7→ Eν′∼Q W2

2(ν, ν
′). By Santambrogio (2015, Prop. 7.17, p. 264, applied with

cost c(x, y) = ∥x− y∥2U/2), this first variation equals the Kantorovich potential 2ϕν,ν′ , where the
asserted characterization of ϕν,ν′ is due to Brenier’s theorem; see Chewi (2024, Thm. 1.3.8, p. 27)
or (Villani, 2021). Finally, we exchange expectation over Q and differentiation using dominated
convergence due to the assumed regularity of the set P.

The Wasserstein gradient of F is useful for interacting particle discretizations. We have the following
corollary of Prop. 4.9.

Corollary D.7 (Wasserstein gradient). Instate the hypotheses of Prop. 4.9. The Wasserstein gradient
∇DF at ν ∈ P ⊆P2(U) is given by the function mapping any u ∈ U to the vector

(
(∇DF )(ν)

)
(u) = ∇f(u) +

√
Eν′∼Q W2

2(ν, ν
′)

1 +m2(ν)
u+

√
1 +m2(ν)

Eν′∼Q W2
2(ν, ν

′)

(
u− Eν′∼Q Tν→ν′(u)

)
.

Alternatively, one can derive standard gradients when working with a parametrized family {νϑ}ϑ∈V
of candidate training distributions. The next lemma instantiates this idea in the specific setting of a
finite-dimensional Gaussian family.

Lemma D.8 (chain rule: Gaussians). Instate the hypotheses of Prop. 4.9. Suppose that U ⊆ Rd.
Let νϑ := N (mϑ, Cϑ) and F(ϑ) := F (νϑ), where F is given in (4.8). Write pϑ : U → R≥0 for the
density of νϑ with respect to any σ-finite dominating measure. Then for any parameter ϑ ∈ V , it
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holds that

∇F(ϑ) =
∫
U
f(u)

(
∇ϑ log pϑ(u)

)
νϑ(du)

+
1

2

√
Eν′∼Q W2

2(νϑ, ν
′)

1 + ∥mϑ∥2U + tr(Cϑ)

∫
U

∥u∥2U
2

(
∇ϑ log pϑ(u)

)
νϑ(du)

+

√
1 + ∥mϑ∥2U + tr(Cϑ)
Eν′∼Q W2

2(νϑ, ν
′)

∫
U

1

2

〈
u, (Id − EQ[A

′
ϑ])u

〉
U

(
∇ϑ log pϑ(u)

)
νϑ(du)

+

√
1 + ∥mϑ∥2U + tr(Cϑ)
Eν′∼Q W2

2(νϑ, ν
′)

∫
U

〈
u,EQ[A

′
ϑ]mϑ − EQ[m

′]
〉
U

(
∇ϑ log pϑ(u)

)
νϑ(du) ,

where ν′ = N (m′, C′) ∼ Q is a random Gaussian and A′
ϑ := C−1/2

ϑ (C1/2ϑ C′C
1/2
ϑ )1/2C−1/2

ϑ .

Proof. The W2-optimal transport map from ν = N (m1, C1) to ν′ = N (m2, C2) is

u 7→ Tν→ν′(u) := m2 +A(u−m1) , where A := C−1/2
1

(
C1/21 C2C

1/2
1

)1/2C−1/2
1 .

Furthermore, ϕν,ν′ = ∥ · ∥2U/2− φν,ν′ , where ∇φν,ν′ = Tν→ν′ by Brenier’s theorem (Chewi, 2024,
Thm. 1.3.8, p. 27). Upon integration, we find that

u 7→ ϕν,ν′(u) =
∥u∥2
2
− 1

2
⟨u,Au⟩ − ⟨u,m2 −Am1⟩ .

This formula is unique up to a constant. Now let ν := νϑ = N (mϑ, Cϑ) and ν′ = N (m′, C′) ∼ Q
be as in the hypotheses of the lemma. By the chain rule for Frechét derivatives,

∇F(ϑ) =
∫
U

(
DF (νϑ)

)
(u)
(
∇ϑ log pϑ(u)

)
νϑ(du)

for each ϑ. Applying (4.9) from Prop. 4.9, closed-form formulas for the second moments of Gaussian
distributions, and the Fubini–Tonelli theorem to exchange integrals completes the proof.

Lem. D.8 requires the gradient ∇ϑ log pϑ of the log density with respect to the parameter ϑ. In
general, this gradient has no closed form and must be computed numerically, e.g., with automatic
differentiation. However, when only the mean of the Gaussian family is allowed to vary, the following
remark discusses an analytical expression for the gradient.
Remark D.9 (Gaussian mean parametrization). Let U ⊆ Rd. If ϑ = m so that νϑ = νm = N (m, C0)
for fixed C0, then ∇m log pm(u) = C−1

0 (u−m), where pm is the Lebesgue density of νm.

E OPERATOR LEARNING ARCHITECTURES

In this appendix, we provide detailed descriptions of the various deep operator learning architectures
used in the paper. These are the DeepONet (SM E.1), NIO (SM E.2), and the newly proposed
AMINO (SM E.3).

E.1 DEEPONET: DEEP OPERATOR NETWORK

Deep operator networks (DeepONet) (Lu et al., 2021) provide a general framework for learning
nonlinear operators G⋆ : u 7→ G⋆(u) from data. A DeepONet Gθ achieves this via two jointly trained
subnetworks:

• Branch network B: takes as input the values of the input function u at a fixed set of sensor
locations {x(j)}Jj=1 and outputs a feature vector b ∈ Rp for some fixed latent dimension p.

• Trunk network T: takes as input a query point z in the output domain and outputs feature
vector t(z) ∈ Rp.
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The operator prediction at function u and query point z is then formed by the inner product of these
features, yielding

Gθ(u)(z) =
〈
B
(
u(x(1)), . . . , u(x(J))

)
,T(z)

〉
Rp =

p∑
k=1

Bk

(
u(x(1)), . . . , u(x(J))

)
Tk(z) . (E.1)

In practice, a constant bias vector is added to the preceding display. During ERM training as in
(2.1), the weights θ of both neural networks B and T are optimized together to minimize the average
discrepancy between Gθ(u)(z) and ground truth values G⋆(u)(z) over a dataset of input-output
function pairs. This branch-trunk architecture enables DeepONet to approximate a broad class of
operators, including the Neumann-to-Dirichlet (NtD) map in EIT and the conductivity-to-solution
map in Darcy flow considered in this work; see Sec. 5 and SM F.

E.2 NIO: NEURAL INVERSE OPERATOR

Traditional approaches for constructing direct solvers for inverse problems, such as the D-bar method
for EIT (Siltanen et al., 2000), have laid the foundation for direct solver approximations utilizing
modern machine learning techniques. Among these, the Neural Inverse Operator (NIO) (Molinaro
et al., 2023) framework stands out as a significant advancement. In the context of operator learning,
many inverse problems can be formulated as a mapping from an operator Λa, dependent on a physical
parameter a, to the parameter a itself, i.e., Λa 7→ a. In practical scenarios, the operator Λa is not
directly accessible; instead, we observe its action on a set of input-output function pairs {(fn, gn)}n,
where gn = Λa(fn). This observation leads to a two-step problem: first, infer the operator Λa from
the data pairs, and second, deduce the parameter a from the inferred operator. This process can be
further generalized by considering the operator as a pushforward map (Λa)#, which transforms an
input distribution µ of functions to an output distribution νa of functions, i.e., (Λa)#µ = νa; see
Sec. 2 for the definition of the pushforward operation. Consequently, a measure-centric machine
learning approach to solving the inverse problem can be reformulated as learning the mapping
(µ, νa) 7→ a (Nelsen & Yang, 2025, Sec. 2.4.1).

Conditioned on a fixed input distribution µ, NIO is designed to learn mappings from output measures
νa to functions a, i.e., νa 7→ a, effectively relaxing the operator-to-function problem to a distribution-
to-function problem. Since direct manipulation of measures is computationally infeasible, NIO
circumvents this by leveraging finite data approximations. Specifically, it utilizes a composition of
DeepONets and Fourier Neural Operators (FNO) (Li et al., 2021) to approximate the inverse mapping
from an empirical measure/approximation ν̂a to the underlying parameter function a.

