© ® N O o A~ W N =

Interoperable Natural Language Interfaces for
Self-Driving Labs via Model Context Protocol

Anonymous Author(s)
Affiliation
Address

email

Abstract

The development of self-driving laboratories (SDLs) is accelerating materials
discovery by automating synthesis and characterization with robotic platforms and
diverse instrumentation. However, the lack of standardized software interfaces
hinders their broader adoption and interoperability. A parallel challenge arises with
building agentic Al that can reliably control diverse physical systems. In this work,
we present an architecture that integrates the Model Context Protocol (MCP)—an
open standard for tool interaction with large language models (LLMs)—with
an interoperable laboratory orchestration layer. This enables natural language
interaction across the full spectrum of SDL functionality, from direct instrument
control to closed-loop workflow design. We demonstrate its capabilities through
two representative use cases: (1) optimization of liquid handling accuracy and (2)
synthesis with computer vision monitoring. By bridging natural language interfaces,
standardized protocols, and SDL interoperability, this architecture lowers the
barrier to entry for both domain scientists and developers, paving the way for more
adoptable, scalable, and intelligent laboratory automation.

1 Introduction

The convergence of artificial intelligence (AI) and automated experimentation is catalyzing a paradigm
shift in materials science [1]]. Generative models can now propose novel materials in silico, promising
to unlock transformative innovations in critical areas such as energy, healthcare, and sustainability [2|
3[]. The ultimate goal is to realize this vision in practice through self-driving laboratories (SDLs),
which integrate Al with robots to automate synthesis and characterization [4,[5]. In the past decade,
multiple state-of-the-art SDLs have been developed to address material, organic chemistry, and global
challenges in health, climate, and energy [6} 7} (8,9, (10, 11} {12].

Despite these advances, the necessity of custom scripts and nature of diverse hardware configurations
require considerable programming proficiency and often results in isolated, non-transferable systems.
The lack of standardized interfaces has also hindered the generalization of these approaches, slowing
down adoption within the broader scientific community. Several general-purpose graphical orchestra-
tion platforms have been developed, including AlabOS [13]], ChemOS 2.0 [[14f], NIMS-OS [15] and
IvoryOS [16]. At the same time, the rapid advancement of Large Language Models (LLMs) enables
protocol translation and robotic action planning, from experimental description to machine-executable
code [[17,|18{19, |20} |21} |22]]. The capability of controlling a robotic system through natural language
communication promises more intuitive human-robot interaction and scalable multi-agent integration
(4] 23] [24] 25|, 126}, 27].

To bridge the gap between high-level scientific intent and low-level hardware control, we introduce a
Model Context Protocol (MCP) server that enables natural language interaction with any Python-
based SDLs. The framework extends IvoryOS [16] with the MCP open standard, creating a robust

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.

37
38
39
40
41

42

43
44
45
46
47
48
49

50

51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

and intuitive conversational interface. We demonstrate how this architecture democratizes laboratory
automation by allowing users to perform direct hardware control, design complex workflows, and
manage data through simple natural language commands. With two distinct use cases — one focused
on autonomous optimization and the other on a multi-instrument workflow — we showcase the
system’s ability to translate complex scientific goals into executable, production-ready code.

2 Background: The IvoryOS Foundation

IvoryOS is an open-source orchestrator that automatically generates web interfaces for Python-based
SDLs [16]. The software features three design principles: (i) automatic discovery of available
functions and instruments, (ii) a visual programming interface to lower the entry barrier for domain
experts, and (iii) integration of optimizers for adaptive experimentation (Figure [T). This allows
researchers, even those with limited programming experience, to design, manage, and execute
complex experiments. The foundational paper demonstrated its successful integration across six
different SDLs, proving its adaptability.

