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Abstract. Causal inference has become a powerful tool to handle the
out-of-distribution (OOD) generalization problem, which aims to extract
the invariant features. However, conventional methods apply causal
learners from multiple data splits, which may incur biased representation
learning from imbalanced data distributions and difficulty in invariant
feature learning from heterogeneous sources. To address these issues, this
paper presents a balanced meta-causal learner (BMCL), which includes a
balanced task generation module (BTG) and a meta-causal feature learn-
ing module (MCFL). Specifically, the BTG module learns to generate
balanced subsets by a self-learned partitioning algorithm with constraints
on the proportions of sample classes and contexts. The MCFL mod-
ule trains a meta-learner adapted to different distributions. Experiments
conducted on NICO++ dataset verified that BMCL effectively identi-
fies the class-invariant visual regions for classification and may serve as
a general framework to improve the performance of the state-of-the-art
methods.

Keywords: Out-of-distribution · Causal inference · Meta-learning ·
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1 Introduction

Deep learning approaches have achieved impressive performance based on the
independent and identically distributed (i.i.d.) hypothesis that testing and train-
ing data share similar distribution. However, real-world cases may violate the
hypothesis due to the complex real data collection or generation mechanism
(such as environmental differences [25], and selection bias [6]). Many studies
have revealed the performance of classic machine learning methods has a sharp
drop under distributional shifts [3,15,33], which indicates the necessity of learn-
ing an excellent model on out-of-distribution (OOD) data. To further promote
the development of out-of-distribution generalization research, the NICO Chal-
lenge is held. The NICO Challenge is divided into two tracks: track 1 - public
context generalization and track 2 - hybrid context generalization. The context
of NICO++ includes two types: common context and unique context. The com-
mon context appears in all classes, so it supports the task of track 1, and the
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unique context only appears in the specific class, which supports the task of
track 2.

Commonly used neural networks, such as resnet18 [12] and resnet50 [12],
are difficult to perform well in the OOD data scenarios. To solve this prob-
lem, many OOD generalization methods based on causal inference have been
proposed [32,33,38,39]. These algorithms typically aim to capture the invariant
causal mechanism and focus on key regions of the image to reduce the impact of
contextual diversity factors. CRLR [32] uses feature weighting to make images
of different distributions have the same feature distribution. KeepingGood [35]
adopts the idea of staged training to eliminate the adverse effect of data distribu-
tion on SGD momentum. CaaM [39] decouples causal features using CBAM [40]
attention mechanisms, implements causal interventions based on IRM loss [4] to
obtain cross-domain invariant causal features, and iteratively optimizing data
partitioning to prevent excessive intervention. In general, these methods reduce
the negative effects of confounding factors and achieve good results. However,
we find facts that the subset of training data contains imbalance, which leads
to ill-posed learning for causal learners and heterogeneous data leads to weight
divergence of multiple classifiers, which may hinder model convergence. These
reasons degrade the performance of existing methods.

To address these problems, this paper presents a balanced meta-causal learner
(BMCL) that improve the conventional causal learning with balanced task gen-
eration and meta learning. The proposed framework follows the CaaM pipelines
and it contains two novel modules: the balanced task generation and meta-causal
feature learning modules. The balanced task generation module follows CaaM
to generate raw data splits and samples meta-tasks therein with balanced three
balancing strategies to alleviate the data imbalance problem, including manual
balancing, loss balancing, and aggregation balancing with the final partitioning
obtained via an aggregation balance algorithm. This balances the class and con-
text of the training images in the tasks to allow the meta-learner to learn the
invariant causal features under different visual contexts, and therefore alleviates
the ill-posed learning with imbalanced data. The meta-causal feature learning
module employs the meta-learning framework to enable the causal learner to
retain knowledge learned from all tasks, i.e. data splits, and make it learn quickly
to adapt to new tasks and learn unified features. This degrades the model com-
plexity of CaaM by using a single meta-learner, and it fosters the model conven-
gency caused by the weight divergence of its multiple causal learners.

Experiments have been conducted on the subset of the NICO++ dataset and
the large datasets of NICO Challenge track1 and track2, including performance
comparison, ablation study, and case study. The comparison results verify the
generalization ability of the meta causal learner in the OOD case outperforms
existing methods. The ablation further illustrates the effectiveness of each com-
ponent. And case study shows the proposed BMCL can focus on class-invarant
visual regions of images in different contexts. To summarize, this paper includes
two main contributions:
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– A meta causal learner is proposed, which can capture common causal features
from different tasks. This can reduce the negative impacts of confounding
factors and improve the generalization ability of the model in OOD case.

