
Metalearning to Continually Learn In Context

Anonymous Author(s)
Affiliation
Address
email

Abstract

General-purpose learning systems should improve themselves in open-ended fash-1

ion in ever-changing environments. Conventional learning algorithms for neural2

networks, however, suffer from catastrophic forgetting (CF)—previously acquired3

skills are forgotten when a new task is learned. Instead of hand-crafting new4

algorithms for avoiding CF, we propose Automated Continual Learning (ACL) to5

train self-referential neural networks to meta-learn their own in-context continual6

(meta-)learning algorithms. ACL encodes continual learning desiderata—good7

performance on both old and new tasks—into its meta-learning objectives. Our8

experiments demonstrate that, in general, in-context learning algorithms also suffer9

from CF but ACL effectively solves such “in-context catastrophic forgetting”. Our10

ACL-learned algorithms outperform hand-crafted ones and popular meta-continual11

learning methods on the Split-MNIST benchmark in the replay-free setting, and12

enables continual learning of diverse tasks consisting of multiple few-shot and stan-13

dard image classification datasets. Going beyond, we also highlight the limitations14

of in-context continual learning, by investigating the possibilities to extend ACL to15

the realm of state-of-the-art CL methods which leverage pre-trained models.116

1 Introduction17

Enemies of memories are other memories [1]. Continually-learning artificial neural networks (NNs)18

are memory systems in which their weights store memories of task-solving skills or programs, and19

their learning algorithm is responsible for memory read/write operations. Conventional learning20

algorithms—used to train NNs in the standard scenarios where all training data is available at once—21

are known to be inadequate for continual learning (CL) of multiple tasks where data for each task22

is available sequentially and exclusively, one at a time. They suffer from “catastrophic forgetting”23

(CF; [2–5]); the NNs forget, or rather, the learning algorithm erases, previously acquired skills, in24

exchange of learning to solve a new task. Naturally, a certain degree of forgetting is unavoidable25

when the memory capacity is limited, and the amount of things to remember exceeds such an upper26

bound. In general, however, capacity is not the fundamental cause of CF; typically, the same NNs,27

suffering from CF when trained on two tasks sequentially, can perform well on both tasks when they28

are jointly trained on the two tasks at once instead (see, e.g., [6]).29

The real root of CF lies in the learning algorithm as a memory mechanism. A “good” CL algorithm30

should preserve previously acquired knowledge while also leveraging previous learning experiences31

to improve future learning, by maximally exploiting the limited memory space of model parameters.32

All of this is the decision-making problem of learning algorithms. In fact, we can not blame the33

conventional learning algorithms for causing CF, since they are not aware of such a problem. They34

are designed to train NNs for a given task at hand; they treat each learning experience independently35

(they are stationary up to certain momentum parameters in certain optimizers), and ignore any36

1Here we’ll add a link to our public GitHub code repository.

Submitted to 38th Conference on Neural Information Processing Systems (NeurIPS 2024). Do not distribute.



potential influence of current learning on past or future learning experiences. Effectively, more37

sophisticated algorithms previously proposed against CF [7, 8], such as elastic weight consolidation38

[9, 10] or synaptic intelligence [11], often introduce manually-designed constraints as regularization39

terms to explicitly penalize current learning for deteriorating knowledge acquired in past learning.40

Here, instead of hand-crafting learning algorithms for continual learning, we train self-referential41

neural networks [12, 13] to meta-learn their own “in-context” continual learning algorithms. We42

train them through gradient descent on learning objectives that reflect desiderata for continual learn-43

ing algorithms—good performance on both old and new tasks, including forward and backward44

transfer. In fact, by extending the standard settings of few-shot or meta-learning based on sequence-45

processing NNs [14–18], the continual learning problem can also be formulated as a long-span46

sequence processing task [19]. Corresponding CL sequences can be obtained by concatenating multi-47

ple few-shot/meta-learning sub-sequences, where each sub-sequence consists of input/target examples48

corresponding to the task to be learned in-context. As we’ll see in Sec. 3, this setting also allows us49

to seamlessly express classic desiderata for CL as part of objective functions of the meta-learner.50

Once formulated as such a sequence-learning task, we let gradient descent search for CL algorithms51

achieving the desired CL behaviors in the program space of NN weights. In principle, all typical52

challenges of CL—such as the stability-plasticity dilemma [20]—are automatically discovered and53

handled by the gradient-based program search process. Once trained, CL is automated through54

recursive self-modification dynamics of the trained NN, without requiring any human intervention55

such as adding extra regularization or setting hyper-parameters for CL. Therefore, we call our56

method, Automated Continual Learning (ACL).57

Our experiments focus on supervised image classification, making use of standard few-shot learning58

datasets for meta-training, namely, Mini-ImageNet [21, 22], Omniglot [23], and FC100 [24], while59

we also meta-test on other datasets including MNIST [25], FashionMNIST [26] and CIFAR-10 [27].60

Our core contribution is a set of focused experiments showing various facets of in-context CL: (1)61

We first reveal the “in-context catastrophic forgetting” problem using two-task settings (Sec. 4.1) and62

analyse its emergence (Sec. 4.2). We are not aware of any prior work discussing this problem. (2)63

We show very promising results of our ACL-trained learning algorithm on the classic Split-MNIST64

[6, 28] benchmark, outperforming hand-crafted learning algorithms and prior meta-continual learning65

methods [29–31]. (3) We experimentally illustrate the limitations of ACL on 5-datasets [32] and66

Split-CIFAR100 by comparing to more recent prompt-based state-of-the-art CL methods [33, 34].67

2 Background68

2.1 Continual Learning69

The main focus of this work is on continual learning [35, 36] in supervised learning settings even70

though high-level principles we discuss here also transfer to reinforcement learning settings [37].71

In addition, we focus on the realm of CL methods that keep model sizes constant (unlike certain72

CL methods that incrementally add more parameters as more tasks are presented; see, e.g., [38]),73

and do not make use of any external replay memory (used in other CL methods; see, e.g., [39–43]).74

Classic desiderata for a CL system (see, e.g., [44, 45]) are typically summarized as good performance75

on three metrics: classification accuracies on each dataset (their average), backward transfer (i.e., im-76

pact of learning a new task on the model’s performance on previous tasks; e.g., catastrophic forgetting77

is a negative backward transfer), and forward transfer (impact of learning a task for the model’s perfor-78

mance on a future task). From a broader perspective of meta-learning systems, we may also measure79

other effects such as learning acceleration (i.e., whether the system leverages previous learning ex-80

periences to accelerate future learning); here our primary focus remains the classic CL metrics above.81

2.2 Few-shot/meta-learning via Sequence Learning82

In Sec. 3, we’ll formulate continual learning as a long-span sequence processing task. This is a direct83

extension of the classic few-shot/meta learning formulated as a sequence learning problem. In fact,84

since the seminal works [14–17] (see also [46]), many sequence processing neural networks (see,85

e.g., [47–58] including Transformers [59, 18]) have been trained as a meta-learner [13, 12] that learn86

by observing sequences of training examples (i.e., pairs of inputs and their labels) in-context.87

2



Figure 1: An illustration of meta-training in Automated Continual Learning (ACL) for a self-
referential/modifying weight matrix W0. Weights WA obtained by observing examples for Task A
(blue) are used to predict a test example for Task A. Weights WA,B obtained by observing examples
for Task A then those for Task B (yellow) are used to predict a test example for Task A (backward
transfer) as well as a test example for Task B (forward transfer).

Here we briefly review such a formulation. Let d, N , K, P be positive integers. In sequential88

N -way K-shot classification settings, a sequence processing NN with a parameter vector θ ∈ RP89

observes a pair (xt, yt) where xt ∈ Rd is the input and yt ∈ {1, ..., N} is its label at each step90

t ∈ {1, ..., N ·K}, corresponding to K examples for each one of N classes. After the presentation of91

these N ·K examples (often called the support set), one extra input x ∈ Rd (often called the query)92

is fed to the model without its true label but with an “unknown label” token ∅ (number of input labels93

accepted by the model is thus N+1). The model is trained to predict its true label, i.e., the parameters94

of the model θ are optimized to maximize the probability p(y|(x1, y1), ..., (xN ·K , yN ·K), (x,∅); θ)95

of the correct label y ∈ {1, ..., N} of the input query x. Since class-to-label associations are96

randomized and unique to each sequence ((x1, y1), ..., (xN ·K , yN ·K), (x,∅)), each such a sequence97

represents a new (few-shot or meta) learning example to train the model. To be more specific, this98

is the synchronous label setting of Mishra et al. [18] where the learning phase (observing examples,99

(x1, y1) etc.) is separated from the prediction phase (predicting label y given (x,∅)). We opt for100

this variant in our experiments as we empirically find this (at least in our specific settings) more101

stable than the delayed label setting [14] where the model has to make a prediction for every input,102

and the label is fed to the model with a delay of one time step.103

2.3 Self-Referential Weight Matrices104

Our method (Sec. 3) can be applied to any sequence-processing NN architectures in principle.105

Nevertheless, certain architectures naturally fit better to parameterize a self-improving continual106

learner. Here we use the modern self-referential weight matrix (SRWM; [19, 60]) to build a generic107

self-modifying NN. An SRWM is a weight matrix that sequentially modifies itself as a response108

to a stream of input observations [12, 61]. The modern SRWM belongs to the family of linear109

Transformers (LTs) a.k.a. Fast Weight Programmers (FWPs; [62–68]). Linear Transformers and110

FWPs are an important class of the now popular Transformers [59]: unlike the standard ones whose111

computational requirements grow quadratically and whose state size grows linearly with the context112

length, LTs/FWPs’ complexity is linear and the state size is constant w.r.t. sequence length (like113

in the standard RNNs). This is an important property for in-context CL, since, conceptually, we114

want such a CL system to continue to learn for an arbitrarily long, lifelong time span. Moreover,115

the duality between linear attention and FWPs [67]—and likewise, between linear attention and116

gradient descent-trained linear layers [69, 70]—have played a key role in certain theoretical analyses117

of in-context learning capabilities of Transformers [71, 72].118

The dynamics of an SRWM [19] are described as follows. Let din, dout, t be positive integers, and ⊗119

denote outer product. At each time step t, an SRWM Wt−1 ∈ R(dout+2∗din+1)×din observes an input120

3



xt ∈ Rdin , and outputs yt ∈ Rdout , while also updating itself to Wt as:121

[yt,kt, qt, βt] = Wt−1xt (1)
vt = Wt−1ϕ(qt); v̄t = Wt−1ϕ(kt) (2)
Wt = Wt−1 + σ(βt)(vt − v̄t)⊗ ϕ(kt) (3)

where vt, v̄t ∈ R(dout+2∗din+1) are value vectors, qt ∈ Rdin and kt ∈ Rdin are query and key vectors,122

and σ(βt) ∈ R is the learning rate. σ and ϕ denote sigmoid and softmax functions respectively. ϕ123

is typically also applied to xt in Eq. 1; here we follow Irie et al. [19]’s few-shot image classification124

setting, and use the variant without it. Eq. 3 corresponds to a rank-one update of the SRWM, from125

Wt−1 to Wt, through the delta learning rule [73, 67] where the self-generated patterns, vt, ϕ(kt),126

and σ(βt), play the role of target, input, and learning rate of the learning rule respectively. The127

delta rule is crucial for the performance of LTs [67, 68, 74, 75].128

The initial weight matrix W0 is the only trainable parameters of this layer, that encodes the initial129

self-modification algorithm. We use the layer above as a direct replacement to the self-attention layer130

in the Transformer architecture [59]; and use the multi-head version of the computation above [19].131

3 Method132

Task Formulation. We formulate continual learning as a long-span sequence learning task. Let133

D, N , K, L denote positive integers. Consider two N -way classification tasks A and B to be134

learned sequentially (as we’ll see, this can be straightforwardly extended to more tasks). The135

formulation here applies to both “meta-training” and “meta-test” phases (see Appendix A.1 for more136

on this terminology). We denote the respective training datasets as A and B, and test sets as A′137

and B′. We assume that each datapoint in these datasets consists of one input feature x ∈ RD of138

dimension D (generically denoted as vector x, but it is an image in all our experiments) and one label139

y ∈ {1, ..., N}. We consider two sequences of L training examples
(
(xA

1 , y
A
1 ), ..., (xA

L , y
A
L )

)
and140 (

(xB
1 , y

B
1 ), ..., (x

B
L, y

B
L)

)
sampled from the respective training sets A and B. In practice, L = NK141

where K is the number of training examples for each class. By concatenating these two sequences,142

we obtain one long sequence representing CL examples to be presented as an input sequence to143

a (left-to-right) auto-regressive model. At the end of the sequence, the model is tasked to make144

predictions on test examples sampled from both A′ and B′; we assume a single test example for145

each task (hence, without index): (xA′
, yA

′
) and (xB′

, yB
′
) respectively; which we simply denote as146

(xA
test, y

A
test) and (xB

test, y
B
test) instead.147

Our model is a self-referential NN that modifies its own weight matrices as a function of input148

observations. To simplify the notation, we denote the state of our self-referential NN as a149

single SRWM W∗ (even though it may have many of them in practice) where we’ll replace ∗150

by various symbols representing the context/inputs it has observed. Given a training sequence151 (
(xA

1 , y
A
1 ), ..., (xA

L , y
A
L ), (xB

1 , y
B
1 ), ..., (x

B
L, y

B
L)

)
, our model auto-regressively consumes one input152

at a time, from left to right, in the auto-regressive fashion. Let WA denote the state of the SRWM that153

has consumed the first part of the sequence, i.e., the examples from Task A, (xA
1 , y

A
1 ), ..., (xA

L , y
A
L ),154

and let WA,B denote the state of our SRWM having observed the entire sequence.155

ACL Meta-Training Objectives. The ACL meta-training objective function tasks the model to156

correctly predict the test examples of all tasks learned so far at each task boundaries. That is, in the157

case of two-task scenario described above (learning Task A then Task B), we use the weight matrix158

WA to predict the label yAtest from input (xA
test,∅), and we use the weight matrix WA,B to predict the159

label yBtest from input (xB
test,∅) as well as the label yAtest from input (xA

test,∅). By letting p(y|x;W∗)160

denote the model’s output probability for label y ∈ {1, .., N} given input x and model weights/state161

W∗, the ACL objective can be expressed as:162

minimize
θ

−
(
log(p(yAtest|xA

test;WA)) + log(p(yBtest|xB
test;WA,B)) + log(p(yAtest|xA

test;WA,B))
)

(4)

for an arbitrary input meta-training sequence
(
(xA

1 , y
A
1 ), ..., (xA

L , y
A
L ), (xB

1 , y
B
1 ), ..., (x

B
L, y

B
L)

)
163

(which is extensible to mini-batches with multiple such sequences), where θ denotes the model164

parameters (for the SRWM layer, it is the initial weights W0). Figure 1 illustrates the overall165

meta-training process of ACL.166

4



Table 1: 5-way classification accuracies using 15 (meta-test training) examples for each class in the
context. Each row is a single model. Bold numbers highlight cases where in-context catastrophic
forgetting is avoided through ACL.