E.3 AMINO: A MEASURE-THEORETIC INVERSE NEURAL OPERATOR

Despite the innovative architecture of NIO, it exhibits certain limitations, particularly concerning its
handling of input distributions. NIO primarily focuses on the output distribution νa during evaluation,
neglecting variability and influence of the input distribution µ. This oversight can lead to models that
perform well on in-distribution (ID) data but lack robustness when faced with OOD scenarios. To
address this shortcoming, we introduce A Measure-theoretic Inverse Neural Operator (AMINO), a
framework that explicitly accounts for the input distribution in the inverse problem. By formulating
the inverse task in a fully measure-theoretic setting and taking into account the input distribution,
AMINO aims to improve OOD accuracy. Like NIO, AMINO combines a DeepONet and an FNO.
The key distinction is that AMINO incorporates both input and output functions as concatenated pairs
{(fn, gn)}n i.i.d.∼ (Id,Λa)#µ which are passed to the branch network, as illustrated in Fig. 7. See
(Nelsen & Yang, 2025, Sec. 4.2.3) for a more detailed description of NIO and AMINO.

F DETAILS FOR SECTION 5: NUMERICAL RESULTS

This appendix describes detailed experimental setups for all numerical tests from Sec. 1 and Sec. 5
in the main text. Regarding function approximation, SM F.1 covers the bilevel gradient descent
experiments. The remaining appendices concern operator learning. SM F.2 details the AMINO
experiments. SM F.3 and SM F.4 describe the results of the alternating minimization algorithm when
applied to learning linear NtD maps and the nonlinear solution operator of Darcy flow, respectively.
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Figure 7: Schematic of the AMINO architecture, a variant of NIO, which combines a DeepONet, averaging,
and an FNO module. The model takes as input the paired function samples {(fℓ, gℓ)}Lℓ=1 drawn from the joint
distribution (Id,Λa)#µ and outputs the target parameter a.

Last, SM F.5 presents results from applying nonparametric particle-based AMA to learn a parameter-
to-solution map for the radiative transport equation.

F.1 BILEVEL MINIMIZATION FOR FUNCTION APPROXIMATION

We now describe the setting of the numerical results reported in Sec. 5 for Alg. 1 and its numerical
version Alg. 3. The goal of the experiments is to find the optimal Gaussian training distribution
νϑ = N (m, C) ∈P2(Rd) with respect to the bilevel OOD objective (4.1), specialized to the task of
function approximation. We optimize over the mean and covariance ϑ = (m, C). For all x ∈ Rd, the
target test functions G⋆ = gi : Rd → R for i ∈ {1, 2, 3, 4} that we consider are given by

g1(x) =

d∏
j=1

|4xj − 2|+ (j − 2)/2

1 + (j − 2)/2
, (F.1a)

g2(x) = 10 sin(πx1x2) + 20(x3 − 1/2)2 + 10x4 + 5x5 , (F.1b)

g3(x) =

√
(100x1)2 +

(
x3(520πx2 + 40π)− 1

(520πx2 + 40π)(10x4 + 1)

)2

, and (F.1c)

g4(x) =

1000∑
l=1

clκ(x, xl) . (F.1d)

The first function comes from (Dunbar et al., 2025) and the middle two from (Potts & Schmischke,
2021; Saha et al., 2023). They are common benchmarks in the approximation theory literature;
g1 is called the Sobol G function, g2 the Friedmann-1 function, and g3 the Friedmann-2 function.
Although these functions are typically defined on compact domains (e.g., [0, 1]d or [−π, π]d), we
instead consider approximating them on average with respect to Gaussian distributions (or mixtures
thereof) on the whole of Rd. The final function g4 is a linear combination of kernel sections for some
kernel function κ : Rd×Rd → R. We sample (and then fix) the coefficients cl

i.i.d.∼ Unif([−1, 1]) and
the centers xl

i.i.d.∼ Unif([−4, 4])⊗d. We allow the dimension d to be arbitrary for all test functions;
in particular, the functions g2 and and g3 are constant in certain directions for large enough d.

Model architecture and optimization algorithm. In all bilevel minimization experiments, we use
the squared exponential kernel function κ : Rd × Rd → R>0 defined by

(x, x′) 7→ κ(x, x′) := exp

(
−∥x− x′∥22

ℓ2

)
, (F.2)

where ℓ > 0 is a scalar lengthscale hyperparameter. While not tuned for accuracy, we do adjust ℓ on
the order of O(1) to O(10) depending on the target function gi to avoid blow up of the bilevel gradient
descent iterations. In particular, we set ℓ = 1 for g1, ℓ = 3 for g2, ℓ = 2/1.1 for g3, and ℓ = 5
for g4. We also experimented with the less regular Laplace kernel (x, x′) 7→ exp(−∥x − x′∥1/ℓ);
although giving similar accuracy as κ, the Laplace kernel led to slower bilevel optimization. Thus,
we opted to report all results using the squared exponential kernel κ. This same kernel is used to
define g4 in (F.1), which belongs to the RKHS of κ as a result. Given a candidate set of training
samples, the resulting kernel method is trained on these samples via kernel ridge regression as in
Lem. D.4. We solve all linear systems with lower triangular direct solves using Cholesky factors of
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the regularized kernel matrices. No iterative optimization algorithms are required to train the kernel
regressors. When fitting the kernel models to data outside of the bilevel gradient descent loop (see
the center and right columns of Fig. 8, for instance), we set the ridge strength to be σ2 = 10−3/N ,
where N is the current training sample size.

Training and optimization procedure. Moving on to describe the specific implementation details
of Alg. 3, we initialize ϑ(0) = (m0, Id). We take m0 = 1

2 (1, . . . , 1)
⊤ ∈ Rd in all setups except

for the one concerning test function g1, where we set m0 = (0, . . . , 0)⊤. We decrease the gradient
descent step sizes {tk} in Alg. 3 according to a cosine annealing scheduler (Loshchilov & Hutter,
2017) with initial learning rate of 10−2 and final learning rate of 0. The regularization parameters
{σk} are also selected according to the cosine annealing schedule with initial value 10−3 and final
value 10−7. Although the sequence {Nk} of training sample sizes could also be scheduled, we opt to
fix Nk = 250 for all k in Alg. 3 for simplicity. No major differences were observed when choosing
{Nk} according to some cosine annealing schedule. The identification of more principled ways to
select the sequences {σk}, {tk}, and {Nk} to optimally balance cost and accuracy is an important
direction for future work.

For the probability measure Q ∈ P2(P2(Rd)) over test distributions, we choose it to be the
empirical measure

Q :=
1

K

K∑
k=1

δν′
k
. (F.3)

The test measures ν′k ∈P2(Rd) in (F.3) are deterministic and fixed. In applications, these could be
the datasets for which we require good OOD accuracy. However, to synthetically generate the {ν′k}
in practice, we set

ν′k := N (m′
k, C′k) , where m′

k
i.i.d.∼ N (0, Id) and C′k

i.i.d.∼ Wishartd(Id, d+ 1) (F.4)

for each k = 1, . . . ,K. Once the K realizations of these distributions are generated, we view them
as fixed once and for all. We assume that K and Q are fixed, but we only have access to the empirical
measure Q̂ defined by (F.3) but with each ν′k replaced by the empirical measure 1

M

∑M
m=1 δv(k)

m

generated by samples {v(k)m }Mm=1 ∼ ν′k
⊗M . In the experiments, we set M = 5000 and either K = 10

or K = 1 (a single test distribution). To create a fair test set, we use a fixed 500 sample validation
subset to update the adjoint state as in Lem. D.5 and to monitor the validation OOD accuracy during
gradient descent. The remaining 4500 samples are used to evaluate the final OOD test accuracy of
our trained models; see (F.5).

Based on the available samples {v(k)m }1≤m≤M, 1≤k≤K associated to the meta test distribution Q, we
construct six adaptive and nonadaptive baseline distributions for comparison:

1. (Normal) The Gaussian measure N (m0, Id) which is independent of Q;
2. (Barycenter) The empirical W2 barycenter of Q (which is Gaussian), as described in Ex. B.8;

3. (Mixture) The non-Gaussian empirical mixture of Q given by 1
K

∑K
k=1N (m̂k, Ĉk), where

m̂k and Ĉk are the empirical mean and covariance of the points {v(k)m }Mm=1, respectively.
Note that we enforce the mixture components to be Gaussian instead of empirical measures;

4. (Uniform) The d-dimensional uniform distribution Unif([0, 1]d) := Unif([0, 1])⊗d, which is
independent of Q.

