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Abstract

We revisit the REINFORCE policy gradient algorithm from the literature that works with
reward (or cost) returns obtained over episodes or trajectories. We propose a major en-
hancement to the basic algorithm where we estimate the policy gradient using a smoothed
functional (random perturbation) gradient estimator obtained from direct function measure-
ments. To handle the issue of high variance that is typical of REINFORCE, we propose two
independent enhancements to the basic scheme: (i) use the sign of the increment instead
of the original (full) increment that results in smoother convergence and (ii) use clipped
gradient estimates as proposed in the Proximal Policy Optimization (PPO) based scheme.
We prove the asymptotic convergence of all algorithms and show the results of several ex-
periments on various MuJoCo locomotion tasks wherein we compare the performance of our
algorithms with the recently well-studied proposed ARS algorithms in the literature. Our
algorithms are seen to be competitive when compared to ARS.

Key Words: smoothed functional REINFORCE policy gradient algorithms, stochastic
shortest path Markov decision processes, signed updates, objective function clipping.

1 Introduction

Policy gradient methods, see Sutton et al. (1999); Sutton & Barto (2018), are a popular class of approaches
in reinforcement learning (Bertsekas (2019); Meyn (2022)). Randomized policy is normally used in these
approaches that is, however, parameterized, and one updates the policy parameter along the gradient search
direction. The policy gradient theorem, cf. Sutton et al. (1999); Marbach & Tsitsiklis (2001); Cao (2007),
which is a fundamental result in these approaches, relies on an interchange of the gradient and expectation
operators and in such cases turns out to be the expectation of the gradient of noisy performance functions
much like the perturbation analysis-based sensitivity approaches studied earlier for simulation optimization;
see Ho & Cao (1991); Chong & Ramadge (1993).

The REINFORCE algorithm, cf. Williams (1992); Sutton & Barto (2018) is a noisy gradient scheme for
which the expectation of the gradient is the policy gradient, i.e., the gradient of the expected objective
w.r.t. the policy parameters. The updates of the policy parameter are however obtained once after the full
return on an episode has been found. Actor-critic algorithms, see Sutton & Barto (2018); Konda & Borkar
(1999); Konda & Tsitsiklis (2003); Bhatnagar et al. (2009; 2007), have been presented in the literature as
alternatives to the REINFORCE algorithm as they perform incremental parameter updates at every instant
but do so using two-timescale stochastic approximation algorithms.

In this paper, we revisit the REINFORCE algorithm and present new algorithms for the case of episodic
tasks, also referred to as the stochastic shortest path setting. Our algorithms perform parameter updates
upon termination of episodes, that is when the goal or terminal states are reached. As with REINFORCE,
parameter updates are performed only at instants of visit to a prescribed recurrent state, see Cao (2007);
Marbach & Tsitsiklis (2001). Our first algorithm is based on a single function measurement or simulation
at a perturbed parameter value where the perturbations are obtained using independent Gaussian random
variates. The problem, however, is that it suffers from a large bias in the gradient estimator. We show
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analytically the reason for the large bias here. Subsequently, we present the two-function measurement
variant of this scheme which we show, in a result, has lower bias. Our algorithms rely on a diminishing
sensitivity parameter sequence {δn} that appears in the denominator of an increment term in our algorithms.
This can result in high variance at least in the initial iterates. To tackle this problem, we introduce the
signed analogs of these algorithms where we only consider the sign of the increment terms (the ones that
multiply the learning rates in the updates). Subsequently, we also incorporate variants that use gradient
clipping as with the proximal policy optimization (PPO), see Schulman et al. (2017). A similar scheme as
our first (single-measurement) algorithm is briefly presented in Bhatnagar (2023) that, however, does not
present any analysis of convergence or experiments. Our paper not only provides a detailed analysis and
experiments with the one-measurement scheme, but also analyzes several other related algorithms both for
their convergence and empirical performance. We do not analyze, however, the finite-time convergence of
our algorithms. We refer the reader to Yuan et al. (2022) for a sample complexity analysis in the discounted
reward setting of REINFORCE with regular PG estimates. While such analysis is meaningful, it is beyond
the scope of our current work.

Gradient estimation in our algorithm is performed using the smoothed functional (SF) technique for gradient
estimation (Rubinstein, 1981; Bhatnagar & Borkar, 2003; Bhatnagar, 2007; Bhatnagar et al., 2013). The basic
problem in this setting is the following: Given an objective function J : Rd → R such that J(θ) = Eξ[h(θ, ξ)],
where θ ∈ Rd is the parameter to be tuned and ξ is the noise element, the goal is to find θ∗ ∈ Rd such that
J(θ∗) = min

θ∈Rd
J(θ). Since the objective function J(·) can be highly nonlinear, one often settles for a lesser

goal – that of finding a local instead of a global minimum.

In (Salimans et al., 2017), evolutionary strategy (ES), also sometimes referred to as basic random search
(BRS) based zeroth order gradient estimation algorithms involving one and two measurement smoothed
functional estimators have been proposed as alternatives to the REINFORCE algorithm. One of the mea-
surements in the two-measurement estimator is the running parameter making the estimator one-sided
(instead of the two-sided estimator that we use). During each run of the algorithm, in the ES or BRS pro-
cedure, a certain number (k) of gradient estimates is obtained by randomly sampling the search directions
and an average over the k gradient estimates is then used in the procedure. In (Mania et al., 2018a;b), the
Augmented Random Search (ARS) procedures are proposed as modifications to the ES procedure where the
best b out of the k directions are used and the average over these samples is further divided by the standard
deviation of the 2b returns. These algorithms are seen to show good results. We also implement the ARS
algorithms in our work. Further, in prior work, asymptotic convergence analyses of ES or ARS had not been
provided. We provide the first asymptotic convergence analysis of ES/ARS algorithms.

In (Malik et al., 2020), smoothed functional algorithms (both one and two simulation) are applied for
policy optimization in the setting of a linear quadratic regulator (LQR) problem on linear policies and non-
asymptotic regret bounds are obtained. The cost function in this setting is seen to satisfy nice properties
such as the Polyak-Lojasiewicz (PL) condition. Unlike (Malik et al., 2020), we do not restrict ourselves to
linear policies or to linear state evolution dynamics as our state process follows a general nonlinear dynamics
and our cost function can be highly nonlinear and non-convex with multiple local optima.

Random search methods such as simultaneous perturbation stochastic approximation (SPSA) (Spall, 1992;
1997; Bhatnagar, 2005), smoothed functional (SF) (Katkovnik & Kulchitsky, 1972; Bhatnagar & Borkar,
2003; Bhatnagar, 2007) or random directions stochastic approximation (RDSA) (Kushner & Clark, 1978;
Prashanth et al., 2017) have the advantage that they typically require only one or two system simulations
to estimate the objective function gradient regardless of the parameter dimension d. Textbook treatment
of random search approaches (including both gradient and Newton algorithms) for stochastic optimization
are available in Bhatnagar et al. (2013); Prashanth & Bhatnagar (2025). Before we proceed further, we
present the basic Markov decision process (MDP) framework and recall the REINFORCE algorithm that we
consider for the episodic case.

In addition to proving the asymptotic convergence, we empirically study the performance of our algorithms
along with their clipped and signed variants with the ARS algorithms on four different MuJoCo locomotion
tasks, namely, Swimmer, Hopper, HalfCheetah and Walker2d, respectively. It has been observed in the past,
see for instance, (Mania et al., 2018a;b) that ARS algorithms show significantly better performance on most
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tasks than other model-free algorithms such as PPO, TRPO, CEM and A2C. Hence, we restrict ourselves
to comparisons of our algorithms with ARS and refer to (Mania et al., 2018a;b) for the comparisons with
other algorithms.

2 The MDP Framework

By a Markov decision process (MDP), we mean a controlled stochastic process {Xn} whose evolution is
governed by an associated control-valued sequence {Zn}. It is assumed that Xn, n ≥ 0 takes values in a set
S called the state-space. Let A(s) be the set of feasible actions in state s ∈ S and A △= ∪s∈SA(s) denote the
set of all actions. When the state is say s and a feasible action a is chosen, the next state seen is s′ with a
probability p(s′|s, a) △= P (Xn+1 = s′ | Xn = s, Zn = a), ∀n. Such a process satisfies the controlled Markov
property, i.e., P (Xn+1 = s′ | Xn, Zn, . . . , X0, Z0) = p(s′ | Xn, Zn) a.s., ∀n ≥ 0.

By an admissible policy or simply a policy, we mean a sequence of functions π = {µ0, µ1, µ2, . . .}, with
µk : S → A, k ≥ 0, such that µk(s) ∈ A(s), ∀s ∈ S. When following policy π, a decision maker selects action
µk(s) at instant k, when the state is s. A stationary policy π is one for which µk = µl

△= µ (a time-invariant
function), ∀k, l = 0, 1, . . .. Associated with any transition to a state s′ from a state s under action a, is a
‘single-stage’ cost g(s, a, s′) where g : S × A × S → R is called the cost function. The goal of the decision
maker is to select actions ak, k ≥ 0 in response to the system states sk, k ≥ 0, observed one at a time, so as
to minimize a long-term cost objective. We assume here that the number of states and actions is finite.

2.1 The Episodic or Stochastic Shortest Path Setting

We consider here the episodic or the stochastic shortest path problem where decision making terminates
once a goal or terminal state is reached. We let 1, . . . , p denote the set of non-terminal or regular states and
t be the terminal state. Thus, S = {1, 2, . . . , p, t} denotes the state space for this problem (Bertsekas, 2019).

Our basic setting here is similar to Chapter 3 of Bertsekas (2012) (see also Bertsekas (2019)), where it is
assumed that under any policy there is a positive probability of hitting the goal state t in at most p steps
starting from any initial (non-terminal) state, that would in turn signify that the problem would terminate
in a finite though random amount of time.