Meta-Test Tasks: Context/Train (top) & Test (bottom)

Meta-Training Tasks A A → B B B → A

Task A Task B ACL A B A B A B

Omniglot Mini-ImageNet No 97.6 ± 0.2 52.8 ± 0.7 22.9 ± 0.7 52.1 ± 0.8 97.8 ± 0.3 20.4 ± 0.6
Yes 98.3 ± 0.2 54.4 ± 0.8 98.2 ± 0.2 54.8 ± 0.9 98.0 ± 0.3 54.6 ± 1.0

FC100 Mini-ImageNet No 49.7 ± 0.7 55.0 ± 1.0 21.3 ± 0.7 55.1 ± 0.6 49.9 ± 0.8 21.7 ± 0.8
Yes 53.8 ± 1.7 52.5 ± 1.2 46.2 ± 1.3 59.9 ± 0.7 45.5 ± 0.9 53.0 ± 0.6

Table 2: Similar to Table 1 above but using MNIST and CIFAR-10 (unseen domains) for meta-testing.

Meta-Test Tasks: Context/Train (top) & Test (bottom)

Meta-Training Tasks MNIST MNIST → CIFAR-10 CIFAR-10 CIFAR-10 → MNIST

Task A Task B ACL MNIST CIFAR-10 MNIST CIFAR-10 MNIST CIFAR-10

Omniglot Mini-ImageNet No 71.1 ± 4.0 49.4 ± 2.4 43.7 ± 2.3 51.5 ± 1.4 68.9 ± 4.1 24.9 ± 3.2
Yes 75.4 ± 3.0 50.8 ± 1.3 81.5 ± 2.7 51.6 ± 1.3 77.9 ± 2.3 51.8 ± 2.0

FC100 Mini-ImageNet No 60.1 ± 2.0 56.1 ± 2.3 17.2 ± 3.5 54.4 ± 1.7 58.6 ± 1.6 21.2 ± 3.1
Yes 70.0 ± 2.4 51.0 ± 1.0 68.2 ± 2.7 59.2 ± 1.7 66.9 ± 3.4 52.5 ± 1.3

The ACL objective function above (Eq. 4) is simple but encapsulates desiderata for continual learning167

(Sec. 2.1). The last term of Eq. 4 with p(yAtest|xA
test;WA,B) or schematically p(A′|A,B), optimizes168

for backward transfer: (1) remembering the first task A after learning B (combatting catastrophic169

forgetting), and (2) leveraging learning of B to improve performance on the past task A. The170

second term of Eq. 4, p(yBtest|xB
test;WA,B) or schematically p(B′|A,B), optimizes forward transfer171

leveraging the past learning experience of A to improve predictions in the second task B, in addition172

to simply learning to solve Task B from the corresponding training examples. To complete, the first173

term of Eq. 4 is the single-task meta-learning objective for Task A.174

Overall Model Architecture. As we mention in Sec. 2, in our NN architecture, the core sequential175

dynamics of CL are learned by the self-referential layers. However, as an image-processing NN, our176

model makes use of a vision backend. We use the “Conv-4” architecture [21] (typically used in the177

context of few-shot learning) in all our experiments, except in the last one where we use a pre-trained178

vision Transformer [76]. Overall, the model takes an image as input, process it through a feedforward179

vision NN, whose output is fed to the SRWM-layer block. Note that this is one of the limitations of180

this work: more general ACL should also learn to modify the vision components.2181

Another crucial architectural choice that is specific to continual/multi-task image processing is182

normalization layers (see also Bronskill et al. [78]). Typical NNs used in few-shot learning (e.g.,183

Vinyals et al. [21]) contain batch normalization (BN; [79]) layers. All our models use instance184

normalization (IN; [80]) instead of BN because in our preliminary experiments, we expectably found185

IN to generalize much better than BN layers in the CL setting.186

4 Experiments187

4.1 Two-Task Setting: Comprehensible Study188

We first reveal the problem of “in-context catastrophic forgetting” and show how our ACL method189

(Sec. 3) can overcome it. As a minimum setting for this, we focus on the two-task “domain-190

2One “straightforward” architecture fitting the bill is an MLP-mixer architecture (Tolstikhin et al. [77]; built
of several linear layers), where all linear layers are replaced by the self-referential linear layers of Sec. 2.3.
While we implemented such a model, it turned out to be too slow for us to conduct corresponding experiments.
Our public code will include a “self-referential MLP-mixer” implementation, but for further experiments, we
leave the future work on such an architecture using more efficient CUDA kernels.

5



0 1000 2000 3000 4000 5000 6000
Training Step

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Lo
ss

Task A Position 1
Task A Position 2
Task B Position 1
Task B Position 2
Task A ACL bwd
Task B ACL bwd

(a) Case: Two tasks are learned simultaneously.

0 1000 2000 3000 4000 5000
Training Step

0.0

0.5

1.0

1.5

2.0

Lo
ss

Task A Position 1
Task A Position 2
Task B Position 1
Task B Position 2
Task A ACL bwd
Task B ACL bwd

(b) Case: One task is learned first (here Task A).

Figure 2: ACL/No-case meta-training curves displaying 6 individual meta-training loss terms, when
the last term of the ACL objective (the backward tranfer loss; “Task A ACL bwd” and “Task B ACL
bwd” in the legend) is not minimized (ACL/No case in Tables 1 and 2). Here Task A is Omniglot and
Task B is Mini-ImageNet. We observe that, in both cases, without explicit minimization, backward
transfer capability (purple and brown curves) of the learned learning algorithm gradually degrades
as it learns to learn a new task (all other colors), causing in-context catastrophic forgetting. Note
that blue/orange and green/red curve pairs almost overlap; indicating that when a task is learned, the
model can learn it whether it is in the first or second segment of the continual learning sequence.

incremental” CL setting (see Appendix A.1). We consider two meta-training task combinations:191

Omniglot [23] and Mini-ImageNet [21, 22] or FC100 [24] (which is based on CIFAR100 [27]) and192

Mini-ImageNet. The order of appearance of two tasks within meta-training sequences is alternated193

for every batch. Appendix A.2 provides further details. We compare systems trained with or without194

the backward transfer term in the ACL loss (the last term in Eq. 4).195

Unless otherwise indicated (e.g, later for classic Split-MNIST; Sec. 4.3), all tasks are configured196

to be a 5-way classification task. This is one of the classic configurations for few-shot learning tasks,197

and also allows us to evaluate the principle of ACL with reasonable computational costs (like any198

sequence learning-based meta-learning methods, scaling this to many more classes is challenging; we199

also discuss this in Sec. 5). For standard datasets such as MNIST, we split the dataset into sub-datasets200

of disjoint classes [81]: for example for MNIST which is originally a 10-way classification task, we201

split it into two 5-way tasks, one consisting of images of class ‘0’ to ‘4’ (‘MNIST-04’), and another202

one made of class ‘5’ to ‘9’ images (‘MNIST-59’). When we refer to a dataset without specifying203

the class range, we refer to the first sub-set. Unless stated otherwise, we concatenate 15 examples204

from each class for each task in the context for both meta-training and meta-testing (resulting in205

sequences of length 75 for each task). All images are resized to 32× 32-size 3-channel images, and206

normalized according to the original dataset statistics. We refer to Appendix A for further details.207

Table 1 shows the results when the models are meta-tested on the test sets of the corresponding208

few-shot learning datasets used for meta-training. We observe that for both pairs of meta-training209

tasks, the models without the ACL loss catastrophically forget the first task after learning the second210

one: the accuracy on the first task is at the chance level of about 20% for 5-way classification after211

learning the second task in-context (see rows with “ACL No”). The ACL loss clearly addresses this212

problem: the ACL-learned CL algorithms preserve the performance of the first task. This effect is213

particularly pronounced in the Omniglot/Mini-ImageNet case (involving two very different domains).214

Table 2 shows evaluations of the same models but using two standard datasets, 5-way MNIST and215

CIFAR-10, for meta-testing. Again, ACL-trained models better preserve the memory of the first216

task after learning the second one. In the Omniglot/Mini-ImageNet case, we even observe certain217

positive backward tranfer effects: in particular, in the “MNIST-then-CIFAR10” continual learning218

case, the performance on MNIST noticeably improves after learning CIFAR10 (possibly leveraging219

‘more data’ provided in-context).220

4.2 Analysis: Emergence of In-Context Catastrophic Forgetting221

Now we closely look at the emergence of “in-context catastrophic forgetting” during meta-training222

for the baseline models trained without the backward transfer term (the last/third term in Eq. 4) in223

6



Table 3: Classification accuracies (%) on the Split-MNIST domain-incremental (DIL) and class-
incremental learning (CIL) settings [6]. Both tasks are 5-task CL problems. For the CIL case, we
also report the 2-task case for which we can directly evaluate our out-of-the-box ACL meta-learner
of Sec. 4.1 (trained with a 5-way output and the 2-task ACL loss) which, however, is not applicable
(N.A.) to the 5-task CIL requiring a 10-way output. Mean/std over 10 training/meta-testing runs. No
method here requires replay memory. See Appendix A.7 & B for further details and discussions.

Domain Incremental Class Incremental

Method 5-task 2-task 5-task

Plain Stochastic Gradient Descent (SGD) 63.2 ± 0.4 48.8 ± 0.1 19.5 ± 0.1
Adam 55.2 ± 1.4 49.7 ± 0.1 19.7 ± 0.1

Adam + L2 66.0 ± 3.7 51.8 ± 1.9 22.5 ± 1.1
Elastic Weight Consolidation (EWC) 58.9 ± 2.6 49.7 ± 0.1 19.8 ± 0.1
Online EWC 57.3 ± 1.4 49.7 ± 0.1 19.8 ± 0.1
Synaptic Intelligence (SI) 64.8 ± 3.1 49.4 ± 0.2 19.7 ± 0.1
Memory Aware Synapses (MAS) 68.6 ± 6.9 49.6 ± 0.1 19.5 ± 0.3
Learning w/o Forgetting (LwF) 71.0 ± 1.3 - 24.2 ± 0.3

Online-aware Meta Learning (OML) 69.9 ± 2.8 46.6 ± 7.2 24.9 ± 4.1
+ optimized # meta-testing iterations 73.6 ± 5.3 62.1 ± 7.9 34.2 ± 4.6

Generative Meta-Continual Learning (GeMCL) 63.8 ± 3.8 91.2 ± 2.8 79.0 ± 2.1

ACL (Out-of-the-box, DIL, 2-task ACL model; Sec. 4.1) 72.2 ± 0.9 71.5 ± 5.9 N.A.
+ meta-finetuned with 5-task ACL loss, Omniglot 84.5 ± 1.6 96.0 ± 1.0 84.3 ± 1.2

the ACL objective loss (corresponding to the ACL/No cases in Tables 1 and 2). We focus on the224

Omniglot/Mini-ImageNet case, but similar trends can also be observed in the FC100/Mini-ImageNet225

case. Figures 2a and 2b show two representative cases we typically observe. These figures show an226

evolution of six individual meta-training loss terms (the lower the better), reported separately for227

the cases where Task A (here Omniglot) or Task B (here Mini-ImageNet) appears at the first (1) or228

second (2) position in the 2-task CL meta-training training sequences. 4 out of 6 curves correspond to229

the learning progress, showing whether the model becomes capable of in-context learning the given230

task (A or B) at the given position (1 or 2). The 2 remaining curves are the ACL backward tranfer231

losses, also measured for Task A and B separately here.232

Figure 2a shows the case where two tasks are learned about at the same time. We observe that when233

the learning curves go down, the ACL losses go up, indicating that more the model learns, more it234

tends to forget the task in-context learned previously. We also find this same trend when one task235

is learned before the other one as is the case in Figure 2b. Here Task A alone is learned first; while236