5. (nCoreSet) Nonadaptive coreset described in SM F.6 with features κ( · , vm) ∈ Hκ for vm
belonging to the fixed pool of 500K validation points. New indices m are selected according
to the maxmin sequential update (F.40) with features as above and distance between features
induced by the RKHS norm of κ. We use point-by-point updates and an initial random
coreset of size one.

6. (aCoreSet) Adaptive greedy coreset described in SM F.6 with features {cnκ(un, vm)}Nn=1 ∈
RN for vm belonging to the fixed pool of 500K validation points. The numbers {cn} are
the kernel method coefficients trained on points {un}, which makes this an adaptive method.
New indices m are selected according to the maxmin sequential update (F.40) with features
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as above and distance between features induced by the Euclidean norm on RN . We select
new points from the pool in batches of size ten and used an initial random coreset of size six.

The pool-based active learning baselines are based on the work of Musekamp et al. (2025) and results
for these methods are shown in Sec. 5 and in Fig. 10.

It remains to describe the optimization of the Gaussian family νϑ = N (m, C) with parameter
ϑ = (m, C). The closed form update for the mean follows from Rmk. D.9. For the covariance matrix,
we optimize over the lower triangular Cholesky factor L of C = LL⊤ ∈ Rd×d instead of C itself.
This removes redundant parameters due to the symmetry of C. We enforce strict positive definiteness
of C by replacing all nonpositive diagonal entries of L with a threshold value of 10−7. Other than this
constraint, each entry of L is optimized over the whole of R. Recalling the log density formula (4.5)
from Ex. 4.6, we use automatic differentiation to compute ∇L log(p(m,LL⊤)); this factor appears in
the definition of the approximate gradient (D.11) and in Alg. 3.

Model evaluation. We evaluate the performance of all kernel regressors Ĝ(ν,σ)N regularized with
strength σ2 and trained with N i.i.d. samples from ν with respect to the root relative average OOD
squared error, which is defined as

Err :=

√√√√Eν̂′∼Q̂ Eu′∼ν̂′

∣∣G⋆(u′)− Ĝ(ν,σ)N (u′)
∣∣2

Eν̂′∼Q̂ Eu′∼ν̂′

∣∣G⋆(u′)
∣∣2 ≈

√
EQ(Ĝ(ν,σ)N )

EQ(0)
. (F.5)

In the preceding display, we observe that Err employs a Monte Carlo discretization of the integrals
appearing in EQ by averaging over the empirical meta measure Q̂, which is composed of K test
measures. Each individual test measure is itself an empirical measure with 4500 atoms at points that
are unseen during the adjoint state calculation. See the preceding paragraph for details about our
choice of Q. We report values of Err in Figs. 2, 8, 10, 12, 14 and in Tab. 1.

Supplementary numerical results are given in Figs. 8–15. Fig. 8 reports the same information that
Fig. 2 does, except now for the remaining functions {gi}. The conclusions from these numerical
results are mostly the same. The left column shows the training history over 50 iterations; the
“seen” curve computes the OOD error with the Q samples used in the bilevel algorithm, while the
“unseen” curve computes the OOD error on a held-out set of Q samples. The third row shows a
slight “generalization gap” for G⋆ = g2 (d = 8). The optimized Gaussian outperforms alternative
distributions except for the g3 (d = 5) and g4 cases, where the empirical Q mixture eventually
overtakes it. Fig. 10 shows that this behavior is largely mitigated if 1000 iterations of gradient descent
are used to find the optimal Gaussian instead of 50. We remark that in Fig. 2, the leftmost subplot
showing the training history is designed to highlight the long-time behavior (i.e., 1000 iterations) of
the bilevel algorithm. In practice, we only run the algorithm for O(10) to O(100) gradient descent
iterations; this is reflected in the leftmost column of Figs. 8 and 12.

While the optimized Gaussian is shown to consistently outperform nonadaptive distributions when
Q in (F.3) is composed of K = 10 atoms (Figs. 8 and 10) and N is large enough, this is less true
for a single test distribution (K = 1), as seen in Figs. 12 and 14 when N is sufficiently large. In
this case, the barycenter and mixture distributions are the same test distribution and lead to trained
models with lower OOD error. When N is small and many iterations are used to find the optimal
Gaussian, the optimal Gaussian can achieve smaller OOD error than models trained on the test
distribution. Understanding for what G⋆, Q, N , and gradient descent iteration count makes this
desirable improvement possible is an interesting and important question for future work.

To understand what properties the optimal Gaussian absorbs from G⋆ and Q, Figs. 9, 11, 13, and 15
visualize the learned covariance matrices, barycenter covariances, and mixture covariances. For
instance, the learned covariance puts high weight on the x3 coordinate in the g2 case (Fig. 11, rows 2–
3, diagonal entry of matrix) even though the barycenter and mixture do not. This makes sense because
g2 is quadratic in x3 and lower order in all other variables (recall (F.1)); thus, the learned covariance
picks out the highest order term in the ground truth map. Similarly, for g3 the learned covariance
assigns high importance to the x2 and x3 coordinates which are also fast growing. In all cases (except
for g4), the learned covariance differs substantially from the mixture or test distribution’s covariance.
These covariance visualization figures highlight an additional benefit of our G⋆-dependent estimators:
they lead to interpretable training distributions tailored to the structure of the problem.
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Figure 8: Bilevel Alg. 3 applied to the various ground truths {gi} with K = 10 test atoms and 50 gradient
descent iterations. (Left column) Evolution of Err from (F.5) vs. iterations. (Center column) Err of model
trained on N samples from optimal νϑ vs. nonadaptive distributions. (Right column) Same as center, except
incorporating the additional function evaluation cost incurred from Alg. 1. From top to bottom, each row
represents target functions {gi} corresponding to those listed in each column of Tab. 1 (from left to right).
Shading represents two standard deviations away from the mean Err over 10 independent runs.
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Figure 9: Bilevel Alg. 3 applied with K = 10 test atoms and 50 gradient descent iterations. Each column
visualizes the covariance matrix of the optimized (left), empirical QW2 barycenter (center), and empirical Q
mixture distributions (right). From top to bottom, each row represents target functions {gi} corresponding to
those listed in each column of Tab. 1 (from left to right).
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Figure 10: Bilevel Alg. 3 applied to the various ground truths {gi} with K = 10 test atoms and 1000 gradient
descent iterations. (Left column) Evolution of Err from (F.5) vs. iterations. (Right column) Err of model trained
on N samples from optimal νϑ vs. baseline distributions. From top to bottom, each row represents target
functions {gi} corresponding to those listed in each column of Tab. 1 (from left to right). Shading represents
two standard deviations away from the mean Err over 10 independent runs.
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Figure 11: Bilevel Alg. 3 applied with K = 10 test atoms and 1000 gradient descent iterations. Each column
visualizes the covariance matrix of the optimized (left), empirical QW2 barycenter (center), and empirical Q
mixture distributions (right). From top to bottom, each row represents target functions {gi} corresponding to
those listed in each column of Tab. 1 (from left to right).
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Figure 12: Bilevel Alg. 3 applied to the various ground truths {gi} with K = 1 test atoms and 50 gradient
descent iterations. (Left column) Evolution of Err from (F.5) vs. iterations. (Center column) Err of model
trained on N samples from optimal νϑ vs. nonadaptive distributions. (Right column) Same as center, except
incorporating the additional function evaluation cost incurred from Alg. 1. From top to bottom, each row
represents target functions {gi} corresponding to those listed in each column of Tab. 1 (from left to right).
Shading represents two standard deviations away from the mean Err over 10 independent runs.
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Figure 13: Bilevel Alg. 3 applied with K = 1 test atoms and 50 gradient descent iterations. Each column
visualizes the covariance matrix of the optimized (left) and empirical test distributions (right), respectively. From
top to bottom, each row represents target functions {gi} corresponding to those listed in each column of Tab. 1
(from left to right).

