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Abstract

Link Prediction is the task of predicting miss-001
ing relations between knowledge graph entities002
(KG). Recent work in link prediction mainly003
attempted to adapt a model to increase link004
prediction accuracy by using more layers in005
neural network architecture, which heavily rely006
on computational resources. This paper pro-007
poses the refinement of knowledge graphs to008
perform link prediction operations more accu-009
rately using relatively fast translational models.010
Translational link prediction models have sig-011
nificantly less complexity than deep learning012
approaches; this motivated us to improve their013
accuracy. Our method uses the ontologies of014
knowledge graphs to add information as aux-015
iliary nodes to the graph. Then, these auxil-016
iary nodes are connected to ordinary nodes of017
the KG that contain auxiliary information in018
their hierarchy. Our experiments show that our019
method can significantly increase the perfor-020
mance of translational link prediction methods021
in Hit@10, Mean Rank, and Mean Reciprocal022
Rank.023

1 Introduction024

Knowledge graphs (KGs) represent a set of inter-025

connected descriptions of entities, including ob-026

jects, events, or concepts. These graphs are struc-027

tures by which knowledge is captured in the form028

of triplets. These triplets consist of three parts:029

head, relation, and tail. The relation (edge) deter-030

mines the type of relationship between head and031

tail nodes.032

Despite many efforts to build KGs, they are far033

from completeness. One of the developing fields in034

completing KGs is link prediction (LP). LP tries to035

embed entities and relations in a small continuous036

vector space to predict missing links in KGs. In037

the last few years, deep learning approaches have038

significantly outperformed other methods in LP,039

but this accuracy came at the cost of computational040

complexity.041

Translational LP models, such as TransE (Bor- 042

des et al., 2013), TransH (Wang et al., 2014), 043

TransD (Ji et al., 2015), RotatE (Sun et al., 2019), 044

and HAKE (Zhang et al., 2020), generally use a 045

straightforward function over head and relation vec- 046

tors to predict the tail based on distance (Rossi 047

et al., 2021) (Wang et al., 2021). One advantage 048

of translational methods over deep learning tech- 049

niques is that their score function is considerably 050

faster (Lv et al., 2018). Therefore, we tried to im- 051

prove only these translational methods in this work. 052

Ontologies are concepts or properties to describe 053

an object 1. Wordnet contains hierarchical ontol- 054

ogy only for its entities. Some work tried to use 055

ontology components of Wordnet to boost LP mod- 056

els. For example, GrCluster (Ranganathan et al., 057

2020) treated ontology components as paths. It 058

defined path similarity over entities in Wordnet and 059

slightly improved LP accuracy. Nonetheless, Gr- 060

Cluster only improved WNNH and WN18, which 061

are not standard LP datasets (Dettmers et al., 2018). 062

Additionally, this work is limited to Wordnet. 063

Freebase (Bollacker et al., 2008) does not have 064

any hierarchical path for its entity. On the other 065

hand, its relations have a path hierarchy to explain 066

edges. SACN (Shang et al., 2019) exploited ad- 067

ditional information of FB15k-237 as auxiliary 068

nodes and created FB15k-237-Attr. Nevertheless, 069

it added numerous nodes to the KG, which makes 070

the method for creating FB15k-237-Attr inefficient 071

for more extensive graphs. Likewise, this method 072

can only be applied to Freebase. 073

Translational LP models, such as TransE, Ro- 074

tatE, or TransD, when trying to learn the relation 075

between Paris and France, neglect that Paris is a 076

city and France is a country. We introduce ontol- 077

ogy components as auxiliary nodes. These aux- 078

iliary nodes are connected to related entities that 079

have these components in their hierarchy. For ex- 080

ample, we added an extra node “country” to KG 081

1https:en.wikipedia.orgwikiOntology_(information_science)
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and connected it to all the countries in the KG. Our082

