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ABSTRACT

Existing work on trustworthy machine learning (ML) often focuses on a single
aspect of trust in ML (e.g., fairness, or privacy) and thus fails to obtain a holistic
trust assessment. Furthermore, most techniques often fail to recognize that the
parties who train models are not the same as the ones who assess their trustworthi-
ness. We propose a framework that formulates trustworthy ML as a multi-objective
multi-agent optimization problem to address these limitations. A holistic character-
ization of trust in ML naturally lends itself to a game theoretic formulation, which
we call regulation games. We introduce and study a particular game instance, the
SpecGame, which models the relationship between an ML model builder and
regulators seeking to specify and enforce fairness and privacy regulations. Seeking
socially optimal (i.e., efficient for all agents) solutions to the game, we introduce
ParetoPlay. This novel equilibrium search algorithm ensures that agents remain
on the Pareto frontier of their objectives and avoids the inefficiencies of other
equilibria. For instance, we show that for a gender classification application, the
achieved privacy guarantee is 3.76× worse than the ordained privacy requirement
if regulators do not take the initiative to specify their desired guarantees first. We
hope that our framework can provide policy guidance.

1 INTRODUCTION

The responsible deployment of machine learning (ML) models involves challenges beyond optimizing
for model utility. New fields of study have emerged to address further reaching aspects of proper
decision-making—collectively known as trustworthy ML. These include, among others, algorithmic
fairness (Mehrabi et al., 2021), privacy (Liu et al., 2021), and robust ML (Szegedy et al., 2013). These
objectives invariably present various trade-off with one another. Chang & Shokri; Suriyakumar et al.
(2021) discuss the fairness-privacy trade-off, Kifer & Machanavajjhala considers utility-privacy. The
fairness-utility trade-off is also widely studied (Wick et al.). Recently, works such as Esipova et al.
(2022); Yaghini et al. (2023) considered the 3-way trade-off between fairness, privacy and utility.

Regardless of the method, prior work implicitly assumes that a single entity is in charge of imple-
menting the different objectives. Unfortunately, regarding trust in ML purely from a single-agent
lens runs the risk of producing trade-off recommendations that are unrealizable in practice. This is
because nowadays ML models are trained, maintained, and audited by separate entities—each of
which may pursue their own objectives. To carry out the aforementioned trade-off recommendations,
it would require the agents to align their objectives and take coordinated action.

Given the multitude of agents and objectives involved, we argue that achieving trust in ML is
inherently a multi-objective multi-agent problem (Rădulescu et al., 2020). Since Game Theory is
the natural tool to model and analyze the interactions between different agents, we initiate the first
study on multi-agent trustworthy ML within a novel class of games we call the ML Regulation
Games. The concrete scenario that we study as a regulation game is the problem of specifying and
enforcing fairness and privacy regulations for ML models. As an analogy, this is similar to emissions
control agencies specifying and enforcing CO-2 emission levels on production vehicles In that market,
regulators and car makers interact with each other and arrive at an acceptable and achievable cap on
car emissions. In a similar fashion, in our proposed SpecGame for trustworthy ML, fairness and
privacy regulators (who specify and enforce regulations) interact with the model builder (who trains
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the ML model). The goal is to arrive at an acceptable (to regulators) and achievable (by the model
builder) specification for the level of privacy and fairness guarantees.

We provide a formal characterization of the agents, their loss functions, strategies, and training
outcomes. In doing so, we face our first unique challenge in specifying a game for trustworthy ML:
characterizing the privacy regulator’s loss function depends on a black-box estimation of the model’s
privacy guarantee, which has been theoretically shown impossibility (Gilbert & McMillan, 2018).
We circumvent the issue of privacy loss estimation by pre-calculating a Pareto frontier (PF) between
achieved fairness, privacy, and accuracy levels. This PF is then shared as common-knowledge (Fu-
denberg & Tirole, 1991) among all agents. Note that sharing knowledge does not require agents
to take coordinated action (as is assumed in the single-agent setting), or otherwise preclude them
from independent action in any way. Given the inherent optimality of the PF, calculation of the
best-response functions (BRs), i.e. the minimizers of each agent’s loss in response to others’ actions,
becomes independent of the privacy loss estimation. Eventually, the intersection of the BRs results in
Nash equilibrium (NE) points. We call our resulting equilibrium-search algorithm ParetoPlay.

Note that, in general, not all equilibria are equally societally beneficial. Let us illustrate this using
our previous analogy: imagine that the emissions regulatory has set a maximum tolerable amount
of car emissions x0. The car maker, being an independent agent, can choose not to follow that
recommendation which allows it to save y dollars in expected costs and release cars with emission
levels x > x0. The regulator in turn imposes a fine with dollar-amount value C(x− x0). Note that if
y > C(x− x0), the car maker is incentivized to absorb the penalty as simply price of doing business.
This results in an equilibrium state, but not a societally-beneficial one. We can potentially improve
this situation by choosing an appropriate C; which is an example of incentive design. We formulate
and empirically study incentive design for the SpecGame. Here, we take the role of the regulators
who have analyzed a particular market (e.g., facial recognition software) using ParetoPlay, and
want to choose correct penalty scalers to enforce their desired guarantees. Our goal is to present
a framework that would allow policy makers to push for more socially-beneficial equilibria, and
thereby implement a more trustworthy ML in practice at a moderate cost to ML utility.

For our empirical evaluation, we instantiate SpecGame with four different tasks and two private
and fair learning frameworks ((Yaghini et al., 2023; Esipova et al., 2022)) and set out to empirically
answer three broad research questions: (RQ1) Can we characterize the suboptimality of reducing the
inherently multi-agent trustworthy ML to the single-agent setting? (RQ2) What can the interactions
between various agents tell us about the outcome of SpecGame? For example, how important is it
for regulators to move first (or second) in the market? (RQ3) Can our study surface incentive design
guidelines for policy makers?

In summary, we make the following contributions:

• We introduce a general framework for ML regulation games which enables us to characterize
trust in ML as a multi-objective and multi-agent problem. We instantiate a concrete regula-
tion scenario as SpecGame where fairness and privacy regulators attempt to introduce and
enforce trustworthiness guarantees in a sensitive software market.

• We propose ParetoPlay, a novel equilibrium search technique that assumes shared knowl-
edge of a pre-calculated PF between agent objectives. ParetoPlay allows us to efficiently
simulate the interactions between agents in SpecGame, and recover equilibria points.
Analysis of equilibria, in turn, enables us to tackle questions of empirical incentive design,
as a mechanism to push for more societally-beneficial equilibria.

• Empirically, we highlight the suboptimality of studying trustworthy ML in a single-agent
framework. For instance, we show that for a facial analysis software market, the achieved
privacy guarantee is 3.76× worse than the ordained privacy requirement if regulators do not
take initiative to specify their desired guarantees to the market.

2 BACKGROUND

Problem Setting: Specification. We consider a scenario involving an application of ML to auto-
mated facial analysis—similar to models considered in Krishnan et al. (2020). This is for illustrative
purposes; our framework is generally applicable. Facial analysis models perform a range of sensitive
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tasks, such as face recognition and prediction of sensitive attributes like gender or age.1 It is clear
that both fairness and privacy are relevant to the individuals that use such a model or contribute to its
training data. In practice, regulators, such as governmental agencies or ethics committees, are put in
charge of formulating and enforcing privacy and fairness requirements on the individuals’ behalf.

Game Theory. A Stackelberg competition G = (A,S,L) is a game defined by a set of agents A,
their strategies S , and their loss functions (aka, negative payoff functions) L, where the players go in
sequential order. In its simplest form with two agents, the leader initiates the game. Having observed
the leader’s strategy, a follower reacts to it. Analysis of Stackelberg competitions, involves solving
a bi-level optimization problem where every agent is minimizing their loss subject to other agents
doing the same. Solutions to the said problem recovers the Nash equilibria (NEs). Searching for NEs
is intractable (PPAD-complete (Daskalakis et al., 2006)), which is why a super-set of them, known as
correlated equilibria, have seen increasing attention due to ease with which they can be found (for
instance, using polynomial weights algorithm) (Arora et al., 2012; Nisan et al., 2007).