37



1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

0 250 500 750 1000
Iteration

10−5

10−3

10−1

R
el

at
iv

e
O

O
D

E
rr

or

Seen

Unseen

102 103 104

Sample Size

10−1

100

Optimized

Normal

Test

Uniform

0 500 1000
Iteration

2× 10−1

3× 10−1

4× 10−1

6× 10−1

R
el

at
iv

e
O

O
D

E
rr

or

Seen

Unseen

102 103 104

Sample Size

10−1

100

Optimized

Normal

Test

Uniform

0 500 1000
Iteration

100

3× 10−1

4× 10−1

6× 10−1

R
el

at
iv

e
O

O
D

E
rr

or

Seen

Unseen

102 103 104

Sample Size

100

2× 10−1

3× 10−1

4× 10−1

6× 10−1

Optimized

Normal

Test

Uniform

0 500 1000
Iteration

100

3× 10−1

4× 10−1

6× 10−1

R
el

at
iv

e
O

O
D

E
rr

or

Seen

Unseen

102 103 104

Sample Size

10−1

100

Optimized

Normal

Test

Uniform

0 500 1000
Iteration

100

5× 10−1

6× 10−1

7× 10−1

8× 10−1

9× 10−1

R
el

at
iv

e
O

O
D

E
rr

or

Seen

Unseen

102 103 104

Sample Size

100

Optimized

Normal

Test

Uniform

0 500 1000
Iteration

10−1

2× 10−2

3× 10−2

4× 10−2

6× 10−2

R
el

at
iv

e
O

O
D

E
rr

or

Seen

Unseen

102 103 104

Sample Size

10−3

10−2

10−1

Optimized

Normal

Test

Uniform

Figure 14: Bilevel Alg. 3 applied to the various ground truths {gi} with K = 1 test atoms and 1000 gradient
descent iterations. (Left column) Evolution of Err from (F.5) vs. iterations. (Right column) Err of model trained
on N samples from optimal νϑ vs. nonadaptive distributions. From top to bottom, each row represents target
functions {gi} corresponding to those listed in each column of Tab. 1 (from left to right). Shading represents
two standard deviations away from the mean Err over 10 independent runs.
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Figure 15: Bilevel Alg. 3 applied with K = 1 test atoms and 1000 gradient descent iterations. Each column
visualizes the covariance matrix of the optimized (left) and empirical test distributions (right), respectively. From
top to bottom, each row represents target functions {gi} corresponding to those listed in each column of Tab. 1
(from left to right).
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Computational resources. All bilevel minimization experiments are performed in Python using the
PyTorch framework in float32 single precision on a machine equipped with an NVIDIA GeForce
RTX 4090 GPU (24 GB VRAM) running CUDA version 12.4, Intel i7-10700K CPU (8 cores/16
threads) running at 4.9 GHz, and 64 GB of DDR4-3200 CL16 RAM. The experiments required
less than one total CPU and GPU hour to complete. An additional five CPU and GPU hours were
expended to tune hyperparameters and set up the experiments. We ensure reproducibility of our
numerical results by appropriately setting PyTorch backends to be deterministic and using fixed seeds
for the relevant random number generators.

F.2 AMINO FOR LEARNING ELECTRICAL IMPEDANCE TOMOGRAPHY

In all machine learning tasks, the choice of training distribution plays a critical role. In practice,
testing distributions can span a wide range, making training on the entire space infeasible. Instead,
we must identify an optimal training distribution that enables good generalization across diverse
testing scenarios.

To illustrate this, we consider the EIT problem with the AMINO solver; see SM E.3. We start
with the following forward problem setup taken from Molinaro et al. (2023) for EIT on the domain
Ω := (0, 1)2 ⊂ R2. The model is the two-dimensional elliptic PDE boundary value problem{∇ · (a∇u) = 0 in Ω ,

u = f on ∂Ω .
(F.6)

For one conductivity realization a defined by

x 7→ a(x) = exp

(
m∑

k=1

ck sin(kπx1) sin(kπx2)

)
, (F.7)

where m = ⌊m⌋, m ∼ Unif([1, 5]), and {ck} ∼ Unif([−1, 1]m), we take L ∈ N different Dirichlet
boundary conditions {fℓ}Lℓ=1 for f in (F.6). These are given by

x 7→ fℓ(x) = cos
(
ω
(
x1 cos(θℓ) + x2 sin(θℓ)

))
(F.8)

with ω ∼ Unif([π, 3π]) and θl := 2πℓ/L for ℓ = 1, . . . , L. We denote by Λa the DtN operator that
maps the Dirichlet data of the PDE, fℓ, to the Neumann boundary data, a ∂u

∂n |∂Ω, where u is the PDE
solution and n is the outward normal unit vector. Here, the Dirichlet boundary conditions are functions
drawn from a probability distribution µ. AMINO learns the map from the joint Dirichlet–Neumann
distribution (Id,Λa)#µ to the conductivity a.

Suppose the general distribution of interest for the Dirichlet boundary condition is generated according
to the law of fl in (F.8) with ω ∼ Unif([π2 , 7π]). A reasonable distribution to train upon is this
very same distribution. However, suppose we were constrained to focus and train on distributions
corresponding to Law(ω) supported only on a subset of the domain [π2 , 7π]. In that case, the choice
of the distribution will greatly affect the OOD error when testing with ω ∼ Unif([π2 , 7π]). To be
more concrete, we will focus on four training distributions for ω, which directly determines the
input Dirichlet boundary condition as in SM E.3: Unif([π2 , π]), Unif([

7π
2 , 4π]), Unif([5π, 11π

2 ]),
and Unif([ 13π2 , 7π]). After obtaining the well-trained neural operators (in the sense that the ID
generalization error is small enough) corresponding to each training distribution, we study the OOD
error of the trained neural operators for Dirichlet data obtained by drawing ω ∼ Unif([π2 , 7π]) in
(F.8).

Model architecture and optimization algorithm. We train four distinct AMINO models; see
SM E.3 to recall AMINO and SM E.1 for its DeepONet component. Each model comprises three
jointly trained components:

• Branch encoder: Eight sequential convolutional blocks with LeakyReLU activations:
– ConvBlock(1→64, kernel = (1, 7), stride = (1, 2), pad = (0, 3))
– ConvBlock(64→128, kernel = (1, 3), stride = (1, 2), pad = (0, 1))
– ConvBlock(128→128, kernel = (1, 3), pad = (0, 1))
– ConvBlock(128→256, kernel = (1, 3), stride = (1, 2), pad = (0, 1))
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– ConvBlock(256→256, kernel = (1, 3), pad = (0, 1))
– ConvBlock(256→512, kernel = (1, 3), stride = (1, 2), pad = (0, 1))
– ConvBlock(512→512, kernel = (1, 3), pad = (0, 1))
– ConvBlock(512→512, kernel = (4, 5), pad = 0).
The feature map is then flattened and passed through a linear layer to produce the p-
dimensional branch output.

• Trunk network: An 8–layer multilayer perceptron (MLP) with 512 neurons per hidden
layer, LeakyReLU activations, zero dropout, and a final output dimension of p = 100.

• Fourier Neural Operator (FNO): A single spectral convolution layer with 128 channels
and 32 Fourier modes.

All parameters are learned using the AdamW optimizer with a learning rate of 10−3.

Training and optimization procedure. The four neural operator models “Model 1”, “Model 2”,
“Model 3”, and “Model 4” are trained using four different input parameter distributions for Law(ω),
respectively: Unif([π2 , π]), Unif([

7π
2 , 4π]), Unif([5π, 11π

2 ]), and Unif([ 13π2 , 7π]); see (F.8) to recall
how ω is reflected in the actual input distributions on function space. For each distribution, 4096
training samples are generated. Each sample consists of L = 100 Dirichlet–Neumann boundary
condition pairs with the underlying conductivity discretized on a 70 × 70 grid for the domain
Ω = (0, 1)2. After 500 training epochs, the trained models are evaluated on 1024 test samples of the
distribution for the Dirichlet boundary condition (F.8) determined by ω ∼ Unif([π2 , 7π]).