– It presents a balanced subset partitioning strategy and proves that balanced
subsets can enhance the decision-making ability of the model.

2 Related Works

2.1 OOD Generalization

To further promote the research on the problem of agnostic distribution shifts
between the training and testing sets, the out-of-distribution(OOD) generaliza-
tion is proposed for learning a model that performs well under distribution shifts
settings [1,3,16,23,33].

There are OOD generalization problems in many fields, specially in the field
of image classification, where the diversity of OOD settings presents challenges:
domain adaption [19,37,42], debiasing [7,9,21], long-tailed recognition [20,24,
31,35,41]. To deal with the OOD problem, [13] proposed a real-world OOD
dataset NICO, and an extended version of NICO called NICO++ [44] is released
for NICO Challenge2022, which has a larger scale with images, contexts and
classes. By adjusting the scale of the context, a variety of OOD situations can
be simulated, allowing for an in-depth study. Domain adaptation tasks [19,42]
find a cross-domain invariant representation by separating task-related and task-
independent features. Debiasing tasks [7,21] improve generalization by training
separate models based on data biases to remove biased information. Long-tail
classification tasks facilitate classification by building networks to learn feature
representations for the majority and minority classes [20], respectively, or by
building a balance of head and tail classes [41].

2.2 Causal Inference

Causal inference is an effective method to solve the OOD problem. Pearl [26]
believes that causality is divided into three levels: association, intervention and
counterfactuals. Association is the correlation between data obtained by observ-
ing data. Intervention is using artificially controlling conditions to reduce the
influence of confounding factors, usually through the front door criterion or
back door criterion. Counterfactuals speculate on possible outcomes from con-
ditions that did not occur. At present, there are outstanding causal intervention
methods, such as re-weighting the samples so that samples in different environ-
ments have the same feature space [14,27,28,32]. Furthermore, methods using
invariant loss can obtain causal features that are invariant cross environments
[2,4,18,39]. The counterfactual method [11,22,34] is used to improve the general-
ization ability and robustness of the model by generating counterfactual samples.
In the field of image classification, causal inference aims to make the model focus
on the main regions of the image and ignore the impact of the context, that is,
to obtain the invariant causal features.
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2.3 Meta Learning

Meta-learning [17] is a branch of deep learning that aims to teach models to
learn. One of the famous method is MAML [8], which is more like a learning
strategy than a model and it can be used on other deep network models. Meta-
learning builds tasks as the basic unit of training, learns from each task and
quickly adapting to the next task. Meta-learning has a wide range of applications:
Domain Adaptation and Domain Generalization [5,36], in which meta-learning
is used to learn regularizer or learn hyperparameters for feature transformation
layers, so that the model can adapt to new domains. Another application is
Few-Shot Learning [10,29], which uses meta-learning and attention mechanisms
to quickly extend to new classes by learning base classes without forgetting
knowledge of old classes.

3 Relation Between BMCL, CBAM and CaaM

3.1 From Attentive Feature Learning to Causal Learning

OOD-distributed images amplify the impact of context on classification by cre-
ating pseudo-associations between context and categories, which requires the
model to better focus on the subjects in images. To this goal, the work of CBAM
[40] designed a lightweight attention module to focus on the class-predictive fea-
tures Fatt, which is learned on the basis of raw features extracted by visual
modal V (.), i.e., Fatt = CBAM(V (x)), where x is the images.

The effectiveness of the CBAM is limited because of the attentive bias caused
by wrong associations between contextual information and classes. To addressed
this, CaaM [39] improves the networks and the training pipeline to learn the
context-irrelevant visual representation, as shown in Fig. 1(a). CaaM first learns
to decouple causal features Fc, confounding features Fs, and mix features Fx

from images, that is, Fc,Fs,Fx = CaaM(x). Then CaaM generates training
partitions T = {t1, t2, · · · , tm} based on contextual information, and applies
multiple causal learner for aggregating the knowledge of models.

3.2 The Enhanced Causal Learning by BMCL

As mentioned above, CaaM proposes to aggregate the knowledge learned in
different partitions to obtain a better predictor, but the imbalance of partitions
brings about mutual interference during aggregation, and the learning in different
partitions needs to be more autonomous. The proposed BMCL addresses these
problems and the training pipeline is shown in Fig. 1 (b).