contributions are as follows:083

Firstly, we presented a method for refining KGs084

that have ontology. Our approach adds auxiliary085

nodes and embeds similar nodes closer in the em-086

bedding space, which increases the accuracy of087

translational link prediction with the same time088

and space complexity of translational models. Sec-089

ondly, we used state-of-the-art translational mod-090

els to evaluate our method on two FB15k-237 and091

WN18RR. The results showed that accuracy in link092

prediction was significantly increased on H@10,093

MRR, and MR, especially on WN18RR.094

2 Related Work095

We divided related works into four categories.096

First, translational models, such as TransE (Bor-097

des et al., 2013), TransH (Wang et al., 2014),098

TransD (Ji et al., 2015), HAKE (Zhang et al., 2020),099

are distance-based algorithms that use a straight-100

forward operation over head and relation (mainly101

summation and/or a projection into a secondary102

space) to measure the distance to the tail entity.103

Some work has been introduced over these fast104

translational models to improve their performance105

by using hierarchical information. TKRL (Xie106

et al., 2016) used components of hierarchical struc-107

ture as a transition to transform KG nodes into108

secondary space and then performed LP. GrCluster109

(Ranganathan et al., 2020) used path similarity over110

entities in Wordnet and slightly improved link pre-111

diction accuracy. SACN (Shang et al., 2019) pro-112

posed FB15k-237_Attr that has external resources113

as triplets (new nodes and edges) to improve the114

result.115

GrCluster could not improve the WN18RR, and116

it is limited to KGs that have ontology for their117

entities. SACN improved FB15k-237 by creat-118

ing FB15k-237_Attr, but it added many nodes and119

edges. Nonetheless, the SACN attribute creator120

could not be applied to WN18RR. TransC (Lv et al.,121

2018) brought similar entities closer in the embed-122

ding space and improved LP in YAGO, but experi-123

ment results show no improvements on Wordnet or124

Freebase. Our work is similar to this category; It125

is fast and uses translational models as a core. We126

pushed the limitation of TransC to have a better LP127

result on Freebase and Wordnet.128

Second, mostly deep models adapt an architec-129

ture and rarely use anthologies in their main model.130

For example, ConvE (Dettmers et al., 2018) used131

2D convolution, BERT-ResNet (Lovelace et al., 132

2021) and KG-BERT (Yao et al., 2019) employed 133

BERT, SACN (Shang et al., 2019) utilized WGCN 134

in its architecture. These models are more accurate 135

but computationally costly. 136

Thirdly, KG refinement is a sub-field of KG 137

enhancement. Refinement can be done by either 138

adding information to the graph or removing incor- 139

rect data (Paulheim, 2017). BioKG (Zhao et al., 140

2020) worked on medical KGs and has tried to 141

provide a method for removing the inaccurate in- 142

formation in these graphs. In this work, like SACN, 143

we added auxiliary nodes to KGs. These nodes are 144

extracted from ontology hierarchy levels of nodes 145

and edges of KGs. 146

Lastly, some works introduced similarities over 147

entities or relations. For example, HRS (Zhang 148

et al., 2018) presented relation-cluster and sub- 149

relations in the scoring function of translational 150

models. It created sub-relations and relation- 151

clusters based on clustering results of TransE rela- 152

tions; however, it cannot utilize ontology nor im- 153

prove WN18RR results. For entity similarity, ETE 154

(Moon et al., 2017) considered that if two entities 155

are embedded closely in the embedding space, they 156

are similar and assigned classes to entities based 157

on closeness. Unlike ETE, our hypothesis is that if 158

two entities use the same relation type in the graph 159

or have common elements in their hierarchies, they 160

are related. We exploited these affiliations (share 161

hierarchical components) by connecting ordinary 162

nodes to their auxiliary nodes if a node has the aux- 163

iliary node in its ontology components. 164

The main distinctions between our work and re- 165

lated work are: First, our method works with any 166

KG with ontology, and it does not matter if it has 167

the hierarchical ontology for nodes or edges. Sec- 168

ond, it uses translational models; therefore, it has 169

high speed and less time to train these models (see 170

Table 3 in appendix). 171

3 KGRefiner 172

In this work, we propose a method that adds infor- 173

mation to KGs, which refines the KG and increases 174

LP accuracy. In FB15k-237, we do this refinement 175

by using relation hierarchies, and in WN18RR, we 176

use hierarchies of entities. We add repetitive com- 177

ponents of hierarchies to KGs as new (auxiliary) 178

nodes. Then, we introduce a few new relations to 179

connect these auxiliary nodes to other KG nodes. 180

KGRefiner forces translational models to drag sim- 181
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ilar entities (those entities that share ontology com-182