3 System Architecture

Extending the base architecture, the natural language interface is achieved by creating an MCP
server that acts as a bridge between the high-level reasoning capabilities of LLMs and the low-level
control functions managed by IvoryOS (Figure [1). IvoryOS Backend: IvoryOS serves as the
foundational layer, providing a robust interface to diverse laboratory hardware and tasks. Its key
feature is the ability to introspect existing Python scripts, automatically discovering functions that
control instruments (e.g., pumps, robotic arms, sensors) and exposing them through a web API. This
eliminates the need for manual API creation and allows scientists to use their existing control code.
IvoryOS Client: The IvoryOS Python client is a convenient interface to interact with the IvoryOS
API, providing explicit functions for direct control, workflow configuration, execution, status queries,
and data retrieval (Appendix [A). MCP Server: The MCP server exposes IvoryOS client functions
into a set of "tools" that are discoverable and callable by an LLM agent. When an agent queries the
MCEP server, it receives a manifest of all available tools, including their names, descriptions, and
required parameters. This allows the agent to understand the lab’s capabilities without any prior
hard-coding. LL.M: The MCP host is model-agnostic. For simplicity and ease of adoption, we
demonstrate the integration using the Claude Desktop App with the Claude Sonnet 4 model.

MCP Server

Tools, e.g. Prompts, e.g. LLMs, e.g. Claude Desktop App
execute-task campaign-design oce
|

i
i
i
i
i
i
i
i
i
! Function calls
i
i
i
i
i
i
i
i
i
i

IvoryOS Client
|

API Requests

Low-Code Web Ul

IvoryOS API Requests

OOP Function calls

_f Hardware & Hierarchy)
L Agnostic (Diverse o
Devices, Workflows, |

Lo Frameworks)

Figure 1: The IvoryOS MCP System Architecture. Our contribution (top, green area) is an MCP
server that translates natural language commands into function calls. These are processed by the
IvoryOS Client and sent as API requests to the underlying IvoryOS platform.

66

67

68
69
70
71
72

73

74

75

76

77
78
79
80
81
82
83
84
85
86
87

88

89
90
91
92
93
94

4 Demonstrations in SDL Context

4.1 Base Case: Direct Hardware Control

Direct control of platform components is achieved via the execute-task tool, which enables the
LLM to call any single function of the SDL. This granular control can perform immediate actions
without the overhead of creating a formal script. For instance, a charge solid operation is scripted as
the following function definition. When prompting for operation, the task can be triggered through
execute-task function calling handled by the LLM.

Example Operation

class Protocol:
def charge_solid(
self,
solid_weight: float,
container_type: str,
index: str = None

User Prompt

Charge 5 mg of solid to HPLC vial Al.

Generated Tool Call

execute_task(
component="deck.protocol",
method="charge_solid",

kwargs={
"solid_weight": 5.0,
"container_type": "hplc",
Ilindexll . HAlll
}
)

4.2 Use Case 1: Workflow Optimization

Precise control of liquid handling is fundamental in chemistry and materials synthesis. We tasked the
system to optimize the dosing accuracy of a mobile liquid handler, a common and often challenging
task. The workflows of charge solvent and evaluate mean error are predefined on the robotic
platform designed for liquid-liquid extraction. An LLM agent was given the high-level goal: optimize
the mobile liquid handler accuracy in 60 trials with the following parameters (Figure 2JA). The agent
autonomously designed and executed an optimization workflow. It first used the ‘platform-info* tool
to understand the platform, such as available hardware and execution rules, followed by loading
existing workflows or scripting from scratch. The closed-loop process is designed with the help of an
included prompt for inputting parameters and objectives for ax-platform [28]] (Appendix [B). All
tool calling decisions are driven entirely by the LLM, demonstrating the system’s ability to perform
hardware control and execute complex optimization routines through natural language.

4.3 Use Case 2: Multi-Equipment Coordination and Process Control

Building on the optimization of existing workflows demonstrated in Use Case 1, we present a more
complex scenario: a de novo monitoring process with computer vision. The system was given the
high-level natural language specification: Implement continuous stirred tank reactors (CSTR) using
computer vision with detailed control logic (Figure[2B). The LLM agent autonomously generated
a sophisticated workflow, coordinating nine different instruments: two computer vision sensors for
real-time volume monitoring, two syringe pumps for slurry transfer, three flow pumps for reagents,

95
96
97
98
99
100

101
102
103
104
105

106

107
108
109
110
111
112
113
114

115

116
117
118
119
120
121

(A) Use Case 1 (B) Use Case 2

I want to find the optimal parameters for my 1 want to build a computer vision based
liquid handler, | want to run 60 trials and A Continuous Stirred Tank Reactor and here is the
N minimize the error. N control logic
‘V‘ * Leading air gap: 5-20 pL ‘v‘ CSTR 1 (hs1): If volume 2> 0.80 (80%): start
VL * Trailing air gap: 5-20 pL V‘ transfer pump (new_era_1).If volume < 0.60:
* Aspirate speed: 0.8-9.9 stop transfer, vibrate, withdraw liquid briefly to
Dispense speed: 0.8-9.9 clear tubing.
Delay after aspirate: 0-10 s CSTR 2 (hs2): If volume > 0.80: start transfer
Delay after dispense: 0-10 s pump (new_era_2) - sends slurry to filter.