In multi-objective optimization, and games in particular, we are interested in the social wel-
fare (Shoham & Leyton-Brown, 2009) of an equilibrium to all agents. Pareto efficiency is a metric of
social welfare, which adopted for the specification problem is (Yaghini et al., 2023):

Definition 1 (Pareto Efficiency). A model ω ∈ W , where W is the space of all models, is Pareto-
efficient if there exists no ω′ ∈ W such that (a) ∀i ∈ I we have ℓi (ω

′) ≤ ℓi(ω) where I is the set
of objectives and ℓi ∈ L is the loss of objective i; and that (b) for at least one objective j ∈ I the
inequality is strict ℓj (ω′) < ℓj(ω).

Privacy. Differential Privacy (DP) (Dwork & Roth, 2013) is a mathematical framework that
provides rigorous privacy guarantees to individuals contributing their data for data analysis. A typical
DP mechanism is to add controlled noise to the analysis algorithm, making it difficult to identify
individual contributions while still yielding useful statistical results. Formally, (ε, δ)-differential
privacy can be expressed as follows:

Definition 2 (Approximate Differential Privacy). Let M : D∗ → R be a randomized algorithm that
satisfies (ε, δ)-DP with ε ∈ R+ and δ ∈ [0, 1] if for all neighboring datasets D ∼ D′, i.e., datasets
that differ in only one data point, and for all possible subsets R ⊆ R of the result space it must hold
that ε ≥ log P[M(D)∈R]−δ

P[M(D′)∈R] .

DP, by definition, protects against worst-case failures of privacy (Dwork & Roth, 2013; Mironov,
2017). These failures are rare events and difficult to detect. As a result, sample-efficient estimation of
DP guarantees is nearly impossible (Gilbert & McMillan, 2018). Prior work has shown though that it
is still possible to estimate the privacy leakage of a model through an audit. For example, one can
train multiple instances of the model to establish a lower-bound on the privacy privacy parameter ε
by training thousands of models (Tramer et al., 2022).

3 SPECGAME

We introduce SpecGame, an ML regulation game that captures the interactions between three agents
involved in the life-cycle of an ML model (Tomsett et al., 2018): a model builder who is in charge of
producing the model, and two regulators who are in charge of fairness and privacy of the resulting
model, respectively. We note that our framework is general and can accommodate other objectives,
as long as they are measurable with a cost function. We assume the model builder seeks to create
the most accurate model. The regulators formulate the requirements and monitor the model for
potential violations of their objectives based on recent regulations (Commission, 2021; Office of the
Privacy Commissioner of Canada, 2019). The fairness regulator assesses the resulting model for
potential discrimination using fairness metrics (Beutel et al., 2019), whereas the privacy regulator
seeks to ensure that strong-enough guarantees exist to protect the privacy of the training data used

1The use of such models can, therefore, have severe ethical implications, motivating the need to optimize for
their general trustworthiness, instead of focusing on one single aspect, such as their average utility.
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for the model. We assume that regulators are able to give penalties2 for violations of their respective
objective which they formulate as a utility (or value) function.

Depending on whether regulators announce concrete specifications first, or if the model builder
produces a model first with fairness and privacy guarantees of its choosing, we would have a game
that is either regulator-led, or builder-led. This sequential order of interactions lends itself naturally
to a Stackelberg competition (see Section 2). As agents interact with each other, the game is
repeated: Figure 1 shows both a regulator-led (top) and a builder-led market (bottom). Since analysis
of both settings is similar, without loss of generality (W.L.O.G), unless otherwise stated, we will
assume a regulator-led market. In Section 5, we will discuss the impact of moving first. In this
work, we do not consider a competition between regulatory bodies since both are assumed to be
governmental agencies. We assume the regulators hold necessary information about the task at hand
in the form of a Pareto Frontier (PF)3 which they use to choose fairness and privacy requirements that
taken together with the resulting accuracy loss are Pareto efficient: improving one objective would
necessarily come at the cost of another (see Definition 1). This choice departs from the classical
non-cooperative game formulations but we argue it is appropriate given that regulators do not seek to
punish model builders for creating accurate models given that a well-generalized (robust) model is
necessary for strong privacy (Li et al., 2021) and fairness guarantees (Kulynych et al., 2022).

3.1 AGENTS AND STRATEGIES
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Figure 1: Repeated SpecGame
between model Builder, and
Privacy and Fairness regula-
tors—(top) regulators lead, (bot-
tom) builder leads.

Fairness Regulator. The choice of a proper fairness measure is task-
dependent. Hence, our regulation game framework does not make any
assumptions on the applied metric. The fairness evaluation process
takes as input a fairness metric Γfair(ω,D) : W ×X 7→ R+ (Barocas
et al., 2018) chosen by the fairness regulator, the model ω ∈ W , and
an adequate evaluation dataset Deval ∈ X , Deval ∼ D, where D is the
task’s data distribution. The evaluation process then outputs γ̂ω as an
empirical estimate of the model’s fairness violation.

Assuming regulators lead, at the first stage of SpecGame, the fair-
ness regulator’s strategy is to specify the maximum tolerable fairness
violation γ ∈ R+. Next, the builder creates the model ω. At the end
of the first stage, where losses are measured, the regulator’s loss is

ℓfair(γ;ω) := max{0, γ̂ω − γ}. (1)

In the subsequent stages of the game, the regulator strategy is to an-
nounce a penalty (e.g., a monetary fine) for violating its specification.
We choose a linear form for such that the penalty is proportional
to the excessive fairness violation (γω − γ). This formulation also
follows the the common “expected utility hypothesis” in economics (Roberts, 1984). W.L.O.G. then,
regulator’s strategy is to choose Cfair ∈ R+ and announce the penalty Lfair(ω) = Cfairℓfair(γ;ω). If
Cfair is too small, regulators strategy may not be effective in persuading the model builder to create a
fairer model and thus lower γ̂ω . We discuss how to chose Cfair in Section 4.2.

Privacy Regulator. We assume that the privacy regulator specifies its requirement within the
framework of approximate DP (see Definition 2). To satisfy this requirement, the builder, has to
adopt private training (Esipova et al., 2022; Yaghini et al., 2023) which bounds the privacy leakage of
the model thus trained, and protects the privacy of sensitive training data, e.g., such as individual data
for facial analysis (see Section 2).

In multi-agent formulation of ML trustworthiness where separate entities train and audit the model,
privacy estimation is an important part of privacy regulator’s loss. However, in order to keep our
framework general and future-proof, we abstract away the particular technique used for privacy

2As is customary in the economics literature, the penalties need not be monetary. It is sufficient that they
present a viable risk. This, for instance, may take the form of expected lost revenue due to a watch-dog (or NGO)
reporting on fairness and/or privacy violations of an ML-as-a-Service platform.

3It has been shown that this does not require access to private data since access to data from the same domain
is sufficient to calculate the PF Yaghini et al. (2023).
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estimation. We note that the technique used bears importance in the simulation of the game, but we
defer that discussion to Section 4 where we discuss our simulator for SpecGame. Concretely, we
treat privacy auditing mechanism as a function that, at a fixed δ, outputs an estimate of ε̂ω ∈ R+, i.e.,
privacy of the model implemented by model builder. Based on this estimate and the privacy parameter
required from the privacy regulator ε ∈ R+, the privacy-related loss term can be formulated as

ℓpriv(ω) =

{
exp (ε̂ω − ε) ε̂ω > ε

0 otherwise
(2)

The privacy loss in Equation (2) is formulated as a exponential because the privacy parameter ε is
similarly defined in Definition 2. As a result, the privacy loss can be upper-bounded by probability
ratios of indistinguishability (see Section C.1) Note that the privacy loss is positive only when ε < ε̂ω
and zero if the model builder followed or over-accomplished the privacy regulator’s guidelines.
Similarly to the fairness regulator, the privacy regulator scales its loss with Cpriv ∈ R+, announcing
Lpriv(ω) = Cprivℓpriv(ω) as penalty to the model builder.