Under a given policy π, define

Vπ(s) = Eπ

[
T∑

k=0
g(Xk, µk(Xk), Xk+1) | X0 = s

]
, (1)

where T > 0 is a finite random time at which the process enters the terminal state t. Here Eπ[·] indicates
that all actions are chosen according to policy π depending on the system state at any instant. We assume
that there is no action that is feasible in the state t and the process terminates once it reaches t.

Let Π denote the set of all admissible policies. The goal here is to find the optimal value function V ∗(i), i ∈ S,
where

V ∗(i) = min
π∈Π

Vπ(i) = Vπ∗(i), i ∈ S, (2)

with π∗ being the optimal policy. A related goal then would be to search for the optimal policy π∗. It turns
out that in these problems, there exist stationary policies that are optimal, and so it is sufficient to restrict
the search to the class of stationary policies.

A stationary policy π is called a proper policy (cf. pp.174 of Bertsekas (2012)) if

p̂π
△= max

s=1,...,p
P (Xp ̸= t | X0 = s, π) < 1.

In other words, regardless of the initial state s, there is a positive probability of termination after at most
p stages when using a proper policy π and moreover P (T < ∞) = 1 under such a policy. An admissible
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policy (and so also a stationary policy) can be randomized as well. A randomized admissible policy or
simply a randomized policy is the sequence ψ = {ϕ0, ϕ1, . . .} with each ϕi : S → P (A) being a distribution
ϕi(s) = (ϕi(s, a), a ∈ A(s)) for the action to be chosen in the ith stage in state s. A stationary randomized
policy is one for which ϕj = ϕk

△= ϕ, ∀j, k = 0, 1, . . .. Here and in the rest of the paper, we shall assume
that the policies are stationary randomized and are parameterized via a certain parameter θ ∈ C ⊂ Rd, a
compact and convex set. We make the following assumption:

Assumption 1 All stationary randomized policies ϕθ parameterized by θ ∈ C are proper.

In practice, one might be able to relax this assumption (as with the model-based analysis of Bertsekas (2012))
by (a) assuming that for policies that are not proper, Vπ(i) = ∞ for at least one non-terminal state i and
(b) there exists a proper policy. The optimal value function satisfies the Bellman equation: For s = 1, . . . , p,

V ∗(s) = min
a∈A(s)

ḡ(s, a) +
p∑

j=1
p(j | s, a)V ∗(j)

 , (3)

where ḡ(s, a) =
p∑

j=1
p(j|s, a)g(s, a, j) + p(t|s, a)g(s, a, t) is the expected single-stage cost in a non-terminal

state s when a feasible action a is chosen. It can be shown, see Bertsekas (2012), that an optimal stationary
proper policy exists.

2.2 The Policy Gradient Theorem

Policy gradient methods perform a gradient search within the prescribed class of parameterized policies.
Let ϕθ(s, a) denote the probability of selecting action a ∈ A(s) when the state is s ∈ S and the policy
parameter is θ ∈ C. We assume that ϕθ(s, a) is continuously differentiable in θ. A common example
here is of the parameterized Boltzmann or softmax policies. Let ϕθ(s) △= (ϕθ(s, a), a ∈ A(s)), s ∈ S and
ϕθ

△= (ϕθ(s), s ∈ S).

We assume that trajectories of states and actions are available either as real data or from a simulation. Let

Gk =
T −1∑
j=k

gj denote the sum of costs until termination (likely when a goal state is reached) on a trajectory

starting from instant k. Note that if all actions are chosen according to a policy ϕ, then the value and
Q-value functions (under ϕ) would be Vϕ(s) = Eϕ[Gk | Xk = s] and Qϕ(s, a) = Eϕ[Gk | Xk = s, Zk = a],
respectively. In what follows, for ease of notation, we let Vθ ≡ Vϕθ

and Qθ ≡ Qϕθ
, respectively.

The policy gradient theorem for episodic problems has the following form, cf. Chapter 13, pp.325, of Sutton
& Barto (2018):

∇Vθ(s0) =
∑
s∈S

µ(s)
∑

a∈A(s)

∇θπ(s, a)Qθ(s, a), (4)

where µ(s), s ∈ S, is defined as µ(s) = η(s)∑
s′∈S η(s′) where η(s) =

∞∑
k=0

pk(s|s0, ϕθ), s ∈ S, with pk(s|s0, ϕθ)

being the k-step transition probability of going to state s from s0 under the policy ϕθ.

The REINFORCE algorithm (Sutton & Barto (2018); Williams (1992)) makes use of the expression in (4).
In what follows, we present an alternative algorithm based on REINFORCE that incorporates one and
two measurement (zeroth order) SF gradient estimators. Since our algorithm caters to episodic tasks, it
performs updates whenever a certain prescribed recurrent state is visited, see Cao (2007); Marbach & Tsit-
siklis (2001). We refer to our one-simulation (resp. two-simulation) algorithm as the One-SF-REINFORCE
(SFR-1) (resp. Two-SF-REINFORCE (SFR-2)) algorithm.
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3 The One-Simulation SF REINFORCE (SFR-1) Algorithm

We assume that data on the mth trajectory is represented in the form of the tuples (sm
k , a

m
k , g

m
k , s

m
k+1), k =

0, 1, . . . , Tm−1 with Tm being the termination instant on the mth trajectory, m ≥ 1. Also, sm
j is the state at

instant j in the mth trajectory. Further, am
k and gm

k are the action chosen and the cost incurred, respectively,
at instant k in the mth trajectory. Let Γ : Rd → C denote a projection operator that projects any
x = (x1, . . . , xd)T ∈ Rd to its nearest point in C. For ease of exposition, we assume that C is a d-dimensional

rectangle having the form C =
d∏

i=1
[ci,min, ci,max], where −∞ < ci,min < ci,max < ∞, ∀i = 1, . . . , d. Then

Γ(x) = (Γ1(x1), . . . ,Γd(xd))T with Γi : R → [ci,min, ci,max] such that Γi(xi) = min(ci,max,max(ci,min, xi)),
i = 1, . . . , d. Also, let C(C) denote the space of all continuous functions from C to Rd.

In what follows, we present a procedure that incrementally updates the parameter θ. Let θ(n) denote the
parameter value obtained after the nth update of this procedure which depends on the nth episode and which
is run using the policy parameter Γ(θ(n)+δn∆(n)), for n ≥ 0, where θ(n) = (θ1(n), . . . , θd(n))T ∈ Rd, δn > 0
∀n with δn → 0 as n → ∞ and ∆(n) = (∆1(n), . . . ,∆d(n))T , n ≥ 0, where ∆i(n), i = 1, . . . , d, n ≥ 0 are
independent random variables distributed according to the N(0, 1) distribution.

Algorithm (5) below is used to update the parameter θ ∈ C ⊂ Rd. Let χn denote the nth state-action
trajectory χn = {sn

0 , a
n
0 , s

n
1 , a

n
1 , . . . , s

n
T −1, a

n
T −1, s

n
T }, n ≥ 0 where the actions an

0 , . . . , a
n
T −1 in χn are obtained

using the policy parameter θ(n) + δn∆(n). The instant T denotes the termination instant in the trajectory
χn and corresponds to the instant when the terminal or goal state t is reached. Note that the various actions
in the trajectory χn are chosen according to the policy ϕ(θ(n)+δn∆(n)). The initial state is assumed to be

sampled from a given initial distribution ν = (ν(i), i ∈ S) over states. Let Gn =
T −1∑
k=0

gn
k denote the sum of

costs until termination on the trajectory χn with gn
k ≡ g(sn

k , a
n
k , s

n
k+1). The update rule that we consider

here is the following: For n ≥ 0, i = 1, . . . , d,

θi(n+ 1) = Γi

(
θi(n)− α(n)

(
∆i(n)G

n

δn

))
. (5)

Assumption 2 The step-size sequence {α(n)} satisfies α(n) > 0, ∀n,
∑

n

α(n) =∞,
∑

n

(
α(n)
δn

)2
<∞.

After the (n − 1)st episode, θ(n) is computed using (5). The perturbed parameter θ(n) + δn∆(n) is then
obtained after sampling ∆(n) from the multivariate Gaussian distribution as explained previously and there-
after a new trajectory governed by this perturbed parameter is generated with the initial state in each episode
sampled according to a given distribution ν.

4 Variants for Improved Performance

We present here variants of this algorithm that result in improved bias and/or variance performance. We
show the convergence results for all the algorithms and also test their performance empirically.

4.1 Two-Simulation SF REINFORCE (SFR-2) Algorithm

The idea here is to use two system simulations instead of one in order to reduce the estimator bias. As with
SFR-1, we assume that we have access to trajectories of data that are used for performing the parameter
updates. Let χn+ and χn− denote two state-action trajectories or episodes generated after the nth update
of the parameter. These correspond to χn+ = {sn+

0 , an+
0 , sn+

1 , an+
1 , . . . , sn+

T −1, a
n+
T −1, s

n+
T }, n ≥ 0 where

the actions an+
0 , . . . , an+

T −1 are obtained using the policy parameter θ(n) + δn∆(n). Likewise, the actions
an−

0 , . . . , an−
T −1 in χn− are obtained using the policy parameter θ(n)−δn∆(n). As before, a new random vector
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∆(n) is generated after θ(n) is obtained using the algorithm but the same ∆(n) is used in both the policy
parameters used to generate the two trajectories. The initial state in both these episodes is independently

sampled from the same initial distribution ν = (ν(i), i ∈ S) over states. Let Gn+ =
T −1∑
k=0

gn+
k denote the

return or the sum of costs until termination on the trajectory χn+, with gn+
k ≡ g(sn+

k , an+
k , sn+

k+1). Similarly,

we let Gn− =
T −1∑
k=0

gn−
k denote the return or the sum of costs until termination on the trajectory χn−, with

gn−
k ≡ g(sn−

k , an−
k , sn−

k+1). The update rule that we consider here is the following: For n ≥ 0, i = 1, . . . , d,

θi(n+ 1) = Γi

(
θi(n)− α(n)

(
∆i(n) (Gn+ −Gn−)

2δn

))
. (6)

Lemma 1 The gradient estimator in SFR-2 has a lower estimator bias than the one in SFR-1.

