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Abstract
In this paper we consider contamination by001
code generation test sets, in particular in their002
use in modern large language models. We dis-003
cuss three possible sources of such contami-004
nation and show findings supporting each of005
them: (i) direct data leakage, (ii) indirect data006
leakage through the use of synthetic data and007
(iii) overfitting to evaluation sets during model008
selection.009

Key to our findings is a new dataset of 161010
prompts with their associated python solutions,011
dataset which we plan to release with this paper012
under a research license.013

1 Introduction014

Code generation has emerged as an important skill015

for large language models to master. Measuring re-016

cent progress in code generation has relied on few,017

critical benchmarks to judge performance between018

model families and checkpoints. While many re-019

cent sophisticated evaluation datasets have been020

proposed (Jain et al., 2024; Jimenez et al., 2024),021

the community largely relies on HumanEval (Chen022

et al., 2021) and MBPP (Austin et al., 2021) to judge023

a new model’s code capability. In fact, all major024

announcements in 2023-2024 claiming advanced025

code capabilities—from academic and industry026

labs—use at least one of these two datasets. Practi-027

cally, reporting HumanEval and MBPP is mandatory028

for a model to report competitive code generation.029

However, the importance of these benchmarks030

has led to a conflict between popularity and utility.031

On one side, obtaining competitive numbers comes032

with significant scientific and economic reward—033

made increasingly easy with the proliferation of034

public replicas of these datasets. However, this035

prevalence has led to data leakage beyond the orig-036

inal evaluation scope, i.e., data contamination, and037

once this evaluation data contaminates model train-038

ing, the validity of the metrics as a measure of039

generalization capability becomes unreliable. If a040

model has been trained on the same data we use 041

for out-of-distribution generalization (or is selected 042

based on its performance on that data), we break an 043

implicit tenet of how model capability can be mea- 044

sured. We argue that understanding the effect of 045

contamination is critical to accurately interpreting 046

scores on these benchmarks. 047

In this paper, we review the evidence that these 048

two benchmarks have contaminated most large 049

LLMs, which we define as any procedure that 050

leaked those datasets during model training. The 051

most obvious method of contamination is presence 052

inside training data, and we provide evidence that 053

it is highly probably that this occurs at a scale too 054

large to be avoidable. A second possibility is that 055

contamination happens indirectly through the use 056

of synthetic data—a widespread paradigm used in 057

particular to increase code capabilities by gener- 058

ating additional code training tokens. Finally, we 059

argue that final model selection might have been 060

overly influenced by their performance on these 061

datasets, overfitting to performance on these met- 062

rics over general-purpose code-oriented skills. 063

To measure this contamination, we propose Less 064

Basic Python Problems (LBPP), a code generation 065

benchmark similar to HumanEval and MBPP in style 066

and scale, but more difficult. LBPP is similarly 067

portable, but is produced in a manner to reduce 068

any likelihood of leakage into present code training 069

data. We contribute LBPP to act as a genuinely 070

held-out test set to measure current code generation 071

capability, and potential overfitting to HumanEval 072

and MBPP. 073

2 Related Work 074

HumanEval (Chen et al., 2021) and MBPP (Austin 075

et al., 2021) remain the most reported results on 076

public leaderboards, but others similar datasets ex- 077

ist (Hendrycks et al., 2021; Li et al., 2022). They 078

consist of short and mostly simple (not program- 079

ming competition level) instructions with comple- 080
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tions in Python. Translation into other program-081

