
Interoperable Natural Language Interfaces for
Self-Driving Labs via Model Context Protocol

Anonymous Author(s)
Affiliation
Address
email

Abstract

The development of self-driving laboratories (SDLs) is accelerating materials1

discovery by automating synthesis and characterization with robotic platforms and2

diverse instrumentation. However, the lack of standardized software interfaces3

hinders their broader adoption and interoperability. A parallel challenge arises with4

building agentic AI that can reliably control diverse physical systems. In this work,5

we present an architecture that integrates the Model Context Protocol (MCP)—an6

open standard for tool interaction with large language models (LLMs)—with7

an interoperable laboratory orchestration layer. This enables natural language8

interaction across the full spectrum of SDL functionality, from direct instrument9

control to closed-loop workflow design. We demonstrate its capabilities through10

two representative use cases: (1) optimization of liquid handling accuracy and (2)11

synthesis with computer vision monitoring. By bridging natural language interfaces,12

standardized protocols, and SDL interoperability, this architecture lowers the13

barrier to entry for both domain scientists and developers, paving the way for more14

adoptable, scalable, and intelligent laboratory automation.15

1 Introduction16

The convergence of artificial intelligence (AI) and automated experimentation is catalyzing a paradigm17

shift in materials science [1]. Generative models can now propose novel materials in silico, promising18

to unlock transformative innovations in critical areas such as energy, healthcare, and sustainability [2,19

3]. The ultimate goal is to realize this vision in practice through self-driving laboratories (SDLs),20

which integrate AI with robots to automate synthesis and characterization [4, 5]. In the past decade,21

multiple state-of-the-art SDLs have been developed to address material, organic chemistry, and global22

challenges in health, climate, and energy [6, 7, 8, 9, 10, 11, 12].23

Despite these advances, the necessity of custom scripts and nature of diverse hardware configurations24

require considerable programming proficiency and often results in isolated, non-transferable systems.25

The lack of standardized interfaces has also hindered the generalization of these approaches, slowing26

down adoption within the broader scientific community. Several general-purpose graphical orchestra-27

tion platforms have been developed, including AlabOS [13], ChemOS 2.0 [14], NIMS-OS [15] and28

IvoryOS [16]. At the same time, the rapid advancement of Large Language Models (LLMs) enables29

protocol translation and robotic action planning, from experimental description to machine-executable30

code [17, 18, 19, 20, 21, 22]. The capability of controlling a robotic system through natural language31

communication promises more intuitive human–robot interaction and scalable multi-agent integration32

[4, 23, 24, 25, 26, 27].33

To bridge the gap between high-level scientific intent and low-level hardware control, we introduce a34

Model Context Protocol (MCP) server that enables natural language interaction with any Python-35

based SDLs. The framework extends IvoryOS [16] with the MCP open standard, creating a robust36

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.



and intuitive conversational interface. We demonstrate how this architecture democratizes laboratory37

automation by allowing users to perform direct hardware control, design complex workflows, and38

manage data through simple natural language commands. With two distinct use cases — one focused39

on autonomous optimization and the other on a multi-instrument workflow — we showcase the40

system’s ability to translate complex scientific goals into executable, production-ready code.41

2 Background: The IvoryOS Foundation42

IvoryOS is an open-source orchestrator that automatically generates web interfaces for Python-based43

SDLs [16]. The software features three design principles: (i) automatic discovery of available44

functions and instruments, (ii) a visual programming interface to lower the entry barrier for domain45

experts, and (iii) integration of optimizers for adaptive experimentation (Figure 1). This allows46

researchers, even those with limited programming experience, to design, manage, and execute47

complex experiments. The foundational paper demonstrated its successful integration across six48

different SDLs, proving its adaptability.49

3 System Architecture50

Extending the base architecture, the natural language interface is achieved by creating an MCP51

server that acts as a bridge between the high-level reasoning capabilities of LLMs and the low-level52

control functions managed by IvoryOS (Figure 1). IvoryOS Backend: IvoryOS serves as the53

foundational layer, providing a robust interface to diverse laboratory hardware and tasks. Its key54

feature is the ability to introspect existing Python scripts, automatically discovering functions that55

control instruments (e.g., pumps, robotic arms, sensors) and exposing them through a web API. This56

eliminates the need for manual API creation and allows scientists to use their existing control code.57