Proof: We show the proof of this result in Appendix A.3.

4.2 SF REINFORCE with Signed Updates

As expected and (also) reported in the literature (Sutton & Barto (2018)), REINFORCE typically suffers
from high iterate-variance. We observe this problem even when SF-REINFORCE is used. To counter
the problem of high iterate-variance, we use the sign function sgn(·) in the updates defined as follows:
sgn(x) = +1 if x > 0 and sgn(x) = −1 otherwise.

4.2.1 SFR-1 with Signed Updates

The update rule is exactly the same as (5) except that only the sign of the increment is used in the update:
∀i = 1, . . . , d,

θi(n+ 1) = Γi

(
θi(n)− α(n)sgn

(
∆i(n)G

n

δn

))
. (7)

4.2.2 SFR-2 with Signed Updates

As with the SFR-1 case, the update rule here is the same as (6) except that the update rule involves the
sign of the update increment. Thus, we have, ∀i = 1, . . . , d,

θi(n+ 1) = Γi

(
θi(n)− α(n)sgn

(
∆i(n) (Gn+ −Gn−)

2δn

))
. (8)

4.3 Two-Simulation SF REINFORCE with Clipped Updates

We present here updates obtained after using norm-wise (Zhang et al., 2020) or component-wise (Pascanu
et al., 2013) clipping on the gradients. Norm clip fm : Rd → Rd of a vector x in Rd is defined as the
projection of x onto the ball of radius m, centered at the origin, i.e., fm(x) = min(m, ∥x∥) x

∥x∥ . Similarly,
component-clip fc : Rd → Rd of a vector x in Rd is defined as the projection of x onto the box centered at
origin of side 2c. That is, for x = (x1, . . . , xd), we let fc(x) = (max(min(x1, c),−c), . . . ,max(min(xd, c),−c)).

Then, for f ∈ {fc, fm}, the updates will be of the form

θi(n+ 1) = Γi

(
θi(n)− α(n)f

(
∆i(n) (Gn+ −Gn−)

2δn

))
. (9)

We have the following basic result on variance of the signed as well as clipped updates.

Lemma 2 (i) Let Y = sgn(X) be a random variable that is the sign of another random variable X.
Then Var(Y ) ≤ 1 regardless of Var(X).
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(ii) Let U be a random vector in Rd, and V = f(U) ∈ Rd, f ∈ {fc, fm}, then
Tr(CovV ) := E∥V − EU∥2 ≤ E∥U − EU∥2 := Tr(CovU).

Proof: The proof of this result is given in Appendix A.4.

Remark 1 (i) It follows from Lemma 2(i) that Var
(
sgn

(
∆i(n) Gn

δn

))
≤ 1, ∀θ, for Signed SFR-1 and

similarly, Var
(
sgn

(
∆i(n) (Gn+−Gn−)

2δn

))
≤ 1, ∀θ, for Signed SFR-2. Notice that the estimators

without the sign function, namely SFR-1 and SFR-2, are expected to have higher variance as Gn,
Gn+ and Gn− are the returns or sum of rewards on the trajectories that are then divided by a small
quantity δn. Clearly, unlike Signed SFR-1 and Signed SFR-2, one cannot provide a uniform bound
on the variance of the estimators in SFR-1 and SFR-2 and their variance is expected to be much
higher than the signed versions. This is also validated through our experiments.

(ii) It follows from Lemma 2(ii) that the total variance of the gradient, must decrease after projection in
SF Reinforce with Clipped Updates. This is because

TrCovf
(

∆i(n) (Gn+ −Gn−)
2δn

)
≤ TrCov

(
∆i(n) (Gn+ −Gn−)

2δn

)
.

4.4 Evolutionary Strategies (ES) Algorithms

We recall the evolutionary strategies (ES) algorithms, see (Flaxman et al., 2005; Salimans et al., 2017; Mania
et al., 2018a). There are two versions of this update rule that are popular in the literature. These are based
on one and two simulation SF. We refer to these as ES-v1 and ES-v2, respectively, depending on whether
the gradient estimator used is SFR-1 or SFR-2. Let ∆m(n),m = 1, . . . , k be independent random vectors
∆m(n) = (∆m

1 (n), . . . ,∆m
d (n))T with the ∆m

i (n), i = 1, . . . , d, m = 1, . . . , k, n ≥ 0 being i.i.d random
variables with each having the distribution N(0, 1).

4.4.1 ES-v1

Let χn,m, m = 1, . . . , k denote k state-action trajectories run with parameters θ(n)+δn∆m(n), m = 1, . . . , k,
respectively, and Gn,m denote the return on the mth trajectory starting from time 0. Here, k ≥ 1 is a given
fixed integer. The update rule then is as follows: For i = 1, . . . , d,

θi(n+ 1) = Γi

(
θi(n)− α(n) 1

kδn

k∑
m=1

∆m
i (n)Gn,m

)
, (10)

This algorithm requires k function measurements for one update. The value of k is chosen by the user. Note
k = 1 corresponds to SFR-1 in this case.

4.4.2 ES-v2

Let χn,m+ and χn,m−, m = 1, . . . , k denote 2k state-action trajectories run with parameters θ(n) + δn∆m(n)
and θ(n) − δn∆m(n), m = 1, . . . , k, respectively. Let Gn,m+ and Gn,m− denote the returns obtained on
χn,m+ and χn,m−, respectively, starting from time 0. The update rule here is the following: For i = 1, . . . , d,

θi(n+ 1) = Γi

(
θi(n)− α(n) 1

2kδn

k∑
m=1

∆m
i (n)

(
Gn,m+ −Gn,m−)) . (11)

As before, k is a priori chosen. The algorithm requires 2k function measurements for any given parameter
update, and for k = 1, we recover the SFR-2 update. We present an asymptotic convergence analysis of
ES-v1 and ES-v2.

Remark 2 The ARS algorithms of Mania et al. (2018a;b) that we implement, make use of best b out of k
directions over which the above sample averages are taken, see Appendix B.1 for details of ARS. We show
the asymptotic analysis of the ES variants. The same for the ARS variants is not shown as it follows along
the same lines as the ES algorithms with the average taken over b (best directions) instead of all k directions.
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5 Convergence Analysis

We present here the main convergence results for all the algorithms considered. The detailed proofs of all of
these results are provided in Appendix A.

5.1 Convergence of SFR-1

The detailed proofs of the various results here are given in Appendix A.1.

We begin by rewriting the recursion (5) as follows:

θi(n+ 1) = Γi

(
θi(n)− α(n)E

[
∆i(n)G

n

δn
|Fn

]
+M i

n+1

)
, (12)

where M i
n+1 = ∆i(n) Gn

δn
− E

[
∆i(n) Gn

δn
|Fn

]
, n ≥ 0, with Fn

△= σ(θ(m),m ≤ n,∆(m), χm,m < n), n ≥ 1,

being a sequence of increasing sigma fields with F0 = σ(θ(0)). Let Mn
△= (M1

n, . . . ,M
d
n)T , n ≥ 0.

Lemma 3 (Mn,Fn), n ≥ 0 is a martingale difference sequence.

Proposition 1 We have

E

[
∆i(n)G

n

δn
| Fn

]
=
∑
s∈S

ν(s)∇iVθ(n)(s) + o(δn) a.s.

In the light of Proposition 1, we can rewrite (5) as follows:

θ(n+ 1) = Γ(θ(n)− α(n)(
∑

s

ν(s)∇Vθ(n)(s) +Mn+1 + β(n))), (13)

where β(n) = (β1(n), . . . , βd(n))T with βi(n) = E

[
∆i(n)Gn

δ
| Fn

]
−
∑

s ν(s)∇iVθ(n)(s). From Proposi-

tion 1, it then follows that β(n) = o(δn).

Lemma 4 The function ∇Vθ(s) is Lipschitz continuous in θ. Further, ∃ a constant K1 > 0 such that
∥ ∇Vθ(s) ∥≤ K1(1+ ∥ θ ∥).

Lemma 5 The sequence (Mn,Fn), n ≥ 0 satisfies E[∥Mn+1∥2 | Fn] ≤ L̂

δ2
n

, for some constant L̂ > 0.

Define now a sequence Zn, n ≥ 0 according to Zn =
n−1∑
m=0

a(m)Mm+1, n ≥ 1, with Z0 = 0.

Lemma 6 (Zn,Fn), n ≥ 0 is an almost surely convergent martingale sequence.

Consider now the following ODE:
θ̇(t) = Γ̄(−

∑
s

ν(s)∇Vθ(s)), (14)

where Γ̄ : C(C)→ C(Rd) is defined according to

Γ̄(v(x)) = lim
η→0

(
Γ(x+ ηv(x))− x

η

)
. (15)

Let H △= {θ | Γ̄(−
∑

s ν(s)∇Vθ(s)) = 0} denote the set of all equilibria of (14). By Lemma 11.1 of Borkar
(2022), the only possible ω-limit sets that can occur as invariant sets for the ODE (14) are subsets of H. Let
H̄ ⊂ H be the set of all internally chain recurrent points of the ODE (14). Our main result below is based
on Theorem 5.3.1 of Kushner & Clark (1978) for projected stochastic approximation algorithms. We state
this theorem in Appendix A along with the assumptions needed there that we verify for our analysis.
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Theorem 1 The iterates θ(n), n ≥ 0 governed by (5) converge almost surely to H̄.