If volume < 0.60: stop pump, withdraw, then
start vacuum pump (vp) for filtration.

Happy to help!

platform-info I've created the continuous monitoring
* list-workflow-script workflow function following your template
* load-workflow-script format. Here's what it implements:
* run-workflow-campaign CSTR 1: Maintains volume between 60-80 %,
* execution-status transfers to CSTR 2 when full Q
Perfect! Your optimization workflow has been CSTR 2: Maintains volume between 60-80 %,
successfully set up. transfers to filter when full

Figure 2: Exemplary Use Cases of the MCP System. (A) Use Case 1: Autonomous Optimization.
A user specifies a high-level optimization goal for a liquid handler, including the parameters and
their respective ranges. The LLM agent interprets this request, selects the necessary tools, and
initiates an optimization campaign using the run-workflow-campaign feature. (B) Use Case 2:
Complex Workflow Synthesis from Natural Language. A user provides a detailed specification
for a multi-instrument continuous synthesis process. The LLM agent parses this complex logic
and generate an executable workflow, demonstrating its capability for de novo process design and
implementation.

a vacuum pump for filtration, and a vibrator for anti-clogging maintenance. The resulting code
implements a complex state-machine logic where CSTR-1 transfers supersaturated solution to CSTR-
2 when its volume exceeds 80%, while CSTR-2 transfers its contents to a filter. Crucially, the
LLM translated nuanced natural language safety protocols—such as “stops vacuum pumps before
transfers” and “implements a back-flush to prevent clogging”—directly into instrument commands

(Appendix [C).

This use case demonstrates the system’s ability to translate a complex process description into
production-ready automation code, complete with sophisticated orchestration, real-time feedback
control, and robust error handling. This capability is essential for the future of autonomous materials
discovery, where such complex experimental protocols must be generated and executed reliably at
scale.

5 Conclusion and Future Work

In summary, we have shown that integrating MCP with a standardized laboratory orchestration
layer enables natural language interfaces to span the full spectrum of SDL capabilities, ranging
from instrument-level control to closed-loop workflow optimization. The two representative use
cases—liquid-handling optimization and synthesis with vision-based monitoring—illustrate both the
versatility and practicality of this approach. Looking ahead, we envision this architecture serving as a
foundation for broader interoperability across diverse laboratory platforms, lowering adoption barriers
for researchers, and facilitating the integration of increasingly autonomous, agentic Al systems in
material science.

References

[1] Milad Abolhasani, Keith A. Brown, and Guest Editors. “Role of Al in experimental materials science”. In:
MRS Bulletin 48.2 (Feb. 2023), pp. 134—141. 1SSN: 1938-1425. DOI:|10.1557/s43577-023-00482-y.
URL: https://doi.org/10.1557/s43577-023-00482-y.

[2] Albertus Denny Handoko and Riko I Made. Artificial Intelligence and Generative Models for Materials
Discovery — A Review. 2025. arXiv: 2508 . 03278 [cond-mat.mtrl-sci]. URL: https://arxiv,
org/abs/2508.03278,

https://doi.org/10.1557/s43577-023-00482-y
https://doi.org/10.1557/s43577-023-00482-y
https://arxiv.org/abs/2508.03278
https://arxiv.org/abs/2508.03278
https://arxiv.org/abs/2508.03278
https://arxiv.org/abs/2508.03278

122
123

124
125
126
127

128
129
130

131
132
133
134

136
137

138
139
140
141

142
143
144
145

146
147
148
149

150
151
152

153
154
155
156

157
158
159

160
161
162
163

164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

(12]

(13]

(14]

[15]

(16]

(17]

(18]

(19]

Mehrad Ansari et al. dZiner: Rational Inverse Design of Materials with Al Agents. 2024. arXiv: 2410,
03963 [physics.chem-ph]. URL: https://arxiv.org/abs/2410.03963.