Task B is not learned, both learning and ACL curves go down for Task A (essentially, as the model237

does not learn the second task, there is no force that encourages forgetting). After around 3000 steps,238

the model also starts learning Task B. From this point, the ACL loss for Task A also starts to go239

up, indicating again an opposing force effect between learning a new task and remembering a past240

task. These observations clearly indicate that, without explicitly taking into account the backward241

transfer loss as part of learning objectives, our gradient descent search tends to find solutions/CL242

algorithms that prefer to erase previously learned knowledge (this is rather intuitive; it seems easier to243

find such algorithms that ignore any influence of the current learning to past learning than those that244

also preserve prior knowledge). In all cases, we find our ACL objective to be crucial for the learned245

CL algorithms to be capable of remembering the old task while also learning the new one.246

4.3 General Evaluation247

Evaluation on Standard Split-MNIST. Here we evaluate ACL on the standard Split-MNIST task in248

domain-incremental and class-incremental settings [6, 28], and compare its performance to existing249

CL and meta-CL algorithms (see Appendix A.7 for full references of these methods). Our comparison250

focuses on methods that do not require replay memory. Table 3 shows the results. Since our251

ACL-trained models are general-purpose learners, they can be directly evaluated (meta-tested) on252

a new task, here Split-MNIST. The second-to-last row of Table 3, “ACL (Out-of-the-box model)”,253

corresponds to our model from Sec. 4.1 meta-trained on Omniglot and Mini-ImageNet using the254

2-task ACL objective. It performs very competitively with the best existing methods in the domain-255

7



incremental setting, while it largely outperforms them (all but another meta-CL method, GeMCL) in256

the 2-task class-incremental setting. The same model can be further meta-finetuned using the 5-task257

version of the ACL loss (here we only used Omniglot as the meta-training data). The resulting model258

(the last row of Table 3) outperforms all other methods in all settings studied here. Note that on259

the ‘in-domain’ Omniglot test set, ACL and GeMCL perform similarly (see Appendix B.2/Table 9).260

We are not aware of any existing hand-crafted CL algorithms that can achieve ACL’s performance261

without any replay memory. We refer to Appendix A.7/B for further discussions and ablation studies.262

Evaluation on diverse task domains. Using the setting of Sec. 4.1, we also evaluate our ACL-trained263

models for CL involving more tasks/domains; using meta-test sequences made of MNIST, CIFAR-10,264

and Fashion MNIST. We also evaluate the impact of the number of tasks in the ACL objective: in265

addition to the model meta-trained on Omniglot/Mini-ImageNet (Sec. 4.1), we also meta-train a model266

(with the same architecture and hyper-parameters) using 3 tasks, Omniglot, Mini-ImageNet, and267

FC100, using the 3-task ACL objective (see Appendix A.5); which is meta-trained not only on longer268

CL sequences but also on more data. The full results of this experiment can be found in Appendix269

B.4. We find that the two ACL-trained models are indeed capable of retaining the knowledge without270

catastrophic forgetting for multiple tasks during meta-testing, while the performance on prior tasks271

gradually degrades as the model learns new tasks, and performance on new tasks becomes moderate272

(see also Sec. 5 on limitations). The 3-task version outperforms the 2-task one overall, encouragingly273

indicating a potential for further improvements even with a fixed parameter count.274

Going beyond: limitations and outlook. The experiments presented above effectively demonstrate275

the possibility to encode a continual learning algorithm into self-referential weight matrices, that276

outperforms handcrafted learning algorithms and existing metalearning approaches for CL. While277

we consider this as an important result for metalearning and in-context learning in general, we note278

that current state-of-the-art CL methods use neither regularization-based CL algorithms nor meta-279

continual learning methods we mention above, but the so-called learning to prompt (L2P)-family280

of methods [33, 34] that leverage pre-trained models, namely a vision Transformer (ViT) pre-trained281

on ImageNet [76]. A natural question we should ask is whether we could foresee ACL beyond the282

scope considered so far, and evaluate it in such a setting. To study this, we take a pre-trained (frozen)283

vision model, and add self-referential layers (to be meta-trained from scratch) on top of it to build a284

continual learner. This allows us to highlight an important challenge of in-context CL in what follows.285

We use two tasks from the L2P works above [33, 34]: 5-datasets [32] and Split-CIFAR-100, in the286

class-incremental setting, but we focus on a “mini” versions thereof: we only use the two first classes287

within each task (i.e., 2-way version) and for Split-CIFAR100, we only use the 5 first tasks; as we’ll288

see, this setting is enough to illustrate an important limitation of in-context CL. Again following289

L2P [33, 34], we use ViT-B/16 [76] (available via PyTorch) as the pre-trained vision model, which290

we keep frozen. We use the same configuration for the self-referential component from the Split-291

MNIST experiment. We meta-train the resulting model using Mini-ImageNet and Omniglot with the292

5-task ACL loss. Table 4 shows the results. Even in this simple “mini” version of the tasks, ACL’s293

performance is far behind that of L2P methods. Notably, the frozen ImageNet-pre-trained features294

with the meta-learner trained on Mini-ImageNet and Omniglot are not enough to perform well on the295

5-th task of Split-CIFAR100, and SVHN and notMNIST of 5-datasets. This shows the necessity to296

meta-train on more diverse tasks for in-context CL to be possibly successful in more general settings.297

Table 4: Experiments with “mini” Split-CIFAR100 and 5-datasets tasks. Meta-training is done using
Mini-ImageNet and Omniglot. All meta-evaluation images are therefore from unseen domains.
Numbers marked with * are reference numbers (evaluated in the more challenging, original version
of these tasks) which can not be directly compared to ours.

Split-CIFAR100 5-datasets

L2P [34] 83.9* ± 0.3 81.1* ± 0.9
DualPrompt [34] 86.5* ± 0.3 88.1* ± 0.4

ACL (Individual Task) Task 1 95.9 ± 0.9 CIFAR10 91.3 ± 1.2
Task 2 85.6 ± 3.6 MNIST 98.9 ± 0.3
Task 3 93.4 ± 1.4 Fashion 93.5 ± 2.0
Task 4 97.0 ± 0.7 SVHN 66.1 ± 9.4
Task 5 67.6 ± 7.0 notMNIST 76.3 ± 6.7

ACL 68.3 ± 2.0 61.5 ± 2.1

8



5 Discussion298

Other Limitations. In addition to the limitations already mentioned above, here we discuss others.299

First of all, as an in-context/learned learning algorithm, there are challenges in terms of both domain300

and length generalization (we qualitatively observe these to some extent in Sec. 4; further discussion301

and experimental results are presented in Appendix B.3 & B.5). Regarding the length generalization,302

we note that unlike the standard “quadratic" Transformers, linear Transformers/FWPs-like SRWMs303

can be trained by carrying over states across two consecutive batches for arbitrarily long sequences.304

Such an approach has been successfully applied to language modeling with FWPs [67]. This305

possibility, however, has not been investigated here, and is left for future work. Also, directly scaling306

ACL for real-world tasks requiring many more classes does not seem straightforward: it would307

require very long training sequences. That said, it may be possible that ACL could be achieved308

without exactly following the process we propose; as we discuss below for the case of LLMs, certain309

real-world data may naturally give rise to an ACL-like objective. This work is also limited to the310

task of image classification, which can be solved by feedforward NNs. Future work may investigate311

the possibility to extend ACL to continual learning of sequence learning tasks, such as continually312

learning new languages. Finally, ACL learns CL algorithms that are specific to the pre-specified313

model architecture; more general meta-learning algorithms may aim at achieving learning algorithms314

that are applicable to any model, as is the case for many classic learning algorithms.315

Related work. There are several recent works that are catagorized as ‘meta-continual learning’ or316

‘continual meta-learning’ (see, e.g., [29, 30, 82–84, 51]). For example, Javed and White [29], Beaulieu317

et al. [30] use “model-agnostic meta-learning” (MAML; [85, 86]) to meta-learn representations for318

CL while still making use of classic learning algorithms for CL; this requires tuning of the learning319

rate and number of iterations for optimal performance during CL at meta-test time (see, e.g., Appendix320

A.7). In contrast, our approach learn learning algorithms in the spirit of Hochreiter et al. [14], Younger321

et al. [15]; this may be categorized as ‘in-context continual learning.’ Several recent works (see, e.g.,322

[87, 88]) mention the possibility of such in-context CL but existing works [19, 89, 90] that learn mul-323

tiple tasks sequentially in-context do not focus on catastrophic forgetting which is one of the central324

challenges of CL. Here we show that in-context learning also suffers from catastrophic forgetting in325

general (Sec. 4.1-4.2) and propose ACL to address this problem. We also note that the use of SRWM is326

relevant to ‘continual meta-learning’ since with a regular sequence processor with slow weights, there327

remains the question of how to continually learn the slow weights (meta-parameters). In principle, re-328

cursive self-modification as in SRWM is an answer to this question as it collapses such meta-levels into329

single self-reference [12]. We also refer to [91–93] for other prior work on meta-continual learning.330

Artificial v. Natural ACL in Large Language Models? Recently, “on-the-fly” few-shot/meta331

learning capability of sequence processing NNs has attracted broader interests in the context of large332

language models (LLMs; [94]). In fact, the task of language modeling itself has a form of sequence333

processing with error feedback (essential for meta-learning [95]): the correct label to be predicted is334

fed to the model with a delay of one time step in an auto-regressive manner. Trained on a large amount335

of text covering a wide variety of credit assignment paths, LLMs exhibit certain sequential few-shot336

learning capabilities in practice [96]. This was rebranded as in-context learning, and has been the337

subject of numerous recent studies (e.g., [97–103, 71, 72]). Here we explicitly/artificially construct338

ACL meta-training sequences and objectives, but in modern LLMs trained on a large amount of data339

mixing a large diversity of dependencies using a large backpropagation span, it is conceivable that340

some ACL-like objectives may naturally appear in the data.341

6 Conclusion342

Our Automated Continual Learning (ACL) trains sequence-processing self-referential neural networks343

(SRNNs) to learn their own in-context continual (meta-)learning algorithms. ACL encodes classic344

desiderata for continual learning (e.g., forward and backward transfer) into the objective function of345

the meta-learner. ACL uses gradient descent to deal with classic challenges of CL, to automatically346

discover CL algorithms with good behavior. Once trained, our SRNNs autonomously run their347

own CL algorithms without requiring any human intervention. Our experiments reveal the original348

problem of in-context catastrophic forgetting, and demonstrate the effectiveness of the proposed349

approach to combat it. We demonstrate very promising results on the classic Split-MNIST benchmark350

where existing hand-crafted algorithms fail, while also discussing its limitations in more general351

scenarios. We believe this comprehensive study to be an important step for in-context CL research.352

9



References353

[1] David Eagleman. Livewired: The inside story of the ever-changing brain. 2020.354

[2] Michael McCloskey and Neal J Cohen. Catastrophic interference in connectionist networks:355

The sequential learning problem. In Psychology of learning and motivation, volume 24, pages356

109–165. 1989.357

[3] Roger Ratcliff. Connectionist models of recognition memory: constraints imposed by learning358

and forgetting functions. Psychological review, 97(2):285, 1990.359

[4] Robert M French. Catastrophic forgetting in connectionist networks. Trends in cognitive360

sciences, 3(4):128–135, 1999.361

[5] James L McClelland, Bruce L McNaughton, and Randall C O’Reilly. Why there are comple-362

mentary learning systems in the hippocampus and neocortex: insights from the successes and363

failures of connectionist models of learning and memory. Psychological review, 102(3):419,364

1995.365

[6] Yen-Chang Hsu, Yen-Cheng Liu, Anita Ramasamy, and Zsolt Kira. Re-evaluating continual366

learning scenarios: A categorization and case for strong baselines. In NeurIPS Workshop on367

Continual Learning, Montréal, Canada, December 2018.368

[7] Chris A Kortge. Episodic memory in connectionist networks. In 12th Annual Conference. CSS369

Pod, pages 764–771, 1990.370

[8] Robert M French. Using semi-distributed representations to overcome catastrophic forgetting371

in connectionist networks. In Proc. Cognitive science society conference, volume 1, pages372

173–178, 1991.373

[9] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins,374

Andrei A Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska,375

et al. Overcoming catastrophic forgetting in neural networks. Proc. National academy of376

sciences, 114(13):3521–3526, 2017.377

[10] Jonathan Schwarz, Wojciech Czarnecki, Jelena Luketina, Agnieszka Grabska-Barwinska,378

Yee Whye Teh, Razvan Pascanu, and Raia Hadsell. Progress & compress: A scalable frame-379

work for continual learning. In Proc. Int. Conf. on Machine Learning (ICML), pages 4535–380