Model evaluation. For both ID and OOD settings, we report the average relative L1 error given as

Expected Relative L1 Error := Ea∼Law(a)

[∥∥a− Gθ((Id,Λa)#µ
)∥∥

L1(Ω)

∥a∥L1(Ω)

]
, (F.9)

where Law(a) is the distribution of a from (F.7) and Gθ is the AMINO model. Using the same
setup as in E.3, we approximate (F.9) with a Monte Carlo average over N ′ = 1024 test conductivity
samples an

i.i.d.∼ Law(a) and each with L = 100 pairs of corresponding Dirichlet and Neumann
boundary data. That is, the expected relative L1 error is approximately given by the average

1

N ′

N ′∑
n=1

∥∥∥an − Gθ( 1
L

∑L
ℓ=1 δ(f(n)

ℓ ,g
(an)
ℓ )

)∥∥∥
L1∥∥an∥∥L1

, where
{
(f

(n)
ℓ , g

(an)
ℓ )

}L
ℓ=1
∼
(
(Id,Λan

)#µ
)⊗L

.

(F.10)

The L1(Ω) norms in the preceding display are approximated with Riemann sum quadrature over the
equally-spaced 70× 70 grid.

Tab. 2 illustrates how OOD performance varies with the choice of training distribution. Model 1
achieves strong ID performance but performs poorly in the OOD setting. Model 2 exhibits consistent
yet mediocre performance across both ID and OOD evaluations. Model 4 performs well in the
ID setting but shows a noticeable drop in OOD performance. Model 3 offers the best balance,
achieving low error in both ID and OOD scenarios. Notably, despite being trained on a Dirichlet data
distribution with a small support regarding the parameter ω, Model 3 generalizes significantly better
to the larger test domain [π2 , 7π] for the parameter ω.

These results are further illustrated in Fig. 1, which presents two representative conductivity samples.
The top row displays the predicted conductivities from each of the four models when evaluated on
Dirichlet–Neumann data pairs sampled from the same distribution used during training. In this ID
setting, all four models accurately recover the true conductivity. In contrast, the bottom row shows
predictions when the Dirichlet data is drawn from the OOD setting, i.e., ω ∼ Unif([π2 , 7π]), and
the joint Dirichlet–Neumann data distribution also changes accordingly. Under this distributional
shift, Models 1, 2, and 4 exhibit noticeable degradation in performance, while Model 3 maintains a
reasonable level of accuracy. We use this test to demonstrate the importance of carefully selecting the
training data distribution to achieve robust OOD performance.
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Table 2: Average relative L1 error of AMINO models under ID and OOD settings for the EIT inverse
problem solver. Model 1 is trained on ω1 ∼ Unif([π

2
, π]), Model 2 on ω2 ∼ Unif([ 7π

2
, 4π]), Model 3 on

ω3 ∼ Unif([5π, 11π
2
]), and Model 4 on ω4 ∼ Unif([ 13π

2
, 7π]). In the OOD setting, all models are evaluated on

Dirichlet data from ω ∼ Unif([π
2
, 7π]). One standard deviation is reported. See Fig. 1 for a visual comparison

on two representative samples.

Model 1 Model 2 Model 3 Model 4

In-Distribution (ID) 0.034± 0.019 0.081± 0.028 0.021± 0.010 0.017± 0.009
Out-of-Distribution (OOD) 0.796± 0.251 0.078± 0.047 0.066± 0.038 0.132± 0.047

Computational resources. The AMINO experiment was conducted on a machine equipped with
an AMD Ryzen 9 5950X CPU (16 cores / 32 threads), 128 GB of RAM, and an NVIDIA RTX 3080Ti
GPU (10 GB VRAM) running with CUDA version 12.1. Twelve CPU and GPU hours total were
needed for the training and testing of all four models.

F.3 NTD LINEAR OPERATOR LEARNING

In this example from Sec. 5, we begin by defining a conductivity field a : Ω ⊂ R2 → R given by

x 7→ a(x) = exp

(
M+1∑
j=1

M+1∑
k=1

2σ(
(jπ)2 + (kπ)2 + τ2

)α/2 zjk sin(jπx1) sin(kπx2)

)
(F.11)

with fixed parameters α = 2, τ = 3, σ = 3 and random coefficients zjk
i.i.d.∼ N (0, 1). Once these

random coefficients are drawn, they are fixed throughout the example. Thus, in this experiment, our
realization of the conductivity a remains fixed; see the left panel of Fig. 3 for a visualization of this a.
Our goal is to develop neural operator approximations of the NtD linear operator G⋆ := Λ−1

a that maps
the Neumann boundary condition to the Dirichlet boundary condition according to the PDE (F.6) (with
Neumann data g given instead of Dirichlet data f ). Using the alternating minimization algorithm
(AMA, Alg. 2) from Sec. 4.2, we want to optimize the training distribution over the Neumann
boundary conditions to achieve small OOD error (3.3).

To evaluate the OOD error, we need to assign a random measure Q. Let Q = 1
K

∑K
k=1 δν′

k
, where

{ν′k}Kk=1 are distributions over functions. For a fixed k, the function g ∼ ν′k is a Neumann boundary
condition. It takes the form g : ∂Ω→ R, where

t 7→ g
(
r(t)

)
= 10 sin

(
ωk

(
t− 1

2

))
+

Nbasis∑
j=1

σk(
(jπ)2 + τ2k

)αk/2
zj
√
2 sin(jπt) . (F.12)

We view r : [0, 1] → ∂Ω as a 1D parametrization of the boundary ∂Ω ⊂ R2 for the domain
Ω := (0, 1)2. The entire domain is discretized on an M ×M grid, where M is as in (F.11). Here
zj

i.i.d.∼ N (0, 1), αk = 1.5 for all k, and Nbasis = 4M −4. We set the grid parameter to be M = 128

and sample K = 64 test distributions in this example. The parameters ωk
i.i.d.∼ ρ([−2π, 2π]) and

τk
i.i.d.∼ ρ([0, 50]) are sampled from a custom distribution ρ = ρ([xmin, xmax]) and held fixed

throughout the algorithm. The custom distribution ρ has the probability density function

p(x) = C sin
(
x− π

2

)
+ 1 (F.13)

for x ∈ [xmin, xmax] ⊂ R, where C is a normalizing constant ensuring that p integrates to 1 over
the domain [xmin, xmax]. Samples are generated by using inverse transform sampling. Any time a
Neumann boundary condition g is sampled according to (F.12) and (F.13), we subtract the spatial
mean of g from itself to ensure that the resulting function integrates to zero. This is necessary to
make the Neumann PDE problem—as well as the NtD operator itself—well-posed.

The training distribution ν is assumed to generate functions of the form

t 7→ g̃(t) = 10 sin
(
ω
(
t− 1

2

))
+

Nbasis∑
j=1

σ(
(jπ)2 + τ2

)α/2 z̃j√2 sin(jπt) , (F.14)
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where z̃j
i.i.d.∼ N (0, 1), α = 2, τ = 3, and σ = τ3/2. That is, ν = Law(g̃) with g̃ as in (F.14). The

frequency parameter ω appearing in the mean term of (F.14) is optimized using Alg. 2 to identify a
training distribution that minimizes average OOD error with respect to Q.

Note that g and g̃ are finite-term truncations of the KLE of Gaussian measures with Matérn-like
covariance operators; recall Lem. B.2. In particular, for g̃, and similarly for g, the covariance operator
of the Gaussian measure has eigenpairs

λj =
σ2(

(jπ)2 + τ2
)α and t 7→ ϕj(t) =

√
2 sin(jπt) for j = 1, 2, . . . , Nbasis . (F.15)

Using (F.15) and (B.1), the squared 2-Wasserstein distance in Prop. 3.1 reduces to

W2
2(ν, ν

′
k) =

∫ 1

0

(
10 sin

(
ω
(
t− 1

2

))
− 10 sin

(
ωk

(
t− 1

2

)))2
dt+

Nbasis∑
j=1

(√
λj −

√
λj,k

)2
, (F.16)

where λj,k = σ2
k/((jπ)

2 + τ2k )
αk . We approximate the integral with standard quadrature rules.

Moreover, the second moment of ν, and similarly for ν′k, is

m2(ν) =

∫ 1

0

(
10 sin

(
ω
(
t− 1

2

)))2
dt+

Nbasis∑
j=1

λj . (F.17)

These closed-form reductions follow directly from the finite-dimensional KLE and Ex. B.1.