Model Builder. The model builder is in charge of implementing an ML task, such as facial
recognition, by creating a model ω ∈ W where W is the space of all possible models. While
their primary focus is achieving high model utility (e.g., accuracy), they are aware that the final
trained model will have to face regulatory audits—either before deployment during internal audits,
or in production with an external regulator. In particular, the builder knows that fairness or privacy
violations can lead to penalties from the regulators. Therefore, the respective risks have to be included
into the model builder’s utility function, either as constraints, or as additive penalties to the loss:

Lbuild(ω) = ℓbuild(ω;Dtest) + λprivLpriv(ω) + λfairLfair(ω) (3)

where λpriv, λfair ∈ R+. That is, the model builder’s overall loss is its model loss ℓbuild(ω) on a test
dataset Dtest ∼ D plus the penalties incurred from privacy and fairness regulators (Lpriv and Lfair).

3.2 GAME FORMALIZATION, BEST RESPONSE AND NASH EQUILIBRIA

Formally the SpecGame G is a repeated Stackelberg game with the interaction stage defined
as Gstage = (A,S,L) (shown in Figure 1 as dotted interaction windows), with the set of agents
A = {build, fair, priv}, losses L = {Lbuild,Lfair,Lpriv}, and the strategy space S = Sbuild ×
Sfair × Spriv as defined earlier. The overall discounted loss of agent i ∈ {build, fair, priv} is

Li =
∑∞

t=1

{∏t
i=1 c

(t)
i

}
L
(t)
i for agent loss Li ∈ Li where t is the time index. From a game

theory perspective the discounting factor c(t)i ∈ [0, 1] represent the fact that agents care about their
loss in the near-term more than in the long run (Shoham & Leyton-Brown, 2009). W.L.O.G, we as-
sume a constant discounting factor for each agent c(t)i := c ∈ [0, 1] ∀t, therefore, Li =

∑∞
t=1 c

tL
(t)
i .

To analyze the SpecGame, we would typically need to calculate the best-response (BR) maps of
agent strategies. For instance, the model builder’s BR is the strategy s∗build ∈ Sbuild that minimizes
Lbuild assuming regulators are also choosing their best responses. If every agent is choosing their best
response strategy, we recover an NE (see Appendix F for details).

4 PARETOPLAY: BEST-RESPONSE PLAY ON THE PARETO FRONTIER

The SpecGame described in Section 3 cannot be easily simulated directly due to challenges in
forming the agents’ loss functions, most notably, because the privacy cost of a trained model is difficult
to estimate in a black-box way post training (see Section 1). However, even if future developments
make privacy estimation more efficient, the highly non-convex nature of agent losses in SpecGame
makes them intractable for a typical game theoretic analysis which involves calculating and reasoning
about its NEs. More importantly, although NEs are optimal w.r.t. single-agent deviations, they are
often not Pareto efficient (see Definition 1). For example, seeking NEs can provide ‘solutions’ where
both the model builder and a regulator’s losses can be improved simultaneously.

We introduce ParetoPlay to address these problems by assuming agents share as common-knowledge
a pre-calculated PF between privacy, fairness, and model utility. This assumption, in turn, has the
advantage of restricting the search for equilibria to correlated equilibria that are likely to be on the PF.
ParetoPlay is a general algorithm that can be run to simulate a SpecGame for any ML algorithm as
long as a PF can be obtained.
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Using the PF as a correlation device. Prior work has shown that fairness, accuracy, and privacy
objectives are correlated. Well-generalized (i.e., accurate) models have been shown to have better
privacy and fairness guarantees (Bagdasaryan et al., 2019; Li et al., 2021), and that overfitting
and memorization is a root cause of privacy leakage (Shokri et al., 2017) and disparate fairness
impact (Kulynych et al., 2022). Additionally, it has been empirically shown (Yaghini et al., 2023)
that the PF is task-dependent as opposed to being data-dependent. This means that every agent
can estimate the PF on its own, without access to other agents’ data. Thus, assuming a common-
knowledge of the PF between agents is realistic. We also empirically verify this assumption in
Appendix J with agents calculating the PF and playing ParetoPlay on separate datasets. Sharing
the PF has important implications for the equilibrium search: the Pareto frontier gives a signal to
every player what to play (similar to how a stop-light allows drivers to coordinate when to pass an
intersection). This is known as a correlation device. If playing according to the signal is a best
response for every player, we can recover a correlated equilibrium (CE).

Making a uniform strategy space. In the regulator-led SpecGame repeated for n rounds. Note
that SpecGame is an infinitely-repeated game, therefore, n → ∞. We will provide conver-
gence results in Section 4.1. The strategy set for either regulator is Sreg = S(1)

reg ×
∏n

t=2 S
(t)
reg for

reg ∈ {fair, priv}. In the first round, the strategy set S(1)
reg is to announce a specification for their

parameter (i.e., γ, ε). However, in the proceeding n − 1 rounds, St
reg = S ∀t > 1 the strategy

is to announce fines S = {Lreg ∈ R+}. To simulate and reason about the SpecGame, it is ben-
eficial to make the regulators’ strategy set consistent across all stages.That is, we want to make
the domain of strategies in every stage to be the same. This allows us to have a single stage game
that is repeated. To do so, W.L.O.G., for t > 1, we assume a mapping from the penalty values
in S to trustworthy parameters values sreg = (γ, ε) used by the model builder in the preceding
round that caused the penalty. Furthermore, in ParetoPlay, where we additionally assume ac-
cess to PF, we can make a similar assumption for the model builder: there exists a mapping from
models to trustworthy parameters on the PF. Therefore, whenever the model builder announces
a model, we can assume they have announced their chosen trustworthy parameters sbuild. This
allows us to write the strategy space of all agents and across all stages as S = Sn

stage where Sstage =

Sfair × Spriv × Sbuild = {(sfair, spriv, sbuild) | si = (γ, ε), γ ∈ [0, 1], ε ∈ R+, i ∈ {fair, priv, build}}.

4.1 SIMULATING SPECGAME WITH PARETOPLAY

Algorithm 1 ParetoPlay: Regulator-led
Input: Initial PF input R(0), total number of game rounds T , agents {Abuild, Areg |

reg ∈ {fair, priv}}, step size η
1: for t ∈ {0, 1, . . . , T} do
2: P ← PF(R(t)) ▷ Estimate the PF
3: if t = 0 then ▷ First round of the game
4: s0 ← CHOOSESPEC(P, {Afair, Apriv})
5: else if t mod 3 ̸= 1 then ▷ Regulators moves
6: C(t)

reg ← CHOOSEPENALTYSCALE(s(t−1))

7: s(t+1) ← s(t) − η
〈
ereg,∇sL

P
reg(s

(t);C(t)
reg )

〉
▷ reg only adjusts

its own parameter
8: else ▷ Builder move
9: s(t+1) ← s(t) − η∇sℓ

P
build(s

(t))

10: R(t+1) ← R(t) ∪ {CALIBRATE(ω, s(t+1))}
11: η ← ci · η ▷ Ai discounts its payoff by ci (decay factor)
12: Output s(T )

The game starts by distributing a PF be-
tween all agents. The PF is formed by
training multiple instances of the cho-
sen ML models in R = {ω(s) | ω ∈
W} before the game using different
guarantee levels s := (γ, ε) and then
calculating the PF P = PF(R) where
PF : [0, 1]×R+ 7→ [0, 1]×R+×R+ is
a map from guarantee levels to a tuple
of fairness, privacy and builder losses.

The agent who takes the first step,
chooses the initial specification of the
parameters s. Assuming regulators
go first, given the no-compete assump-
tion between them, they may choose to
jointly select a point on the Pareto Frontier and use it for the initial constraints. If they do so, they
effectively become a combined regulator with a loss ℓr = λrℓfair(s) + (1 − λr)ℓpriv(s), for some
λr ∈ [0, 1] which decides the trade-off between fairness and privacy that the combined regulator
seeks (CHOOSESPEC(.) in Algorithm 1). We note however, that from the second stage onward, each
regulator interacts independently with the model builder. If the model builder moves first, it would
select a point that would minimize its own loss function ℓbuild(s). In Section 3.2, we mentioned that
in a repeated game, agent i discounts their past losses over time by ci. From an optimization point of
view, ci appears as a decay factor (Line 11 in Algorithm 1).
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Choosing penalty scalers. Consider builder’s step at t+ 1 as seen by the regulators,

s(t+1) = s(t) − η∇sℓbuild(s
(t))− ηCpriv∇sλprivℓpriv(s

(t))− ηCfair∇sλfairℓfair(s
(t)), (4)

where ∇s denotes the gradient with respect to the trustworthy parameters s. Note the penalty scalars.
λreg are private information to the builder: a company is not incentivized to disclose how much a
governmental penalty would be affecting its decisions. But as Algorithm 1 shows, regulators do not
need to know λreg to impact the builder’s loss and force it to change strategy. This is because the
penalty scalars Creg chosen by the regulators can create the same effect. In the next section, we use
these scalars to incentivize more societally desirable equilibria.