ming languages exist for those datasets (Muen-082

nighoff et al., 2023; Cassano et al., 2022), as well083

as versions with additional tests (Liu et al., 2024).084

(Jain et al., 2024) proposed a continuously up-085

dated set of leetcode to improve dataset challenge086

by including harder and novel (unseen) prompts.087

(Jimenez et al., 2024) aims for challenging software088

engineering problems, that require understanding089

of full repositories. In a similar vein, RepoQA1090

and Bug In The Code Stack2 focus on understand-091

ing long contexts within code tasks. One proposed092

solution is to use hidden evaluation sets (Zhang093

et al., 2024), however, these do not allow inspec-094

tion of failure cases and requires trusting the quality095

and correctness of an opaque ‘black-box’ evalua-096

tion setup. Recently, Riddell et al. (2024) ana-097

lyzed data contamination in popular pretraining098

datasets: reporting that 12.2% of HumanEval sam-099

ples are present in The Pile (Gao et al., 2020), and100

18.9% in The Stack (Kocetkov et al., 2022). Differ-101

ent from our analysis however, they conclude: “we102

do not find the performance rankings of the models103

to change with decontaminated results”.104

3 Possible sources of contamination105

We provide three hypotheses—with evidence for106

each one—on why existing models might be over-107

optimized towards existing leaked benchmarks.108

3.1 Direct data leakage109

The most obvious reason is the simplest: many110

of the test datasets are of widespread use and the111

simplest answer might be that modern LLMs are112

just trained on this evaluation data. We note that113

intentional (i.e., to cheat) or unintentional contam-114

ination has the same net effect: training on evalu-115

ation data limits the confidence and utility of the116

benchmark results. For code tasks, it is very ex-117

pensive to curate datasets of natural language to118

code instructions (one example generally costing119

several dozen US dollars). For any group aiming to120

minimize data cost to improve coding performance,121

the dollar value of creating new datasets can be122

very high. This leads to a common practice of web123

scraping code-oriented resources (e.g., GitHub or124

Stackoverflow) for data. However, these resources125

are also likely sources of contamination. Since126

1https://github.com/evalplus/repoqa
2https://github.com/HammingHQ/

bug-in-the-code-stack

the release of HumanEval and MBPP in 2021 these 127

datasets have been branched, re-used and copied all 128

across the Internet. The small data size and porta- 129

bility of such benchmarks encourages replication 130

within code repositories. For example, searching 131

for the prompts from HumanEval on GitHub returns 132

a hit in all cases—the median hits is 99 and the min- 133

imum 43 (see Fig. 2). In many cases, these hits are 134

exact duplicates and indications of a fork of the 135

original dataset. 136

While decontamination of training sets is becom- 137

ing more common, present decontamination filters 138

designed for natural text adapts poorly to code. 139

To operate efficiently at scale, most filters rely on 140

generic deduplication algorithms e.g., such as n- 141

gram matching or hashing functions (Lee et al., 142

2022). Such surface-level matching does not ad- 143

equately capture code similarity where a simple 144

variable name change leaves program semantics un- 145

changed, but changing a single keyword can have 146

profound changes.3 The same shortcomings of de- 147

contamination efforts apply to the creation of large- 148

scale synthetic datasets: for example the model- 149

generated dataset of Starcoder (Li et al., 2023) is 150

decontaminated only by removing exact docstrings 151

or solutions that match HumanEval or MBPP. 152

The recent exploration of Riddell et al. (2024) 153

aims to quantify the proportion of this data leakage 154

in existing datasets using plagiarism tools specifi- 155

cally designed for code. Even when static training 156

datasets are cleaned, contamination may persist. 157

Entities who serve models through an API may 158

encounter these benchmark tasks when evaluated 159

by third party users. When a sample of real model 160

usage is annotated for future training data, sam- 161

ples from benchmark evaluation can leak into fu- 162

ture training corpora. Furthermore, these samples 163

may include subtle phrasing variations and format 164

changes that further complicate heuristic dedupli- 165

cation. In this scenario, a model may easily mem- 166

orize completions to purportedly novel prompts. 167

As evidence of this phenomena, we prompted one 168

popular commercial system with partial prompts 169

from HumanEval that were designed to keep the in- 170

struction under-specified. Table 2 in the Appendix 171

shows the outcome and evidence that—despite the 172

ambiguity of the prompt—the resulting completion 173

matches exactly the gold solution from the test set 174

of HumanEval. 175

3E.g., compare the instruction “return true if the
string is a float” with “return true if the string
is a verb”.
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(a) HumanEval (b) MBPP

Figure 1: Pass@1 rate of popular datasets and the 161 prompts in LBPP.
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Figure 2: Histogram (excluding outliers) of occurrences
for HumanEval prompts in public GitHub repositories.
Every prompt occurs at least 43 times.