4544, Stockholm, Sweden, July 2018.381

[11] Friedemann Zenke, Ben Poole, and Surya Ganguli. Continual learning through synaptic382

intelligence. In Proc. Int. Conf. on Machine Learning (ICML), pages 3987–3995, Sydney,383

Australia, August 2017.384

[12] Jürgen Schmidhuber. Steps towards “self-referential” learning. Technical Report CU-CS-627-385

92, Dept. of Comp. Sci., University of Colorado at Boulder, November 1992.386

[13] Jürgen Schmidhuber. Evolutionary principles in self-referential learning, or on learning how387

to learn: the meta-meta-... hook. PhD thesis, Technische Universität München, 1987.388

[14] Sepp Hochreiter, A. Steven Younger, and Peter R. Conwell. Learning to learn using gradient389

descent. In Proc. Int. Conf. on Artificial Neural Networks (ICANN), volume 2130, pages390

87–94, Vienna, Austria, August 2001.391

[15] A Steven Younger, Peter R Conwell, and Neil E Cotter. Fixed-weight on-line learning. IEEE392

Transactions on Neural Networks, 10(2):272–283, 1999.393

[16] Neil E Cotter and Peter R Conwell. Learning algorithms and fixed dynamics. In Proc. Int.394

Joint Conf. on Neural Networks (IJCNN), pages 799–801, Seattle, WA, USA, July 1991.395

[17] Neil E Cotter and Peter R Conwell. Fixed-weight networks can learn. In Proc. Int. Joint Conf.396

on Neural Networks (IJCNN), pages 553–559, San Diego, CA, USA, June 1990.397

[18] Nikhil Mishra, Mostafa Rohaninejad, Xi Chen, and Pieter Abbeel. A simple neural attentive398

meta-learner. In Int. Conf. on Learning Representations (ICLR), Vancouver, Cananda, 2018.399

10



[19] Kazuki Irie, Imanol Schlag, Róbert Csordás, and Jürgen Schmidhuber. A modern self-400

referential weight matrix that learns to modify itself. In Proc. Int. Conf. on Machine Learning401

(ICML), pages 9660–9677, Baltimore, MA, USA, July 2022.402

[20] Stephen T Grossberg. Studies of mind and brain: Neural principles of learning, perception,403

development, cognition, and motor control. Springer, 1982.404

[21] Oriol Vinyals, Charles Blundell, Tim Lillicrap, Koray Kavukcuoglu, and Daan Wierstra.405

Matching networks for one shot learning. In Proc. Advances in Neural Information Processing406

Systems (NIPS), pages 3630–3638, Barcelona, Spain, December 2016.407

[22] Sachin Ravi and Hugo Larochelle. Optimization as a model for few-shot learning. In Int. Conf.408

on Learning Representations (ICLR), Toulon, France, April 2017.409

[23] Brenden M Lake, Ruslan Salakhutdinov, and Joshua B Tenenbaum. Human-level concept410

learning through probabilistic program induction. Science, 350(6266):1332–1338, 2015.411

[24] Boris N. Oreshkin, Pau Rodríguez López, and Alexandre Lacoste. TADAM: task dependent412

adaptive metric for improved few-shot learning. In Proc. Advances in Neural Information413

Processing Systems (NeurIPS), pages 719–729, Montréal, Canada, December 2018.414

[25] Yann LeCun, Corinna Cortes, and Christopher JC Burges. The MNIST database of handwritten415

digits. URL http://yann. lecun. com/exdb/mnist, 1998.416

[26] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-MNIST: a novel image dataset for417

benchmarking machine learning algorithms. Preprint arXiv:1708.07747, 2017.418

[27] Alex Krizhevsky. Learning multiple layers of features from tiny images. Master’s thesis,419

Computer Science Department, University of Toronto, 2009.420

[28] Gido M Van de Ven and Andreas S Tolias. Three scenarios for continual learning. In NeurIPS421

Workshop on Continual Learning, Montréal, Canada, December 2018.422

[29] Khurram Javed and Martha White. Meta-learning representations for continual learning.423

In Proc. Advances in Neural Information Processing Systems (NeurIPS), pages 1818–1828,424

Vancouver, BC, Canada, December 2019.425

[30] Shawn Beaulieu, Lapo Frati, Thomas Miconi, Joel Lehman, Kenneth O. Stanley, Jeff Clune,426

and Nick Cheney. Learning to continually learn. In Proc. European Conf. on Artificial427

Intelligence (ECAI), pages 992–1001, August 2020.428

[31] Mohammadamin Banayeeanzade, Rasoul Mirzaiezadeh, Hosein Hasani, and Mahdieh So-429

leymani. Generative vs. discriminative: Rethinking the meta-continual learning. In Proc.430

Advances in Neural Information Processing Systems (NeurIPS), pages 21592–21604, Virtual431

only, December 2021.432

[32] Sayna Ebrahimi, Franziska Meier, Roberto Calandra, Trevor Darrell, and Marcus Rohrbach.433

Adversarial continual learning. In Proc. European Conf. on Computer Vision (ECCV), pages434

386–402, Glasgow, UK, August 2020.435

[33] Zifeng Wang, Zizhao Zhang, Chen-Yu Lee, Han Zhang, Ruoxi Sun, Xiaoqi Ren, Guolong Su,436

Vincent Perot, Jennifer G. Dy, and Tomas Pfister. Learning to prompt for continual learning.437

In Proc. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), pages 139–149,438

New Orleans, LA, USA, June 2022.439

[34] Zifeng Wang, Zizhao Zhang, Sayna Ebrahimi, Ruoxi Sun, Han Zhang, Chen-Yu Lee, Xiaoqi440

Ren, Guolong Su, Vincent Perot, Jennifer G. Dy, and Tomas Pfister. Dualprompt: Complemen-441

tary prompting for rehearsal-free continual learning. In Proc. European Conf. on Computer442

Vision (ECCV), pages 631–648, Tel Aviv, Israel, October 2022.443

[35] Sebastian Thrun. Lifelong learning algorithms. In Learning to learn, pages 181–209. 1998.444

[36] Rich Caruana. Multitask learning. Machine learning, 28:41–75, 1997.445

11



[37] Mark B. Ring. Continual Learning in Reinforcement Environments. PhD thesis, University of446

Texas at Austin, Austin, TX, USA, 1994.447

[38] Andrei A Rusu, Neil C Rabinowitz, Guillaume Desjardins, Hubert Soyer, James Kirkpatrick,448

Koray Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. Progressive neural networks. Preprint449

arXiv:1606.04671, 2016.450

[39] Anthony Robins. Catastrophic forgetting, rehearsal and pseudorehearsal. Connection Science,451

7(2):123–146, 1995.452

[40] Hanul Shin, Jung Kwon Lee, Jaehong Kim, and Jiwon Kim. Continual learning with deep453

generative replay. In Proc. Advances in Neural Information Processing Systems (NIPS), pages454

2990–2999, Long Beach, CA, USA, December 2017.455

[41] David Rolnick, Arun Ahuja, Jonathan Schwarz, Timothy P. Lillicrap, and Gregory Wayne.456

Experience replay for continual learning. In Proc. Advances in Neural Information Processing457

Systems (NeurIPS), pages 348–358, Vancouver, Canada, December 2019.458

[42] Matthew Riemer, Ignacio Cases, Robert Ajemian, Miao Liu, Irina Rish, Yuhai Tu, and459

Gerald Tesauro. Learning to learn without forgetting by maximizing transfer and minimizing460

interference. In Int. Conf. on Learning Representations (ICLR), New Orleans, LA, USA, May461

2019.462

[43] Yaqian Zhang, Bernhard Pfahringer, Eibe Frank, Albert Bifet, Nick Jin Sean Lim, and Yunzhe463

Jia. A simple but strong baseline for online continual learning: Repeated augmented rehearsal.464

In Proc. Advances in Neural Information Processing Systems (NeurIPS), New Orleans, LA,465

USA, December 2022.466

[44] David Lopez-Paz and Marc’Aurelio Ranzato. Gradient episodic memory for continual learning.467

In Proc. Advances in Neural Information Processing Systems (NIPS), pages 6467–6476, Long468

Beach, CA, USA, December 2017.469

[45] Tom Veniat, Ludovic Denoyer, and Marc’Aurelio Ranzato. Efficient continual learning with470

modular networks and task-driven priors. In Int. Conf. on Learning Representations (ICLR),471

Virtual only, May 2021.472

[46] Devang K Naik and Richard J Mammone. Meta-neural networks that learn by learning. In473

Proc. International Joint Conference on Neural Networks (IJCNN), volume 1, pages 437–442,474

Baltimore, MD, USA, June 1992.475

[47] Tom Bosc. Learning to learn neural networks. In NIPS Workshop on Reasoning, Attention,476

Memory, Montreal, Canada, December 2015.477

[48] Adam Santoro, Sergey Bartunov, Matthew Botvinick, Daan Wierstra, and Timothy P. Lillicrap.478

Meta-learning with memory-augmented neural networks. In Proc. Int. Conf. on Machine479

Learning (ICML), pages 1842–1850, New York City, NY, USA, June 2016.480

[49] Yan Duan, John Schulman, Xi Chen, Peter L Bartlett, Ilya Sutskever, and Pieter Abbeel. RL2:481

Fast reinforcement learning via slow reinforcement learning. Preprint arXiv:1611.02779,482

2016.483

[50] Jane Wang, Zeb Kurth-Nelson, Hubert Soyer, Joel Z. Leibo, Dhruva Tirumala, Rémi Munos,484

Charles Blundell, Dharshan Kumaran, and Matt M. Botvinick. Learning to reinforcement485

learn. In Proc. Annual Meeting of the Cognitive Science Society (CogSci), London, UK, July486

2017.487

[51] Tsendsuren Munkhdalai and Hong Yu. Meta networks. In Proc. Int. Conf. on Machine488

Learning (ICML), pages 2554–2563, Sydney, Australia, August 2017.489

[52] Tsendsuren Munkhdalai and Adam Trischler. Metalearning with Hebbian fast weights. Preprint490

arXiv:1807.05076, 2018.491

[53] Thomas Miconi, Kenneth Stanley, and Jeff Clune. Differentiable plasticity: training plastic492

neural networks with backpropagation. In Proc. Int. Conf. on Machine Learning (ICML),493

pages 3559–3568, Stockholm, Sweden, July 2018.494

12



[54] Thomas Miconi, Aditya Rawal, Jeff Clune, and Kenneth O. Stanley. Backpropamine: training495

self-modifying neural networks with differentiable neuromodulated plasticity. In Int. Conf. on496

Learning Representations (ICLR), New Orleans, LA, USA, May 2019.497

[55] Tsendsuren Munkhdalai, Alessandro Sordoni, Tong Wang, and Adam Trischler. Metalearned498

neural memory. In Proc. Advances in Neural Information Processing Systems (NeurIPS),499

pages 13310–13321, Vancouver, Canada, December 2019.500

[56] Louis Kirsch and Jürgen Schmidhuber. Meta learning backpropagation and improving it. In501

Proc. Advances in Neural Information Processing Systems (NeurIPS), pages 14122–14134,502

Virtual only, December 2021.503

[57] Mark Sandler, Max Vladymyrov, Andrey Zhmoginov, Nolan Miller, Tom Madams, Andrew504

Jackson, and Blaise Agüera y Arcas. Meta-learning bidirectional update rules. In Proc. Int.505

Conf. on Machine Learning (ICML), pages 9288–9300, Virtual only, July 2021.506

[58] Mike Huisman, Thomas M Moerland, Aske Plaat, and Jan N van Rijn. Are LSTMs good507

few-shot learners? Machine Learning, pages 1–28, 2023.508

[59] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,509

Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Proc. Advances in Neural510

Information Processing Systems (NIPS), pages 5998–6008, Long Beach, CA, USA, December511

2017.512

[60] Kazuki Irie, Róbert Csordás, and Jürgen Schmidhuber. Practical computational power of linear513

transformers and their recurrent and self-referential extensions. In Proc. Conf. on Empirical514

Methods in Natural Language Processing (EMNLP), Sentosa, Singapore, 2023.515

[61] Jürgen Schmidhuber. A self-referential weight matrix. In Proc. Int. Conf. on Artificial Neural516

Networks (ICANN), pages 446–451, Amsterdam, Netherlands, September 1993.517

[62] Jürgen Schmidhuber. Learning to control fast-weight memories: An alternative to recurrent518

nets. Technical Report FKI-147-91, Institut für Informatik, Technische Universität München,519

March 1991.520

[63] Jürgen Schmidhuber. Learning to control fast-weight memories: An alternative to dynamic521

recurrent networks. Neural Computation, 4(1):131–139, 1992.522

[64] Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Transformers523

are RNNs: Fast autoregressive transformers with linear attention. In Proc. Int. Conf. on524

Machine Learning (ICML), Virtual only, July 2020.525

[65] Krzysztof Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song, Andreea Gane,526

Tamas Sarlos, Peter Hawkins, Jared Davis, Afroz Mohiuddin, Lukasz Kaiser, et al. Rethinking527

attention with performers. In Int. Conf. on Learning Representations (ICLR), Virtual only,528

2021.529

[66] Hao Peng, Nikolaos Pappas, Dani Yogatama, Roy Schwartz, Noah A Smith, and Lingpeng530