Gary Tom et al. “Self-Driving Laboratories for Chemistry and Materials Science”. en. In: Chemical
Reviews (Aug. 2024), acs.chemrev.4c00055. I1SSN: 0009-2665, 1520-6890. DOI:/10.1021/acs . chemrev,
4c00055, URL: https://pubs.acs.org/doi/10.1021/acs . chemrev .4c00055| (visited on
08/22/2024).

Richard B. Canty et al. “Science acceleration and accessibility with self-driving labs”. en. In: Nature
Communications 16.1 (Apr. 2025), p. 3856. 1SSN: 2041-1723. DOI:|10.1038/s41467-025-59231- 1|
URL: https://www.nature.com/articles/s41467-025-59231-1|(visited on 06/21/2025).

Yixiang Ruan et al. “An automatic end-to-end chemical synthesis development platform powered by
large language models”. en. In: Nature Communications 15.1 (Nov. 2024), p. 10160. 1SSN: 2041-1723.
DOI:/10.1038/s41467-024-54457-x, URL: https://www.nature.com/articles/s41467-024-
54457 -x (visited on 06/21/2025).

B. P. MacLeod et al. “Self-driving laboratory for accelerated discovery of thin-film materials”. en. In:
Science Advances 6.20 (May 2020), eaaz8867. ISSN: 2375-2548. DOI:|10.1126/sciadv.aaz8867,
URL: https://www.science.org/doi/10.1126/sciadv.aaz8867 (visited on 05/08/2024).

Liam Roberts et al. “Automating stochastic antibody—drug conjugation: a self-driving lab approach for
enhanced therapeutic development”. en. In: Digital Discovery (2025), 10.1039.D4DD00363B. 1SSN:
2635-098X. DOI: 110 . 1039 /D4DD00363B. URL: https://xlink.rsc.org/?D0I=D4DD00363B
(visited on 04/03/2025).

Connor C. Rupnow et al. “A self-driving laboratory optimizes a scalable process for making functional
coatings”. en. In: Cell Reports Physical Science 4.5 (May 2023), p. 101411. ISSN: 26663864. DOI:
10.1016/j.xcrp.2023.101411| URL: https://linkinghub.elsevier.com/retrieve/pii/|
52666386423001856) (visited on 07/17/2024).

S. Hessam M. Mehr et al. “A universal system for digitization and automatic execution of the chemical
synthesis literature”. en. In: Science 370.6512 (Oct. 2020), pp. 101-108. 1SSN: 0036-8075, 1095-9203.
DOI:|10.1126/science.abc2986, URL: https://www.science.org/doi/10.1126/science,
abc2986 (visited on 03/14/2024).

Kazunori Nishio et al. “A digital laboratory with a modular measurement system and standardized data
format”. en. In: Digital Discovery (2025), 10.1039.D4DD00326H. 1SSN: 2635-098X. DOI1:|10.1039/
D4DD00326H. URL: https://x1link.rsc.org/?D0I=D4DD00326H (visited on 06/21/2025).

Chengshi Wang et al. “Autonomous platform for solution processing of electronic polymers”. en. In:
Nature Communications 16.1 (Feb. 2025), p. 1498. 1SSN: 2041-1723. DOI: |10.1038/s41467 - 024 -
55655 - 3. URL: https : //www . nature . com/articles/s41467 - 024 - 55655 - 3 (visited on
06/21/2025).

Yuxing Fei et al. “AlabOS: a Python-based reconfigurable workflow management framework for au-
tonomous laboratories”. en. In: Digital Discovery 3.11 (2024), pp. 2275-2288. ISSN: 2635-098X. DOI:
10.1039/D4DD00129J. URL: https://xlink.rsc.org/7D0I=D4DD00129J (visited on 04/07/2025).

Malcolm Sim et al. “ChemOS 2.0: An orchestration architecture for chemical self-driving laboratories”.
en. In: Matter 7.9 (Sept. 2024), pp. 2959-2977. 1SSN: 25902385. DO1:/110.1016/j .matt.2024.04.022,
URL: https://linkinghub. elsevier.com/retrieve/pii/S$525690238524001954 (visited on
09/27/2024).