Furthermore, we estimate the Lipschitz constants of both the true NtD operator G⋆ and the learned
model Gθ—which appear in the multiplicative factor c from Prop. 3.1—by sampling 250 realizations
of Neumann input function pairs (g1, g2) from 11 candidate distributions ν. We denote the finite set
of these pairs of realizations by S. We then use the quantity

max
(g1,g2)∈S

∥G(g1)− G(g2)∥L2(∂Ω)

∥g1 − g2∥L2(∂Ω)
(F.18)

to estimate the Lipschitz constant of map G ∈ {G⋆,Gθ}. These Lipschitz constants are then fixed
throughout the algorithm.

Model architecture and optimization algorithm. The model architecture is a DeepONet compris-
ing a branch network with five fully connected layers of sizes (4M − 4), 512, 512, 512, and 200, and
a trunk network with five fully connected layers of sizes 2, 128, 128, 128, and 200, respectively; see
SM E.1 for details. All layers use ReLU activation functions. Weights are initialized using the Glorot
normal initializer. The model is trained with the Adam optimizer with a learning rate of 10−3. After
the model-training half step in the alternating minimization scheme Alg. 2, the parameter ω in (F.14)
is optimized using SciPy’s default implementation of differential evolution with a tolerance of 10−7.
Due to the presence of many local minima in the optimization landscape, this global optimization
algorithm is necessary.

Training and optimization procedure. The initial value for ω is set to 8π. For every model-
training step, 500 pairs of Neumann and Dirichlet data are generated using the current value of ω. For
practical reasons, the model is initially trained for 2000 iterations of Adam. If the AMA loss has not
improved relative to the previous iteration, training continues for an additional 2000 iterations. This
process is repeated up to 10 times, after which the algorithm proceeds to the parameter optimization
step for the training distribution ν. During distribution parameter optimization, the AMA loss is
evaluated using 500 newly generated data pairs, used specifically to compute the first term of the
objective (4.7). To ensure deterministic behavior, the 500 sets of random coefficients {zj}Nbasis

j=1 are
fixed separately for training and optimization. This results in 1000 total sets of coefficients fixed for
the entire algorithm. This process is repeated across 80 independent runs using the same conductivity
but different realizations of the random coefficients {zj}. The relative AMA loss and relative OOD
error is computed for each run; see (F.19).
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Model evaluation. The relative AMA loss is defined as the algorithm’s objective value (4.7)
normalized by its initial value. The middle panel of Fig. 3 illustrates the rapid decay of this
normalized loss over subsequent iterations. The relative OOD loss is defined as

Relative OOD Error :=

√
Eν′∼Q Eg∼ν′ ∥G⋆g − Gθ(g)∥2L2

Eν′∼Q Eg∼ν′ ∥G⋆g∥2L2

, (F.19)

which measures the squared prediction error of the model Gθ relative to the ground truth NtD operator
G⋆ on average with respect to the given random measure Q.

The relative OOD error is estimated using Monte Carlo sampling with K = 64 and N ′ = 500 as

Relative OOD Error ≈

√√√√ 1
K

∑K
k=1

1
N

∑N ′

n=1 ∥G⋆gk,n − Gθ(gk,n)∥2L2

1
K

∑K
k=1

1
N ′

∑N ′

n=1 ∥G⋆gk,n∥2L2

, (F.20)

where gk,n is the nth i.i.d. sample from ν′k. Further numerical quadrature is used to discretize the
L2(∂Ω) norms in the preceding display.

After 80 independent runs of Alg. 2, a 95% confidence interval for the true relative OOD error was
computed using a Student’s t-distribution as seen in the middle panel of Fig. 3.

Computational resources. The computational resources here are the same as those reported in
SM F.2, except three total CPU and GPU hours were needed for all independent runs.

F.4 DARCY FLOW FORWARD OPERATOR LEARNING

In this example from Sec. 5, we are interested in learning another operator that is relevant and related
to the EIT problem. In contrast with the previous example in SM F.3 where we fix the conductivity,
the Darcy flow forward operator that we consider is nonlinear and maps the log-conductivity function
log(a) to the PDE solution u of {−∇ · (a∇u) = 1 in Ω ,

u = 0 on ∂Ω .
(F.21)

That is, G⋆ : log(a) 7→ u. Here, Ω := (0, 1)2.

Again, we first assign a random measure Q to evaluate the OOD performance. We take Q =
1
K

∑K
k=1 δν′

k
, where each test distribution ν′k is defined by parameters sampled i.i.d. from custom

distributions (F.13): mk ∼ ρ([0, 1]), αk ∼ ρ([2, 3]), and τk ∼ ρ([1, 4]). The scaling parameter is
set as σk = ταk−1

k . We set K = 20 and the grid parameter M = 64. Given these parameters, each
random log-conductivity function log(a′) from test distribution ν′k has the form

x 7→ log(a′(x)) = mk +

M+1∑
i=1

M+1∑
j=1

2σk(
(iπ)2 + (jπ)2 + τ2k

)αk/2
z′ij sin(iπx1) sin(jπx2) , (F.22)

where z′ij ∼ N (0, 1) independently. Thus, a is lognormal. Sample log-conductivities log(a) from
training distribution ν are assumed to follow the same form

x 7→ log(a(x)) = m+

M+1∑
i=1

M+1∑
j=1

2σ(
(iπ)2 + (jπ)2 + τ2

)α/2 zij sin(iπx1) sin(jπx2) , (F.23)

with fixed parameters α = 2, τ = 3, and σ = 3 and zij
i.i.d.∼ N (0, 1). Alg. 2 is used to optimize the

mean shift parameter m ∈ R in order to reduce the OOD error. As in SM F.3, log(a) is modeled via a
finite KLE of a Gaussian measure with Matérn-like covariance operator. Thus, by working with log(a)
directly, we can exploit (B.1) to write the squared 2-Wasserstein distance factor in objective (4.7) in
closed-form.

Model architecture and optimization algorithm. The same DeepONet architecture and training
setup from SM F.3 are used here, except the branch network has layer sizes M2, 256, 256, 128, and
200. After the model-training half step in Alg. 2, the scalar parameter m is optimized using PyTorch’s
Adam optimizer with a learning rate of 10−3.
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Figure 16: Average relative OOD error and average relative loss of Alg. 2 on the Darcy flow forward problem.
(Left) After 13 independent runs, decay of the average relative OOD error of the model when trained on the
optimal distribution identified at each iteration; a 95% confidence interval of the true relative OOD error is
provided at each iteration. (Right) Decay of average AMA loss defined in (4.7) vs. iteration relative to the same
loss at initialization.

Training and optimization procedure. The initial value of m is set to zero. The training and
optimization procedure follows the same structure as in SM F.3, but with the following differences:
200 conductivity-solution pairs are generated for training using the current value of m. The model
is initially trained for 5000 iterations. If the AMA loss has not improved relative to the previous
iteration, training continues for an additional 5000 iterations. This process is repeated up to three
times, after which the algorithm proceeds to the distribution parameter optimization step. During
distribution parameter optimization, 500 steps are taken. Then the AMA loss is evaluated using three
newly generated data pairs. If the AMA loss has not improved relative to the previous iteration,
another 500 steps are taken, up to 1500 total steps. After this, the procedure returns to model training
again. To ensure deterministic behavior, 203 sets of random coefficients {zij} are fixed across
training and optimization. The preceding process is repeated across 13 independent runs, each using
different realizations of the coefficients. The average relative OOD error and average relative AMA
loss are computed for each run.

Model evaluation. After 13 independent runs, the average relative OOD error and relative AMA
loss are computed and are shown in Fig. 16. In Fig. 4, we visualize the pointwise absolute error for
iterations 1, 2, 3, and 8. At these iterations, the DeepONet model is trained using the optimal training
distribution produced by AMA. The model is then evaluated on the same fixed test conductivity. The
progressive reduction in the spatial error across these panels of Fig. 4 corroborates the quantitative
decrease in the relative OOD error, which converges to approximately 4% in our final model.

Computational resources. The computational resources here are the same as those reported in
SM F.3, except three total CPU and GPU hours were needed for all independent runs.