IvoryOS Client: The IvoryOS Python client is a convenient interface to interact with the IvoryOS58

API, providing explicit functions for direct control, workflow configuration, execution, status queries,59

and data retrieval (Appendix A). MCP Server: The MCP server exposes IvoryOS client functions60

into a set of "tools" that are discoverable and callable by an LLM agent. When an agent queries the61

MCP server, it receives a manifest of all available tools, including their names, descriptions, and62

required parameters. This allows the agent to understand the lab’s capabilities without any prior63

hard-coding. LLM: The MCP host is model-agnostic. For simplicity and ease of adoption, we64

demonstrate the integration using the Claude Desktop App with the Claude Sonnet 4 model.65

Figure 1: The IvoryOS MCP System Architecture. Our contribution (top, green area) is an MCP
server that translates natural language commands into function calls. These are processed by the
IvoryOS Client and sent as API requests to the underlying IvoryOS platform.

2



4 Demonstrations in SDL Context66

4.1 Base Case: Direct Hardware Control67

Direct control of platform components is achieved via the execute-task tool, which enables the68

LLM to call any single function of the SDL. This granular control can perform immediate actions69

without the overhead of creating a formal script. For instance, a charge solid operation is scripted as70

the following function definition. When prompting for operation, the task can be triggered through71

execute-task function calling handled by the LLM.72

Example Operation

class Protocol:
def charge_solid(

self,
solid_weight: float,
container_type: str,
index: str = None

):...
73

User Prompt

Charge 5 mg of solid to HPLC vial A1.
74

Generated Tool Call

execute_task(
component="deck.protocol",
method="charge_solid",
kwargs={

"solid_weight": 5.0,
"container_type": "hplc",
"index": "A1"

}
)

75

4.2 Use Case 1: Workflow Optimization76

Precise control of liquid handling is fundamental in chemistry and materials synthesis. We tasked the77

system to optimize the dosing accuracy of a mobile liquid handler, a common and often challenging78

task. The workflows of charge solvent and evaluate mean error are predefined on the robotic79

platform designed for liquid-liquid extraction. An LLM agent was given the high-level goal: optimize80

the mobile liquid handler accuracy in 60 trials with the following parameters (Figure 2A). The agent81

autonomously designed and executed an optimization workflow. It first used the ‘platform-info‘ tool82

to understand the platform, such as available hardware and execution rules, followed by loading83

existing workflows or scripting from scratch. The closed-loop process is designed with the help of an84

included prompt for inputting parameters and objectives for ax-platform [28] (Appendix B). All85

tool calling decisions are driven entirely by the LLM, demonstrating the system’s ability to perform86

hardware control and execute complex optimization routines through natural language.87

4.3 Use Case 2: Multi-Equipment Coordination and Process Control88

Building on the optimization of existing workflows demonstrated in Use Case 1, we present a more89

complex scenario: a de novo monitoring process with computer vision. The system was given the90

high-level natural language specification: Implement continuous stirred tank reactors (CSTR) using91

computer vision with detailed control logic (Figure 2B). The LLM agent autonomously generated92

a sophisticated workflow, coordinating nine different instruments: two computer vision sensors for93

real-time volume monitoring, two syringe pumps for slurry transfer, three flow pumps for reagents,94

3



Figure 2: Exemplary Use Cases of the MCP System. (A) Use Case 1: Autonomous Optimization.
A user specifies a high-level optimization goal for a liquid handler, including the parameters and
their respective ranges. The LLM agent interprets this request, selects the necessary tools, and
initiates an optimization campaign using the run-workflow-campaign feature. (B) Use Case 2:
Complex Workflow Synthesis from Natural Language. A user provides a detailed specification
for a multi-instrument continuous synthesis process. The LLM agent parses this complex logic
and generate an executable workflow, demonstrating its capability for de novo process design and
implementation.