Kong. Random feature attention. In Int. Conf. on Learning Representations (ICLR), Virtual531

only, 2021.532

[67] Imanol Schlag, Kazuki Irie, and Jürgen Schmidhuber. Linear Transformers are secretly fast533

weight programmers. In Proc. Int. Conf. on Machine Learning (ICML), Virtual only, July534

2021.535

[68] Kazuki Irie, Imanol Schlag, Róbert Csordás, and Jürgen Schmidhuber. Going beyond linear536

transformers with recurrent fast weight programmers. In Proc. Advances in Neural Information537

Processing Systems (NeurIPS), Virtual only, December 2021.538

[69] Kazuki Irie, Róbert Csordás, and Jürgen Schmidhuber. The dual form of neural networks539

revisited: Connecting test time predictions to training patterns via spotlights of attention. In540

Proc. Int. Conf. on Machine Learning (ICML), Baltimore, MD, USA, July 2022.541

13



[70] Mark A. Aizerman, Emmanuil M. Braverman, and Lev I. Rozonoer. Theoretical foundations542

of potential function method in pattern recognition. Automation and Remote Control, 25(6):543

917–936, 1964.544

[71] Johannes von Oswald, Eyvind Niklasson, Ettore Randazzo, João Sacramento, Alexander545

Mordvintsev, Andrey Zhmoginov, and Max Vladymyrov. Transformers learn in-context by546

gradient descent. In Proc. Int. Conf. on Machine Learning (ICML), Honolulu, HI, USA, July547

2023.548

[72] Damai Dai, Yutao Sun, Li Dong, Yaru Hao, Shuming Ma, Zhifang Sui, and Furu Wei. Why can549

GPT learn in-context? language models secretly perform gradient descent as meta-optimizers.550

In Proc. Findings Association for Computational Linguistics (ACL), pages 4005–4019, Toronto,551

Canada, July 2023.552

[73] Bernard Widrow and Marcian E Hoff. Adaptive switching circuits. In Proc. IRE WESCON553

Convention Record, pages 96–104, Los Angeles, CA, USA, August 1960.554

[74] Kazuki Irie, Francesco Faccio, and Jürgen Schmidhuber. Neural differential equations for555

learning to program neural nets through continuous learning rules. In Proc. Advances in Neural556

Information Processing Systems (NeurIPS), New Orleans, LA, USA, December 2022.557

[75] Kazuki Irie and Jürgen Schmidhuber. Images as weight matrices: Sequential image generation558

through synaptic learning rules. In Int. Conf. on Learning Representations (ICLR), Kigali,559

Rwanda, May 2023.560

[76] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,561

Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly,562

Jakob Uszkoreit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image563

recognition at scale. In Int. Conf. on Learning Representations (ICLR), Virtual only, May564

2021.565

[77] Ilya O. Tolstikhin, Neil Houlsby, Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Thomas566

Unterthiner, Jessica Yung, Andreas Steiner, Daniel Keysers, Jakob Uszkoreit, Mario Lucic,567

and Alexey Dosovitskiy. MLP-Mixer: An all-MLP architecture for vision. In Proc. Advances568

in Neural Information Processing Systems (NeurIPS), pages 24261–24272, Virtual only,569

December 2021.570

[78] John Bronskill, Jonathan Gordon, James Requeima, Sebastian Nowozin, and Richard E. Turner.571

TaskNorm: Rethinking batch normalization for meta-learning. In Proc. Int. Conf. on Machine572

Learning (ICML), pages 1153–1164, Virtual only, 2020.573

[79] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training574

by reducing internal covariate shift. In Proc. Int. Conf. on Machine Learning (ICML), pages575

448–456, Lille, France, July 2015.576

[80] Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. Instance normalization: The missing577

ingredient for fast stylization. Preprint arXiv:1607.08022, 2016.578

[81] Rupesh Kumar Srivastava, Jonathan Masci, Sohrob Kazerounian, Faustino J. Gomez, and Jür-579

gen Schmidhuber. Compete to compute. In Proc. Advances in Neural Information Processing580

Systems (NIPS), pages 2310–2318, Lake Tahoe, NV, USA, December 2013.581

[82] Massimo Caccia, Pau Rodríguez, Oleksiy Ostapenko, Fabrice Normandin, Min Lin, Lucas582

Page-Caccia, Issam Hadj Laradji, Irina Rish, Alexandre Lacoste, David Vázquez, and Laurent583

Charlin. Online fast adaptation and knowledge accumulation (OSAKA): a new approach to584

continual learning. In Proc. Advances in Neural Information Processing Systems (NeurIPS),585

Virtual only, December 2020.586

[83] Xu He, Jakub Sygnowski, Alexandre Galashov, Andrei A Rusu, Yee Whye Teh, and Razvan587

Pascanu. Task agnostic continual learning via meta learning. Preprint arXiv:1906.05201,588

2019.589

14



[84] Pau Ching Yap, Hippolyt Ritter, and David Barber. Addressing catastrophic forgetting in590

few-shot problems. In Proc. Int. Conf. on Machine Learning (ICML), pages 11909–11919,591

Virtual only, July 2021.592

[85] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast593

adaptation of deep networks. In Proc. Int. Conf. on Machine Learning (ICML), pages 1126–594

1135, Sydney, Australia, August 2017.595

[86] Chelsea Finn and Sergey Levine. Meta-learning and universality: Deep representations596

and gradient descent can approximate any learning algorithm. In Int. Conf. on Learning597

Representations (ICLR), Vancouver, Canada, April 2018.598

[87] Kazuki Irie and Jürgen Schmidhuber. Accelerating neural self-improvement via bootstrapping.599

In ICLR Workshop on Mathematical and Empirical Understanding of Foundation Models,600

Kigali, Rwanda, May 2023.601

[88] Johannes von Oswald, Eyvind Niklasson, Maximilian Schlegel, Seijin Kobayashi, Nicolas602

Zucchet, Nino Scherrer, Nolan Miller, Mark Sandler, Max Vladymyrov, Razvan Pascanu, et al.603

Uncovering mesa-optimization algorithms in Transformers. Preprint arXiv:2309.05858, 2023.604

[89] Julian Coda-Forno, Marcel Binz, Zeynep Akata, Matthew Botvinick, Jane X Wang, and Eric605

Schulz. Meta-in-context learning in large language models. Preprint arXiv:2305.12907, 2023.606

[90] Soochan Lee, Jaehyeon Son, and Gunhee Kim. Recasting continual learning as sequence607

modeling. In Proc. Advances in Neural Information Processing Systems (NeurIPS), New608

Orleans, LA, USA, December 2023.609

[91] Jürgen Schmidhuber. On learning how to learn learning strategies. Technical Report FKI-198-610

94, Institut für Informatik, Technische Universität München, November 1994.611

[92] Jürgen Schmidhuber. Beyond “genetic programming": Incremental self-improvement. In Proc.612

Workshop on Genetic Programming at ML95, pages 42–49, 1995.613

[93] Jürgen Schmidhuber, Jieyu Zhao, and Marco Wiering. Shifting inductive bias with success-614

story algorithm, adaptive Levin search, and incremental self-improvement. Machine Learning,615

28(1):105–130, 1997.616

[94] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Lan-617

guage models are unsupervised multitask learners. [Online]. : https://blog.openai.com/better-618

language-models/, 2019.619

[95] Jürgen Schmidhuber. Making the world differentiable: On using fully recurrent self-supervised620

neural networks for dynamic reinforcement learning and planning in non-stationary environ-621

ments. Institut für Informatik, Technische Universität München. Technical Report FKI-126,622

90, 1990.623

[96] Tom B Brown et al. Language models are few-shot learners. In Proc. Advances in Neural624

Information Processing Systems (NeurIPS), Virtual only, December 2020.625

[97] Sang Michael Xie, Aditi Raghunathan, Percy Liang, and Tengyu Ma. An explanation of626

in-context learning as implicit bayesian inference. In Int. Conf. on Learning Representations627

(ICLR), Virtual only, April 2022.628

[98] Sewon Min, Xinxi Lyu, Ari Holtzman, Mikel Artetxe, Mike Lewis, Hannaneh Hajishirzi, and629

Luke Zettlemoyer. Rethinking the role of demonstrations: What makes in-context learning630

work? In Proc. Conf. on Empirical Methods in Natural Language Processing (EMNLP), pages631

11048–11064, Abu Dhabi, UAE, December 2022.632

[99] Kang Min Yoo, Junyeob Kim, Hyuhng Joon Kim, Hyunsoo Cho, Hwiyeol Jo, Sang-Woo633

Lee, Sang-goo Lee, and Taeuk Kim. Ground-truth labels matter: A deeper look into input-634

label demonstrations. In Proc. Conf. on Empirical Methods in Natural Language Processing635

(EMNLP), pages 2422–2437, Abu Dhabi, UAE, December 2022.636

15



[100] Stephanie CY Chan, Adam Santoro, Andrew Kyle Lampinen, Jane X Wang, Aaditya K Singh,637

Pierre Harvey Richemond, James McClelland, and Felix Hill. Data distributional properties638

drive emergent in-context learning in transformers. In Proc. Advances in Neural Information639

Processing Systems (NeurIPS), New Orleans, LA, USA, November 2022.640

[101] Stephanie CY Chan, Ishita Dasgupta, Junkyung Kim, Dharshan Kumaran, Andrew K641

Lampinen, and Felix Hill. Transformers generalize differently from information stored in642

context vs in weights. In NeurIPS Workshop on Memory in Artificial and Real Intelligence643

(MemARI), New Orleans, LA, USA, November 2022.644

[102] Louis Kirsch, James Harrison, Jascha Sohl-Dickstein, and Luke Metz. General-purpose in-645

context learning by meta-learning transformers. In NeurIPS Workshop on Memory in Artificial646

and Real Intelligence (MemARI), New Orleans, LA, USA, November 2022.647

[103] Ekin Akyürek, Dale Schuurmans, Jacob Andreas, Tengyu Ma, and Denny Zhou. What learning648

algorithm is in-context learning? investigations with linear models. In Int. Conf. on Learning649

Representations (ICLR), Kigali, Rwanda, May 2023.650

[104] Gido M Van de Ven and Andreas S Tolias. Generative replay with feedback connections as a651

general strategy for continual learning. Preprint arXiv:1809.10635, 2018.652

[105] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Baolin Wu, Andrew Y Ng, et al.653

Reading digits in natural images with unsupervised feature learning. In NIPS workshop on654

deep learning and unsupervised feature learning, Granada, Spain, December 2011.655

[106] Yaroslav Bulatov. Notmnist dataset. Google (Books/OCR), Tech. Rep.[Online]. Available:656

http://yaroslavvb. blogspot. it/2011/09/notmnist-dataset. html, 2011.657

[107] Tristan Deleu, Tobias Würfl, Mandana Samiei, Joseph Paul Cohen, and Yoshua Bengio.658

Torchmeta: A meta-learning library for PyTorch. Preprint arXiv:1909.06576, 2019.659

[108] Jerry A Fodor and Zenon W Pylyshyn. Connectionism and cognitive architecture: A critical660

analysis. Cognition, 28(1-2):3–71, 1988.661

[109] Rahaf Aljundi, Francesca Babiloni, Mohamed Elhoseiny, Marcus Rohrbach, and Tinne Tuyte-662

laars. Memory aware synapses: Learning what (not) to forget. In Proc. European Conf. on663

Computer Vision (ECCV), pages 144–161, Munich, Germany, September 2018.664

[110] Zhizhong Li and Derek Hoiem. Learning without forgetting. In Proc. European Conf. on665

Computer Vision (ECCV), pages 614–629, Amsterdam, Netherlands, October 2016.666

[111] Adam Paszke et al. Pytorch: An imperative style, high-performance deep learning library.667

In Proc. Advances in Neural Information Processing Systems (NeurIPS), pages 8026–8037,668

Vancouver, Canada, December 2019.669

[112] Róbert Csordás, Kazuki Irie, and Jürgen Schmidhuber. The devil is in the detail: Simple tricks670

improve systematic generalization of transformers. In Proc. Conf. on Empirical Methods in671

Natural Language Processing (EMNLP), Punta Cana, Dominican Republic, November 2021.672

[113] Kazuki Irie, Imanol Schlag, Róbert Csordás, and Jürgen Schmidhuber. Improving baselines in673

the wild. In Workshop on Distribution Shifts, NeurIPS, Virtual only, 2021.674

[114] James Requeima, Jonathan Gordon, John Bronskill, Sebastian Nowozin, and Richard E. Turner.675

Fast and flexible multi-task classification using conditional neural adaptive processes. In Proc.676

Advances in Neural Information Processing Systems (NeurIPS), pages 7957–7968, Vancouver,677

Canada, December 2019.678

[115] Eleni Triantafillou, Tyler Zhu, Vincent Dumoulin, Pascal Lamblin, Utku Evci, Kelvin Xu, Ross679

Goroshin, Carles Gelada, Kevin Swersky, Pierre-Antoine Manzagol, and Hugo Larochelle.680

Meta-dataset: A dataset of datasets for learning to learn from few examples. In Int. Conf. on681

Learning Representations (ICLR), Addis Ababa, Ethiopia, April 2020.682

[116] Jürgen Schmidhuber. One big net for everything. Preprint arXiv:1802.08864, 2018.683