F.5 RADIATIVE TRANSPORT OPERATOR LEARNING

In this example from Sec. 5, we consider the hyperbolic PDE for radiative transport governing the
particle density u(z, v) at position z ∈ Ω ⊂ Rd and velocity v ∈ V ⊂ Rd:{

v · ∇zu(z, v) =
1
εa(z)Q[u](z, v), (z, v) ∈ Ω× V ,

u(z, v) = ϕ(z, v), (z, v) ∈ Γ− ,
(F.24)

where a is the scattering coefficient, ε is the Knudsen number, and the collision operator u 7→ Q[u] is
given by

Q[u](z, v) :=

∫
V

K(v, v′)u(z, v′) dv′ − u(z, v) . (F.25)

In this example, we use the constant kernel K(v, v′) = 1
|V | . The inflow boundary is defined as

Γ− := {(z, v) ∈ ∂Ω× V | −nz · v ≥ 0} , (F.26)

where nz denotes the outward normal at z ∈ ∂Ω.
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Figure 17: Mapping from scattering coefficient to spatial density in the radiative transport equation for three
Knudsen numbers ε. Larger ε values yield a more hyperbolic regime.

On three separate experiments with error results given in Fig. 5, we set the Knudsen number ε equal
to 1/8, 2, and 8. Changing ε puts us in different physical regimes as seen in Fig. 17. The inflow
boundary condition is given by

ϕ(z, v) =

{(
1 + 0.5 sin(πy/L)

)
max(v · nz, 0), if z = 0 ,

0, elsewhere on Γ− .
(F.27)

We seek the optimal input training distribution ν for learning the nonlinear operator that maps the
scattering coefficient function a(·) to the spatial domain density

∫
V
u(·, v) dv.

In this example, Ω := (0, 1)2 is the unit square and V := S1 = {(cos θ, sin θ) | θ ∈ [−π, π)} is the
unit circle. Thus, we parametrize v by θ, i.e., v(θ) = (cos θ, sin θ) for θ ∈ [−π, π),

∫
V
u(·, v) dv =∫ π

−π
u(·, v(θ)) dθ, and v · ∇z = (cos θ)∂x1

+ (sin θ)∂x2
. We first generate samples from Q to then

evaluate the OOD performance of the model trained on ν. We set K = 3. Each distribution ν′k ∼ Q
is set to be (exp)#γk, where γk is a Gaussian process parametrized by σk, α, and τ . Thus, samples
from ν′k have the form

a′(x) = exp

(
fk(x) +

∞∑
i=1

∞∑
j=1

2σk(
(iπ)2 + (jπ)2 + τ2

)α/2 zij sin(iπx1) sin(jπx2)

)
, (F.28)

where zij
i.i.d.∼ N (0, 1). The mean fk of each distribution γk is selected as follows. For a fixed

centered Gaussian process γ, draw fk
i.i.d.∼ γ for each k. Then these fk functions are then fixed once

and for all at the beginning of the experiment. By supplying distinct nonzero means to each of the K
test distributions, the problem of finding the optimal training distribution becomes harder. Indeed,
the test distributions now exhibit not only covariance shifts, but also mean shifts. We set τ = 1 and
α = 2 for all K = 3 test distributions, and set σ1 = 1, σ2 = 2, and σ3 = 3. Note that the parameters
of γ are set to τ = 1, α = 2, and σ = 1.

Model architecture and optimization algorithm. Following Alg. 2, we represent ν as an empirical
measure of N equally weighted particles: ν = 1

N

∑N
q=1 δaq

. Each particle aq is a function of the
form

aq(x) = exp

 ∞∑
i=1

∞∑
j=1

cqij · 2 sin(iπx1) sin(jπx2)

 , (F.29)

where the coefficients cq := {cqij}i,j≥1 belong to ℓ2. Rather than optimizing the particles aq directly,
we optimize their representations in the coefficient space through the transformation

aq = exp(Lcq) , (F.30)
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where L : ℓ2 → L2(Ω) is the linear operator mapping coefficients to the series in (F.29) and exp is
applied pointwise. The distribution ν is thus obtained as the pushforward ν = (exp ◦L)#µ, where µ is
the distribution over coefficient sequences. We can then write the loss as F̃ (µ) := F ((exp ◦L)#µ) =
F (ν), where F is defined as the upper bound in Prop. 3.1, i.e., F̃ = F ◦ (exp ◦L)#. For each step k,
the discretized Wasserstein gradient flow update rule with respect to {cq}Nq=1 is then

c(k+1)
q = c(k)q − η(k)∇ℓ2

[
DF̃

(
µ
(k)
N

)](
c(k)q

)
, where µ

(k)
N :=

1

N

N∑
q′=1

δ
c
(k)

q′
(F.31)

and η(k) is the step size. By the chain rule and linearity of pushforward,

DF̃ (µ) = DF
(
(exp ◦L)#µ

)
◦ (exp ◦L) (F.32)

for each µ, where DF denotes the derivative from Prop. 4.9. Thus, we can write the update rule
(F.31) in terms of the known derivative DF .

The ℓ2 gradient with respect to cq is computed by a combination of PyTorch’s autograd and the
adjoint state method. After updating {cq}Nq=1, we train a model with discretized versions of particles
{aq}Nq=1 denoted as {âq}Nq=1. Each particle aq is discretized as an m ×m matrix. Similar to the
setups from SM F.3 and SM F.4, the model architecture is a DeepONet. However, the branch network
now has 6 fully connected layers of sizes m2, 100, 100, 100, 64, and 32, and the trunk network has 6
fully connected layers of sizes 2, 100, 100, 100, 64 and 32.

Training and optimization procedure. During optimization, we work with N samples from each
distribution {ν′k}Kk=1 rather than the distributions themselves. For computational simplicity, we set
the number of samples from each ν′k equal to the number of particles in the training distribution.

The particles {aq}Nq=1 are discretized by truncating the number of terms in its expansion, i.e.,

aq(x) = exp

Ntruncate∑
i=1

Ntruncate∑
j=1

cqij · 2 sin(iπx1) sin(jπx2)

 . (F.33)

The coefficient sequences {cq}Nq=1 are truncated to Ntruncate = 20 for both indices i and j, yielding
sequences of 100 coefficients each. These are initialized by sampling from N (0, 10−6).

We discretize Ω on a 51× 51 grid (m = 51) and V with 12 different directions, i.e. ∆θ = π/6, so
we approximate the collision term by

Q[uq] =
1

|V |

∫
V

uq(z, v
′) dv′ − uq(z, v)

≈ 1

|V |
12∑
i=1

uq(·, θi)∆θ − uq

=
π/6

2π

12∑
i=1

uq(·, θi)− uq

=
1

12

12∑
i=1

uq(·, θi)− uq

and the spatial-domain density by

ũq :=

∫
V

uq(·, v) dv ≈
12∑
i=1

uq(·, θi)∆θ . (F.34)

Initialize the step size as η = 1× 10−6. At each iteration of Alg. 2:
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Table 3: Radiative transport operator learning with particle-based Alg. 2. Reported are mean relative OOD
errors with 95% confidence intervals computed over 10 independent runs for three separate models with varying
Knudsen number ε. All models have the same DeepONet architecture and are trained with N = 120 samples
for 5,000 epochs. What makes each model different is their training distribution. The initial model was trained
with random particles cqij ∼ N (0, 10−6), the optimized model was trained with optimized particles from
particle-based AMA, and the benchmark model is a model trained with samples from the mixture of test
distributions, i.e., νQ = 1

K

∑K
k=1 ν

′
k.

ε Initial Optimized Benchmark

1/8 8.65× 10−2 ± 8.18× 10−3 1.55× 10−2 ± 9.72× 10−4 1.62× 10−2 ± 5.34× 10−3

2 8.76× 10−2 ± 8.63× 10−3 1.29× 10−2 ± 1.20× 10−3 1.24× 10−2 ± 2.69× 10−3

8 9.09× 10−2 ± 4.39× 10−3 1.13× 10−2 ± 1.33× 10−3 1.16× 10−2 ± 2.26× 10−3

1. Compute the true outputs {ũq}Nq=1 as m×m matrices using the current {cq}Nq=1.

2. Train the DeepONet for 5,000 epochs with an 80/20 train-test split.

3. Update {cq}Nq=1 according to Eqn. (F.31).

4. If the loss F (ν) increases, halve the step size and recompute the update. The decreased step
size carries over to the next iteration.

The stopping condition for the algorithm is if ∥step(k)∥2 < tol, where step(k) =

η(k)∇ℓ2

[
DF̃

(
µ
(k)
N

)]
and tol = 1 × 10−6. Note that in this example, convergence usually oc-

curs in about seven iterations.