a vacuum pump for filtration, and a vibrator for anti-clogging maintenance. The resulting code95

implements a complex state-machine logic where CSTR-1 transfers supersaturated solution to CSTR-96

2 when its volume exceeds 80%, while CSTR-2 transfers its contents to a filter. Crucially, the97

LLM translated nuanced natural language safety protocols—such as “stops vacuum pumps before98

transfers” and “implements a back-flush to prevent clogging”—directly into instrument commands99

(Appendix C).100

This use case demonstrates the system’s ability to translate a complex process description into101

production-ready automation code, complete with sophisticated orchestration, real-time feedback102

control, and robust error handling. This capability is essential for the future of autonomous materials103

discovery, where such complex experimental protocols must be generated and executed reliably at104

scale.105

5 Conclusion and Future Work106

In summary, we have shown that integrating MCP with a standardized laboratory orchestration107

layer enables natural language interfaces to span the full spectrum of SDL capabilities, ranging108

from instrument-level control to closed-loop workflow optimization. The two representative use109

cases—liquid-handling optimization and synthesis with vision-based monitoring—illustrate both the110

versatility and practicality of this approach. Looking ahead, we envision this architecture serving as a111

foundation for broader interoperability across diverse laboratory platforms, lowering adoption barriers112

for researchers, and facilitating the integration of increasingly autonomous, agentic AI systems in113

material science.114

References115

[1] Milad Abolhasani, Keith A. Brown, and Guest Editors. “Role of AI in experimental materials science”. In:116

MRS Bulletin 48.2 (Feb. 2023), pp. 134–141. ISSN: 1938-1425. DOI: 10.1557/s43577-023-00482-y.117

URL: https://doi.org/10.1557/s43577-023-00482-y.118

[2] Albertus Denny Handoko and Riko I Made. Artificial Intelligence and Generative Models for Materials119

Discovery – A Review. 2025. arXiv: 2508.03278 [cond-mat.mtrl-sci]. URL: https://arxiv.120

org/abs/2508.03278.121

4

https://doi.org/10.1557/s43577-023-00482-y
https://doi.org/10.1557/s43577-023-00482-y
https://arxiv.org/abs/2508.03278
https://arxiv.org/abs/2508.03278
https://arxiv.org/abs/2508.03278
https://arxiv.org/abs/2508.03278


[3] Mehrad Ansari et al. dZiner: Rational Inverse Design of Materials with AI Agents. 2024. arXiv: 2410.122

03963 [physics.chem-ph]. URL: https://arxiv.org/abs/2410.03963.123

[4] Gary Tom et al. “Self-Driving Laboratories for Chemistry and Materials Science”. en. In: Chemical124

Reviews (Aug. 2024), acs.chemrev.4c00055. ISSN: 0009-2665, 1520-6890. DOI: 10.1021/acs.chemrev.125

4c00055. URL: https://pubs.acs.org/doi/10.1021/acs.chemrev.4c00055 (visited on126

08/22/2024).127

[5] Richard B. Canty et al. “Science acceleration and accessibility with self-driving labs”. en. In: Nature128

Communications 16.1 (Apr. 2025), p. 3856. ISSN: 2041-1723. DOI: 10.1038/s41467-025-59231-1.129

URL: https://www.nature.com/articles/s41467-025-59231-1 (visited on 06/21/2025).130

[6] Yixiang Ruan et al. “An automatic end-to-end chemical synthesis development platform powered by131

large language models”. en. In: Nature Communications 15.1 (Nov. 2024), p. 10160. ISSN: 2041-1723.132

DOI: 10.1038/s41467-024-54457-x. URL: https://www.nature.com/articles/s41467-024-133

54457-x (visited on 06/21/2025).134

[7] B. P. MacLeod et al. “Self-driving laboratory for accelerated discovery of thin-film materials”. en. In:135

Science Advances 6.20 (May 2020), eaaz8867. ISSN: 2375-2548. DOI: 10.1126/sciadv.aaz8867.136