Ryo Tamura, Koji Tsuda, and Shoichi Matsuda. “NIMS-OS: an automation software to implement a
closed loop between artificial intelligence and robotic experiments in materials science”. en. In: Science
and Technology of Advanced Materials: Methods 3.1 (Dec. 2023), p. 2232297. 1SSN: 2766-0400. DOTI:
10.1080/27660400 . 2023 . 2232297, URL: https://www . tandfonline . com/doi/full/ 10|
1080/27660400.2023.2232297 (visited on 06/21/2025).

Wenyu Zhang et al. “IvoryOS: an interoperable web interface for orchestrating Python-based self-
driving laboratories”. en. In: Nature Communications 16.1 (June 2025), p. 5182. ISSN: 2041-1723. DOI:
10.1038/s41467-025-60514-w. URL: https://www.nature.com/articles/s41467- 025
60514-w (visited on 06/21/2025).

Naruki Yoshikawa et al. “Large language models for chemistry robotics”. en. In: Autonomous Robots
47.8 (Dec. 2023), pp. 1057-1086. 1SSN: 0929-5593, 1573-7527. DOI:|10.1007/s10514-023-10136-2,
URL: https://link.springer.com/10.1007/s10514-023-10136- 2| (visited on 03/14/2024).
Kourosh Darvish et al. “ORGANA: A Robotic Assistant for Automated Chemistry Experimentation
and Characterization”. en. In: arXiv (Jan. 2024). arXiv:2401.06949 [cs], arXiv:2401.06949. URL: http:
//arxiv.org/abs/2401.06949) (visited on 04/23/2024).

Wenyu Zhang et al. “Leveraging GPT-4 to transform chemistry from paper to practice”. en. In: Digital
Discovery (2024). I1SSN: 2635-098X. DOI: [10.1039/D4DD00248B| URL: https://xlink.rsc.org/
7D0I=D4DD00248B (visited on 10/19/2024).

https://arxiv.org/abs/2410.03963
https://arxiv.org/abs/2410.03963
https://arxiv.org/abs/2410.03963
https://arxiv.org/abs/2410.03963
https://doi.org/10.1021/acs.chemrev.4c00055
https://doi.org/10.1021/acs.chemrev.4c00055
https://doi.org/10.1021/acs.chemrev.4c00055
https://pubs.acs.org/doi/10.1021/acs.chemrev.4c00055
https://doi.org/10.1038/s41467-025-59231-1
https://www.nature.com/articles/s41467-025-59231-1
https://doi.org/10.1038/s41467-024-54457-x
https://www.nature.com/articles/s41467-024-54457-x
https://www.nature.com/articles/s41467-024-54457-x
https://www.nature.com/articles/s41467-024-54457-x
https://doi.org/10.1126/sciadv.aaz8867
https://www.science.org/doi/10.1126/sciadv.aaz8867
https://doi.org/10.1039/D4DD00363B
https://xlink.rsc.org/?DOI=D4DD00363B
https://doi.org/10.1016/j.xcrp.2023.101411
https://linkinghub.elsevier.com/retrieve/pii/S2666386423001856
https://linkinghub.elsevier.com/retrieve/pii/S2666386423001856
https://linkinghub.elsevier.com/retrieve/pii/S2666386423001856
https://doi.org/10.1126/science.abc2986
https://www.science.org/doi/10.1126/science.abc2986
https://www.science.org/doi/10.1126/science.abc2986
https://www.science.org/doi/10.1126/science.abc2986
https://doi.org/10.1039/D4DD00326H
https://doi.org/10.1039/D4DD00326H
https://doi.org/10.1039/D4DD00326H
https://xlink.rsc.org/?DOI=D4DD00326H
https://doi.org/10.1038/s41467-024-55655-3
https://doi.org/10.1038/s41467-024-55655-3
https://doi.org/10.1038/s41467-024-55655-3
https://www.nature.com/articles/s41467-024-55655-3
https://doi.org/10.1039/D4DD00129J
https://xlink.rsc.org/?DOI=D4DD00129J
https://doi.org/10.1016/j.matt.2024.04.022
https://linkinghub.elsevier.com/retrieve/pii/S2590238524001954
https://doi.org/10.1080/27660400.2023.2232297
https://www.tandfonline.com/doi/full/10.1080/27660400.2023.2232297
https://www.tandfonline.com/doi/full/10.1080/27660400.2023.2232297
https://www.tandfonline.com/doi/full/10.1080/27660400.2023.2232297
https://doi.org/10.1038/s41467-025-60514-w
https://www.nature.com/articles/s41467-025-60514-w
https://www.nature.com/articles/s41467-025-60514-w
https://www.nature.com/articles/s41467-025-60514-w
https://doi.org/10.1007/s10514-023-10136-2
https://link.springer.com/10.1007/s10514-023-10136-2
http://arxiv.org/abs/2401.06949
http://arxiv.org/abs/2401.06949
http://arxiv.org/abs/2401.06949
https://doi.org/10.1039/D4DD00248B
https://xlink.rsc.org/?DOI=D4DD00248B
https://xlink.rsc.org/?DOI=D4DD00248B
https://xlink.rsc.org/?DOI=D4DD00248B