16



[117] Alex Graves, Marc G. Bellemare, Jacob Menick, Rémi Munos, and Koray Kavukcuoglu.684

Automated curriculum learning for neural networks. In Proc. Int. Conf. on Machine Learning685

(ICML), pages 1311–1320, Sydney, Australia, August 2017.686

A Experimental Details687

A.1 Continual and Meta-learning Terminologies688

We review the following classic terminologies of continual learning and meta-learning used through-689

out this paper.690

Continual learning. “Domain-incremental learning (DIL)” and “class-incremental learning (CIL)”691

are two classic settings in continual learning [104, 28, 6]. They differ as follows. Let M and N692

denote positive integers. Consider continual learning of M tasks where each task is an N -way693

classification. In the DIL case, a model has an N -way output classification layer, i.e., the class ‘0’ of694

the first task shares the same weights as the class ‘0’ of the second task, and so on. In the CIL case, a695

model’s output dimension is N ∗M ; the class indices of different tasks are not shared, neither are the696

corresponding weights in the output layer. In our experiments, all CIL models have the (N ∗M)-way697

output from the first task (instead of progressively increasing the output size). In this work, we skip698

the third variant called “task-incremental learning” which assumes that we have access to the task699

identity as an extra input, as it makes the CL problem almost trivial. CIL is typically reported to be700

the hardest setting among them.701

Meta-learning. We need to introduce “meta-training” and “meta-test” terminologie since each of702

these phases involve “training/test” processes within itself. Each of them requires the corresponding703

training and test examples. We refer to these as “meta-training training/test examples”, and “meta-test704

training/test examples” following the terminology of Beaulieu et al. [30]. While these are rather705

“heavy” terminologies, they are unambiguous and help avoid potential confusions. In both phases,706

our sequence-processing neural net observes a sequence of (meta-training or meta-test) training707

examples—each consisting of input features and a correct label—, and the resulting states of the708

sequence processor (i.e., weights in the case of SRWM) are used to make predictions on (meta-709

training or meta-test) test examples—input features presented to the model without its label. During710

the meta-training phase, we modify the trainable parameters of the meta-learner through gradient711

descent minimizing the meta-learning loss function (using backpropagation through time). During712

meta-testing, no human-designed optimization for weight modification is used anymore; the SRWMs713

modify their own weights following their own learning rules defined as their forward pass (Eqs. 1-3).714

In connection with the now-popular in-context learning [96], we also refer to a (meta-training or715

meta-test) training-example sequence as context.716

A.2 Datasets717

For classic image classification datasets such as MNIST [25], CIFAR10 [27], and FashionMNIST718

(FMNIST; Xiao et al. [26]) we refer to the original references for details.719

For Omniglot [23], we use Vinyals et al. [21]’s 1028/172/432-split for the train/validation/test set, as720

well as their data augmentation methods using rotation of 90, 180, and 270 degrees. Original images721

are grayscale hand-written characters from 50 different alphabets. There are 1632 different classes722

with 20 examples for each class.723

Mini-ImageNet contains color images from 100 classes with 600 examples for each class. We use the724

standard train/valid/test class splits of 64/16/20 following [22].725

FC100 is based on CIFAR100 [27]. 100 color image classes (600 images per class, each of size726

32× 32) are split into train/valid/test classes of 60/20/20 [24].727

The “5-datasets” dataset [32] consists of 5 datasets: CIFAR10, MNIST, FashionMNST, SVNH [105],728

and notMNIST [106].729

Split-CIFAR100 is also based on CIFAR100. The standard setting splits CIFAR100 into 10 10-way730

classification tasks.731

17



Meta-train/test sequence construction procedure. We use torchmeta [107] which provides732

common few-shot/meta learning settings for these datasets to sample and construct their meta-733

train/test datasets. The construction of “meta-training training” sequences for an N -way classification,734

using a dataset containing C classes works as follows; for each sequence, we sample N random735

but distinct classes out of C (N < C). The resulting classes are re-labelled such that each class is736

assigned to one out of N distinct random label index which is unique to the sequence. For each of737

these N classes, we sample K examples. We randomly order these N ∗ K examples to obtain a738

sequence. Each such a sequence “simulates” an unknown task the model has to learn.739

A.3 Training Details & Hyper-Parameters740

We use the same model and training hyper-parameters in all our experiments. All hyper-parameters741

are summarized in Table 5. We use the Adam optimizer with the standard Transformer learning rate742

warmup scheduling [59]. The vision backend is the classic 4-layer convolutional NN of Vinyals743

et al. [21]. Most configurations follow those of Irie et al. [19]; except that we initialize the ‘query’744

sub-matrix in the self-referential weight matrix using a normal distribution with a mean value of 0745

and standard deviation of 0.01/
√
dhead while other sub-matrices use an std of 1/

√
dhead (motivated746

by the fact that a generated query vector is immediately multiplied with the same SRWM to produce747

a value vector). For any further details, we’ll refer the readers to our public code we’ll release upon748

acceptance. We conduct our experiments using a single V100-32GB, 2080-12GB or P100-16GB749

GPUs, and the longest single training run takes about one day.750

Table 5: Hyper-parameters.

Parameters Values

Number of SRWM layers 2
Total hidden size 256

Feedforward block multiplier 2
Number of heads 16

Batch size 16 or 32

A.4 Evaluation Procedure751

For evaluation on few-shot learning datasets (i.e., Omniglot, Mini-Imagenet and FC100), we use 5752

different sets consisting of 32 K random test episodes each, and report mean and standard deviation.753

For evaluation on standard datasets, we use 5 different random support sets for in-context learning,754

and evaluate on the entire test set. We report the corresponding mean and standard deviation across755

these 5 evaluation runs.756

For the Split-MNIST experiment, we do 10 meta-testing runs to compute the mean and standard757

deviation as the baseline models are also trained for 10 runs in Hsu et al. [6] (see other details in758

Appendix A.7).759

A.5 ACL Objectives with More Tasks760

We can straightforwardly extend the 2-task version of ACL presented in Sec. 3 to more tasks. In761

the 3-task case (we denote the three tasks as A, B, and C) used in Sec. 4.3, the objective function762

contains six terms. Following three terms are added to Eq. 4:763

−
(
log(p(yCtest|xC

test;WA,B,C)) + log(p(yBtest|xB
test;WA,B,C)) + log(p(yAtest|xA

test;WA,B,C))
)

This also naturally extends to the 5-task loss used in the Split-MNIST experiment (Table 3). As764

one can observe, the number of terms rapidly/quadratically increases with the number of tasks.765

Nevertheless, computing these loss terms isn’t immediately impractical because they essentially just766

require forwarding the network for one step, for many independent inputs/images. This can be heavily767

parallelized as a batch operation. While this can be a concern when scaling up more, a natural open768

research question is whether we really need all these terms in the case we have many more tasks.769

18



Table 6: Impact of the choice of meta-validation datasets. Classification accuracies (%) on three
datasets: Split-CIFAR-10, Split-Fashion MNIST (Split-FMNIST), and Split-MNIST in the domain-
incremental setting (we omit “Split-” in the second column). “OOB” denotes “out-of-the-box”.
“mImageNet” here refers to mini-ImageNet.

Meta-Test on Split-

Meta-Finetune Datasets Meta-Validation Sets MNIST FMNIST CIFAR-10

None (OOB: 2-task ACL; Sec. 4.1) Omniglot + mImageNet 72.2 ± 0.9 75.6 ± 0.7 65.3 ± 1.6

Omniglot MNIST 84.3 ± 1.2 78.1 ± 1.9 55.8 ± 1.2
FMNIST 81.6 ± 1.3 90.4 ± 0.5 59.5 ± 2.1
CIFAR10 75.2 ± 2.3 78.2 ± 0.9 63.4 ± 1.4

Omniglot + mImageNet MNIST 76.6 ± 1.4 85.3 ± 1.1 66.2 ± 1.1
FMNIST 73.2 ± 2.3 89.9 ± 0.6 66.6 ± 0.7
CIFAR10 76.3 ± 3.0 88.1 ± 1.3 68.6 ± 0.5

Ideally, we want these models to ‘systematically generalize’ to more tasks even when they are trained770

with only a handful of them [108]. This is an interesting research question on generalization to be771

studied in a future work.772

A.6 Auxiliary 1-shot Learning Objective773

In practice, instead of training the models only for “15-shot learning,” we also add an auxiliary loss774

for 1-shot learning. This naturally encourages the models to learn in-context from the first examples.775

A.7 Details of the Split-MNIST experiment776

Here we provide details of the Split-MNIST experiments presented in Sec. 4 and Table 3.777

Split-MNIST is obtained by transforming the classic 10-class single-task MNIST dataset into a778

sequence of 5 tasks by partitioning the 10 classes into 5 groups/pairs of two classes each, in a fixed779

order from 0 to 9 (i.e., grouping 0/1, 2/3, 4/5, 6/7, and 8/9). Regarding the difference between780

domain/class-incremental settings, we refer to Appendix A.1.781

The baseline methods presented in Table 3 include: standard SGD and Adam optimizers, Adam782

with the L2 regularization, elastic weight consolidation [9] and its online variant [10], synaptic783

intelligence [11], memory aware synapses [109], learning without forgetting (LwF; Li and Hoiem784

[110]). For these methods, we directly take the numbers reported in Hsu et al. [6] for the 5-task785

domain/class-incremental settings.786

For the 2-task class incremental setting, we use Hsu et al. [6]’s code to train the correspond models787

(the number for LwF is currently missing as it is not implemented in their code base; we plan to add788

the corresponding/missing entry in Table 3 for the final version of this paper).789

Finally we also evaluate two meta-CL baselines: Online-aware Meta-Learning (OML; Javed and790

White [29]) and Generative Meta-Continual Learning (GeMCL; Banayeeanzade et al. [31]). OML is791

a MAML-based meta-learning approach. We note that as reported by Javed and White [29] in their792

public code repository; after some critical bug fix, the performance of their OML matches that of793

Beaulieu et al. [30] (which is a direct application of OML to another model architecture). Therefore,794

we focus on OML as our main MAML-based baseline. We take the out-of-the-box model (meta-795

trained for Omniglot, with a 1000-way output) made publicly available by Javed and White [29]. We796

evaluate the corresponding model in two ways. In the first, ‘out-of-the-box’ case, we take the meta-797

pre-trained model and only tune its meta-testing learning rate (which is done by Javed and White [29]798

even for meta-testing in Omniglot). We find that this setting does not perform very well; in the other799

case (‘optimized # meta-testing iterations’), we additionally tune the number of meta-test training800

iterations. We’ve done a grid search of the meta-test learning rate in 3 ∗ {1e−2, 1e−3, 1e−4, 1e−5}801

and the number of meta-test training steps in {1, 2, 5, 8, 10} using a meta-validation set based on an802

MNIST validation set (5 K held-out images from the training set); we found the learning rate of 3e−4803

and 8 steps to consistently perform the best in all our settings. We’ve also tried it ‘with’ and ‘without’804

19



Table 7: Impact of the number of in-context examples. Classification accuracies (%) on Split-MNIST
in the 2-task and 5-task class-incremental learning (CIL) settings and the 5-task domain-incremental
learning (DIL) setting. For ACL models, we use the same number of examples for meta-validation as
for meta-training. According to Banayeeanzade et al. [31], GeMCL is meta-trained with the 5-shot
setting but meta-validated in the 15-shot setting.