URL: https://www.science.org/doi/10.1126/sciadv.aaz8867 (visited on 05/08/2024).137

[8] Liam Roberts et al. “Automating stochastic antibody–drug conjugation: a self-driving lab approach for138

enhanced therapeutic development”. en. In: Digital Discovery (2025), 10.1039.D4DD00363B. ISSN:139

2635-098X. DOI: 10.1039/D4DD00363B. URL: https://xlink.rsc.org/?DOI=D4DD00363B140

(visited on 04/03/2025).141

[9] Connor C. Rupnow et al. “A self-driving laboratory optimizes a scalable process for making functional142

coatings”. en. In: Cell Reports Physical Science 4.5 (May 2023), p. 101411. ISSN: 26663864. DOI:143

10.1016/j.xcrp.2023.101411. URL: https://linkinghub.elsevier.com/retrieve/pii/144

S2666386423001856 (visited on 07/17/2024).145

[10] S. Hessam M. Mehr et al. “A universal system for digitization and automatic execution of the chemical146

synthesis literature”. en. In: Science 370.6512 (Oct. 2020), pp. 101–108. ISSN: 0036-8075, 1095-9203.147

DOI: 10.1126/science.abc2986. URL: https://www.science.org/doi/10.1126/science.148

abc2986 (visited on 03/14/2024).149

[11] Kazunori Nishio et al. “A digital laboratory with a modular measurement system and standardized data150

format”. en. In: Digital Discovery (2025), 10.1039.D4DD00326H. ISSN: 2635-098X. DOI: 10.1039/151

D4DD00326H. URL: https://xlink.rsc.org/?DOI=D4DD00326H (visited on 06/21/2025).152

[12] Chengshi Wang et al. “Autonomous platform for solution processing of electronic polymers”. en. In:153

Nature Communications 16.1 (Feb. 2025), p. 1498. ISSN: 2041-1723. DOI: 10.1038/s41467-024-154

55655- 3. URL: https://www.nature.com/articles/s41467- 024- 55655- 3 (visited on155

06/21/2025).156

[13] Yuxing Fei et al. “AlabOS: a Python-based reconfigurable workflow management framework for au-157

tonomous laboratories”. en. In: Digital Discovery 3.11 (2024), pp. 2275–2288. ISSN: 2635-098X. DOI:158

10.1039/D4DD00129J. URL: https://xlink.rsc.org/?DOI=D4DD00129J (visited on 04/07/2025).159

[14] Malcolm Sim et al. “ChemOS 2.0: An orchestration architecture for chemical self-driving laboratories”.160

en. In: Matter 7.9 (Sept. 2024), pp. 2959–2977. ISSN: 25902385. DOI: 10.1016/j.matt.2024.04.022.161

URL: https://linkinghub.elsevier.com/retrieve/pii/S2590238524001954 (visited on162

09/27/2024).163

[15] Ryo Tamura, Koji Tsuda, and Shoichi Matsuda. “NIMS-OS: an automation software to implement a164

closed loop between artificial intelligence and robotic experiments in materials science”. en. In: Science165

and Technology of Advanced Materials: Methods 3.1 (Dec. 2023), p. 2232297. ISSN: 2766-0400. DOI:166

10.1080/27660400.2023.2232297. URL: https://www.tandfonline.com/doi/full/10.167

1080/27660400.2023.2232297 (visited on 06/21/2025).168

[16] Wenyu Zhang et al. “IvoryOS: an interoperable web interface for orchestrating Python-based self-169

driving laboratories”. en. In: Nature Communications 16.1 (June 2025), p. 5182. ISSN: 2041-1723. DOI:170

10.1038/s41467-025-60514-w. URL: https://www.nature.com/articles/s41467-025-171

60514-w (visited on 06/21/2025).172

[17] Naruki Yoshikawa et al. “Large language models for chemistry robotics”. en. In: Autonomous Robots173

47.8 (Dec. 2023), pp. 1057–1086. ISSN: 0929-5593, 1573-7527. DOI: 10.1007/s10514-023-10136-2.174