BMCL follows the feature decoupling in CaaM, obtains Fc,Fs,Fx, and
designs the BTG module to get the balanced partition T ′ = {t′1, t

′
2, · · · , t′m}.

In each partition, the learning is improved by means of setting corresponding
task, and a meta-learner is used to learn unified class-level features, thereby
enhancing the effects of causal learning.
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Fig. 1. Illustration of the training pipeline of CaaM and the proposed BMCL. BMCL
makes the data partitioning more balanced, and adapts meta learner to enhance the
effects of learning invariant features from different source data.

4 Our Approach

4.1 Overview

As shown in Fig. 2, the proposed BMCL has two main modules: balanced task
generation (BTG) module and meta-causal feature learning (MCFL) module.
The BTG module uses the aggregation balance method to train multiple par-
tition matrices. This can divide the dataset into multiple subsets with different
contexts in a balanced manner. The MCFL module aims to learn invariant causal
features to reduce the negative effects of confounding features. This enables the
model to focus on the main regions of the image with different contexts.

4.2 Balanced Task Generation (BTG) Module

The BTG module uses the confounder features Fs extracted by the CaaM to
train the partition matrix θ and update the data partition T = {t1, t2, · · · , tm}.
BTG first uses a random partition matrix. To get the updated partition matrix,
a bias classifier h(·) is trained for each matrix and the prediction c = h(Fs) can
be obtained. For this, the BTG module can distinguish the contexts and it is
optimized by miniming the ERM Loss, i.e.

Lerm
bias = E(x,y)∈D�(h(Fs), y) (1)
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Fig. 2. Schematic diagram of the BMCL algorithm: the balanced task generation mod-
ule divide the images into balanced splits with different contexts. The meta-causal fea-
ture learning module samples images from different partition to generate tasks, and
learn invariant causal features from different tasks.

where D is all training data, y is the label. Then using this classifier, under
the constraint of an IRMloss [4], a partition matrix θ is trained gradually. We
maximize the loss to make sure the difference among all splits. After training we
update the partition of the dataset in a fine-grained way:

Lirm
split =

∑

t∈Ti(θ)

Rt(h) + λ · ‖∇w|w=1.0R
t(w · h)‖2 (2)

where T = {t1, t2, · · · , tm} is current data partition, Ti(θ) denotes partition Ti

is decided by θ ∈ RK×m, K is the total number of training samples and m
is the number of splits in a partition, Rt(h) := E(x,y)∈ti�(h(Fs), y) is the loss
under subset ti, h(·) is the bias classifier trained in the previous step, w = 1.0
is a scalar and fixed “dummy classifier, the gradient norm penalty is used to
measure the optimality of the dummy classifier at each subset t, and λ ∈ [0,∞]
is a regularizer balancing weight between the ERM term and the invariance of
the predictor 1 · h.

During this process, we found training only one partition matrix θ may lead to
a large imbalance in subsets, which may lead to a poor performance of the model.
In order to alleviate the imbalance, BMCL employs three balancing strategies
and discusses this in the ablation study. Eventually, BMCL uses multiple matri-
ces to decide the final partition in BTG module. It combines the probability
distributions of multiple training to alleviate the problem of imbalance. And
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then the aggregation method is used to obtain the final partition, i.e.

θfinal =
n∑

i=0

⎛

⎜⎝
p(1, 1) · · · p(1,m)

...
. . .

...
p(k, 1) · · · p(k,m)

⎞

⎟⎠

i

(3)

where θfinal ∈ RK×m, p(k,m) denotes the probability that the kth image is
divided into the mth partition. For θfinal, the index of the split to be divided
into is:

Idx = argmax
θ

(Softmax(θfinal)) (4)

Then, dividing the K images into corresponding data subsets based on Eq. 4.
The BTG module divides the dataset into fine-grained subsets with different
contexts, which helps the model adapt to other tasks and extract cross-domain
invariant causal features.