3.2 Data leakage through synthetic data176

The most capable of code language models rely177

heavily on the use of synthetic training data (Xu178

et al., 2023; Wei et al., 2023, 2024).179

A typical pipeline generally consists of: curat-180

ing prompts related to code generation, inferring181

completions with a previously trained LLM, and182

synthesizing unit tests for relevant prompts using183

LLMs. Completions that pass the respective unit184

tests are considered valid code solutions and can be185

used as future training examples. Alternatively, if186

a sufficiently powerful model is used, completions187

might be used as-is.188

evol-instruct for example comprises 110k189

complex query prompts coupled with completions190

from numerous closed and open-source models.4191

It is widely used by many code LLMs such as Wiz-192

ardCoder (Xu et al., 2023). Prior reports (Yu et al.,193

2023, page 8), (Wei et al., 2023, page 4) discuss194

an apparent high similarity between some of those195

4Per downloads, the most popular version is a ‘lightly
decontaminated’ version on HuggingFace here.
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Figure 3: Histogram of cosine similarities for prompts
in HumanEval, MBPP and LBPP relative to two popu-
lar synthetic code training datasets. We note the high
similarity between most HumanEval prompts to evol-
instruct, and how LBPP has reduced overall similarity
to either training dataset.

examples in evol-instruct and HumanEval. We 196

extend this analysis by studying the similarity be- 197

tween embedded representations of the prompts5 of 198

HumanEval and MBPP with nearest neighbors from 199

evol-instruct and Starcoder-Instruct. Fig 3 high- 200

lights widespread similarity between evaluation 201

data and synthetic training datasets ‘Starcoder V2 202

OSS Instruct’ and ‘evol instruct’. Even if unin- 203

tentional, this contamination further damages the 204

utility of these benchmarks as a held-out test of 205

code generation capability. 206

Strikingly, we saw that training on this dataset 207

can increase performance of one of our models 208

by 14 absolute points on HumanEval (from 0.52 209

pass@1 to 0.66), while only by 1 point on MBPP 210

(from 0.52 to 0.53). Inspecting closest neighbours 211

for almost all examples in HumanEval (see exam- 212

ples in Table 3 in the Appendix)—we identify a se- 213

5Embedded using Cohere embed v3 (Team, 2024).
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mantically equivalent version in evol-instruct.214

Even when the original evaluation datasets were215

not used as inspiration for the creation of the216

synthetic datasets the simple nature of the eval-217

uation datasets might make duplication unavoid-218

able. There are only so many short natural lan-219

guage prompts describing typical interview-style220

programming questions that can be used. While221

synthetically generated prompts may not be ex-222

plicitly based on provided examples from a given223

test set in the prompt context, the massive scale224

of these datasets (238k instances for StarCoder-225

Instruct prior to deduplication) runs the risk of226

exhausting the possible number of variations on227

questions. Table 1 shows examples where gener-228

ated prompts are extremely similar to questions in229

the MBPP test set. Note that despite that similarity230

training on this dataset did not improve substan-231

tially performance on MBPP.232

3.3 Overfitting to test sets233

The exaggerated importance of these benchmarks234

encourages an incentive structure where model se-235

lection prioritizes gain on a narrow suite of metrics.236

While it may be tempting to use such benchmarks237

as a deciding factor between similar checkpoints,238

there is weak evidence for these benchmarks cor-239

relating with ‘solving code generation’. While the240

meaning and measurement of this unscientific ob-241

jective is subject to constant revision, selecting for242

optimal HumanEval performance may be akin to243

p-hacking in other fields. This practice can be justi-244

fied by assuming that these benchmarks are the new245

dev sets, while the true test is the usage of users246

over time. The risk remains however that some247

models overfit to those test sets more than others,248

distorting perception on relative performance.249

In order to measure this, we created Less Basic250

Python Problems (LBPP), a dataset of 161 code251

completion problems in the style of HumanEval.252

Human annotators were instructed to create totally253

fresh problems, which were not solvable by an in-254

ternal model6 they had access to. Annotators had255

competitive programming experience and could256

use programming books as inspiration, but were in-257

structed not to copy existing solutions on the Inter-258

net and not to use any LLMs. All annotators were259

paid above minimum wage in their respective coun-260

tries, and all final prompt-completion pairs were261

6We will update references to internal models in future
revisions.