Approximation and calibration. In ParetoPlay, we estimate all agent losses on the PF P (hence
the ℓP∗ in Algorithm 1). Our estimation involves a linear interpolation on P . Interpolation may lead
to estimation errors, as the estimated next parameters s(t+1) may, in fact, not be on the PF. Given
that the PF is shared, this can lead to compounding errors, and non-convergent behavior. We avoid
this by including a calibration step at the end of each round. In CALIBRATE in Algorithm 1, we train
a new model using the chosen parameter s(t+1), and add new objective loss results to the prior result
set R. A new, potentially improved PF is recalculated next round with the new results (line 2). Next
we show that ParetoPlay induces a correlated equilibrium:
Theorem 1. ParetoPlay recovers a Correlated Nash Equilibrium of the SpecGame.

We differ the proof to Section K. We also provide a proof sketch for the convergence of ParetoPlay
in Section K.1, where we see ParetoPlay as essentially a sub-gradient optimization procedure with
square-summable but not summable step sequences.

4.2 INCENTIVE DESIGN: HOW TO SET PENALTIES Cfair AND Cpriv

ParetoPlay ensures that the found equilibria found are on the Pareto frontier and, therefore, are
efficient. However, as we established, not all such equilibria are desirable to the regulators. The
“cost-of-doing” scenario we noted in Section 1 where regulators’ penalties are not enough to effect a
change in model builder’s behavior is an example of such an equilibrium. If the regulators seek to
escape such an equilibrium, they can do so by adjusting the penalty scalars Cfair and Cpriv (hereon,
C∗). If the regulators had no consideration for the model builder’s loss, then their best strategy should
be to choose a very large C∗; but this runs the risk of disincentivizing participation completely by
increases the risk of insurmountable penalties for the builder. So how should we choose C∗?

Reduction to a multi-objective problem. Given the incomplete information of the regulator about
the loss of the model builder (λfair and λpriv are unknown to the corresponding regulator), an exact
answer is not possible. However, we can find good candidates for C∗ by reducing the multi-agent
problem, to that of a multi-objective problem. This means that the regulators need to consider model
loss as one of their own objectives and recover the Pareto frontier (PF) between all three objectives.

There exist standard techniques to recover the Pareto frontier of a multi-objective optimization
problem (which always exists for any feasible problem). Scalarization (Boyd & Vandenberghe,
Section 4.7.4) is such a technique that provided each objective is convex, can recover all of the Pareto
frontier, and if not; at least a part of it. In Appendix C.2, we provide details on how we can leverage
scalarization to obtain good C∗.

5 EXPERIMENTAL RESULTS

We instantiate ParetoPlay with two algorithms: FairPATE (Yaghini et al., 2023) and DPSGD-Global-
Adapt (Esipova et al., 2022). Both algorithms train fair and private classification models and adopt
approximate DP as their privacy notion. For each, we choose an appropriate strategy vector space s
that the agents update throughout the game (see Section 4 on making the strategy space uniform).
Different values for s train models with different levels of fairness and privacy guarantees. FairPATE
measures fairness through maximum demographic parity gap; so we define sFairPATE := (γ, ε), i.e.,
the privacy budget and the maximum tolerable demographic fairness gap. DPSGD-Global-Adapt,
on the other hand, measures fairness through maximum accuracy gap between subgroups as a result
of using DP (i.e., disparate impact of DP). We define sDPSGD-Global-Adapt := (τ, ε) which constitutes
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fairness tolerance threshold τ and privacy budget ε. Before every game, we train multiple instances
of the models by varying s to calculate the PF. We defer the details to Section G.

Experimental Setup. We simulate the games on UTKFace, FairFace, CelebA, and MNIST datasets
for 20 rounds. All games are regulator-led unless specified otherwise. After each round of the game,
we log the current strategies s, the achieved privacy cost ε, the achieved maximum fairness gap
(Disparity), as well as accuracy. FairPATE produces coverage as another measure of utility that
denotes the percentage of queries answered by the model at inference time. Our research questions
(RQs) are as follows: (RQ1) if regulators produced specifications for trustworthy parameters s using
a single-agent-optimized model, would that recommendation be respected in the multi-agent setting?
(RQ2) How do the agents interact with each other during the game in different setups? (RQ3) What
strategies can regulators use to achieve a desired equilibrium?

RQ1: Single-agent-optimized specifications lead to sub-optimalities in the multi-agent settings
. Game dynamics can converge to equilibria that violate regulators’ desired guarantees. We show
examples of the resulting trust gap in Figure 2 with both FairPATE and DPSGD-Global-Adapt. In all
four games, the regulators act first and choose strategies s that produce models with desired ε(s) and
maximum fairness gap Γ(s). However, we can observe in Figure 2 that each game convergences to a
point that either violates the fairness constraint or the privacy constraint, i.e., final models all have
trust gaps. To address this, regulators should adjust their incentives which we discuss in RQ3.
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Figure 2: ParetoPlay dynamics for regulator-led SpecGame. We show fairness and privacy objective values
in blue and orange, respectively. The constraints on each objective is set at round=0 and is constant throughout
the simulation (marked by a dashed line). In (a) and (b), the privacy constraints are violated. In (a), (c), and
(d), the fairness constraints are violated. Given that the initial specification is always on the PF, these show that
applying single-agent recommendations to multi-agent setups leads to sub-optimal equilibria.

RQ2: SpecGame leader has a first-mover advantage. In traditional Stackelberg competitions,
the first-mover has an advantage (Fudenberg & Tirole, 1991). We demonstrate that this also holds
in the case of SpecGame. Recall that in each game, the first-mover chooses the point on the
Pareto surface that minimizes their loss. All other parameters in both games, including regulators’
fairness and privacy constraints, remain the same throughout the game run. Consider Figure 3. When
the builder leads, they choose a starting point with large ε(s) and Γ(s) to maximize accuracy and
coverage. The game converges to a point with high accuracy and coverage as well; favouring the
model builder. Similarly, with smaller ε(s) and Γ(s), the equilibrium of the regulator-led is more
desirable to the leader.

0 10 20
round

70

80

A
cc

u
ra

cy

Regulators Led Model Builder Led

0 10 20
round

0.8

1.0

C
ov

er
ag

e

(a) Accuracy and coverage

0 10 20
round

0.05

0.10

0.15

D
is

p
ar

it
y

Regulators Led Model Builder Led

0 10 20
round

2.5

5.0

7.5

ε

(b) Achieved ε(s) and Γ(s)

Figure 3: First-mover has an advantage in SpecGame. We compare regulator-led and builder-led games on
UTKFace with all other hyperparameters kept constant. The regulator-led game achieves lower privacy cost and
fairness violation, while builder-led game achieves higher accuracy and coverage—demonstrating an equilibrium
that favors the first mover.

RQ3: Regulators can enforce desired equilibria. Ideally, a game should converge to a point
with strategies sT very close to what the regulators choose to satisfy regulators’ constraints while
preserving model utility. First, we demonstrate that the convergence points are influenced by the
scale of regulator penalties. In Figure 4a, we show games with the same starting point but different
regulator penalty scalars Cfair and Cpriv. Games with higher penalties tend converge to points with
lower model utilities. This shows that games with high regulator penalties favor the regulators more.
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for trustworthiness constraints to be enforceable. Experiments on UTKFace
assuming λfair = λpriv = 1, with the initial constraints of γ0 = 0.05 and
ϵ0 = 3.0 kept constant across the simulation as before. Colors in the figure
correspond to different Cfair values, while columns reflect Cpriv values. To
ensure the fairness and privacy constraints are satisfied, Cfair and Cpriv need to
be around 1; that is, comparable to builder’s loss.
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(b) Regulators can enforce desired equilibria. Each simu-
lation consists of two stages. In the first stage, regulators set
initial constraints (marked with dashed lines) which builders
exceed. At this point, in the second stage, the regulators ad-
just the penalty scalars Cfair and Cpriv which allows them to
successfully enforce the initial constraints. Albeit at a cost to
builder’s accuracy but interestingly not coverage.