URL: https://link.springer.com/10.1007/s10514-023-10136-2 (visited on 03/14/2024).175

[18] Kourosh Darvish et al. “ORGANA: A Robotic Assistant for Automated Chemistry Experimentation176

and Characterization”. en. In: arXiv (Jan. 2024). arXiv:2401.06949 [cs], arXiv:2401.06949. URL: http:177

//arxiv.org/abs/2401.06949 (visited on 04/23/2024).178

[19] Wenyu Zhang et al. “Leveraging GPT-4 to transform chemistry from paper to practice”. en. In: Digital179

Discovery (2024). ISSN: 2635-098X. DOI: 10.1039/D4DD00248B. URL: https://xlink.rsc.org/180

?DOI=D4DD00248B (visited on 10/19/2024).181

5

https://arxiv.org/abs/2410.03963
https://arxiv.org/abs/2410.03963
https://arxiv.org/abs/2410.03963
https://arxiv.org/abs/2410.03963
https://doi.org/10.1021/acs.chemrev.4c00055
https://doi.org/10.1021/acs.chemrev.4c00055
https://doi.org/10.1021/acs.chemrev.4c00055
https://pubs.acs.org/doi/10.1021/acs.chemrev.4c00055
https://doi.org/10.1038/s41467-025-59231-1
https://www.nature.com/articles/s41467-025-59231-1
https://doi.org/10.1038/s41467-024-54457-x
https://www.nature.com/articles/s41467-024-54457-x
https://www.nature.com/articles/s41467-024-54457-x
https://www.nature.com/articles/s41467-024-54457-x
https://doi.org/10.1126/sciadv.aaz8867
https://www.science.org/doi/10.1126/sciadv.aaz8867
https://doi.org/10.1039/D4DD00363B
https://xlink.rsc.org/?DOI=D4DD00363B
https://doi.org/10.1016/j.xcrp.2023.101411
https://linkinghub.elsevier.com/retrieve/pii/S2666386423001856
https://linkinghub.elsevier.com/retrieve/pii/S2666386423001856
https://linkinghub.elsevier.com/retrieve/pii/S2666386423001856
https://doi.org/10.1126/science.abc2986
https://www.science.org/doi/10.1126/science.abc2986
https://www.science.org/doi/10.1126/science.abc2986
https://www.science.org/doi/10.1126/science.abc2986
https://doi.org/10.1039/D4DD00326H
https://doi.org/10.1039/D4DD00326H
https://doi.org/10.1039/D4DD00326H
https://xlink.rsc.org/?DOI=D4DD00326H
https://doi.org/10.1038/s41467-024-55655-3
https://doi.org/10.1038/s41467-024-55655-3
https://doi.org/10.1038/s41467-024-55655-3
https://www.nature.com/articles/s41467-024-55655-3
https://doi.org/10.1039/D4DD00129J
https://xlink.rsc.org/?DOI=D4DD00129J
https://doi.org/10.1016/j.matt.2024.04.022
https://linkinghub.elsevier.com/retrieve/pii/S2590238524001954
https://doi.org/10.1080/27660400.2023.2232297
https://www.tandfonline.com/doi/full/10.1080/27660400.2023.2232297
https://www.tandfonline.com/doi/full/10.1080/27660400.2023.2232297
https://www.tandfonline.com/doi/full/10.1080/27660400.2023.2232297
https://doi.org/10.1038/s41467-025-60514-w
https://www.nature.com/articles/s41467-025-60514-w
https://www.nature.com/articles/s41467-025-60514-w
https://www.nature.com/articles/s41467-025-60514-w
https://doi.org/10.1007/s10514-023-10136-2
https://link.springer.com/10.1007/s10514-023-10136-2
http://arxiv.org/abs/2401.06949
http://arxiv.org/abs/2401.06949
http://arxiv.org/abs/2401.06949
https://doi.org/10.1039/D4DD00248B
https://xlink.rsc.org/?DOI=D4DD00248B
https://xlink.rsc.org/?DOI=D4DD00248B
https://xlink.rsc.org/?DOI=D4DD00248B