5.2 Convergence of SFR-2

The proofs of the results below are given in Appendix A.2. The analysis proceeds in a similar manner here
as for the one-simulation SF. Let

Hi(θ(n),∆(n)) = ∆i(n)
(
Vθ(n)+δ(n)∆(n) − Vθ(n)−δ(n)∆(n)

2δ(n)

)
.

Proposition 2

E

[
∆i(n)

(
Gn+ −Gn−

2δn

)
| Fn

]
=
∑

s

ν(s)E[Hi(θ(n),∆(n))|Fn] =
∑
s∈S

ν(s)∇iVθ(n)(s) + o(δn) a.s.

The main result on convergence of the stochastic recursions is the following:

Theorem 2 The iterates θ(n), n ≥ 0 governed by (7) converge almost surely to H̄.

5.3 Convergence of Signed SFR-2

We present here the convergence analysis of the two-simulation signed SF REINFORCE algorithm (or Signed
SFR-2). The analysis of the one-simulation counterpart is analogous and hence is not provided.

Let ei(n) △= Hi(θ(n),∆(n)) − ∇iVθ(n). Further, let Fi(e|θ) = P (ei(n) ≤ e|θ(n) = θ) be the conditional
distribution of ei(n) given θ(n) = θ. We make the following assumptions:

(A1) P (ei(n) ≤ e|θ(m),m ≤ n) = Fi(e|θ(n)) independent of n.

(A2) The maps (e, θ) 7→ Fi(e|θ) and θ 7→ ∇iVθ are Lipschitz continuous.

(A3) For all θ and i = 1, . . . , d, Fi(0|θ) = 1/2.

(A4) α(n) > 0, ∀n,
∑

n

α(n) =∞,
∑

n

(
α(n)
δn

)2
<∞.

Consider the following ODE associated with the above recursion:

θ̇i(t) = Γ̄i(−(1− 2Fi(−
∑

s

ν(s)∇iVθ(s)|θ))), t ≥ 0, i = 1, . . . , d. (16)

For x = (x1, . . . , xd)T , let Γ̄(x) = (Γ̄1(x1), . . . , Γ̄d(xd))T . Also, let F (−∇Vθ)|θ) △= (F1(−
∑

s ν(s)∇1Vθ(s)|θ),
. . ., Fd(−

∑
s ν(s)∇dVθ(s)|θ)) and let K = {θ|(Γ̄(−(1 − 2F (−

∑
s ν(s)∇Vθ(s)|θ)) = 0) denote the set of

equilibria of (16). Further, let K̄ ⊂ K ⊂ {θ|Γ̄(⟨(1− 2F (−
∑

s ν(s)∇Vθ(s)|θ)),
∑

s ν(s)∇Vθ(s)⟩) = 0} denote
the largest invariant set contained in K.

Theorem 3 (Convergence of Signed SFR-2) {θ(n)} governed as per (8) converges as n → ∞ almost
surely to K̄.

Proof: The proof is given in Appendix A.5.

Remark 3 Suppose θ ∈ K is such that θ is in the interior of the constraint set. Then, from Assump-
tions (A2)-(A3) and Theorem 3,

∑
s ν(s)∇Vθ(s) = 0. For θ on the boundary of the constraint set, either∑

s ν(s)∇Vθ(s) = 0 or
∑

s ν(s)∇Vθ(s) ̸= 0 but in the latter case, Γ̄(
∑

s ν(s)∇Vθ(s) = 0). The latter are
spurious fixed points that occur at the boundary of the constraint set, see Kushner & Yin (1997).
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5.4 Convergence of Two-Simulation SF REINFORCE with Clipped Gradients

Theorem 4 (Convergence of SFR-2 with Clipped Gradients) {θ(n)} governed as per (9) converges
as n→∞ almost surely to K̄, for each of the settings (i) f = fc and (ii) f = fm.

Proof: The proof is given in Appendix A.6.

5.5 Convergence of ES-v1

Theorem 5 (Convergence of ES-v1) The iterates θ(n), n ≥ 0 governed according to (10) converge al-
most surely to H̄ as n→∞.

Proof: The proof is given in Appendix A.7.

5.6 Convergence of ES-v2

Theorem 6 (Convergence of ES-v2) The iterates θ(n), n ≥ 0 governed according to (11) converge al-
most surely to H̄ as n→∞.

Proof: The proof is available in Appendix A.8.

6 Numerical Results

We evaluate the performance of our proposed SF-REINFORCE algorithms and their variants on MuJoCo
locomotion tasks (Todorov et al., 2012), comparing them to the ARS algorithm (Mania et al., 2018b).
Beyond convergence, we focus on how efficiently each algorithm uses environment interactions. The full
ARS pseudo-code is provided in Appendix B.1.

ARS employs multiple workers to evaluate 2× k perturbed policies along k directions and selects the top b
directions to estimate a gradient, which is then normalized using the standard deviation of returns. Thus,
ARS can consume up to 2kH environment interactions per update, where H is the horizon size. In contrast,
SFR-2 simplifies this by setting k = b = 1 and normalizes the gradient using the standard deviation of
perturbations, resulting in the consumption of upto only 2H interactions per update.

Smaller k values reduce total interactions when the number of updates is fixed. For a fair comparison,
however, we fix the total number of environment interactions (Table 1) and evaluate performance under
that constraint. We also explore the effect of standard optimization techniques such as component-wise and
norm-based gradient clipping, signed gradients, and direct policy updates using gradient estimates.

While ARS leverages a greater number of trajectories per update to reduce variance in its gradient estimates,
this leads to fewer updates under a fixed interaction budget. In contrast, SFR-2 updates its policy more
frequently, albeit with noisier gradients due to limited trajectory usage per update. To address this trade-
off, we investigate the extent to which variance-control techniques—such as gradient clipping and signed
updates—can mitigate instability and enhance performance across both algorithms.

We conduct experiments with various hyperparameter settings: k, b, α, and ν. Initially, optimization algo-
rithms are run using a grid search over all hyperparameter combinations with a single seed per combination.
From this, the best-performing hyperparameter configuration is selected and further evaluated across four
additional seeds (five seeds in total). Table 2 reports the mean ± standard deviation for these five seeds.

The hyperparameter grids used are detailed in Appendix B.3.2. The optimal hyperparameter setting can be
see in Appendix B.3.1. For better visualization, we also show in Appendix B.2, the best seeded plots, viz.,
the plots corresponding to the seed that achieves the highest peak reward for each variant.

10



Under review as submission to TMLR

Task Max Timesteps
HalfCheetah 50,000,000
Walker2d 50,000,000
Hopper 30,000,000
Swimmer 10,000,000

Table 1: Max timesteps for various tasks.

From Table 2, as expected, the unmodified ARS-v1t and ARS-v2t algorithms outperform the unmodified
SFR-2 across most tasks. However, when modifications such as Component_Clip, Norm_Clip, and Signed
Update are introduced, the variance in policy updates is reduced. This is particularly beneficial for SFR-2,
which performs a larger number of updates within a fixed environment interaction budget. As a result, SFR-

11
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Task Algo Algo with Original Algo Algo with Algo with
used Component_Clip Norm_Clip Signed Update

Swimmer ARS-v1t 356.83 ± 0.35 356.82 ± 0.80 356.52 ± 0.54 356.10 ± 0.56
ARS-v2t 345.57 ± 27.36 357.60 ± 1.17 356.54 ± 0.55 354.95 ± 2.39
SFR-2 357.19 ± 1.85 268.55 ± 121.01 357.4 ± 1.26 357.89 ± 1.36

HalfCheetah ARS-v1t 4097.17 ± 156.33 3889.75 ± 601.84 3786.04 ± 140.15 3345.06 ± 518.20
ARS-v2t 4849.18 ± 1094.69 4621.09 ± 908.41 4377.46 ± 724.93 4110.96 ± 846.69
SFR-2 5762.27 ± 499.75 2977.42 ± 929.95 5082.51 ± 605.8 5042.62 ± 341.89

Hopper ARS-v1t 2312.74 ± 817.09 2603.87 ± 591.21 1924.58 ± 752.77 2612.73 ± 307.14
ARS-v2t 3639.82 ± 52.60 3719.36 ± 110.70 3511.56 ± 151.94 3518.42 ± 103.51
SFR-2 3256.43 ± 698.7 3215.54 ± 757.42 3123.01 ± 422.79 3194.95 ± 410.85

Walker2d ARS-v1t 3354.91 ± 567.67 2822.74 ± 700.24 2295.12 ± 687.07 2234.53 ± 578.97
ARS-v2t 2652.87 ± 1594.69 2689.41 ± 1121.71 2179.55 ± 810.47 2028.48 ± 441.79
SFR-2 2718.52 ± 1875.69 1640.73 ± 1072.84 1382.85 ± 1051.86 1310.45 ± 1560.97

Table 2: Average reward and standard error performance on each task

Task Tot. Env. Interactions ARS SFR-2 PPO A2C CEM TRPO
Swimmer 106 361 355.37 ≈ 110 ≈ 30 ≈ 0 ≈ 120
Hopper 106 3047 2749.79 ≈ 2300 ≈ 900 ≈ 500 ≈ 2000
HalfCheetah 106 2345 3392.27 ≈ 1900 ≈ 1000 ≈ −400 ≈ 0
Walker2d 106 894 1040.4 ≈ 3500 ≈ 900 ≈ 800 ≈ 1000

Table 3: Maximum average reward achieved in 106 interactions of algorithms with the environment on
various tasks (mean across 3 seeds) – the columns of values except for SFR-2 are the same as Table 2 of
Mania et al. (2018a). Refer to Table 4 for standard deviation and optimal hyperparameters for SFR-2.

2 shows notable performance gains. On the Swimmer and HalfCheetah tasks, it consistently outperforms
both ARS variants across all three modifications. For Hopper, the modified versions of SFR-2 surpass
ARS-v1t but remain slightly behind ARS-v2t. In the Walker2d environment, SFR-2 with Component_Clip
outperforms ARS-v2t, though it still trails ARS-v1t. Overall, these results suggest that SFR-2 benefits more
from the introduced variance-control techniques, making it highly competitive with ARS when the number
of interactions with the environment is held fixed across algorithms.