4.3 Meta-Causal Feature Learning (MCFL) Module

Commonly used a way to solve the OOD problem of image classification is to
extract causal features of image subjects from different contexts. There is a
feasible solution that is to use the properties of meta-learning cross-task learning
to extract invariant features from different tasks. Based on the idea of meta-
learning, the MCFL module first organizes the training set into the form of a
task, which consists of a support set and a query set for the training process.
For m splits, we organize m tasks as an update. Each task is from one split. The
total number of meta-tasks is s, which can be divided by m. The composition
of the task is to randomly sample w classes, and then randomly sample i + j
images from each class, of which i images for the support set and j images for
the query set.

During the training phase, each meta-task has its own independent training
and testing sets, called support and query sets. The MCFL first promotes fast
convergence of the model by simply updating the support set training in the
meta-training process. The model first learns a parameter from the support set
and then updates the model. Note, we define the feature extractor as Mϕ with
parameters ϕ and the classifier as fμ with parameters μ. We use the feature
extractor Mϕ and classifier fμ to get the causal feature Fc and then calculate
an ERM Loss for the first model updating:

Fc = Mϕ(xspt) (5)

LKs
= �(fμ(Fc), yspt) (6)

where the xspt and yspt is the images and labels in support set of task Ks, and the
� is the cross-encropy loss. The updated parameter vector ϕ∗ and μ∗ are updated
using one or multiple gradient descent on the current support set calculated by
LKs

. For example, when using one gradient update:

ϕ∗ = ϕ − α∇ϕLKs
(7)
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μ∗ = μ − α∇μLKs
(8)

where the step size α may be fixed as a hyperparameter or meta-learned.
For meta-learning, a good meta learner should perform well on all meta tasks.

Therefore, BMCL has only one meta learner and uses ERM loss to update this
single learner. We use the updated model to train on the query set and get the
training loss. Since the support set and the query set have the same classes,
after learning on the support set to get ϕ∗, the learning of causal features can be
promoted on the query set, and show a good performance. For building meta-task
from splits, the updated model can be obtained after m tasks:

Fc = Mϕ∗(xqry) (9)

Lmeta
train =

1
m

m∑

i=0

LKi
=

1
m

m∑

i=0

�(fμ∗(Fc), yqry) (10)

It is worth noting that the meta-optimization is performed over the model
parameters Fϕ, whereas the objective is computed using the updated model
parameters ϕ∗.

ϕ ←− ϕ − β∇ϕ

m∑

i=0

LKi
(11)

μ ←− μ − β∇μ

m∑

i=0

LKi
(12)

where β is the meta step size. By training on multiple tasks and continuously
minimizing the sum of losses on all tasks, the model can accurately extract
causal features. This provides a guarantee for the model to achieve satisfactory
performance on new tasks. In addition, a ERM loss is used to enhance the
invariance of features, in this stage, we use mixup [43] to strengthen the images:

x̃ = λxi + (1 − λ)xj

ỹ = λyi + (1 − λ)yj

(13)

And the loss was calculated as:

Fc = Mϕ(x̃) (14)

Lerm
train = �(g(Fc), ỹ) (15)

where the g(·) is a classifier for this process alone.
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4.4 Training Strategy

BMCL incorporates two stages model training process:

– Stage 1: Training balanced subsets partition. The initial partition matrix is
randomly generated. And then a balanced constrain is used to update the
partition matrices. First, we train a biased classifier using the empirical risk
loss Lerm

bias and use the classifier to constrain the data partition by an invariant
risk loss Lirm

split. Significantly, we minimize the empirical risk loss Lerm
bias , but

maximize the invariant risk loss Lirm
split, i.e.

min Lerm
bias − λLirm

split (16)

– Stage 2: The extraction of training features is jointly constrained by the
empirical risk loss from different tasks and from the whole dataset. In order
to obtain robust features, we minimize the loss:

min Lmeta
train + Lerm

train (17)

5 Experiments

5.1 Datasets

NICO++ [44]. A real-world image classification dataset under OOD settings,
that is, the contexts of images in the testing may be unseen during training.
To achieve this, NICO++ decomposes images into subject concepts and visual
contexts, so that the contextual distribution in training and testing can be eas-
ily adjusted. There are typically two types of contextual setting in NICO++,
namely, the common context setting (as in track 1 of NICO++ Challenge) and
the hybrid context setting (as in track 2 of NICO++ Challenge). The common
contexts setting means that all classes share identical contexts both in training
and testing; and the unique contexts setting means each class has unique con-
texts. In details, NICO++ currently includes 200,000 images in 80 categories,
ranging from animals, plants, traffic to objects; images in each category are
organized into 10 public contexts and 10 unique contexts.