182
183
184
185
186
187
188
189
190
191
192
193
194

196
197
198
199

201
202
203
204
205

206

(20]

(21]

(22]

(23]

[24]

(25]

(26]

(27]

(28]

Mayk Caldas Ramos, Christopher J. Collison, and Andrew D. White. “A review of large language models
and autonomous agents in chemistry”. en. In: Chemical Science 16.6 (2025), pp. 2514-2572. 1SSN: 2041-
6520, 2041-6539. DOI:110.1039/D4SC03921A. URL: https://xlink.rsc.org/7DOI=D4SC03921A
(visited on 06/21/2025).

Kan Hatakeyama-Sato et al. Perspective on Utilizing Foundation Models for Laboratory Automation
in Materials Research. 2025. arXiv:|2506.12312 [cs.R0]. URL: https://arxiv.org/abs/2506,
12312,

Bastian Ruehle. “Natural language processing for automated workflow and knowledge graph generation
in self-driving labs”. In: Digital Discovery 4.6 (2025). Publisher: RSC, pp. 1534-1543. DOI1:/10.1039/
D5DD00063G. URL: http://dx.doi.org/10.1039/D5DD00063G,

Tianshi Zheng et al. From Automation to Autonomy: A Survey on Large Language Models in Scientific
Discovery. en. arXiv:2505.13259 [cs]. May 2025. DOI:|10.48550/arXiv.2505. 13259, URL: http:
//arxiv.org/abs/2505.13259 (visited on 06/21/2025).

Daniil A. Boiko et al. “Autonomous chemical research with large language models”. en. In: Nature
624.7992 (Dec. 2023), pp. 570-578. 1SSN: 0028-0836, 1476-4687. DOI1:/110.1038/s41586-023-06792-
0. URL: https://www.nature.com/articles/s41586-023-06792-0 (visited on 03/14/2024).
Shuxiang Cao et al. Agents for self-driving laboratories applied to quantum computing. en.
arXiv:2412.07978 [cs]. June 2025. DOI: 10 . 48550 / arXiv . 2412 . 07978, URL: http://arxiv,
org/abs/2412.07978|(visited on 06/21/2025).

Yunheng Zou et al. El Agente: An Autonomous Agent for Quantum Chemistry. en. arXiv:2505.02484
[cs]. May 2025. DOI:/10.48550/arXiv.2505.02484, URL: http://arxiv.org/abs/2505.02484
(visited on 06/21/2025).

Juraj Gottweis et al. Towards an Al co-scientist. 2025. arXiv: 2502 . 18864 [cs.AI]. URL: https
//arxiv.org/abs/2502.18864.

Adaptive Experimentation Platform. URL: https://ax.dev/.