Number of Examples DIL CIL 2-task CIL 5-task

Meta-Train/Valid Meta-Test GeMCL ACL GeMCL ACL GeMCL ACL

5 5 - 84.1 ± 1.2 - 93.4 ± 1.2 - 74.6 ± 2.3
15 - 83.8 ± 2.8 - 94.3 ± 1.9 - 65.5 ± 4.0

15 5 62.2 ± 5.2 83.9 ± 1.0 87.3 ± 2.5 93.6 ± 1.7 71.7 ± 2.5 76.7 ± 3.6
15 63.8 ± 3.8 84.5 ± 1.6 91.2 ± 2.8 96.0 ± 1.0 79.0 ± 2.1 84.3 ± 1.2

the standard mean/std normalization of the MNIST dataset; better performance was achieved without805

such normalization (which is in fact consistent as they do not normalize the Omniglot dataset for806

their meta-training/testing). Their performance on the 5-task class-incremental setting is somewhat807

surprising/disappointing (since genenralization from Omniglot to MNIST is typically straightforward,808

at least, in common non-continual few-shot learning settings; see, e.g., Munkhdalai and Yu [51]). At809

the same time, to the best of our knowledge, OML-trained models have not been tested in such a810

condition in prior work; from what we observe, the publicly available out-of-the-box model might811

be overtuned for Omniglot/Mini-ImageNet or the frozen ‘representation network’ is not ideal for812

genenralization. We note that the sensitivity of these MAML-based methods [29, 30] w.r.t. meta-test813

hyper-parameters has been also noted by Banayeeanzade et al. [31]; these are characteristics of814

hand-crafted learning algorithms that we want to avoid with learned learning algorithms.815

We use code and a pre-trained model (trained on Omniglot) made public by Banayeeanzade et al.816

[31] for the GeMCL baseline (see also Table 7); like our method, GeMCL also do not require any817

special tuning at test-time.818

Our out-of-the-box ACL models (trained on Omniglot and Mini-ImageNet) do not require any819

tuning at meta-test time. Nevertheless, we’ve checked the effect of the number of meta-test training820

examples (5 vs. 15; 15 is the number used in meta-training); we found the consistent number, i.e., 15,821

to work better than 5. For the version that is meta-finetuned using the 5-task ACL objective (using822

only the Omniglot dataset), we use 5 or 15 examples for both meta-train and meta-test training (see an823

ablation study in Table 7). To obtain a sequence of 5 tasks, we simply sample 5 tasks from Omniglot824

(in principle, we should make sure that different tasks in the same sequence have no class overlap;825

in practice, our current implementation simply randomly draws 5 independent tasks from Omniglot).826

A.8 Details of the Split-CIFAR100 and 5-datasets experiment using ViT827

As we described in Sec. 4, for the experiments on Split-CIFAR100 and 5-datasets, following828

Wang et al. [33, 34], we use ViT-B/16 pre-trained on ImageNet [76] which is available through829

torchvision [111]. In this experiments, we resize all images to 3x224x224 and feed them to the830

ViT. We remove the output layer of the ViT, and use its 768-dimensional feature from the penultimate831

layer as the image encoding. The self-referential component which is added to this encoder has the832

same architecture (2 layers, 16 heads) as the rest of the paper (see all hyper-parameters in Table 5)833

All ViT parameters are frozen during meta-training.834

B Extra Experimental Results835

B.1 Ablation Studies on the Meta-validation Dataset836

Here we conduct ablation studies on the choice of meta-validation sets to select model checkpoints. In837

general, when dealing with out-of-domain generalization, the choice of validation procedures to select838

final model checkpoints plays a crucial role in the evaluation of the corresponding method [112, 113].839

The out-of-the-box models are chosen based on the average meta-validation performance on the840

validation set corresponding to the few-shot learning datasets used in meta-training: Omniglot and841

20



Table 8: Meta-testing on sequences that are longer than those from meta-training. Classification
accuracies (%) on 5-task Split-FMNIST and 5-task Split-MNIST in the domain-incremental
settings. The model is the one finetuned with 5-task ACL loss using Omniglot as the meta-finetuning
set and FMNIST as the meta-validation set (i.e., the numbers in the top part of the table are taken
from Table 6). In the first column, “Split-FMNIST, Split-MNIST” indicates continual learning of 5
Split-FMNIST tasks followed by 5 tasks of Split-MNIST (and “Split-MNIST, Split-FMNIST” is the
opposite order). Performance is measured at the end of the entire sequence.

Meta-Test Test Tasks

Meta-Test Training Task Sequence # Tasks Split-FMNIST Split-MNIST

Split-FMNIST 5 90.4 ± 0.5 -
Split-MNIST 5 - 81.6 ± 1.3

Split-FMNIST, Split-MNIST 10 79.3 ± 2.7 74.3 ± 0.9
Split-MNIST, Split-FMNIST 10 78.1 ± 3.1 78.5 ± 1.7

Table 9: Classification acuracies (%) on 5-task 2-way Split-Omniglot. Mean/std is computed over 10
meta-test runs.

Method Domain Incremental Class Incremental

GeMCL 64.6 ± 9.2 97.4 ± 2.7
ACL 92.3 ± 0.4 96.8 ± 0.8

mini-ImageNet (or Omniglot, mini-ImageNet, and FC100 in the case of 3-task ACL), independently of842

any potential meta-test datasets. In contrast, in the meta-finetuning process of Table 3, we selected our843

model checkpoint by meta-validation on the MNIST validation dataset (we held out 5 K images from844

the training set). Here we evaluate ACL models meta-finetuned for the “5-task domain-incremental845

binary classification” on three Split-‘X’ tasks where ‘X’ is MNIST, FashionMNIST (FMNIST) or846

CIFAR-10 for various choices of meta-validation sets (in each case we hold out 5 K images from847

the corresponding training set). In addition, we also evaluate the effect of meta-finetuning datasets848

(Omniglot only v. Omniglot and mini-ImageNet). Table 6 shows the results (we use 15 meta-training849

and meta-testing examples except for the Omniglot-finedtuned/MNIST-validated model from Table 3850

which happens to be configured with 5 examples; this will be fixed in the final version). Effectively,851

meta-validation on the matching validation set is useful. Also, meta-finetuning only on Omniglot is852

beneficial for the performance on MNIST when meta-validated on MNIST or FMNIST. However,853

importantly, we emphasize that our ultimate goal is not to obtain a model that is specifically tuned for854

certain datasets; we aim at building models that generally work well across a wide range of tasks855

(ideally on any tasks); in fact, several existing works in the few-shot learning literature evaluate856

their methods in such settings (see, e.g., Requeima et al. [114], Bronskill et al. [78], Triantafillou857

et al. [115]). This also goes hand-in-hand with scaling up ACL (our current model is tiny; see858

hyper-parameters in Table 5; the vision component is also a shallow ‘Conv-4’ net) and various other859

considerations on self-improving continual learners (see, e.g., Schmidhuber [116]), such as automated860

curriculum learning [117].861

B.2 Performance on Split-Omniglot862

Here we report the performance of the models used in the Split-MNIST experiment (Sec. 4.3) on863

“in-domain” 5-task 2-way Split-Omniglot. Table 9 shows the result. Performance is very similar864

between our ACL and the baseline GeMCL on this task in the class incremental setting, unlike on865

Split-MNIST (Table 3) where we observe a larger performance gap between these same models. Here866

we also include the “domain incremental” setting for the sake of completeness but note that GeMCL867

is not originally trained for this setting.868

21



Table 10: 5-way classification accuracies using 15 examples for each class for each task in the context.
2-task models are meta-trained on Omniglot and Mini-ImageNet, while 3-task models are in addition
meta-trained on FC100. ‘A, B’ in ‘Context/Train’ column indicates that models sequentially observe
meta-test training examples of Task A then B; evaluation is only done at the end of the sequence. “no
ACL” is the baseline 2-task models trained without the ACL loss.

Meta-Testing Tasks Number of Meta-Training Tasks

Context/Train Test 2 (no ACL) 2 3

A: MNIST-04 A 71.1 ± 4.0 75.4 ± 3.0 89.7 ± 1.6
B: CIFAR10-04 B 51.5 ± 1.4 51.6 ± 1.3 55.3 ± 0.9
C: MNIST-59 C 65.9 ± 2.4 63.0 ± 3.3 76.1 ± 2.0
D: FMNIST-04 D 52.8 ± 3.4 54.8 ± 1.3 59.2 ± 4.0

Average 60.3 61.2 70.1

A, B A 43.7 ± 2.3 81.5 ± 2.7 88.0 ± 2.2
B 49.4 ± 2.4 50.8 ± 1.3 52.9 ± 1.2

Average 46.6 66.1 70.5

A, B, C A 26.5 ± 3.2 64.5 ± 6.0 82.2 ± 1.7
B 32.3 ± 1.7 50.8 ± 1.2 50.3 ± 2.0
C 56.5 ± 8.1 33.7 ± 2.2 44.3 ± 3.0

Average 38.4 49.7 58.9

A, B, C, D A 24.6 ± 2.7 64.3 ± 4.8 78.9 ± 2.3
B 20.6 ± 2.3 47.5 ± 1.0 49.2 ± 1.3
C 38.5 ± 4.4 32.7 ± 1.9 45.4 ± 3.9
D 36.1 ± 2.5 31.2 ± 4.9 30.1 ± 5.8

Average 30.0 43.9 50.9

B.3 Effect of Number of In-Context Examples869

Table 7 shows an ablation study on the number of examples used for meta-training and meta-testing870

on the Split-MNIST task. We observe that for an ACL model trained only with 5 examples during871

meta-training, more examples (15 examples) provided during meta-testing is not beneficial. In fact,872

they even largely hurt in certain cases (see the last column); this is one form of “length generalization”873

problem. When the number of meta-training examples is consistent with the one used during874

meta-testing, the 15-example case consistently outperforms the 5-example one.875

B.4 Effect of Number of Tasks in the ACL Loss876

Table 10 provides the complete results discussed in Sec. 4.3 under “Evaluation on diverse task877

domains”.878

B.5 Further Discussion on Limitations879

Here we provide further discussion and experimental results on the limitations of our approach as a880

learned algorithm.881

Domain generalization. As a data-driven learned algorithm, the domain generalization capability882

is a typical limitation as it depends on the meta-trained data. Certain results we presented above883

are representative of this limitation. In particular, in Table 6, the model meta-trained/finetuned on884

Omniglot using Split-MNIST as meta-validation set do not perform well on Split-CIFAR10. While885

meta-training and meta-validating on a larger/diverse set of datasets may be an immediate remedy886

to obtain more robust ACL models, we note that since ACL is also a “continual meta-learning”887

algorithm (Sec. 5), an ideal ACL model should also continually incorporate and learn from more data888

during potentially lifelong meta-testing; we leave such an investigation for future work.889

Length generalization. We already qualitatively observed the limited length generalization capabil-890

ity in Table 10 (meta-trained with up to 3 tasks and meta-tested with up to 4 tasks). Here we provide891

one more experiment evaluating ACL models meta-trained for 5 tasks on a concatenation of two892

5-task Split-MNIST and Split-FMNIST tasks (resulting in 10 tasks). Table 8 shows the results. Again,893

22



while the model does not completely break, increasing the number of tasks to 10 rapidly degrades the894

performance compared to the 5-task setting the model is meta-trained for. Similarly, its performance895

on the Split-Omniglot domain incremental setting (Sec. B.2) degrades with increased numbers of896

tasks: accuracies for 5, 10 and 20 tasks are 92.3%± 0.4, 82.0%± 0.4 and 67.6%± 1.1 respectively.897

As noted in Sec. 5, this is a general limitation of sequence processing neural networks, and there is a898

potential remedy for this limitation (meta-training on more tasks and “context carry-over”) which we899

leave for future work.900

B.6 A Comment on Meta-Generalization901

We also note that in general, “unseen” datasets do not necessarily imply that they are harder tasks than902

“in-domain” test sets; when meta-trained on Omniglot and mini-ImageNet, meta-generalization on903

“unseen” MNIST is easier (the accuracy is higher) than on the “in-domain” test set of mini-ImageNet904

with heldout/unseen classes (compare Tables 1 and 2).905

23



NeurIPS Paper Checklist906

1. Claims907

Question: Do the main claims made in the abstract and introduction accurately reflect the908

paper’s contributions and scope?909

Answer: [Yes]910

Justification: We accurately state contributions and scope of the work in the abstract and911

introduction.912

Guidelines:913

• The answer NA means that the abstract and introduction do not include the claims914

made in the paper.915

• The abstract and/or introduction should clearly state the claims made, including the916

contributions made in the paper and important assumptions and limitations. A No or917

NA answer to this question will not be perceived well by the reviewers.918

• The claims made should match theoretical and experimental results, and reflect how919

much the results can be expected to generalize to other settings.920

• It is fine to include aspirational goals as motivation as long as it is clear that these goals921

are not attained by the paper.922

2. Limitations923

Question: Does the paper discuss the limitations of the work performed by the authors?924

Answer: [Yes]925

Justification: We discuss limitations of our method in Sec. 4 and 5.926

Guidelines:927

• The answer NA means that the paper has no limitation while the answer No means that928

the paper has limitations, but those are not discussed in the paper.929

• The authors are encouraged to create a separate "Limitations" section in their paper.930

• The paper should point out any strong assumptions and how robust the results are to931

violations of these assumptions (e.g., independence assumptions, noiseless settings,932

model well-specification, asymptotic approximations only holding locally). The authors933

should reflect on how these assumptions might be violated in practice and what the934

implications would be.935

• The authors should reflect on the scope of the claims made, e.g., if the approach was936

only tested on a few datasets or with a few runs. In general, empirical results often937

depend on implicit assumptions, which should be articulated.938

• The authors should reflect on the factors that influence the performance of the approach.939

For example, a facial recognition algorithm may perform poorly when image resolution940

is low or images are taken in low lighting. Or a speech-to-text system might not be941

used reliably to provide closed captions for online lectures because it fails to handle942

technical jargon.943

• The authors should discuss the computational efficiency of the proposed algorithms944

and how they scale with dataset size.945

• If applicable, the authors should discuss possible limitations of their approach to946

address problems of privacy and fairness.947

• While the authors might fear that complete honesty about limitations might be used by948

reviewers as grounds for rejection, a worse outcome might be that reviewers discover949

limitations that aren’t acknowledged in the paper. The authors should use their best950

judgment and recognize that individual actions in favor of transparency play an impor-951

tant role in developing norms that preserve the integrity of the community. Reviewers952

will be specifically instructed to not penalize honesty concerning limitations.953

3. Theory Assumptions and Proofs954

Question: For each theoretical result, does the paper provide the full set of assumptions and955

a complete (and correct) proof?956

Answer: [NA]957

24



Justification: This is not a theoretical paper.958

Guidelines:959

• The answer NA means that the paper does not include theoretical results.960

• All the theorems, formulas, and proofs in the paper should be numbered and cross-961

referenced.962

• All assumptions should be clearly stated or referenced in the statement of any theorems.963