Track1. A subset sampled from NICO++ under common context setting. The
track1 dataset has 88,866 images for training, 13,907 for public testing, and
35,920 for private testing. All contexts in track1 is existing in all categories.

Track2. A subset sampled from NICO++ under hybrid context setting. The
dataset for track2 has 57,425 images for training, 8715 for public testing, and
20,079 for private testing. in track2, each category includes some unique contexts,
which makes the situation more complected.
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NICO++(subset). To further investigate the ability of OOD generation, we
used a self-made datset termed as NICO++(subset) in experiments. In details,
sampled images contain 6 contexts in 10 classes including animals, vehicles, and
others from the NICO++. Furthermore, we follow the long-tailed and zero-shot
settings in previous work [39], and additionally set 4 contexts for training and 2
contexts unseen during training for testing, the size of training, validating, and
testing are 2,870, 1,754, and 1755 respectively.

5.2 Evaluation Protocol

We use the Top-1 Accuracy on the validation set and test set for evaluation as
the previous work [39] of causal learning did. The formula is as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
(18)

where TP, TN, FP, FN are the number of true positive, false positive samples,
true negative samples, and false negative samples.

5.3 Implementation Details

For experiments in all the datasets, we used SGD as the optimizer, and setting
learning rate from 0.01 to 0.03. Models were trained for 220 epochs and the
learning rate was decayed by 0.1 at 200 epoch. In settings of partition training
in CaaM and BMCL, the number of partition is 4 and from the 40-th epoch,
the data partitions were updated every 20 epochs. For the process of updating
splits, we followed the previous paper and trained each for 100 epochs with early
stopping, when epoch is over 40 and accuracy no longer increases more than
5 epoch. The optimizer for this process was set to SGD with learning rate as
0.1. And the λ for IRM Loss was set to 1e6. For the meta-task, we choose 3
classes for one task, and 1 or 2 image(s) for the support sets, 11–15 images for
the query set. The updated learning rate of the one step gradient of meta was
set to 0.005–0.01. For the erm training process, we set the batch size to 32*4.

5.4 Performance Comparison

This section shows the performance comparison of BMCL with other image
classification methods. We typically divided them into visual learning based
on convolutional networks (Conv. Method) including the traditional ResNet-
18 [12], the widely-used data augmentation methods Mixup [43]; and methods
using causal inference, including the CBAM [40] and the CaaM [39]. The drawn
following observations from Table 1:

– Generally speaking, BMCL achieved better performance than other algo-
rithms in all cases. It is reasonable since BMCL is able to generate balanced
subsets to away from ill-posed learning. Benefiting from this property, BMCL
typically outperformed the other methods on both datasets with a large mar-
gin up to 12%.
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Table 1. Classification accuracies (%) of algorithms on track1, track2, and
NICO++(subset) datasets using ResNet18 as backbone. “val” and “test” denote the
accuracies on validating set and testing set. “pub test” denote the accuracies on the
publish testing set of Nico++ Challenge.

Method Model NICO++(subset) NICO++-track1 NICO++-track2

val acc test acc pub test pub test

Conv. method ResNet-18 44.73 45.93 58.07 47.11

Mixup 49.00 49.06 66.47 56.25

Causal method CBAM 44.27 45.47 65.35 58.71

CaaM 43.93 46.44 72.93 66.44

BMCL 51.45 52.02 84.66 78.81

– Basic visual networks such as ResNet-18 are prone to bias the context and
lead to poor predictions when faced with OOD images. The Mixup enhance-
ment enriches the context type corresponding to the category subject to a
certain extent through image interpolation during training, thereby implic-
itly enhancing the model’s attention to the subject part, and achieving an
improvement of about 8% on the small data set NICO++ (subset). On the
larger datasets Track 1 and Track 2, due to the richer contextual information,
the improvement is also more obvious by 13% and 19%.

– Methods based on causal learning generally perform better than traditional
vision networks on large datasets, mainly because they design explicit meth-
ods to pay attention to the predictive features of images, and the improvement
is more stable in the presence of sufficient data.

– However, on the small data set NICO++ (subset), the method based on causal
learning did not bring significant improvement to the results. For CBAM, the
attention mechanism is easy to focus on the background on a small amount of
data, which aggravates the impact of OOD on model prediction. However, the
update of CaaM is prone to imbalance. In a small data set, some predictors
only have few samples, which is likely to have a bad impact on the overall
prediction.