Looking at Table 3, SFR-2 achieves the highest reward on HalfCheetah and ranks second on both Swimmer
and Hopper, closely trailing ARS. It also surpasses ARS on Walker2d. Overall, our results suggest that
SFR-2, with clipping and signed update mechanisms, is competitive when compared with ARS across a
variety of continuous control tasks.

7 Conclusions

We presented model-free smoothed functional algorithms as suitable Monte-Carlo based alternatives to
REINFORCE for the setting of episodic tasks. We also presented the clipped and signed variants of the
algorithms and analysed the convergence of all the presented algorithms. We showed detailed empirical
results of our algorithms on MuJoCo locomotion tasks and showed performance comparisons with other
algorithms, in particular, the ARS algorithms that have been investigated recently. For a fixed number of
environment interactions, our algorithms are competitive against ARS and in fact their signed and clipped
variants are superior to ARS on half of the settings tried. As future work, it would be of interest to
theoretically study the asymptotic rate of convergence results of the algorithms presented here. Such results
for all algorithms including ES/ARS are not currently available.
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A Details of the Convergence Analysis

We present here the details of the convergence analysis and give the proofs of the various results. We
begin first with the results for the One-Simulation SF REINFORCE algorithm. We will subsequently sketch
the analysis of the two-simulation SF algorithm. Finally, we shall discuss the convergence analysis of the
algorithms with signed updates.

A.1 Convergence of SFR-1

Proof of Lemma 3: Notice that

M i
n = ∆i(n− 1)G

n−1

δn−1
− E

[
∆i(n− 1)G

n−1

δn−1
| Fn−1

]
.

The first term on the RHS above is clearly measurable Fn while the second term is measurable Fn−1 and
hence measurable Fn as well. Further, from Assumption 1, each Mn is integrable. Finally, it is easy to verify
that

E[M i
n+1 | Fn] = 0, ∀i.

The claim follows.

Proof of Proposition 1: Note that

E

[
∆i(n)G

n

δn
| Fn

]
= E

[
E

[
∆i(n)G

n

δn
| Gn

]
| Fn

]
,

where Gn
△= σ(θ(m),∆(m),m ≤ n, χm,m < n), n ≥ 1 is a sequence of increasing sigma fields with G0 =

σ(θ(0),∆(0)). It is clear that Fn ⊂ Gn,∀n ≥ 0. Now,

E

[
∆i(n)G

n

δn
| Gn

]
= ∆i(n)

δn
E[Gn | Gn].

Let sn
0 = s denote the initial state in the trajectory χn. Recall that the initial state s is chosen randomly

from the distribution ν. Thus,

E[Gn | Gn] =
∑

s

ν(s)E[Gn | sn
0 = s, ϕθ(n)+δn∆(n)]

=
∑

s

ν(s)Vθ(n)+δn∆(n)(s).

Thus, with probability one,

E

[
∆i(n)G

n

δn
| Gn

]
=
∑

s

ν(s)
(

∆i(n)
Vθ(n)+δn∆(n)(s)

δn

)
.

Hence, it follows almost surely that

E

[
∆i(n)G

n

δn
| Fn

]
=
∑

s

ν(s)E
[
∆i(n)

Vθ(n)+δn∆(n)(s)
δn

| Fn

]
.

Using a Taylor’s expansion of Vθ(n)+δn∆(n)(s) around θ(n) gives us

Vθ(n)+δn∆(n)(sn) = Vθ(n)(sn) + δn∆(n)T∇Vθ(n)(sn) + δ2
n

2 ∆(n)T∇2Vθ(n)(sn)∆(n) + o(δ2
n).

Now recall that ∆(n) = (∆i(n), i = 1, . . . , d)T . Thus,

∆(n)
Vθ(n)+δn∆(n)(sn)

δn
= 1
δn

∆(n)Vθ(n)(sn)
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+∆(n)∆(n)T∇Vθ(n)(sn)

+δn

2 ∆(n)∆(n)T∇2Vθ(n)(sn)∆(n) + o(δn).

Now observe from the properties of ∆i(n),∀i, n, that
(i) E[∆(n)] = 0 (the zero-vector), ∀n, since ∆i(n) ∼ N(0, 1), ∀i, n.
(ii) E[∆(n)∆(n)T ] = I (the identity matrix), ∀n.

(iii) E

 d∑
i,j,k=1

∆i(n)∆j(n)∆k(n)

 = 0.

Property (iii) follows from the facts that (a) E[∆i(n)∆j(n)∆k(n)] = 0, ∀i ̸= j ̸= k, (b) E[∆i(n)∆2
j (n)] = 0,

∀i ̸= j (this pertains to the case where i ̸= j but j = k above) and (c) E[∆3
i (n)] = 0 (for the case when

i = j = k above). These properties follow from the independence of the random variables ∆i(n), i = 1, . . . , d
and n ≥ 0, as well as the fact that they are all distributed N(0, 1). The claim now follows from (i)-(iii)
above.

Recall that from Proposition 1, it follows that β(n) = o(δn).

Proof of Lemma 4: It can be seen from (4) that Vθ(s) is continuously differentiable in θ. It can also be
shown as in Theorem 3 of Furmston et al. (2016) that ∇2Vθ(s) exists and is continuous. Since θ takes values
in C, a compact set, it follows that ∇2Vθ(s) is bounded and thus ∇Vθ(s) is Lipschitz continuous.

Finally, let Ls
1 > 0 denote the Lipschitz constant for the function ∇Vθ(s). Then, for a given θ0 ∈ C,

∥ ∇Vθ(s) ∥ − ∥ ∇Vθ0(s) ∥≤∥ ∇Vθ(s)−∇Vθ0(s) ∥

≤ Ls
1 ∥ θ − θ0 ∥

≤ Ls
1 ∥ θ ∥ +Ls

1 ∥ θ0 ∥ .

Thus, ∥ ∇Vθ(s) ∥≤∥ ∇Vθ0(s) ∥ +Ls
1 ∥ θ0 ∥ +Ls

1 ∥ θ ∥ . Let Ks
△= ∥∇Vθ0(s)∥ + Ls

1∥θ0∥ and K1
△=

max(Ks, L
s
1, s ∈ S). Thus, ∥ ∇Vθ(s) ∥≤ K1(1+ ∥ θ ∥). Note here that since |S| < ∞, K1 < ∞ as

well. The claim follows.

Proof of Lemma 5: Note that

∥Mn+1∥2 =
d∑

i=1
(M i

n+1)2

=
d∑

i=1

(
∆2

i (n) (Gn)2

δ2
n

+ 1
δ2

n

E [∆i(n)Gn | Fn]2

−2∆i(n)G
n

δ2
n

E [∆i(n)Gn | Fn]
)
.

Thus,

E[∥Mn+1∥2 | Fn] = 1
δ2

n

d∑
i=1

(
E[∆2

i (n)(Gn)2 | Fn]

−E2[∆i(n)Gn | Fn]
)
.

The claim now follows from Assumption 1 and the fact that all single-stage costs are bounded (cf. pp.174,
Chapter 3 of Bertsekas (2012)).

Proof of Lemma 6: It is easy to see that Zn is Fn-measurable ∀n. Further, it is integrable for each n and
moreover E[Zn+1 | Fn] = Zn almost surely since (Mn+1,Fn), n ≥ 0 is a martingale difference sequence by
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Lemma 3. It is also square integrable from Lemma 5. The quadratic variation process of this martingale
will be convergent almost surely if

∞∑
n=0

E[∥Zn+1 − Zn∥2 | Fn] <∞ a.s. (17)

Note that
E[∥Zn+1 − Zn∥2 | Fn] = α(n)2E[∥Mn+1∥2 | Fn].

Thus,
∞∑

n=0
E[∥Zn+1 − Zn∥2 | Fn] =

∞∑
n=0

α(n)2E[∥Mn+1∥2 | Fn]

≤ L̂
∞∑

n=0

(
α(n)
δn

)2
,

by Lemma 5. (17) now follows as a consequence of Assumption 2. Now (Zn,Fn), n ≥ 0 can be seen to be
convergent from the martingale convergence theorem for square integrable martingales Borkar (1995).

Our main result below is based on Theorem 5.3.1 of Kushner & Clark (1978) for projected stochastic
approximation algorithms. Before we proceed further, we recall that result below.

Let C ⊂ Rd be a compact and convex set as before and Γ : Rd → C denote the projection operator that
projects any x = (x1, . . . , xd)T ∈ Rd to its nearest point in C.

Consider now the following the d-dimensional stochastic recursion

Xn+1 = Γ(Xn + α(n)(h(Xn) + ξn + βn)), (18)

under the assumptions listed below. Also, consider the following ODE associated with (18):

Ẋ(t) = Γ̄(h(X(t))). (19)

Let C(C) denote the space of all continuous functions from C to Rd. The operator Γ̄ : C(C) → C(Rd) is
defined according to

Γ̄(v(x)) = lim
η→0

(
Γ(x+ ηv(x))− x

η

)
, (20)

for any continuous v : C → Rd. The limit in (20) exists and is unique since C is a convex set. In case this
limit is not unique, one may consider the set of all limit points of (20). Note also that from its definition,
Γ̄(v(x)) = v(x) if x ∈ Co (the interior of C). This is because for such an x, one can find η > 0 sufficiently
small so that x + ηv(x) ∈ Co as well and hence Γ(x + ηv(x)) = x + ηv(x). On the other hand, if x ∈ ∂C
(the boundary of C) is such that x+ ηv(x) ̸∈ C, for any small η > 0, then Γ̄(v(x)) is the projection of v(x)
to the tangent space of ∂C at x.

Consider now the assumptions listed below.