https://doi.org/10.1039/D4SC03921A
https://xlink.rsc.org/?DOI=D4SC03921A
https://arxiv.org/abs/2506.12312
https://arxiv.org/abs/2506.12312
https://arxiv.org/abs/2506.12312
https://arxiv.org/abs/2506.12312
https://doi.org/10.1039/D5DD00063G
https://doi.org/10.1039/D5DD00063G
https://doi.org/10.1039/D5DD00063G
http://dx.doi.org/10.1039/D5DD00063G
https://doi.org/10.48550/arXiv.2505.13259
http://arxiv.org/abs/2505.13259
http://arxiv.org/abs/2505.13259
http://arxiv.org/abs/2505.13259
https://doi.org/10.1038/s41586-023-06792-0
https://doi.org/10.1038/s41586-023-06792-0
https://doi.org/10.1038/s41586-023-06792-0
https://www.nature.com/articles/s41586-023-06792-0
https://doi.org/10.48550/arXiv.2412.07978
http://arxiv.org/abs/2412.07978
http://arxiv.org/abs/2412.07978
http://arxiv.org/abs/2412.07978
https://doi.org/10.48550/arXiv.2505.02484
http://arxiv.org/abs/2505.02484
https://arxiv.org/abs/2502.18864
https://arxiv.org/abs/2502.18864
https://arxiv.org/abs/2502.18864
https://arxiv.org/abs/2502.18864
https://ax.dev/

27 A Summary of MCP Server Tools

Table 1: Summary of MCP Server Tools. The server exposes a comprehensive set of tools for
interacting with the IvoryOS platform, categorized by function.

Category

Feature

Description

General Tools

platform-info
execution-status

Get platform info.
Check system status and last task out-
come.

list-workflow-scripts

List all available workflow scripts from

Workflow Design the database.
load-workflow-script Load a specific workflow script for exe-
cution.
submit-workflow-script Save a new or modified workflow script
to the database.
Workflow Data list-workflow-data List data from previous workflow execu-

load-workflow-data

tions.
Load a specific execution log.

Direct Control

execute-task

Directly call a single platform or instru-
ment function.

Workflow Execution

run-workflow-repeat
run-workflow-kwargs
run-workflow-campaign

Run with static parameters.
Run with dynamic parameters.
Run with optimization campaign configs

Workflow Control

pause-and-resume
abort-pending-workflow

stop-current-workflow

Pause or resume an ongoing workflow
execution.

Finish the current iteration and abort sub-
sequent runs.

Safely stop after the current step.

28 B Use Case 1 Campaign Parameters

209 The following listing shows the full set of parameters translated by the LLM from the user’s natural
210 language prompt and used to initiate the run-workflow-campaign tool for the liquid handler
211 optimization task.

jre

212

213 1| {

2142 "repeat": 60,

2153 "objectives": [

216 4 {

217 5 "name": "optimization_result",
2186 "minimize": true,

2197 "threshold": null

2208 }

2219 1,

22210 "parameters": [

22311 {

22412 "name": "leading_air_gap_ul",
22513 "type": "range",

22614 "bounds": [5, 20],

22715 "value_type": "float"

22816 },

22917 {

23018 "name": "trailing_air_gap_ul",
23119 "type": "range",

2320 "bounds": [5, 20],

2331 "value_type": "float"

23422 },

2353 {

23624 "name": "aspirate_speed",

23725 "type": "range",

2386 "bounds": [0.8, 9.9],

2397 "value_type": "float"

2408 },

24129 {

24230 "name": "dispense_speed",

2431 "type": "range",

2443 "bounds": [0.8, 9.9],

24533 "value_type": "float"

24634 },

24735 {

24836 "name": "delay_after_aspirate",
24937 "type": "range",

25038 "bounds": [0, 10],

25139 "value_type": "float"

25210 },

25311 {

25412 "name": "delay_after_dispense",
25513 "type": "range",

25614 "bounds": [0, 10],

25745 "value_type": "float"

25816 }

25917]

380 | ¥

Listing 1: Parameters for Use Case 1

22 C Use Case 2 Generated Workflow Code

263 The following listing is the full Python workflow generated by the LLM agent from the natural
264 language specification for the continuous crystallization process. This code demonstrates the agent’s
265 ability to synthesize complex, multi-instrument logic, including state management and safety proto-
266 cols.

267

268

269 |def workflow_static():

270 print ("Starting CSTR control loop...")