[20] Mayk Caldas Ramos, Christopher J. Collison, and Andrew D. White. “A review of large language models182

and autonomous agents in chemistry”. en. In: Chemical Science 16.6 (2025), pp. 2514–2572. ISSN: 2041-183

6520, 2041-6539. DOI: 10.1039/D4SC03921A. URL: https://xlink.rsc.org/?DOI=D4SC03921A184

(visited on 06/21/2025).185

[21] Kan Hatakeyama-Sato et al. Perspective on Utilizing Foundation Models for Laboratory Automation186

in Materials Research. 2025. arXiv: 2506.12312 [cs.RO]. URL: https://arxiv.org/abs/2506.187

12312.188

[22] Bastian Ruehle. “Natural language processing for automated workflow and knowledge graph generation189

in self-driving labs”. In: Digital Discovery 4.6 (2025). Publisher: RSC, pp. 1534–1543. DOI: 10.1039/190

D5DD00063G. URL: http://dx.doi.org/10.1039/D5DD00063G.191

[23] Tianshi Zheng et al. From Automation to Autonomy: A Survey on Large Language Models in Scientific192

Discovery. en. arXiv:2505.13259 [cs]. May 2025. DOI: 10.48550/arXiv.2505.13259. URL: http:193

//arxiv.org/abs/2505.13259 (visited on 06/21/2025).194

[24] Daniil A. Boiko et al. “Autonomous chemical research with large language models”. en. In: Nature195

624.7992 (Dec. 2023), pp. 570–578. ISSN: 0028-0836, 1476-4687. DOI: 10.1038/s41586-023-06792-196

0. URL: https://www.nature.com/articles/s41586-023-06792-0 (visited on 03/14/2024).197

[25] Shuxiang Cao et al. Agents for self-driving laboratories applied to quantum computing. en.198

arXiv:2412.07978 [cs]. June 2025. DOI: 10.48550/arXiv.2412.07978. URL: http://arxiv.199

org/abs/2412.07978 (visited on 06/21/2025).200

[26] Yunheng Zou et al. El Agente: An Autonomous Agent for Quantum Chemistry. en. arXiv:2505.02484201

[cs]. May 2025. DOI: 10.48550/arXiv.2505.02484. URL: http://arxiv.org/abs/2505.02484202

(visited on 06/21/2025).203

[27] Juraj Gottweis et al. Towards an AI co-scientist. 2025. arXiv: 2502.18864 [cs.AI]. URL: https:204

//arxiv.org/abs/2502.18864.205

[28] Adaptive Experimentation Platform. URL: https://ax.dev/.206

6

https://doi.org/10.1039/D4SC03921A
https://xlink.rsc.org/?DOI=D4SC03921A
https://arxiv.org/abs/2506.12312
https://arxiv.org/abs/2506.12312
https://arxiv.org/abs/2506.12312
https://arxiv.org/abs/2506.12312
https://doi.org/10.1039/D5DD00063G
https://doi.org/10.1039/D5DD00063G
https://doi.org/10.1039/D5DD00063G
http://dx.doi.org/10.1039/D5DD00063G
https://doi.org/10.48550/arXiv.2505.13259
http://arxiv.org/abs/2505.13259
http://arxiv.org/abs/2505.13259
http://arxiv.org/abs/2505.13259
https://doi.org/10.1038/s41586-023-06792-0
https://doi.org/10.1038/s41586-023-06792-0
https://doi.org/10.1038/s41586-023-06792-0
https://www.nature.com/articles/s41586-023-06792-0
https://doi.org/10.48550/arXiv.2412.07978
http://arxiv.org/abs/2412.07978
http://arxiv.org/abs/2412.07978
http://arxiv.org/abs/2412.07978
https://doi.org/10.48550/arXiv.2505.02484
http://arxiv.org/abs/2505.02484
https://arxiv.org/abs/2502.18864
https://arxiv.org/abs/2502.18864
https://arxiv.org/abs/2502.18864
https://arxiv.org/abs/2502.18864
https://ax.dev/


A Summary of MCP Server Tools207

Table 1: Summary of MCP Server Tools. The server exposes a comprehensive set of tools for
interacting with the IvoryOS platform, categorized by function.