Regulators can change their incentives after the game has converged to find a more desirable equilib-
rium. We demonstrate this in Figure 4b in which the game has two stages. In the first stage, as before,
regulators set initial constraints (namely, ε ≤ 3 and γ ≤ 0.05). The fairness constraint is not satisfied
by the model builder until round 20 and the game has reached an equilibrium. At this point, in the
second stage, regulators adopt higher penalties to address the fairness violation (from Cfair = 1 to
Cfair = 5) which forces the builder to respect the constraint.

6 RELATED WORK

It has been shown that private training of ML models negatively influences utility (Tramer & Boneh,
2020) and fairness (Suriyakumar et al., 2021; Farrand et al., 2020). A general line of work on
integrating those objectives by adapting the training procedure (Xu et al., 2019; Mozannar et al.,
2020; Franco et al., 2021; Tran et al., 2021), or identifying favorable trade-offs between subsets of
these objectives (Avent et al., 2019) has emerged over the past years. Note that, in contrast to our
work, all prior frameworks to unify different objectives or characterize trade-offs do not consider the
inherent multi-agent nature of the problem. Yet, we can leverage their methods to instantiate our
regulation games. In this work we build on to recent frameworks, namely FairPATE (Yaghini et al.,
2023) and DPSGD-Global(-Adapt) (Esipova et al., 2022). FairPATE extends the private aggregation
of teacher ensemble (PATE) algorithm of Papernot et al. (2018) with an unfairness mitigation. The
adaptive clipping framework modifies the differential private stochastic gradient descent algorithm
(DP-SGD) of Abadi et al. (2016) with disparate clipping for data points from different sub-groups.
The fact that our regulation games can be instantiated with two frameworks that differ so significantly
in their approach to integrate privacy and fairness highlights the universality of our work. In work
closest to ours, Jagielski et al. (2019) study the trade-offs between privacy, fairness, and accuracy
within a game theoretic framework through a two-player zero-sum game. Our focus is on formulating
the regulation game, with the purpose of designing proper incentive. We are interested in the more
general (and more realistic) case of having multiple agents (such as two regulatory bodies) interacting
with the model owner which does not admit a two-player zero sum game solution.

7 CONCLUSION AND FUTURE OUTLOOK

We introduced a general framework to study trustworthy ML models in multi-objective multi-agent
scenarios through Regulation Games. We provided a concrete instantiation, SpecGame, and an
equlibirum search algorithm ParetoPlay which allowed us to simulate the outcomes of policy
announcement for minimum fairness and privacy requirements and to to discuss empirical incentive
design and provide policy guidelines. Our regulation games can be extended to include more
actors (e.g., other regulators) and consider information asymmetries between model builder and the
regulators (see Section J) and thus be applicable in an even broader range of practical scenarios.
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Roxana Rădulescu, Patrick Mannion, Diederik M Roijers, and Ann Nowé. Multi-objective multi-
agent decision making: a utility-based analysis and survey. Autonomous Agents and Multi-Agent
Systems, 34(1):10, 2020.

Fred S. Roberts. Measurement theory with applications to decisionmaking, utility, and the social
sciences. Number v. 7 in Encyclopedia of mathematics and its applications ; Section, Mathematics
and the social sciences. Cambridge University Press, 1984. ISBN 978-0-521-30227-2.

11

https://dl.acm.org/doi/10.1145/1989323.1989345
https://dl.acm.org/doi/10.1145/1989323.1989345
http://arxiv.org/abs/1906.00389
http://arxiv.org/abs/1906.00389
http://arxiv.org/abs/1702.07476
https://www.priv.gc.ca/en/privacy-topics/privacy-laws-in-canada/the-personal-information-protection-and-electronic-documents-act-pipeda/
https://www.priv.gc.ca/en/privacy-topics/privacy-laws-in-canada/the-personal-information-protection-and-electronic-documents-act-pipeda/
https://www.priv.gc.ca/en/privacy-topics/privacy-laws-in-canada/the-personal-information-protection-and-electronic-documents-act-pipeda/
http://arxiv.org/abs/1802.08908
http://arxiv.org/abs/1802.08908


Under review as a conference paper at ICLR 2024

Yoav Shoham and Kevin Leyton-Brown. Multiagent systems: algorithmic, game-theoretic, and
logical foundations. Cambridge Univ. Press, 2009. ISBN 978-0-521-89943-7. OCLC: 603027890.

Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. Membership inference attacks
against machine learning models. In 2017 IEEE Symposium on Security and Privacy (SP), 2017.

Vinith M. Suriyakumar, Nicolas Papernot, Anna Goldenberg, and Marzyeh Ghassemi. Chasing
your long tails: Differentially private prediction in health care settings. In Proceedings of the
2021 ACM Conference on Fairness, Accountability, and Transparency, FAccT ’21, pp. 723–734,
New York, NY, USA, 2021. Association for Computing Machinery. ISBN 9781450383097. doi:
10.1145/3442188.3445934. URL https://doi.org/10.1145/3442188.3445934.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow,
and Rob Fergus. Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199, 2013.

Richard Tomsett, Dave Braines, Dan Harborne, Alun Preece, and Supriyo Chakraborty. Interpretable
to whom? a role-based model for analyzing interpretable machine learning systems. arXiv preprint
arXiv:1806.07552, 2018.

Florian Tramer and Dan Boneh. Differentially private learning needs better features (or much more
data). In International Conference on Learning Representations, 2020.

Florian Tramer, Andreas Terzis, Thomas Steinke, Shuang Song, Matthew Jagielski, and Nicholas
Carlini. Debugging differential privacy: A case study for privacy auditing. 2022. URL http:
//arxiv.org/abs/2202.12219.

Cuong Tran, Ferdinando Fioretto, and Pascal Van Hentenryck. Differentially private and fair deep
learning: A lagrangian dual approach. In Proceedings of the AAAI Conference on Artificial
Intelligence, 2021.

Michael Wick, swetasudha panda, and Jean-Baptiste Tristan. Unlocking fairness: a trade-
off revisited. In Advances in Neural Information Processing Systems, volume 32. Cur-
ran Associates, Inc. URL https://proceedings.neurips.cc/paper/2019/hash/
373e4c5d8edfa8b74fd4b6791d0cf6dc-Abstract.html.

Depeng Xu, Shuhan Yuan, and Xintao Wu. Achieving differential privacy and fairness in logistic
regression. In Companion Proceedings of The 2019 World Wide Web Conference, pp. 594–599,
2019.

Mohammad Yaghini, Patty Liu, Franziska Boenisch, and Nicolas Papernot. Learning with impartiality
to walk on the pareto frontier of fairness, privacy, and utility. CoRR, abs/2302.09183, 2023. URL
https://arxiv.org/abs/2302.09183.

Andrew Chi-Chin Yao. Probabilistic computations: Toward a unified measure of complexity. In 18th
Annual Symposium on Foundations of Computer Science (sfcs 1977), pp. 222–227. IEEE Computer
Society, 1977.

12

https://doi.org/10.1145/3442188.3445934
http://arxiv.org/abs/2202.12219
http://arxiv.org/abs/2202.12219
https://proceedings.neurips.cc/paper/2019/hash/373e4c5d8edfa8b74fd4b6791d0cf6dc-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/373e4c5d8edfa8b74fd4b6791d0cf6dc-Abstract.html
https://arxiv.org/abs/2302.09183


Under review as a conference paper at ICLR 2024

A NOTATION

Notation Explanation
Si Strategy (decision) set of actor i
ω Model
Γ Fairness metric

ℓfair(γ;ω) Fairness regulator loss of model ω with constraint γ
γ Fairness gap

γ̂(ω) Measured fairness gap on model ω
ℓpriv(ω) Privacy regulator loss of model ω

ε Privacy cost
ε̂(ω) Estimated privacy cost on model ω

ℓbuild(ω;D) Model builder (utility) loss on dataset D
s strategy
C∗ regulator penalty scalar
η step size used by model builder for updates
c∗ step size discounting factor

Table 1: Table of Notation

B CHARACTERIZING EQUILIBRIA QUALITY WITH OPTIMALITY GAPS

In the single-agent optimization, the regulators, and model builder work as one centralized entity. The
central entity can choose a point sOPT on the PF. By definition, using sOPT we cannot improve any
objective without hurting another. In the multi-agent setup, however, even assuming we start from
sOPT, we will likely not stay at sOPT since, despite sharing the PF as a correlation device, every agent
makes independent decisions. This causes suboptimalties w.r.t. sOPT that we wish to characterize.