271

272 # Step 1 - Startup: Check initial pump statuses

278 pumpl_status = deck.new_era_1.get_status()

274 pump2_status = deck.new_era_2.get_status ()

275 print (f"New Era pump 1 initial status: {pumpl_statusl}")
276 print (f"New Era pump 2 initial status: {pump2_statusl}")
277

278 # Initialize variables to track pump states

279 pumpl_dispensing = False

280 pump2_dispensing = False

281

282 # Main control loop

283 while True:

284 # Step 2 - Vision Monitoring: Read liquid levels

285 hsl_volume_1 = deck.heinsight_1.volume_1()

286 hs2_volume_1 = deck.heinsight_2.volume_1()

287

288 print (£"CSTR 1 volume: {hsl_volume_13}")

289 print (£"CSTR 2 volume: {hs2_volume_13}")

290

291 # Step 3 - Control of CSTR 1 (new_era_1 logic)

292 if hsl_volume_1 is not None:

298 # Case A: Reactor full

292 if hsl_volume_1 >= 0.80 and not pumpl_dispensing:
295 print ("CSTR 1 full - starting dispensing to CSTR 2")
296 deck.new_era_1.set_direction_dipense ()

297 deck.new_era_1.set_rate (98.0)

298 deck.new_era_1.start ()

299

300 # Start side pump sf10_3 for balance

301 deck.sf10_3.connect ()

302 deck.sf10_3.set_mode ("FLOW")

308 deck.sf10_3.set_flow_rate (0.05)

304 deck.sf10_3.start ()

308

308 pumpl_dispensing = True

307 print("New Era 1 dispensing at 98 mL/min, SF10_3
308 started at 0.05 flow rate")

309

310 # Case B: Reactor low

311 elif hsl_volume_1 <= 0.60 and pumpl_dispensing:
312 print ("CSTR 1 low - stopping and cleaning")
313 deck.new_era_1.stop()

314

315 # Activate vibrator to prevent clogging

316 deck.vibrator.start ()

317 time.sleep (2.5)

318 deck.vibrator.stop ()

319 print("Vibrator activated for 2.5 seconds")
320

331 # Back-flush tubing

322 deck.new_era_1.set_direction_withdraw()

3233 deck.new_era_1.set_rate (98.0)

324 deck.new_era_1.start ()

325 time.sleep(5.0)

326 deck.new_era_1.stop ()

3237

328 pumpl_dispensing = False

329 print ("New Era 1 back-flushed and stopped")
330

331 # Step 4 - Control of CSTR 2 (new_era_2 logic)

382 if hs2_volume_1 is not None:

383 # Case A: Reactor full

334 if hs2_volume_1 >= 0.80 and not pump2_dispensing and not
335 pumpl_dispensing:

336 print ("CSTR 2 full - waiting buffer time then
337 transferring to filter")

338 time.sleep (100.0) # Buffer wait

389

340 # Stop vacuum pump before transfer

31 deck.vp.stop ()

342 print ("Vacuum pump stopped")

343

344 # Start dispensing to filter

345 deck.new_era_2.set_direction_dipense ()

346 deck.new_era_2.set_rate (98.0)

347 deck.new_era_2.start ()

348

349 pump2_dispensing = True

350 print ("New Era 2 dispensing to filter at 98 mL/min")
351

352 # Case B: Reactor low

353 elif hs2_volume_1 <= 0.60 and pump2_dispensing:
354 print ("CSTR 2 low - stopping and cleaning")
355 deck.new_era_2.stop ()

356

357 # Clear tubing with withdraw

358 deck.new_era_2.set_direction_withdraw ()

359 deck.new_era_2.set_rate (98.0)

360 deck.new_era_2.start ()

361 time.sleep(5.0)

362 deck.new_era_2.stop ()

363

364 # Start vacuum pump for filtration

365 deck.vp.start ()

366 time.sleep(5.0)

367

368 pump2_dispensing = False

369 print ("New Era 2 cleaned, vacuum pump started for
370 filtration")

an

372 # Step 5 - Loop delay

373 time.sleep (1.0)

3r4

375 return {

376 >final_cstrl_volume’: hsl_volume_1,

37% final_cstr2_volume’: hs2_volume_1,

378 ’pumpl_final_status’: pumpl_dispensing,

379 ’pump2_final_status’: pump2_dispensing

39 ¥

Listing 2: Generated workflow for Use Case 2

10

	Introduction
	Background: The IvoryOS Foundation
	System Architecture
	Demonstrations in SDL Context
	Base Case: Direct Hardware Control
	Use Case 1: Workflow Optimization
	Use Case 2: Multi-Equipment Coordination and Process Control

	Conclusion and Future Work
	Summary of MCP Server Tools
	Use Case 1 Campaign Parameters
	Use Case 2 Generated Workflow Code