Category Feature Description

General Tools platform-info Get platform info.
execution-status Check system status and last task out-

come.

Workflow Design
list-workflow-scripts List all available workflow scripts from

the database.
load-workflow-script Load a specific workflow script for exe-

cution.
submit-workflow-script Save a new or modified workflow script

to the database.

Workflow Data list-workflow-data List data from previous workflow execu-
tions.

load-workflow-data Load a specific execution log.

Direct Control execute-task Directly call a single platform or instru-
ment function.

Workflow Execution
run-workflow-repeat Run with static parameters.
run-workflow-kwargs Run with dynamic parameters.
run-workflow-campaign Run with optimization campaign configs

Workflow Control
pause-and-resume Pause or resume an ongoing workflow

execution.
abort-pending-workflow Finish the current iteration and abort sub-

sequent runs.
stop-current-workflow Safely stop after the current step.

7



B Use Case 1 Campaign Parameters208

The following listing shows the full set of parameters translated by the LLM from the user’s natural209

language prompt and used to initiate the run-workflow-campaign tool for the liquid handler210

optimization task.211

212
1 {213

2 "repeat": 60,214

3 "objectives": [215

4 {216

5 "name": "optimization_result",217

6 "minimize": true ,218

7 "threshold": null219

8 }220

9 ],221

10 "parameters": [222

11 {223

12 "name": "leading_air_gap_ul",224

13 "type": "range",225

14 "bounds": [5, 20],226

15 "value_type": "float"227

16 },228

17 {229

18 "name": "trailing_air_gap_ul",230

19 "type": "range",231

20 "bounds": [5, 20],232

21 "value_type": "float"233

22 },234

23 {235

24 "name": "aspirate_speed",236

25 "type": "range",237

26 "bounds": [0.8, 9.9],238

27 "value_type": "float"239

28 },240

29 {241

30 "name": "dispense_speed",242

31 "type": "range",243

32 "bounds": [0.8, 9.9],244

33 "value_type": "float"245

34 },246

35 {247

36 "name": "delay_after_aspirate",248

37 "type": "range",249

38 "bounds": [0, 10],250

39 "value_type": "float"251

40 },252

41 {253

42 "name": "delay_after_dispense",254

43 "type": "range",255

44 "bounds": [0, 10],256

45 "value_type": "float"257

46 }258

47 ]259

48 }260261

Listing 1: Parameters for Use Case 1

8



C Use Case 2 Generated Workflow Code262

The following listing is the full Python workflow generated by the LLM agent from the natural263

language specification for the continuous crystallization process. This code demonstrates the agent’s264

ability to synthesize complex, multi-instrument logic, including state management and safety proto-265