An achieved equilibrium may not be desirable to one or both regulators. This may be due the model
builder choosing to accept unfair, or non-private models and simply absorb the penalties as price of
doing business; and therefore rendering the penalty mechanism ineffective. In this case, auditors can
choose to increase their scalers Cfair and Cpriv accordingly. Another reason may be that the values
γ and ε were mis-specified. In other words, the prior values may be too harsh or unrealistic for the
given task and data. Given that in ParetoPlay we empirically train and evaluate the model to form
the PF, we avoid the latter case. Therefore, we focus on the former case, and provide a bespoke
characterization for ParetoPlay where penalties may be ineffective, or unnecessarily harsh.

We note that there are other standard characterizations for social welfare (such as Price of Anar-
chy (Shoham & Leyton-Brown, 2009)). However, they are often evaluated theoretically, which
is a challenge for empirical simulation of ParetoPlay. We leave the theoretical characterization
of SpecGame to future work, and focus on the following characterization which allows us to
empirically study questions of incentive design in Section 5.

In the start of the regulator-led ParetoPlay game, regulators choose the initial strategy to be s0

according to their constraints, producing loss profile (ℓfair(s
0), ℓpriv(s

0), ℓbuild(s
0)). The game then

converges to sT with (ℓfair(s
T ), ℓpriv(s

T ), ℓbuild(s
T )). If s0 and sT are the same, the regulators’

constraints are satisfied. If not then one of the following scenarios must be true: (a) ℓfair(s
T ) ≤

ℓfair(s
0) and ℓpriv(s

T ) ≤ ℓpriv(s
0): Both privacy and fairness constraints are satisfied, but ℓbuild(s

T ) >
ℓbuild(s

0) must be true as well since both points are on the PF. The loss in model utility (i.e., accuracy)
constitutes a utility optimality gap, or utility gap for short. The result may still be acceptable if
the utility gap is small since the model builder can seek better model designs to remedy the gap.
(b) Either ℓfair(s

T ) > ℓfair(s
0) or ℓpriv(s

T ) > ℓpriv(s
0): One of the constraints are violated. This

constitutes a trustworthiness optimality gap, or trust gap, which is not acceptable to the regulators.
In this case, regulators may seek to adjust their penalty scalers to ensure their requirements are met.
This the topic of incentive design which we consider next.
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C MISCELLANOUS DETAILS

C.1 MODELING THE PRIVACY REGULATOR’S

Consider the approximate DP definition:

Definition 3 (Approximate Differential Privacy). Let M : D∗ → R be a randomized algorithm that
satisfies (ε, δ)-DP with ε ∈ R+ and δ ∈ [0, 1] if for all neighboring datasets D ∼ D′, i.e., datasets
that differ in only one data point, and for all possible subsets R ⊆ R of the result space it must hold
that ε ≥ log P[M(D)∈R]−δ

P[M(D′)∈R] .

Assume δ = 0. If ε̂ω =
P [M(D̃)∈R]
P [M(D̃′)∈R]

for some datasets D̃, D̃′ where the largest difference between

empirical probability measures P (.) is calculated.

exp (ε̂ω − ε) =
exp(ε̂ω)

exp(ε)
(5)

≥
P
[
M(D̃) ∈ R

]
P
[
M(D̃′) ∈ R

] · P [M(D′) ∈ R]

P [M(D) ∈ R]
(6)

=
P
[
M(D̃) ∈ R

]
P [M(D) ∈ R]

· P [M(D′) ∈ R]

P
[
M(D̃′) ∈ R

] (7)

If the probability estimation of P (.) over D̃ are a good model for P and D, i.e., P [M(D̃) ∈ R] =
P[M(D) ∈ R]) then the right hand side of eq. (7) is 1; but this means that ε̂ω = ε and the privacy
loss of the regulator will be 0. If the empirical probabilities are underestimating the true probabilities,
then the regulator loss will also be positive and will scale with ratio with which the probabilities are
underestimated.

C.2 SCALARIZATION FOR SETTING PENALTIES

We leverage scalarization to find good C∗. For our problem, the objective loss of scalarized problem
is mins α1ℓbuild(s) + α2ℓfair(s) + α3ℓpriv(s) (⋆) where s is the set of hyper-parameters, e.g.,
s = (γ, ε). We implicitly assume ℓbuild(s) is always optimized w.r.t. model weights given a particualr
s. αi ≥ 0, i ∈ [3] is a free parameter. Different choices for αi’s will give us various points on the
Pareto frontier. Under the assumption of convexity then, all the steps in ParetoPlay are minimizers of
the scalarized problem. Matching (⋆) with Equation (4) (with privacy and fairness losses replaced
with their losses including C∗) shows that αbuild ≡ 1, αfair ≡ λfairCfair and αpriv ≡ λprivCpriv.

To choose αi’s (and by extension C∗), (Boyd & Vandenberghe, Section 4.7.5) recommends adjusting
the relative “weights” αi/αj’s. In particular, a point with large curvature of the trade-off function
(aka, the knee of the trade-off function) is a good point to reach a compromise between the various
objectives; accordingly, finding the C∗ that achieves the knee point is recommended.

D BROADER IMPACT, LIMITATIONS, AND DISCUSSION

With the increasing importance of machine learning in sensitive domains, it is crucial to ensure that
the machine learning models are trustworthy. However, previous research has primarily focused
on addressing a single trust objective at the time or when considering multiple objectives assumed
the existence of a central entity responsible for implementing all objectives. We highlight the
limitations of this assumption for realistic scenarios with multiple agents and introduce an approach
for optimization over multiple agents with multiple objectives (MAMO) to overcome this limitation.

Our approach recognizes the diverse nature of agents involved in deploying and auditing machine
learning models. This allows us to make suggestions for guarantee levels that are more likely to
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be realizable in practice; given that the gains and benefits of different parties have been taken into
account. We, however, acknowledge that agents may in fact have a more diverse set of requirements
and objectives; and that as a result our models may not be sophisticated-enough to incorporate all such
factors. Additionally, we made several assumptions regarding the economic model under which we
operate as well as common knowledge of the PF between various objectives. While these assumptions
follow established principles in economics (expected utility hypothesis for the former) and in machine
learning (the existence of a data-generating distribution for the latter), both are contested in their
respective literature.

Finally, we acknowledge that providing “metrics” for human and society values such as fairness
and privacy is imperfect at best and fraught with philosophical and ethical issues. Nevertheless, the
metrics we used in our study are commonplace in trustworthy ML circles and the search for better,
more inclusive, metrics is underway. Our research, therefore, aims to provide systematic guidance on
best practices in regulating trustworthy ML practices, and can be adopted for future development in
these areas.

From our empirical results, we observe that different ML tasks exhibit different Pareto frontiers
(see Section L). As such, an SpecGame played for one task cannot necessarily provide regulation
recommendation for other tasks. It remains to be seen how much such recommendations can transfer
between tasks even within the same domain (for instance, vision). For instance, recommendation
made on the basis of age classification may be ineffective (or too restrictive) for gender estimation.

Finally, we centered our consideration around calculating fines proportional to the privacy and fairness
violations of chosen guarantee levels (γ, ε); as well as ensuring they are effective in changing model
builder behavior. The converse problem is also important: assuming a bound C on the penalty, what
are the maximal γ, ε guarantees that we can expect to be able to enforce?