(B1) The function h : Rd → Rd is continuous.

(B2) The step-sizes α(n), n ≥ 0 satisfy

α(n) > 0∀n,
∑

n

α(n) =∞, α(n)→ 0 as n→∞.

(B3) The sequence βn, n ≥ 0 is a bounded random sequence with βn → 0 almost surely as n→∞.

(B4) There exists T > 0 such that ∀ϵ > 0,

lim
n→∞

P

sup
j≥n

max
t≤T

∣∣∣∣∣∣
m(jT +t)−1∑

i=m(jT )

a(i)ξi

∣∣∣∣∣∣ ≥ ϵ
 = 0.

17
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(B5) The ODE (19) has a compact subset K of RN as its set of asymptotically stable equilibrium points.

Let t(n), n ≥ 0 be a sequence of positive real numbers defined according to t(0) = 0 and for n ≥ 1,

t(n) =
n−1∑
j=0

a(j). By Assumption (B2), t(n)→∞ as n→∞. Let m(t) = max{n | t(n) ≤ t}. Thus, m(t)→∞

as t→∞. Assumptions (B1)-(B3) correspond to A5.1.3-A5.1.5 of Kushner & Clark (1978) while (B4)-(B5)
correspond to A5.3.1-A5.3.2 there.

(Kushner & Clark, 1978, Theorem 5.3.1 (pp. 191-196)) essentially says the following:

Theorem 7 (Kushner and Clark Theorem:) Under Assumptions (B1)–(B5), almost surely, Xn → K
as n→∞.

Finally, we come to the proof of our main result.

Proof of Theorem 1: In lieu of the foregoing, we rewrite (5) according to

θi(n+ 1) = Γi

(
θi(n)− α(n)

∑
s

ν(s)∇iVθ(n)(s)

−α(n)βi(n) +M i
n+1

)
, (21)

where βi(n) is as in (13). We shall proceed by verifying Assumptions (B1)-(B5) and subsequently appeal
to Theorem 5.3.1 of Kushner & Clark (1978) (i.e., Theorem 1 above) to claim convergence of the scheme.
Note that Lemma 4 ensures Lipschitz continuity of ∇Vθ(s) implying (B1). Next, from (B2), since δn → 0,
it follows that α(n) → 0 as n → ∞. Thus, Assumption (B2) holds as well. Now from Lemma 4, it follows
that

∑
s ν(s)∇Vθ(s) is uniformly bounded since θ ∈ C, a compact set. Assumption (B3) is now verified from

Proposition 1. Since C is a convex and compact set, Assumption (B4) holds trivially. Finally, Assumption
(B5) is also easy to see as a consequence of Lemma 6. Now note that for the ODE (14), F (θ) =

∑
s ν(s)Vθ(s)

serves as an associated Lyapunov function and in fact

∇F (θ)T Γ̄(−
∑

s

ν(s)∇Vθ(s))

= (
∑

s

ν(s)∇θVθ(s))T Γ̄(−
∑

s

ν(s)∇Vθ(s)) ≤ 0.

For θ ∈ Co (the interior of C), it is easy to see that Γ̄(−
∑

s ν(s)∇Vθ(s)) = −
∑

s ν(s)∇Vθ(s), and

∇F (θ)T Γ̄(−
∑

s

ν(s)∇Vθ(s)) < 0 if θ ∈ Hc ∩ C

= 0 o.w.

For θ ∈ δC (the boundary of C), there can additionally be spurious attractors, see Kushner & Yin (1997),
that are also contained in H. The claim now follows from Theorem 5.3.1 of Kushner & Clark (1978).

A.2 Convergence of SFR-2

The analysis proceeds in a similar manner as for the one-simulation SF except with Gn+ −Gn−

2δn
in place of

Gn

δn
.

Proof of Proposition 2:

A similar calculation as with the proof of Proposition 1 would show that

E

[
∆i(n)

(
Gn+ −Gn−

2δn

)
| Fn

]
=
∑

s

ν(s)E
[
∆i(n)

(Vθ(n)+δn∆(n)(s)− Vθ(n)−δn∆(n)(s)
2δn

| Fn

]
.

18
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Using Taylor’s expansions of Vθ(n)+δn∆(n)(s) and Vθ(n)−δn∆(n)(s) around θ(n) gives us

∆(n)
(
Vθ(n)+δn∆(n)(sn)− Vθ(n)−δn∆(n)(sn)

2δn

)
= ∆(n)∆(n)T∇Vθ(n)(sn) + o(δn).

The zero order and second order terms directly cancel above instead of being zero-mean, thereby resulting
in lower gradient estimator bias. The rest follows from properties (i)-(iii) mentioned previously for the
one-simulation gradient SF. In particular, E[∆(n)∆(n)T ] = I.

Proof of Theorem 2:

In the light of Proposition 2, the proof here follows in a similar manner as one-simulation SF.

A.3 Proof that SFR-2 has Lower Bias than SFR-1

Proof of Lemma 1

We show as part of the proof of Proposition 1 that

E

[
∆i(n)G

n

δn
| θ(n)

]
=
∑

s

ν(s)E
[
∆i(n)

Vθ(n)+δn∆(n)(s)
δn

| θ(n)
]
. (22)

Using a Taylor’s expansion of Vθ(n)+δn∆(n)(s) around θ(n) gives us

Vθ(n)+δn∆(n)(sn)
δn

=
Vθ(n)(sn)

δn
+ ∆(n)T∇Vθ(n)(sn) + δn

2 ∆(n)T∇2Vθ(n)(sn)∆(n) + o(δn).

Now recall that ∆(n) = (∆i(n), i = 1, . . . , d)T . Thus,

∆(n)
Vθ(n)+δn∆(n)(sn)

δn
= 1
δn

∆(n)Vθ(n)(sn)+∆(n)∆(n)T∇Vθ(n)(sn)+ δn

2 ∆(n)∆(n)T∇2Vθ(n)(sn)∆(n)+o(δn).
(23)

Taking now the conditional expectation as required in the RHS of (22), it can be seen that

E

[
∆i(n)

Vθ(n)+δn∆(n)(s)
δn

| θ(n)
]

= ∇iVθ(n)(sn) +O(δn).

Now in the SFR-2 case, we require one more Taylor’s expansion, namely of Vθ(n)−δn∆(n) around the point
θ(n). Here, like (23), one obtains

∆(n)
Vθ(n)−δn∆(n)(sn)

δn
= 1
δn

∆(n)Vθ(n)(sn)−∆(n)∆(n)T∇Vθ(n)(sn)+ δn

2 ∆(n)∆(n)T∇2Vθ(n)(sn)∆(n)+o(δn).
(24)

As part of the proof of Proposition 2, we observe as with Proposition 1 that

E

[
∆i(n)

(
Gn+ −Gn−

2δn

)
| Fn

]
=
∑

s

ν(s)E
[
∆i(n)

(Vθ(n)+δn∆(n)(s)− Vθ(n)−δn∆(n)(s)
2δn

| Fn

]
. (25)

From (23) and (24), one then gets

E

[
∆i(n)

(Vθ(n)+δn∆(n)(s)− Vθ(n)−δn∆(n)(s)
2δn

| Fn

]
= ∇iVθ(n)(sn) + o(δn).

The important difference to note between the Taylor’s expansions in the case of SFR-1 and SFR-2 is that in
SFR-2, there is a direct cancellation of the bias terms 1

δn
∆(n)Vθ(n)(sn) and δn

2 ∆(n)∆(n)T∇2Vθ(n)(sn)∆(n)
that does not happen in SFR-1. The second term above does not contribute as much to the bias as the first
term because the latter term has δn in the denominator that is expected to be small, in fact, δn → 0 as
n → ∞. This term averages out to zero eventually in SFR-1. In SFR-2, this term simply does not exist.
This results in lower bias in SFR-2 as opposed to SFR-1 and eventually results in improved performance of
SFR-2 over SFR-1.
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A.4 Proof of Lower Variance in the Signed and Clipped Variants

Proof of Lemma 2:

(i) Note from definition, Y 2 = 1, thereby E[Y 2] = 1 and 0 ≤ E[Y ]2 ≤ 1. Thus, Var(Y ) ≤ 1.

(ii) Recall f ∈ {fc, fm} is a projection map from Rd to C ⊂ Rd, where C is a compact and convex set.
We first show that this map is nonexpansive. In other words, we show that

∥f(x)− f(y)∥ ≤ ∥x− y∥, ∀x, y ∈ Rd.

Note that since C is convex and compact,

⟨x− f(x), z − f(x)⟩ ≤ 0, ∀z ∈ C.

Now since f(y) ∈ C, we have
⟨x− f(x), f(y)− f(x)⟩ ≤ 0. (26)

Similarly, we also have
⟨y − f(y), f(x)− f(y)⟩ ≤ 0.

Changing the sign in both terms above gives us

⟨f(y)− y, f(y)− f(x)⟩ ≤ 0. (27)

Adding (26) and (27) gives

⟨x− f(x) + f(y)− y, f(y)− f(x)⟩ ≤ 0.

In other words,
⟨x− y, f(y)− f(x)⟩+ ⟨f(y)− f(x), f(y)− f(x)⟩ ≤ 0.

Thus,
∥f(y)− f(x)∥2 ≤ ⟨y − x, f(y)− f(x)⟩

≤ ∥y − x∥∥f(y)− f(x)∥,

by the Cauchy-Schwarz inequality. It now follows that

∥f(y)− f(x)∥ ≤ ∥y − x∥.

Thus, E∥U−EU∥2 ≥ E∥f(U)−f(EU)∥2. The claim now follows since Ef(U) = argmintE∥f(U)−t∥2.
□

A.5 Convergence of Signed SFR-2

Recall that we have

Hi(θ(n),∆(n)) = ∆i(n)
[
Vθ(n)+δ(n)∆(n) − Vθ(n)−δ(n)∆(n))

2δ(n)

]
.