cols.266

267
1268

2 def workflow_static ():269

3 print("Starting CSTR control loop ...")270

4271

5 # Step 1 - Startup: Check initial pump statuses272

6 pump1_status = deck.new_era_1.get_status ()273

7 pump2_status = deck.new_era_2.get_status ()274

8 print(f"New Era pump 1 initial status: {pump1_status}")275

9 print(f"New Era pump 2 initial status: {pump2_status}")276

10277

11 # Initialize variables to track pump states278

12 pump1_dispensing = False279

13 pump2_dispensing = False280

14281

15 # Main control loop282

16 while True:283

17 # Step 2 - Vision Monitoring: Read liquid levels284

18 hs1_volume_1 = deck.heinsight_1.volume_1 ()285

19 hs2_volume_1 = deck.heinsight_2.volume_1 ()286

20287

21 print(f"CSTR 1 volume: {hs1_volume_1}")288

22 print(f"CSTR 2 volume: {hs2_volume_1}")289

23290

24 # Step 3 - Control of CSTR 1 (new_era_1 logic)291

25 if hs1_volume_1 is not None:292

26 # Case A: Reactor full293

27 if hs1_volume_1 >= 0.80 and not pump1_dispensing:294

28 print("CSTR 1 full - starting dispensing to CSTR 2")295

29 deck.new_era_1.set_direction_dipense ()296

30 deck.new_era_1.set_rate (98.0)297

31 deck.new_era_1.start()298

32299

33 # Start side pump sf10_3 for balance300

34 deck.sf10_3.connect ()301

35 deck.sf10_3.set_mode("FLOW")302

36 deck.sf10_3.set_flow_rate (0.05)303

37 deck.sf10_3.start()304

38305

39 pump1_dispensing = True306

40 print("New Era 1 dispensing at 98 mL/min , SF10_3307

started at 0.05 flow rate")308

41309

42 # Case B: Reactor low310

43 elif hs1_volume_1 <= 0.60 and pump1_dispensing:311

44 print("CSTR 1 low - stopping and cleaning")312

45 deck.new_era_1.stop()313

46314

47 # Activate vibrator to prevent clogging315

48 deck.vibrator.start()316

49 time.sleep (2.5)317

50 deck.vibrator.stop()318

51 print("Vibrator activated for 2.5 seconds")319

52320

53 # Back -flush tubing321

54 deck.new_era_1.set_direction_withdraw ()322

55 deck.new_era_1.set_rate (98.0)323

56 deck.new_era_1.start()324

9



57 time.sleep (5.0)325

58 deck.new_era_1.stop()326

59327

60 pump1_dispensing = False328

61 print("New Era 1 back -flushed and stopped")329

62330

63 # Step 4 - Control of CSTR 2 (new_era_2 logic)331

64 if hs2_volume_1 is not None:332

65 # Case A: Reactor full333

66 if hs2_volume_1 >= 0.80 and not pump2_dispensing and not334

pump1_dispensing:335

67 print("CSTR 2 full - waiting buffer time then336

transferring to filter")337

68 time.sleep (100.0) # Buffer wait338

69339

70 # Stop vacuum pump before transfer340

71 deck.vp.stop()341

72 print("Vacuum pump stopped")342

73343

74 # Start dispensing to filter344

75 deck.new_era_2.set_direction_dipense ()345

76 deck.new_era_2.set_rate (98.0)346

77 deck.new_era_2.start()347

78348

79 pump2_dispensing = True349

80 print("New Era 2 dispensing to filter at 98 mL/min")350

81351

82 # Case B: Reactor low352

83 elif hs2_volume_1 <= 0.60 and pump2_dispensing:353

84 print("CSTR 2 low - stopping and cleaning")354

85 deck.new_era_2.stop()355

86356

87 # Clear tubing with withdraw357

88 deck.new_era_2.set_direction_withdraw ()358

89 deck.new_era_2.set_rate (98.0)359

90 deck.new_era_2.start()360

91 time.sleep (5.0)361

92 deck.new_era_2.stop()362

93363

94 # Start vacuum pump for filtration364

95 deck.vp.start()365

96 time.sleep (5.0)366

97367

98 pump2_dispensing = False368

99 print("New Era 2 cleaned , vacuum pump started for369

filtration")370

100371

101 # Step 5 - Loop delay372

102 time.sleep (1.0)373

103374

104 return {375

105 ’final_cstr1_volume ’: hs1_volume_1 ,376

106 ’final_cstr2_volume ’: hs2_volume_1 ,377

107 ’pump1_final_status ’: pump1_dispensing ,378

108 ’pump2_final_status ’: pump2_dispensing379

109 }380381

Listing 2: Generated workflow for Use Case 2

10


	Introduction
	Background: The IvoryOS Foundation
	System Architecture
	Demonstrations in SDL Context
	Base Case: Direct Hardware Control
	Use Case 1: Workflow Optimization
	Use Case 2: Multi-Equipment Coordination and Process Control

	Conclusion and Future Work
	Summary of MCP Server Tools
	Use Case 1 Campaign Parameters
	Use Case 2 Generated Workflow Code