F BACKGROUND ON GAME THEORY

F.1 BEST RESPONSE

In a multi-agent setup where every agent cares about only one objective (its own), we have a bi-level
optimization problem. For instance the model builder would be solving:

minθacc ℓacc (θacc, θpriv, θfair)
subject to θpriv = argminθpriv ℓpriv (θacc, θpriv, θfair)

θfair = argminθfair ℓfair (θacc, θpriv, θfair)
(8)

Consider θ̄ = [θacc θpriv θacc]
⊤, then we can write the objectives of all agents as

ℓ̄(θ) :=
[
ℓacc

(
θ̄
)

ℓpriv
(
θ̄
)

ℓfair
(
θ̄
)]⊤

. The map ℓ̄ : Θacc × Θpriv × Θfair 7→ R3
≥0 is vector-valued. Let θ̄∗ be the solution to the bi-level

optimization of eq. (8):

θ̄∗ = argmin
θ̄

[
ℓacc

(
θ̄
)

ℓpriv
(
θ̄
)

ℓfair
(
θ̄
)]

(9)

This formulation allows us to study the interaction of agents whose objectives are defined through a
value function (known as the payoff ). Note that a agent’s payoff is not only a function of its own
actions, but also those of its peers. This creates an opportunity for the agent to strategize and choose
its best possible action given others’ actions, where “best” is interpreted as the optimizer of its payoff.
These actions form the best responses (or BRs) to peers’ actions. Therefore, BRs are set-valued
mappings from the set of agents’ actions onto itself whose fixed points are known as Nash equilibria.

More formally, let BR : Θacc × Θpriv × Θfair 7→ Θacc × Θpriv × Θfair be the argmin function of ℓ̄.
This operator calculates the best response (BR) of every agent given the choice of parameters θ. θ̄∗ is
fixed-point of this map: BR(θ̄∗) = θ̄∗. θ̄∗ is a Nash Equilibrium and eq. (9) describes a game.

15



Under review as a conference paper at ICLR 2024

F.2 STACKELBERG COMPETITIONS

Stackelberg competitions model sequential interaction among strategic agents with distinct objec-
tives Fudenberg & Tirole (1991). They involve a leader and a follower. The leader is interested in
identifying the best action (BR) assuming rational behavior of the follower. The combination the
leader’s action and the follower’s rational best reaction leads to a strong Stackelberg equilibrium
(SSE) Birmpas et al. (2020). This improves over work relying on zero-sum game formulation Yao
(1977) where the follower’s objective is assumed to be opposed to the leader’s objective. An important
example for the application of Stackelberg competition in trustworthy ML strategic classification.
Therein, strategic individuals can, after observing the model output, adapt their data features to obtain
better classification performance. Such changes in the data can cause distribution shifts that degrade
the model’s performance and trustworthiness on the new data, and thereby requires the model builders
adapt their models. In our model governance game framework, the two regulators act as leaders while
the model builder acts as the follower. By following the Stackelberg competition, the model builder
aims at obtaining the best-performing ML model given the requirements specified by the regulators.

G PARETOPLAY ON FAIRPATE

In FairPATE, we train teacher ensemble models on the training set. These teachers vote to label the
unlabeled public data. We then train student models on the now labeled public data. At inference time,
the student model does not answer all the queries in the test set. Coverage indicates the percentage of
queries that the student does answer.

We denote the student model for classification by ω, the features as (x, z) ∈ X × Z where X is the
domain of non-sensitive attributes, Z is the domain of the sensitive attribute (categorical variable).
The categorical class-label is denoted by y ∈ [1, . . . ,K]. We indicates the strategy vector space as
s = (γ, ε) where γ is the maximum tolerable fairness violation and ε is the privacy budget.

The loss functions of all agents depend on both γ and ε. We normalize all the losses to be between 0
and 1 to ensure loss components (e.g., Equation (3)) are on the same scale. A gradient descent update
of γ and ε is:

γt = γt−1 − ηfair
L

∂γ
, εt = εt−1 − ηpriv

∂L

∂ε
(10)

The model builder cares about both student model accuracy and coverage. It would want to provide
accurate classification and answer most queries. Its loss function uses a weighted average of the two:

ℓb(γ, ε) = −1 (λbacc(γ, ε) + (1− λb)cov(γ, ε)) (11)

where λb is a hyperparameter set by the model builder that controls how much it values accuracy
and coverage. The accuracy and coverage are multiplied with -1 to form the loss because we want
to maximize them. Both accuracy and coverage values used are between 0 and 1. At each turn, the
model builder decides its response by calculating ∂ℓb

∂γ and ∂ℓb
∂ε at the current ε and γ.

The loss function of the fairness and privacy regulators are ℓfair(γ, ε) = γach(γ, ε) and ℓpriv(γ, ε) =
εach(γ, ε) respectively.

H FAIRNESS

We provide more details on the fairness notions used in our empirical study in Section 5.

H.1 DEMOGRAPHIC PARITY FAIRNESS

Yaghini et al. (2023) adopt the the fairness metric of multi-class demographic parity which requires
that ML models produce similar success rates (i.e., rate of predicting a desirable outcome, such as
getting a loan) for all subpopulations (Calders & Verwer, 2010).

In practice, they estimate multi-class demographic disparity for class k and subgroup z with:
Γ̂(z, k) := |{Ŷ=k,Z=z}|

|{Z=z}| − |{Ŷ=k,Z ̸=z}|
|{Z ̸=z}| , where Ŷ = ω(x, z). They define demographic parity
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when the worst-case demographic disparity between members and non-members for any subgroup,
and for any class is bounded by γ:
Definition 4 (γ-DemParity). For predictions Y with corresponding sensitive attributes Z to satisfy
γ-bounded demographic parity (γ-DemParity), it must be that for all z in Z and for all k in K, the
demographic disparity is at most γ: Γ(z, k) ≤ γ.

H.2 DISPARATE IMPACT OF DIFFERENTIAL PRIVACY

Esipova et al. (2022) study the disparate impact of privacy on learning across different groups. In
particular, they adopt a accuracy parity notion of fairness (Bagdasaryan et al., 2019). A fair model,
in their view, minimizes the following:

π (ω,Dk) = acc (ω∗;Dk)− Eω̃ [acc (ω̃;Dk)] , (12)

where acc (ω∗;Dk) is accuracy of the optimal accuracy ω∗ on dataset Dk belonging to the kth

subpopulation, and ω̃ is the privatized model. As with the output of any differentially private
mechanism, the accuracy of the privatized model is measured in expectation.

In our experiments, we measure the largest accuracy gap between subgroups in Equation (12). That is,
the fairness measure for the regulator in the regulator objective when using DPSGD-Global-Adapt is:

ΓDPSGD-Global-Adapt(ω;D) = max
k

π (ω,Dk) . (13)

I ADDITIONAL EXPERIMENTAL SETUP

In all games on FairPATE, we use step sizes ηfair = 10 and ηpriv = 100, model builder’s loss function
weightings λfair = 0.3 and λpriv = 0.3, step size discount factor c = 0.67. In the game on DPSGD-
Global-Adapt, we use ηfair = 1 and ηpriv = 5. All the other game hyperparameters for each game
shown in Section 5 are shown in Table 2.

The model architecture and data we use in the experiments follow what is described in the original
works for FairPATE Yaghini et al. (2023) and DPSGD-Global-Adapt Esipova et al. (2022). The
datasets used for FairPATE and their information are shown in Table 3. For all datasets in FairPATE
for the calibration step, we train the student model with Adam optimizer and binary cross entropy
loss. We train for 30 epochs with early stopping.

During the games, we put box constraints on the parameters s = (γ, ε) so that they would not be out
of range and produce undefined outputs. We use γ ∈ [0.01, 1] and ε ∈ [1, 10].

Figure Dataset Algorithm s = (ε, γ/τ) Cfair Cpriv

Figure 2a UTKFace FairPATE (5.0, 0.05) 0.5 0.5
Figure 2b CelebA FairPATE (8.0, 0.01) 3 2
Figure 2c FairFace FairPATE (5.0, 0.05) 1 1
Figure 2a MNIST DPSGD-Global-Adapt (2.895, 0.05) 1 5
Figure 3 UTKFace FairPATE (2.0, 0.01) 1 1
Figure 3 UTKFace FairPATE (9.0, 0.2) 1 1
Figure 4b UTKFace FairPATE (3.0, 0.05) 1 1
Figure 4b UTKFace FairPATE (2.953, 0.067) 5 3
Figure 4b UTKFace FairPATE (7.0, 0.05) 10 10
Figure 4b UTKFace FairPATE (5.980, 0.030) 3 1
Figure 5 UTKFace, FairFace FairPATE (5.0, 0.01) 3 1

Table 2: ParetoPlay hyperparameter settings used in the experiments.