• The proofs can either appear in the main paper or the supplemental material, but if964

they appear in the supplemental material, the authors are encouraged to provide a short965

proof sketch to provide intuition.966

• Inversely, any informal proof provided in the core of the paper should be complemented967

by formal proofs provided in appendix or supplemental material.968

• Theorems and Lemmas that the proof relies upon should be properly referenced.969

4. Experimental Result Reproducibility970

Question: Does the paper fully disclose all the information needed to reproduce the main ex-971

perimental results of the paper to the extent that it affects the main claims and/or conclusions972

of the paper (regardless of whether the code and data are provided or not)?973

Answer: [Yes]974

Justification: We provide experimental details in the main text and details in Appendix A.975

We also provide our code in the supplemental material.976

Guidelines:977

• The answer NA means that the paper does not include experiments.978

• If the paper includes experiments, a No answer to this question will not be perceived979

well by the reviewers: Making the paper reproducible is important, regardless of980

whether the code and data are provided or not.981

• If the contribution is a dataset and/or model, the authors should describe the steps taken982

to make their results reproducible or verifiable.983

• Depending on the contribution, reproducibility can be accomplished in various ways.984

For example, if the contribution is a novel architecture, describing the architecture fully985

might suffice, or if the contribution is a specific model and empirical evaluation, it may986

be necessary to either make it possible for others to replicate the model with the same987

dataset, or provide access to the model. In general. releasing code and data is often988

one good way to accomplish this, but reproducibility can also be provided via detailed989

instructions for how to replicate the results, access to a hosted model (e.g., in the case990

of a large language model), releasing of a model checkpoint, or other means that are991

appropriate to the research performed.992

• While NeurIPS does not require releasing code, the conference does require all submis-993

sions to provide some reasonable avenue for reproducibility, which may depend on the994

nature of the contribution. For example995

(a) If the contribution is primarily a new algorithm, the paper should make it clear how996

to reproduce that algorithm.997

(b) If the contribution is primarily a new model architecture, the paper should describe998

the architecture clearly and fully.999

(c) If the contribution is a new model (e.g., a large language model), then there should1000

either be a way to access this model for reproducing the results or a way to reproduce1001

the model (e.g., with an open-source dataset or instructions for how to construct1002

the dataset).1003

(d) We recognize that reproducibility may be tricky in some cases, in which case1004

authors are welcome to describe the particular way they provide for reproducibility.1005

In the case of closed-source models, it may be that access to the model is limited in1006

some way (e.g., to registered users), but it should be possible for other researchers1007

to have some path to reproducing or verifying the results.1008

5. Open access to data and code1009

Question: Does the paper provide open access to the data and code, with sufficient instruc-1010

tions to faithfully reproduce the main experimental results, as described in supplemental1011

material?1012

25



Answer: [Yes]1013

Justification: We provide experimental details in the main text and details in Appendix A.1014

We also provide our code in the supplemental material. The data we use are classic datasets1015

which are publicly available.1016

Guidelines:1017

• The answer NA means that paper does not include experiments requiring code.1018

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/1019

public/guides/CodeSubmissionPolicy) for more details.1020

• While we encourage the release of code and data, we understand that this might not be1021

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not1022

including code, unless this is central to the contribution (e.g., for a new open-source1023

benchmark).1024

• The instructions should contain the exact command and environment needed to run to1025

reproduce the results. See the NeurIPS code and data submission guidelines (https:1026

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.1027

• The authors should provide instructions on data access and preparation, including how1028

to access the raw data, preprocessed data, intermediate data, and generated data, etc.1029

• The authors should provide scripts to reproduce all experimental results for the new1030

proposed method and baselines. If only a subset of experiments are reproducible, they1031

should state which ones are omitted from the script and why.1032

• At submission time, to preserve anonymity, the authors should release anonymized1033

versions (if applicable).1034

• Providing as much information as possible in supplemental material (appended to the1035

paper) is recommended, but including URLs to data and code is permitted.1036

6. Experimental Setting/Details1037

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-1038

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the1039

results?1040

Answer: [Yes]1041

Justification: We provide experimental details in the main text and details in Appendix A.1042

We also provide our code in the supplemental material.1043

Guidelines:1044

• The answer NA means that the paper does not include experiments.1045

• The experimental setting should be presented in the core of the paper to a level of detail1046

that is necessary to appreciate the results and make sense of them.1047

• The full details can be provided either with the code, in appendix, or as supplemental1048

material.1049

7. Experiment Statistical Significance1050

Question: Does the paper report error bars suitably and correctly defined or other appropriate1051

information about the statistical significance of the experiments?1052

Answer: [Yes]1053

Justification: All our results are mean/std computed using 10 evaluation seeds.1054

Guidelines:1055

• The answer NA means that the paper does not include experiments.1056

• The authors should answer "Yes" if the results are accompanied by error bars, confi-1057

dence intervals, or statistical significance tests, at least for the experiments that support1058

the main claims of the paper.1059

• The factors of variability that the error bars are capturing should be clearly stated (for1060

example, train/test split, initialization, random drawing of some parameter, or overall1061

run with given experimental conditions).1062

• The method for calculating the error bars should be explained (closed form formula,1063

call to a library function, bootstrap, etc.)1064

26

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• The assumptions made should be given (e.g., Normally distributed errors).1065

• It should be clear whether the error bar is the standard deviation or the standard error1066

of the mean.1067

• It is OK to report 1-sigma error bars, but one should state it. The authors should1068

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis1069

of Normality of errors is not verified.1070

• For asymmetric distributions, the authors should be careful not to show in tables or1071

figures symmetric error bars that would yield results that are out of range (e.g. negative1072

error rates).1073

• If error bars are reported in tables or plots, The authors should explain in the text how1074

they were calculated and reference the corresponding figures or tables in the text.1075

8. Experiments Compute Resources1076

Question: For each experiment, does the paper provide sufficient information on the com-1077

puter resources (type of compute workers, memory, time of execution) needed to reproduce1078

the experiments?1079

Answer: [Yes]1080

Justification: We provide compute resource related information in Appendix A.1081

Guidelines:1082

• The answer NA means that the paper does not include experiments.1083

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,1084

or cloud provider, including relevant memory and storage.1085

• The paper should provide the amount of compute required for each of the individual1086

experimental runs as well as estimate the total compute.1087

• The paper should disclose whether the full research project required more compute1088

than the experiments reported in the paper (e.g., preliminary or failed experiments that1089

didn’t make it into the paper).1090

9. Code Of Ethics1091

Question: Does the research conducted in the paper conform, in every respect, with the1092

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?1093

Answer: [NA]1094

Justification: We do not have anything to report.1095

Guidelines:1096

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.1097

• If the authors answer No, they should explain the special circumstances that require a1098

deviation from the Code of Ethics.1099

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-1100

eration due to laws or regulations in their jurisdiction).1101

10. Broader Impacts1102

Question: Does the paper discuss both potential positive societal impacts and negative1103

societal impacts of the work performed?1104

Answer: [NA]1105

Justification: Our work does not have any such impacts.1106

Guidelines:1107

• The answer NA means that there is no societal impact of the work performed.1108

• If the authors answer NA or No, they should explain why their work has no societal1109

impact or why the paper does not address societal impact.1110

• Examples of negative societal impacts include potential malicious or unintended uses1111

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations1112

(e.g., deployment of technologies that could make decisions that unfairly impact specific1113

groups), privacy considerations, and security considerations.1114

27

https://neurips.cc/public/EthicsGuidelines


• The conference expects that many papers will be foundational research and not tied1115

to particular applications, let alone deployments. However, if there is a direct path to1116

any negative applications, the authors should point it out. For example, it is legitimate1117

to point out that an improvement in the quality of generative models could be used to1118

generate deepfakes for disinformation. On the other hand, it is not needed to point out1119

that a generic algorithm for optimizing neural networks could enable people to train1120

models that generate Deepfakes faster.1121

• The authors should consider possible harms that could arise when the technology is1122

being used as intended and functioning correctly, harms that could arise when the1123

technology is being used as intended but gives incorrect results, and harms following1124

from (intentional or unintentional) misuse of the technology.1125

• If there are negative societal impacts, the authors could also discuss possible mitigation1126

strategies (e.g., gated release of models, providing defenses in addition to attacks,1127

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from1128

feedback over time, improving the efficiency and accessibility of ML).1129

11. Safeguards1130

Question: Does the paper describe safeguards that have been put in place for responsible1131

release of data or models that have a high risk for misuse (e.g., pretrained language models,1132

image generators, or scraped datasets)?1133

Answer: [NA]1134

Justification: Our work does not imply any such risks.1135

Guidelines:1136

• The answer NA means that the paper poses no such risks.1137

• Released models that have a high risk for misuse or dual-use should be released with1138

necessary safeguards to allow for controlled use of the model, for example by requiring1139

that users adhere to usage guidelines or restrictions to access the model or implementing1140

safety filters.1141

• Datasets that have been scraped from the Internet could pose safety risks. The authors1142

should describe how they avoided releasing unsafe images.1143

• We recognize that providing effective safeguards is challenging, and many papers do1144

not require this, but we encourage authors to take this into account and make a best1145

faith effort.1146

12. Licenses for existing assets1147

Question: Are the creators or original owners of assets (e.g., code, data, models), used in1148

the paper, properly credited and are the license and terms of use explicitly mentioned and1149

properly respected?1150

Answer: [Yes]1151

Justification: Our codebase includes certain publicly available code. The corresponding1152

license files are included in the supplemental material.1153

Guidelines:1154

• The answer NA means that the paper does not use existing assets.1155

• The authors should cite the original paper that produced the code package or dataset.1156

• The authors should state which version of the asset is used and, if possible, include a1157

URL.1158

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.1159

• For scraped data from a particular source (e.g., website), the copyright and terms of1160

service of that source should be provided.1161

• If assets are released, the license, copyright information, and terms of use in the1162

package should be provided. For popular datasets, paperswithcode.com/datasets1163

has curated licenses for some datasets. Their licensing guide can help determine the1164

license of a dataset.1165

• For existing datasets that are re-packaged, both the original license and the license of1166

the derived asset (if it has changed) should be provided.1167

28

paperswithcode.com/datasets


• If this information is not available online, the authors are encouraged to reach out to1168

the asset’s creators.1169

13. New Assets1170

Question: Are new assets introduced in the paper well documented and is the documentation1171

provided alongside the assets?1172

Answer: [Yes]1173

Justification: The documentations of our code are included in the readme file in the supple-1174

mental material.1175

Guidelines:1176

• The answer NA means that the paper does not release new assets.1177

• Researchers should communicate the details of the dataset/code/model as part of their1178

submissions via structured templates. This includes details about training, license,1179

limitations, etc.1180

• The paper should discuss whether and how consent was obtained from people whose1181

asset is used.1182

• At submission time, remember to anonymize your assets (if applicable). You can either1183

create an anonymized URL or include an anonymized zip file.1184

14. Crowdsourcing and Research with Human Subjects1185

Question: For crowdsourcing experiments and research with human subjects, does the paper1186

include the full text of instructions given to participants and screenshots, if applicable, as1187

well as details about compensation (if any)?1188

Answer: [NA]1189

Justification: We do not have such experiments.1190

Guidelines:1191

• The answer NA means that the paper does not involve crowdsourcing nor research with1192

human subjects.1193

• Including this information in the supplemental material is fine, but if the main contribu-1194

tion of the paper involves human subjects, then as much detail as possible should be1195

included in the main paper.1196

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,1197

or other labor should be paid at least the minimum wage in the country of the data1198

collector.1199

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human1200

Subjects1201

Question: Does the paper describe potential risks incurred by study participants, whether1202

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)1203

approvals (or an equivalent approval/review based on the requirements of your country or1204

institution) were obtained?1205

Answer: [NA]1206

Justification: We do not have such experiments.1207

Guidelines:1208

• The answer NA means that the paper does not involve crowdsourcing nor research with1209

human subjects.1210

• Depending on the country in which research is conducted, IRB approval (or equivalent)1211

may be required for any human subjects research. If you obtained IRB approval, you1212

should clearly state this in the paper.1213

• We recognize that the procedures for this may vary significantly between institutions1214

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the1215

guidelines for their institution.1216

• For initial submissions, do not include any information that would break anonymity (if1217

applicable), such as the institution conducting the review.1218

29


	Introduction
	Background
	Continual Learning
	Few-shot/meta-learning via Sequence Learning
	Self-Referential Weight Matrices

	Method
	Experiments
	Two-Task Setting: Comprehensible Study
	Analysis: Emergence of In-Context Catastrophic Forgetting
	General Evaluation

	Discussion
	Conclusion
	Experimental Details
	Continual and Meta-learning Terminologies
	Datasets
	Training Details & Hyper-Parameters
	Evaluation Procedure
	ACL Objectives with More Tasks
	Auxiliary 1-shot Learning Objective
	Details of the Split-MNIST experiment
	Details of the Split-CIFAR100 and 5-datasets experiment using ViT

	Extra Experimental Results
	Ablation Studies on the Meta-validation Dataset
	Performance on Split-Omniglot
	Effect of Number of In-Context Examples
	Effect of Number of Tasks in the ACL Loss
	Further Discussion on Limitations
	A Comment on Meta-Generalization