As explained previously,
E[Hi(θ(n),∆(n)|Fn] = ∇iVθ(n) + o(δ(n)).

Also, recall the ‘error’ in the ith component is given by

ei(n) = Hi(θ(n),∆(n))−∇iVθ(n) =
∑
j ̸=i

∆i(n)∆j(n)∇jVθ(n) + o(δ(n)).

Proof of Theorem 3:
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We rewrite the algorithm as follows:

θi(n+ 1) = Γi(θi(n)− α(n)sgn(Hi(θ(n),∆(n))))

= Γi(θi(n)− α(n)(I(Hi(θ(n),∆(n)) > 0)− I(Hi(θ(n),∆(n)) ≤ 0))),

where I(·) is the indicator function. Thus, we have

θi(n+ 1) = Γi(θi(n)− α(n)(1− 2I(Hi(θ(n),∆(n)) ≤ 0)))

= Γi(θi(n)− a(n)(1− 2P (Hi(θ(n),∆(n)) ≤ 0|Fn) +Mi(n+ 1))),

where
Mi(n+ 1) = 2P (Hi(θ(n),∆(n)) ≤ 0|Fn)− 2I(Hi(θ(n),∆(n)) ≤ 0),

= 2P (ei(n) ≤ −
∑

s

ν(s)∇iVθ(n)(s)|Fn)− 2I(ei(n) ≤ −
∑

s

ν(s)∇iVθ(n)(s))

= 2P (ei(n) ≤ −
∑

s

ν(s)∇iVθ(n)(s)|θ(n))− 2I(ei(n) ≤ −
∑

s

ν(s)∇iVθ(n)(s)),

by (A1). It is easy to see that (Mi(n),Fn), n ≥ 0 is a martingale difference sequence. Since
supn |Mi(n)| ≤ 1, and under (A4), it follows from an application of the martingale convergence theorem

that
n−1∑
m=0

a(m)Mm+1, n ≥ 1 is an almost surely convergent martingale.

It is easy to verify that W (θ) =
∑

s ν(s)Vθ(s) itself is a Lyapunov function for the ODE (16) since

dW (θ)
dt

= −Γ̄(⟨(1− 2F (−
∑

s

ν(s)∇Vθ(s)|θ)),
∑

s

ν(s)∇Vθ(s)⟩)

= −
N∑

i=1
Γ̄i((1− 2Fi(−

∑
s

ν(s)∇iVθ(s)|θ))
∑

s

ν(s)∇iVθ(s)).

From (A3), if
∑

s ν(s)∇iVθ(s) > 0, (1 − 2Fi(−
∑

s ν(s)∇iVθ(s)|θ)) ≥ 0 and dW (θ)
dt

≤ 0. Similarly, if

∇iVθ < 0, (1 − 2Fi(−∇iVθ|θ)) ≤ 0 and dVθ

dt
≤ 0. Further, when

∑
s ν(s)∇iVθ(s) = 0, dW (θ)

dt
= 0.

From Lasalle’s invariance theorem in conjunction with Theorem 2 of Chapter 2 of Borkar (2022), it
follows that θ(n), n ≥ 0 converges almost surely to the largest invariant set K̄ ⊂ K ⊂ {θ|Γ̄(⟨(1 −
2F (−

∑
s ν(s)∇Vθ(s)|θ)),

∑
s ν(s)∇Vθ(s)⟩) = 0}. The claim follows.

A.6 Convergence of SFR-2 with Clipped Gradients

Proof of Theorem 4

Recall that the projection operator f ∈ {fc, fm}. Further, both f = fc and f = fm are continuous functions.
Thus, observe that f(∇̂Vθ) → f(∇Vθ), ∀θ, where ∇̂Vθ(n) denotes the gradient estimate obtained from the
two-simulation SF.

Following the same sequence of steps as in Theorem 2, it can be seen that the underlying ODE tracked by
the algorithm is

θ̇(t) = Γ̄(−
∑

s

ν(s)f(∇Vθ(s))). (28)

Note also that by construction in either case, namely (i) f = fc and (ii) f = fm, we have that f(∇Vθ(s)) = 0
if and only if ∇Vθ(s) = 0.
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A.7 Convergence of ES-v1

Proof of Theorem 5

Denote by F (y) the mean squared difference function in variable y ∈ Rd defined as below:

F (y) = 1
2E

[(
Vθ(n)+δn∆(n)(s)

δn
− yT ∆(n)

)2

|θ(n)
]
.

Then,

∇yF (y) = E

[
−
(
Vθ(n)+δn∆(n)(s)

δn
− yT ∆(n)

)
∆(n)|θ(n)

]
.

Note now that
E[(yT ∆(n))∆(n)|θ(n)] = E[∆(n)∆(n)T y|θ(n)] = y,

since E[∆(n)∆(n)T ] = I (the identity matrix). Equating ∇yF (y) to zero gives us upon simplification

y = E

[
Vθ(n)+δn∆(n)(s)

δn
∆(n)|θ(n)

]
,

thereby resulting in the gradient estimate

ŷ(n) = 1
kδn

k∑
m=1

Vθ(n)+δn∆m(n))∆m(n),

where the ∆m(n),m = 1, . . . , k are independent, having the multivariate Gaussian distribution with mean 0
and covariance matrix I. One may write

ŷ(n) = (ŷ1(n), . . . , ŷd(n))T ,

where

ŷi(n) = 1
kδn

k∑
m=1

Vθ(n)+δn∆m(n))∆m
i (n),

i = 1, . . . , d. Thus, in the ES procedure, instead of using one sample of multivariate Gaussian, one calls k
samples of the same and takes the sample average of these. It can be seen that Using a Taylor’s expansion
of Vθ(n)+δn∆m(n)(s) around θ(n) gives us

Vθ(n)+δn∆m(n)(sn) = Vθ(n)(sn) + δn∆m(n)T∇Vθ(n)(sn) + δ2
n

2 ∆(n)T∇2Vθ(n)(sn)∆(n) + o(δ2
n).

Now recall that ∆m(n) = (∆m
i (n), i = 1, . . . , d)T . Thus,

∆m(n)
Vθ(n)+δn∆m(n)(sn)

δn
= 1
δn

∆m(n)Vθ(n)(sn)

+∆m(n)∆m(n)T∇Vθ(n)(sn)

+δn

2 ∆m(n)∆m(n)T∇2Vθ(n)(sn)∆(n) + o(δn).

Now observe from the properties of ∆m
i (n),∀m, i, n, that

(i) E[∆m(n)] = 0 (the zero-vector), ∀n, ∀m = 1, . . . , k, since ∆m
i (n) ∼ N(0, 1), ∀i, n,m.

(ii) E[∆m(n)∆m(n)T ] = I (the identity matrix), ∀n, ∀m = 1, . . . , k.

(iii) E

 d∑
i,j,k=1

∆m
i (n)∆m

j (n)∆m
k (n)

 = 0.

Property (iii) follows from the facts that (a) E[∆m
i (n)∆m

j (n)∆m
l (n)] = 0, ∀i ̸= j ̸= l, ∀m = 1, . . . , k, (b)
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E[∆m
i (n)(∆m

j )2(n)] = 0, ∀i ̸= j, ∀m = 1, . . . , k (this pertains to the case where i ̸= j but j = k above for
any given m = 1, . . . , k) and (c) E[(∆m

i )3(n)] = 0 (for the case when i = j = l above). These properties
follow from the independence of the random variables ∆m

i (n), i = 1, . . . , d, m = 1, . . . , k and n ≥ 0, as well
as the fact that they are all distributed N(0, 1). As with Proposition 1, it can be seen that

E[ŷ(n) | θ(n)] = ∇Vθ(n)(s) +O(δn).

Now rewrite (10) as

θi(n+ 1) = Γi (θi(n)− α(n)E[ŷi(n)|θ(n)]− α(n)Mi(n)− α(n)Ni(n)) (29)

where
Mi(n) = ŷi(n)− E[ŷi(n)|θ(n)]

and

Ni(n) = 1
kδn

k∑
m=1

∆m
i (n)(Gn,m − Vθ(n)+δn∆m(n)),

As in Proposition 1, it can also be seen that Ni(n), n ≥ 0 is a martingale difference sequence under the
sequence of sigma algebras Gn, n ≥ 1, redefined as under: Gn

△= σ(θ(l),∆m(l), l ≤ n, χl,ml < n,m =
1, . . . , k), n ≥ 1 is a sequence of increasing sigma fields with G0 = σ(θ(0),∆(0)). The rest of the proof now
follows via an application of the Kushner-Clark lemma as with SFR-1.

A.8 Convergence of ES-v2

As with the case of ES-v1, define in this case

F (y) = 1
2E

[(
Vθ(n)+δn∆(n)(s)− Vθ(n)−δn∆(n)(s)

2δn
− yT ∆(n)

)2

|θ(n)
]
.

Finding now ∇F (y) and setting it to zero gives us

y = E

[(
Vθ(n)+δn∆(n)(s)− Vθ(n)−δn∆(n)(s)

2δn

)
∆(n)|θ(n)

]
,

resulting in the gradient estimate

ŷ(n) = 1
2kδn

k∑
m=1

(Vθ(n)+δn∆m(n)) − Vθ(n)−δn∆m(n)))∆(m),

and as with Proposition 2 using a similar sequence of steps as in Theorem 5 above, we obtain

E[ŷ(n) | θ(n)] = ∇Vθ(n)(s) + o(δn).

Note that one obtains o(δn) above as against O(δn) in a similar expansion in Theorem 5. This is because
of the use of two function measurements at each epoch as opposed to one and which results in a direct
cancellation of the first term on the RHS of the Taylor’s expansions of Vθ(n)+δn∆m(n) and Vθ(n)−δn∆m(n)
around θ(n), see Proposition 2. The rest of the proof now follows along the same lines as Theorem 5.