For the loss computation in Step 4 above, the second moment of a distribution ν is estimated with N
samples by

m2(ν) = Ea∼ν ∥a∥2L2(Ω) ≈
1

N

N∑
i=1

∥ai∥2L2(Ω) , (F.35)

where ∥ai∥L2(Ω) =
∫
Ω
ai(z)

2dz is estimated with the trapezoidal rule. Note that for our empirical
training distribution, F.35 is not an approximation, but instead an equality. We estimate the Wasserstein
distance W2(ν, ν

′) between distributions ν and ν′ using N samples from each, with the ground cost
function taken to be c(a, a′) = ∥a− a′∥2L2(Ω).

Model evaluation. We compare models trained on the optimized distribution at each iteration
of particle-based AMA with a benchmark model trained on N samples from the mixture of test
distributions νQ = 1

K

∑K
k=1 ν

′
k (Eqn. D.1), using the same DeepONet architecture and 5,000 training

epochs for all models. Performance is measured by the relative OOD error (Eqn. F.19), approximated
with the original N samples from each ν′k. As shown in Fig. 5, the optimized model improves
substantially after particle-based AMA, achieving performance comparable to the benchmark and
even outperforming the benchmark in small sample-size regimes. Given that AMA minimizes an
upper bound, we are not directly minimizing the OOD error which can account for why the optimized
distribution does not outperform the benchmark distribution for most sample sizes. Tab. 3 reports 95%
confidence intervals for relative OOD errors over 10 independent trials at N = 120, demonstrating
that the optimized model reduces its relative OOD error by 82% from its original value on average
for ε = 1

8 , 85% for ε = 2, and 88% for ε = 8. For this particular sample size, the runtime, shown in
Fig. 18, averages 20.6 minutes for ε = 1

8 , 26.7 minutes for ε = 2, and 26.1 minutes for ε = 8.

Computational resources. All experiments were conducted on AWS using Galaxy’s Deep Learning
AMI GPU, PyTorch 2.0.1, and Ubuntu 20.04-prod-ada4rwvf26mda with an EC2 instance type of
g5.12xlarge. The experiments for the three different ε values were run in parallel, with the ε = 2
case taking the longest at 27 hours. Thus, a total of approximately 27 GPU-hours (and corresponding
CPU usage) were required for all independent runs with three GPUs running in parallel.
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Figure 18: Runtime of particle-based AMA for the radiative transport equation with sample size N at three
Knudsen numbers ε ∈ {1/8, 2, 8}. Error bars indicate 95% confidence intervals over 10 trials.

F.6 BURGERS’ EQUATION OPERATOR LEARNING

In the final example from Sec. 5, we consider the viscous Burgers’ equation

∂u

∂t
+ u

∂u

∂x
= κ

∂2u

∂x2
(F.36)

with viscosity κ = 0.1 on the periodic domain x ∈ [0, 2π]per. Our goal is to learn the operator that
maps the initial condition a := u( · , 0) to the solution u := u( · , 1). This benchmark problem is
taken from Nelsen & Stuart (2024); Li et al. (2021); Kovachki et al. (2023).

Following Alg. 2, we model the training data distribution ν as a Gaussian process with a Matérn
covariance kernel. Samples from ν are generated according to

a(x) =
1√
π

n/2∑
j=1

σ

(j2 + τ2)α/2
(
z
(s)
j sin(jx) + z

(c)
j cos(jx)

)
, (F.37)

where z
(s)
j and z

(c)
j are i.i.d. samples from N (0, 1) and n = 8192 is the discretization size. Only

n/2 modes are retained due to the Nyquist limit.

Model architecture and optimization algorithm. We adopt the DeepONet architecture described
in SM F.3. The branch network has layer sizes n, 1024, 512, 256, 128, p and the trunk network has
layer sizes 1, 128, 128, 128, 128, p where p = 128. Training uses Adam with initial learning rate 10−3

and inverse-time decay (decay steps = 2000, decay rate = 0.9). We add ℓ2 regularization via weight
decay 10−3 and apply early stopping on the test loss with patience 1000 and min delta = 10−4. The
maximum number of training iterations is 10,000. After the model-training half-step in Alg. 2, we
optimize the Matérn covariance parameters (α, τ, σ) by minimizing the upper bound in Prop. 3.1
using scipy.optimize.minimize, with gradients from Lem. D.8.

Training and optimization procedure. We initialize the parameters at α = 3, τ = 1.4, and
σ = 5. All experiments use the fixed publicly available dataset burgers data R10.mat from
Kovachki et al. (2023), which contains 2048 input-output sample pairs. We reserve 10% of the data
(205 samples) as a held-out set for estimating the relative OOD error and treat the remaining 1843
samples as i.i.d. draws from a test distribution which we assume to be Gaussian. To optimize the
training distribution ν, we generate N = 1843 samples from the current parameter values, train the

49



2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699

Under review as a conference paper at ICLR 2026

DeepONet, and then update the parameters using this model and test samples. We repeat this process
until the improvement in the objective function falls below 3 × 10−3. This occurs at iteration 10,
yielding optimal parameters α = 2.906, τ = 1.456, σ = 5.005.

Model evaluation. After identifying the optimal training distribution, we compare the model
trained on N samples from this distribution with models trained using two pool-based active learning
strategies, Query-by-Committee (QbC) and CoreSet. We treat the 1843 test samples as the pool, i.e.,
Npool = 1843. Each method begins with 10 randomly selected samples, after which we fully train
the model, select an additional nselect = 40 samples according to the method-specific criterion, and
retrain the model from scratch. For subsequent iterations we use nselect = 50 until each method
reaches a total of 1000 training samples. We run 10 independent trials of this experiment. The
selection criteria for each strategy are summarized below.

Selection criteria. The pool contains Npool candidate inputs. Let nselect denote the number of
points selected at each acquisition step and let ∆x = 2π/n be the spatial grid spacing.

• Query-by-Committee (QbC). Given an ensemble of M = 4 models that produce
predictions u

(m)
i ∈ Rn for pool sample i and model m, define the ensemble mean

ūi = 1
M

∑M
m=1 u

(m)
i . The uncertainty score is the average squared L2 deviation from

the mean:

uncertainty(i) :=
1

M

M∑
m=1

∥∥u(m)
i − ūi

∥∥2
L2 and

∥∥v∥∥
L2 :=

√√√√∆x

n∑
k=1

v2k . (F.38)

Select the nselect pool points with largest uncertainty(i).
• CoreSet (greedy k-center on last-layer features). Let k := nselect. For each pool input,

compute a last-layer feature vector fi ∈ Rp from the DeepONet evaluated at point ai from
the pool, apply a Gaussian sketch with d = 32, i.e.,

U ∼ N (0, 1)d×p , si =
fiU

⊤
√
d
∈ Rd , (F.39)

and normalize s̃i = si/∥si∥2. Initialize the selected set S0 with one random index and
iteratively add

it+1 = argmax
i∈pool\St

min
j∈St

∥s̃i − s̃j∥2 (F.40)

until |ST | = k. Return the indices in ST .

For each model trained on N samples, performance is measured by the relative OOD error (Eqn. F.19),
approximated with the 205 held-out samples.

Fig. 6 compares the model trained on N samples from the optimal distribution with the two active-
learning-based models. The results show that the model trained on the optimal distribution performs
comparably to the active learning methods. A key advantage of the AMA approach is that it allows
sampling beyond the size of the fixed data pool, whereas pool-based active learning methods are
restricted to selecting at most the available pool samples. We remark that generally within the field
of active learning and adaptive sampling, one cannot expect to always outperform nonadaptive/i.i.d.
sampling, especially in high dimensions. The target mapping and choice of deployment regime Q
will determine the gains, if any, of active sampling (Adcock & Brugiapaglia, 2022).

Computational resources. All experiments were conducted on AWS using Galaxy’s Deep Learning
AMI GPU, PyTorch 2.0.1, and Ubuntu 20.04-prod-ada4rwvf26mda with an EC2 instance type of
g5.12xlarge. The experiments for AMA and the two different active learning methods were run in
parallel, with the QbC method taking the longest at 11 hours. Thus, a total of approximately 11
GPU-hours (and corresponding CPU usage) were required for all independent runs with four GPUs
running in parallel.
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