J PARETOPLAY WITH INFORMATION ASYMMETRY

A current limitation of our work is the reliance of a common knowledge Pareto frontier (PF). While
it has been shown that despite datasets differences, PFs for the same task is similar (and we will
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Dataset Prediction Task C Sens. Attr. SG Total U Model Number of Teachers T σ1 σ2

CelebA Smiling 2 Gender 2 202 599 9 000 Convolutional Network (Table 4) 150 130 110 10
FairFace Gender 2 Race 7 97 698 5 000 Pretrained ResNet50 50 30 30 10
UTKFace Gender 2 Race 5 23 705 1 500 Pretrained ResNet50 100 50 40 15

Table 3: Datasets used for FairPATE. Abbreviations: C: number of classes in the main task; SG: number of
sensitive groups; U: number of unlabeled samples for the student training . Summary of parameters used
in training and querying the teacher models for each dataset. The pre-trained models are all pre-trained on
ImageNet. We use the most recent versions from PyTorch.

Layer Description

Conv2D (3, 64, 3, 1)
Max Pooling (2, 2)
ReLUS
Conv2D (64, 128, 3, 1)
Max Pooling (2, 2)
ReLUS
Conv2D (128, 256, 3, 1)
Max Pooling (2, 2)
ReLUS
Conv2D (256, 512, 3, 1)
Max Pooling (2, 2)
ReLUS
Fully Connected 1 (14 * 14 * 512, 1024)
Fully Connected 2 (1024, 256)
Fully Connected 2 (256, 2)

Table 4: Convolutional network architecture used in CelebA experiments.

evaluate evaluated ParetoPlay under this setting shortly); it is reasonable expectation that there
would always be an information gap between regulators and model builders. While there may be an
incentive for builders to close this gap by sharing data (for example, to avoid unwarranted penalties).
This is not always possible due to privacy protections for customer data. Furthermore, data sharing
assumes that model builders would not misreport despite an incentive to do so for avoiding penalties.
We, therefore, argue that instead of trusting the builder, we should seek trust using cryptographic
primitives such as multi-party computation (MPC) and zero knowledge proofs (ZKP). A viable future
direction then is to assume that instead of model builder and regulator sharing model updates ω and
calculating their Pareto frontiers individually; we allow each party to calculate a Pareto frontier on
their own data and share its points {(γ, ε, α)} with corresponding proofs for the fairness (γ) and
accuracy loss (α), on a zero-knowledge-proven random sample of their dataset. The privacy loss
ε remains a challenge, because an exact DP guarantee requires an audit of the training algorithm.
We can however, establish an upper bound on the privacy loss of the model, if we can ensure that
a particular sample (known as a privacy canary) has been used in the training of the model. The
creation of the privacy canary, and providing å formal proof of it are open research problems.

Empirical Evaluation. We show results for a game where different agents have access to different
dataset. This is a realistic assumption because private data would not normally be shared between
agents. In this setup, the regulators have access to FairFace, whereas the model builder has access to
UTKFace. The agents use their respective dataset to form their loss functions. During calibration,
they train models on their own datasets as well. The results of the game is shown in Figure 5. We
observe that although the agents use different datasets, the game is able to converge and both the
privacy and fairness constraints are satisfied. This shows that it is possible to reach desirable equilibria
even without all agents having access to the same dataset.

18



Under review as a conference paper at ICLR 2024

0 10 20
round

70

80

A
cc

u
ra

cy

utkface fairface

0 10 20
round

0.90

0.95

C
ov

er
ag

e

(a) Accuracy and coverage

0 10 20
round

0.05

0.10

Γ
(s

)

utkface fairface

0 10 20
round

4

5

ε(
s)

(b) Achieved ε(s) and Γ(s)

Figure 5: Agents need not have access to the same dataset to achieve desired equilibria We simulate a game
where regulators have access to FairFace and model builder has access to UTKFace. We observe the game still
converges and the trust constraints are both satisfied.

K PROOFS

K.1 CONVERGENCE OF PARETOPLAY

We provide a proof sketch for the converge of ParetoPlay. We consider Algorithm 1 and its iterations
up to convergence to an equilibrium s∗; that is, we assume penalty scalers are not-adjusted mid-play
for incentive design purposes (See discussion in Section 5). This does not reduce the generality of
our claims here, since every adjustment of penalty scalers would force a new run of the algorithm
which as we will show is convergent.

Furthermore, we instantiate the SpecGame which ParetoPlay simulates using the FairPATE learning
framework of [44]. Apart from the particularities of each learning framework reflected in their loss
terms, the analysis presented here should apply to other learning frameworks (such as DP-SGD
methods).

We assume that the market is regulator-led, meaning that the regulators have already chosen guarantee
levels ε0 and γ0 . Since C∗ and λ∗ are both scalers, W.L.O.G., we assume λfair = λpriv = 1 , then

F := Lbuild(γ, ε) = ℓbuild (γ, ε) + Cfairℓfair (γ) + Cprivℓpriv (ε) (14)

For a builder using PATE-based methods, ℓbuild is the PATE-student average loss which is a typical
neural network training loss (such as cross-entropy).

The Pareto frontier is a trade-off function between acc-priv-fairness; so it is enough to be looking at
ℓbuild(γ, ε) exclusively. We can show that Algorithm 1 is similar to minimization with subgradient
methods with square summable but not summable step sequences (Boyd et al.). If we can claim (*) is
L-smooth, then we can use the standard argument in Boyd et al., Section 2 to show convergence.

Theorem 1. ParetoPlay recovers a Correlated Nash Equilibrium of the SpecGame.

Proof. Assuming all agents play on the Pareto frontier (Algorithm 1), we need to show that there is
no incentive to deviate from playing on the Pareto frontier.

Assume that Builder (B) reports a ωr that is not on the PF. Assume there that there exists some
ω∗ on the PF, this means that ω∗ Pareto dominates ωr : it is at least as good in all objectives, and
better at least in one. We first note that reporting ωr where ℓacc(ωr) > ℓacc(ω

∗) is irrational (in
the game theoretic sense that it increases the agent’s cost instead of reducing it) and thus never
a best response for B. So we can only cases where it holds that either ℓacc(ωr) < ℓacc(ω

∗) and
ℓfair(ωr) > ℓfair(ω

∗) , or ℓacc(ωr) < ℓacc(ω
∗) and ℓpriv(ωr) > ℓpriv(ω

∗) , or both hold. But
every agent in Pareto Play, re-calculates its Pareto frontier as a first step (Line 2 in Alg. 1). Assume,
if at time t− 1 , B adds ωr to R(t) . At time t , the regulator would re-calculate its PF; but since ωr

is not on the PF, either a) some other ω∗ already exists in R(t) which dominates ωr , and therefore ωr

never appears in the rest of the regulators round; or b) if no such ω∗ exists, the regulator will use ωr

as initialization, do not change the penalty scale in Line 6 (again because it would be irrational for B
to report a ωr which would cause a penalty), and take a step on the Pareto frontier to improve the
corresponding regulator loss. At this point, depending on which objective value was under-reported
by B, the regulator would either be able to find an ω∗ that Pareto dominates ωr —at which point
ωr again is effectively removed from the PF calculations—or the next regulator is going to make a
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Figure 6: Pre-computed Pareto Frontier surfaces.

gradient step and find the appropriate ω∗ that Pareto dominates the misreported ωr . In the worst-case
where we lose gradient information (in a boundary condition, or near an inflection point), we note
that every agent trains a model in the Calibration phase (line 10). At this point, with a near 0 gradient
step, ω∗ ≈ ωr is reevaluated by one of the regulators, which ensures that ℓpriv and/or ℓfair values are
corrected, which again leads to exclusion of ωr from the Pareto frontier. Therefore, we have shown
that there is no incentive to play a Pareto inefficient solution.

L PARETO FRONTIERS

In Figure 6, we highlight the Pareto frontiers over which ParetoPlay is played that are experimental
results in Section 5 demonstrate.
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