B Numerical Results

B.1 Comparison with the ARS paper

We first describe the ARS algorithm from (Mania et al., 2018a;b) and the various versions of it in detail as
we incorporate this for purposes of comparison.
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Algorithm 1 Augmented Random Search (): four versions V1, V1-t, V2 and V2-t
1: Hyperparameters: step-size α, number of directions sampled per iteration k, standard deviation of

the exploration noise ν, number of top-performing directions to use b (b < k is allowed only for V1-t
and V2-t)

2: Initialize: M0 = 0 ∈ Rp×n, µ0 = 0 ∈ Rn, and Σ0 = In ∈ Rn×n, j = 0.
3: while ending condition not satisfied do
4: Sample δ1, δ2, . . . , δk in Rp×n with i.i.d. standard normal entries.
5: Collect 2k rollouts of horizon H and their corresponding rewards using the 2k policies

V1:
{
πj,l,+(x) = (Mj + νδl)x
πj,l,−(x) = (Mj − νδl)x

V2:
{
πj,l,+(x) = (Mj + νδl) diag (Σj)−1/2 (x− µj)
πj,l,−(x) = (Mj − νδl) diag(Σj)−1/2(x− µj)

for l ∈ {1, 2, . . . , k}.
6: Sort the directions δl by max{r(πj,l,+), r(πj,l,−)}, denote by δ(l) the l-th largest direction, and by
πj,(l),+ and πj,(l),− the corresponding policies.

7: Make the update step:

Mj+1 = Mj + α
bσR

b∑
l=1

[
r(πj,(l),+)− r(πj,(l),−)

]
δ(l),

where σR is the standard deviation of the 2b rewards used in the update step.
8: V2 : Set µj+1, Σj+1 to be the mean and covariance of the 2kH(j + 1) states encountered from the

start of training.1
9: j ← j + 1

10: end while
.

The ARS paper (Mania et al., 2018a) has ARS-v1 and ARS-v2, as given in the above algorithm. It uses only
two-sided measurements since they result in more stable gradient estimates. Note from here on, in terms of
ARS and our experiments, we do not deal with the one-sided version at all. Only two-sided is used. When
we say reward, we refer to the total return of the episode. This is as per the terminology used in the original
paper.

The authors use Mj for the weights of the linear policy at iteration j. They sample N perturbations and
perturb the policy in two ways (+ and −) and obtain the total episodic reward against each perturbed policy
(total of 2 × N episodes are run through). As we read through the algorithm, the policy function of our
SFR-1 and SFR-2 are similar to ARS-v1 from the line 5 of the algorithm mentioned below. ARS-v2 uses
additional normalization for the states. We confirm from line 8 that they are calculating the mean and
covariance of all states encountered by the algorithm upto that point and using it in line 5 for normalization.
As an enhancement, the authors select only b out of the N directions.

In line 7, the update step is very similar to SFR, except the authors, in the denominator, use σR = standard
deviation of returns from each perturbed policy. Instead, in our implementation, we just use the standard
deviation of perturbations ν. The update step at line 7 then becomes the following.

Mj+1 = Mj + α
bν

b∑
k=1

[
r(πj,(k),+)− r(πj,(k),−)

]
δ(k),
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B.2 Best Seeded Runs

We plot the returns of the hyperparameter (including the seed) that reach the highest return during training.

B.3 Hyperparameters

B.3.1 Optimal Hyperpameters
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task transform step_size delta_std reward
Swimmer none 0.005 0.02 355.37 ± 2.21
Hopper component_clip 0.005 0.025 2749.79 ± 428.79
HalfCheetah component_clip 0.010 0.02 3392.27 ± 289.96
Walker2d none 0.0015 0.02 1040.4 ± 792.8

Table 4: Best reward (mean across 3 seeds) achieved by SFR-2 within 1 million interactions with environment,
with respective hyperparameters

delta_std deltas_used n_directions step_size transform
0.020 20 120 0.020 component_clip
0.020 20 120 0.020 none
0.020 20 40 0.020 norm_clip
0.020 20 80 0.020 signed

Table 5: ARS-v1 best hyperparameters for HalfCheetah

delta_std deltas_used n_directions step_size transform
0.020 20 80 0.020 component_clip
0.020 20 80 0.020 none
0.020 20 80 0.020 norm_clip
0.020 20 40 0.020 signed

Table 6: ARS-v2 best hyperparameters for HalfCheetah

delta_std deltas_used n_directions step_size transform
0.030 8 32 0.020 component_clip
0.030 8 16 0.020 none
0.020 8 32 0.020 norm_clip
0.020 8 16 0.020 signed

Table 7: ARS-v1 best hyperparameters for Hopper

delta_std deltas_used n_directions step_size transform
0.030 8 32 0.020 component_clip
0.030 8 32 0.020 none
0.030 8 16 0.020 norm_clip
0.020 8 32 0.020 signed

Table 8: ARS-v2 best hyperparameters for Hopper

delta_std deltas_used n_directions step_size transform
0.020 30 30 0.020 component_clip
0.020 10 50 0.020 none
0.020 30 30 0.020 norm_clip
0.020 10 30 0.020 signed

Table 9: ARS-v1 best hyperparameters for Swimmer

delta_std deltas_used n_directions step_size transform
0.020 10 30 0.020 component_clip
0.020 10 50 0.020 none
0.020 30 30 0.020 norm_clip
0.020 30 50 0.020 signed

Table 10: ARS-v2 best hyperparameters for Swimmer
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delta_std deltas_used n_directions step_size transform
0.025 40 80 0.030 component_clip
0.025 40 80 0.020 none
0.025 40 100 0.020 norm_clip
0.025 40 80 0.020 signed

Table 11: ARS-v1 best hyperparameters for Walker2d

delta_std deltas_used n_directions step_size transform
0.025 40 80 0.030 component_clip
0.025 40 80 0.030 none
0.025 40 80 0.030 norm_clip
0.025 40 100 0.020 signed

Table 12: ARS-v2 best hyperparameters for Walker2d

delta_std step_size transform
0.020 0.005 component_clip
0.020 0.005 no_transform
0.020 0.010 norm_clip
0.020 0.040 signed

Table 13: SFR best hyperparameters for HalfCheetah

delta_std step_size transform
0.020 0.005 component_clip
0.020 0.005 no_transform
0.020 0.005 norm_clip
0.020 0.005 signed

Table 14: SFR best hyperparameters for Hopper

delta_std step_size transform
0.020 0.020 component_clip
0.020 0.020 no_transform
0.020 0.020 norm_clip
0.020 0.020 signed

Table 15: SFR best hyperparameters for Swimmer

delta_std step_size transform
0.025 0.003 component_clip
0.025 0.003 no_transform
0.025 0.003 norm_clip
0.025 0.003 signed

Table 16: SFR best hyperparameters for Walker2d
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B.3.2 All hyperparameters

Parameter Value
k [40, 80, 120]
b [40, 80, 20, 120]
α 0.02
ν 0.02
transform [norm_clip, component_clip, signed, none]

Table 17: ARS all hyperparameters for HalfCheetah

Parameter Value
k [32, 16]
b [8, 16, 32]
α 0.02
ν [0.02, 0.03]
transform [norm_clip, component_clip, signed, none]

Table 18: ARS all hyperparameters for Hopper

Parameter Value
k [50, 30]
b [10, 50, 30]
α 0.02
ν [0.02, 0.01]
transform [component_clip, signed, none, norm_clip]

Table 19: ARS all hyperparameters for Swimmer
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Parameter Value
k [80, 100]
b [40, 80, 100]
α [0.03, 0.02]
ν 0.025
transform [component_clip, signed, none, norm_clip]

Table 20: ARS all hyperparameters for Walker2d

Parameter Value
α [0.04, 0.01, 0.005, 0.03]
ν 0.02
transform [norm_clip, component_clip, signed, none]

Table 21: SFR-2 all hyperparameters for HalfCheetah

Parameter Value
α [0.001, 0.005, 0.01]
ν [0.02, 0.025]
transform [norm_clip, component_clip, signed, none]

Table 22: SFR-2 all hyperparameters for Hopper

Parameter Value
α 0.02
ν [0.02, 0.01]
transform [norm_clip, component_clip, signed, none]

Table 23: SFR-2 all hyperparameters for Swimmer

Parameter Value
α [0.003, 0.01]
ν [0.025, 0.02]
transform [component_clip, signed, none, norm_clip]

Table 24: SFR-2 all hyperparameters for Walker2d

29


	Introduction
	The MDP Framework
	The Episodic or Stochastic Shortest Path Setting
	The Policy Gradient Theorem

	The One-Simulation SF REINFORCE (SFR-1) Algorithm
	Variants for Improved Performance
	Two-Simulation SF REINFORCE (SFR-2) Algorithm
	SF REINFORCE with Signed Updates
	SFR-1 with Signed Updates
	SFR-2 with Signed Updates

	Two-Simulation SF REINFORCE with Clipped Updates
	Evolutionary Strategies (ES) Algorithms
	ES-v1
	ES-v2


	Convergence Analysis
	Convergence of SFR-1
	Convergence of SFR-2
	Convergence of Signed SFR-2
	Convergence of Two-Simulation SF REINFORCE with Clipped Gradients
	Convergence of ES-v1
	Convergence of ES-v2

	Numerical Results
	Conclusions
	Details of the Convergence Analysis
	Convergence of SFR-1
	Convergence of SFR-2
	Proof that SFR-2 has Lower Bias than SFR-1
	Proof of Lower Variance in the Signed and Clipped Variants
	Convergence of Signed SFR-2
	Convergence of SFR-2 with Clipped Gradients
	Convergence of ES-v1
	Convergence of ES-v2

	Numerical Results
	Comparison with the ARS paper
	Best Seeded Runs
	Hyperparameters
	Optimal Hyperpameters
	All hyperparameters