5.5 Ablation Study

In this section, we investigate the effectiveness of the proposed algorithm. The
experiment selected resnet18 [12] as the baseline. Our BMCL method is divided
into two modules, a balancing module and a meta-learning module. As can be
seen from Table 2, we tested two modules based on CaaM respectively, and both
achieved good results. Then we use the two modules at the same time, and use
the meta-model to learn causal features while ensuring the balance of the dataset
partition, and achieve the current best performance.
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Table 2. Results of the ablation study, showing the effectiveness of each module in
BMCL on classification performance.

Model NICO++(subset)

val acc test acc

Baseline 44.73 45.93

+CBAM 44.27 45.47

+CBAM+Causal 43.93 46.44

+CBAM+Causal+BTG 46.38 47.46

+CBAM+Causal+meta 49.74 49.52

+CBAM+Causal+BTG+meta 51.45 52.02

Table 3. The results of different combination of feature learning and balancing strategy.

Feature learning Balancing strategy NICO++(subset)

val acc test acc

Backbone - 43.93 46.44

LB 46.04 47.24

MB 44.05 47.41

GB 46.38 47.46

Meta learner - 49.74 49.52

LB 49.86 50.26

MB 51.62 49.57

GB 51.45 52.02

5.6 In Depth Analysis of Balancing Strategy and Meta Learner

Table 3 shows the performance of using different balancing methods, including
Loss Balance (LB), Manual Balance (MB), Aggregation Balance (GB). Among
them, LB is to add loss in the process of training the partition matrix, it can
automatically balance the number of images in different subsets during the train-
ing process. MB is to manually select the images of each class when dividing the
splits, and follow the principle of more deletion, less complement, and move the
extra images from a split to other splits. GB is a smooth operation that reduces
the chance and extremeness of the partition by training multiple partition matri-
ces, so as to alleviate the imbalance.

By testing different balancing methods, we found that GB is the best, and the
reason why LB and MB are not good may be because the forced full balancing
leads to destroying the structure of data partitioning, which is disadvantageous
to improve performance. While GB can alleviate the imbalance, it can retain
the structure of data partition. As observed, GB balance method achieved the
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Fig. 3. Visualization of attention maps with base model, CBAM, CaaM, and BMCL

best results both under CaaM and under the meta learner and outperformed the
other on NICO++(subset) with 2%.

5.7 Case Study

Figure 3 shows the attention maps generated by the proposed BMCL, the
commonly-used backbone ResNet18, the attention mechanism CBAM, and the
causal inference method CaaM. This is achieved by using the Grad-CAM [30]. In
this experiment, four classes images from the NICO++ test dataset are selected
and each class of images contains two contexts. As observed, BMCL can focus
on the class meaningful regions of the image rather than the contexts. For the
ResNet18, it can easily be influenced by the surrounding environment and focus
on meaningless regions, such as a cyclist and a light in the background. For the
CBAM, it always pays attention to a wide range, this contains the important
regions and a large of noisy regions besides. The CaaM achieves the good per-
formance compare with ResNet18 and CBAM, which indicates the reliability of
causal inference. But CaaM may learn biased feature attention maps, such as a
cyclist in bicycle image and a bench in cat image. This could be caused by unbal-
anced data learning. Significantly, BMCL achieves the best performance. It can
focus precisely on the class-invarant visual regions, and exclude the interference
of complex background. These observations verify the effectiveness of BMCL for
invariant causal feature learning.

6 Conclusions

This paper presents a novel approach, termed BMCL, to cope with the challenge
of agnostic distribution shifts in out-of-distribution (OOD) settings, which can



Meta-Causal Feature Learning for Out-of-Distribution Generalization 543

perform a self-learning balanced subset partition method to generate balanced
subsets and learn the invariant causal features based on meta-learning. Notably,
BMCL can keep the causal learner away from ill-posed learning and reduce
the model complexity. Experimental results show that BMCL can alleviate the
interference of confounder factors and enhance the learning and generalization
ability of the model in the OOD case.

This study can be further explored in two directions. First, a cost-effective
subsets partition method can be explored to reduce the time cost, such as com-
bining curriculum learning to partially sample the data. Second, BMCL can be
extended to more challenging settings, such as Federated Learning.
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