manually reviewed by the authors. This adversarial 262

collection resulted in more difficult problems, with 263

most models solving less than 50% of the dataset. 264

Results on a selection of models are in Table 4 in 265

the Appendix. 266

Using this dataset we can correlate the perfor- 267

mances of existing models on them against perfor- 268

mance of the well-known benchmarks. The two 269

plots comparing them to HumanEval and MBPP can 270

be seen in Fig. 1. There is a clear correlation on 271

both data-sets, indicating that the public bench- 272

marks are still a valuable target signal. However, 273

when zooming in — in particular for models from 274

the same family — the correlation often becomes 275

negative, which might indicate that the selected 276

checkpoint to release performs better on those pub- 277

lic datasets while under-performing on new data- 278

points. Note in particular in Fig. 1a the crowded 279

space between 0.75 and 0.8 of the x-axis (pass@1 280

of HumanEval). Despite very similar performance 281

on that public evaluation set, the numbers of LBPP 282

vary wildly. On the other side, in Fig. 1b a verti- 283

cal line can be traced at around 0.38 of LBPP that 284

crosses various points – indicating maybe an overfit 285

to MBPP. 286

4 Conclusion 287

We study the cause and effect of data contamina- 288

tion by two popular code generation benchmarks. 289

Our analysis highlights that contamination is likely 290

unavoidable at the LLM scale given the difficulty 291

of filtering every potential permutation of a bench- 292

mark dataset. This insight motivates our contri- 293

bution of a novel code generation benchmark to 294

evaluate contemporary LLMs in a contamination- 295

free setting. We are well aware that our decision to 296

release this dataset will make future leakage impos- 297

sible to control. However, with the context of the 298

fast-paced model development cycles that LLMs 299

are currently undergoing we believe that releasing 300

this increases trustworthiness and usefulness of this 301

dataset. It is conveniently designed to serve as drop- 302

in replacement (or addition) of current evaluation 303

sets. On top of its newness, the more challenging 304

nature of this dataset also allows it to provide more 305

signal for model comparison. 306

5 Limitations 307

All the model analysis was done black-box, without 308

inspecting the model weights or the training set 309

(excepting the work on synthetic data). There is no 310
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reason why this dataset will not follow the same311

path than the two studied here. As mentioned in312

the Conclusion we believe there is more value in313

that than in an alternative solution (not releasing or314

keeping it behind an API access).315
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Appendix420

MBPP test prompt evol-instruct prompt
Write a function to find the
perimeter of a square

Calculate the perimeter of a
square

Write a python function to find
the volume of a triangular prism

How can I use JavaScript to cal-
culate the volume of a triangular
prism with an irregular base and
uneven side lengths?

Write a function to convert
snake case string to camel case
string.

Convert the sentence to camel
case.

Table 1: Examples of similar prompts from the test set
of MBPP found in evol_instruct (Xu et al., 2023).
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c
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p
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p
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l
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c
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p
p
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b
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p
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p
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at
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c
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p
p
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p
p
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b
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c
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.
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n
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c
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b
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b
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b
e
r
s

a
r
e

i
n
t
e
g
e
r
s
.

R
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c
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p
l
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n
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u
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i
n
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i
n
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u
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i
n
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d
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i
n
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c
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c
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b
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.

"
"
"

[
.
.
.
]

d
e
f

o
r
d
e
r
_
b
y
_
p
o
i
n
t
s
(
n
u
m
s
)
:

"
"
"

W
r
i
t
e

a
f
u
n
c
t
i
o
n

w
h
i
c
h

s
o
r
t
s

t
h
e

g
i
v
e
n

l
i
s
t

o
f

i
n
t
e
g
e
r
s

i
n

a
s
c
e
n
d
i
n
g

o
r
d
e
r

a
c
c
o
r
d
i
n
g

t
o

t
h
e

s
u
m

o
f

t
h
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i
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h
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i
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h
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d
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h
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l
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]
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=

[
]
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r
i
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p
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'
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b
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b
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b
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v
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Model name Family pass@1
claude-2 Anthropic 0.65
claude-2.1 Anthropic 0.70
claude-3-haiku Anthropic 0.77
claude-3-sonnet Anthropic 0.74
claude-3-opus Anthropic 0.84
Command R+ Cohere 0.65
Command R Cohere 0.43
DBRX Instruct DBRX 0.60
deepseek-coder-33b-instruct DeepSeek 0.73
codellama-7b-instruct Meta 0.39
codellama-34b-instruct Meta 0.53
codellama-70b-instruct Meta 0.51
llama2-7b-chat Meta 0.17
llama2-70b-chat Meta 0.32
llama3-8b-instruct Meta 0.62
llama3-70b-instruct Meta 0.82
Mistral-7b-instruct Mistral 0.31
Mistral-7b-instruct v2 Mistral 0.42
Mistral-7b-instruct v3 Mistral 0.43
Mixtral 8x7B Mistral 0.53
mistral-small Mistral 0.63
mistral-medium Mistral 0.60
mistral-large Mistral 0.68
Mixtral 8x22B Mistral 0.73
Codestral 22B Mistral 0.82
gpt-3.5-turbo 01/25 OpenAI 0.75

Table 4: Results of pass@1 rate on the LBPP dataset for
a selection of models.
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