ponents) together. This closeness of similar entities183

causes the translational models to search between184

a specific type at first ( e.g., searching between185

countries when asked what country’s capital city is186

Paris, in evaluation) (See proof in Appendix A).187

3.1 Refinement of FB15k-237188

In FB15k-237, graph relations reflect infor-189

mation about entities. For example, in (Paris,190

national_capital, France), national_capital has191

hierarchy of “entity→ physical_entity→ object→192

location→ region→ area→ center→ seat→193

capital→ national_capital”. This hierarchy is a194

relationship between countries and their capitals,195

and nodes on one side of relationships (e.g. left196

side of triplet) can be considered similar (e.g.197

they are countries). Moreover, higher hierarchy198

levels usually have more abstract information199

about objects, but the lower ones are more specific.200

Therefore, we extracted the last three levels of201

hierarchies from each relation in this KG to use202

hierarchy components. Then, for each sub-relation203

(component), we counted the number of their204

repetitions in the KG training section triplets.205

Then, we removed those components with less206

than 100 repetitions to reduce the number of these207

components; the number 100 is arbitrary. Finally,208

285 sub-relations remained, and we added them to209

the set of entities in this KG (as auxiliary nodes).210

We defined two new relations, “RelatedTo” and211

“HasAttribute”, to connect these relation-nodes212

(auxiliary nodes) to the KG entities. For each213

triplet, if the entity is the triplet’s head, we link214

it to the auxiliary node by “RelatedTo”, and if215

Algorithm 1: Refinement of FB15k-237

Input (TrainTriplets,Hierarchies,MinRep. =
100)

Hierarchies← LastLevels(Hierarchies, 3)

Hierarchies←
Repetitives(Hierarchies,MinRep)

NewEdges = []
for all (h, r, t) in TrainTriplets do

for all H in Hierarchies do
NewEdges←
NewEdges+ (h,HasAttribute,H)

NewEdges←
NewEdges+ (t, RelatedTo,H)

return TrainTriplets+NewEdges

it is the tail of the triplet, we use “HasAttribute” 216

to establish these connections. For example, to 217

refine relation between Paris and France, (Paris, 218

entity→ physical_entity→ object→ location→ 219

region→ area→ center→ seat→ capital→ 220

national_capital, France), “capital” has repetition 221

over 100, so the following triplets were added to 222

the graph: 223

(France,HasAttribute, capital) 224

(Paris,RelatedTo, capital) 225

3.2 Refinement of WN18RR 226

To refine this graph, we use the hierarchy of enti- 227

ties. In Freebase, we used relationships, but rela- 228

tionships do not give us information about entities 229

in Wordnet. France, for example, has a hierarchy 230

of “existence → place → region → region → 231

administrative region → country”. This hierarchy 232

gives us good information about France. We ex- 233

tract the last three levels of entities. Among these 234

levels, we hold those with more than an arbitrary 235

number of 50 repetitions among entities to reduce 236

the number of auxiliary nodes. As a result, 207 237

levels remained. We add these levels as new nodes 238

to the KG training section and connect them to en- 239

tities that have these components in their hierarchy 240

with a new type of connection “HasAttribute”. For 241

example, France and Iran have a “country” in their 242

hierarchical structure. Then, the following triplets 243

were added to the training section of the graph: 244

(France,HasAttribute, country) 245

(Iran,HasAttribute, country) 246

Algorithm 2: Refinement of WN18RR

Input
(TrainTriplets,Hierarchies, Entities,MinRep. =
50)

Hierarchies← LastLevels(Hierarchies, 3)

Hierarchies←
Repetitives(Hierarchies,MinRep)

NewEdges = []
for all e in Entities do

for all H in Hierarchies do
if H IsComponentOf e then

NewEdges← NewEdges+
(e,HasAttribute,H)

return TrainTriplets+NewEdges
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3.3 New Relations247

We introduce new edge types to connect auxiliary248

nodes to the KG to make them distinguishable from249

original relation types. Since in WN18RR it is only250

one relation is needed, we introduce "HasAttribute"251

to say this node has this ontology attribute in its252

hierarchy. However, in FB15k-237, only edges253

have ontology components. Therefore, we need to254

know on which side of the edge an entity is located255

(head or tail). Therefore, we introduced two new256

relations: "HasAttribute" and "RelatedTo".257

4 Exprement258

4.1 Datasets259

We evaluated our work on popular benchmarks:260

FB15k-237 and WN18RR. In addition, we built261

two other datasets with KGRefiner: FB15k-237-262

Refined and WN18RR-Refined from those datasets.263

The details of the datasets are available in Table 4264

(appendix).265

Baseline H@10 MR MRR
TransE 50.1 3384 22.6

TransE + KGRefiner 53.7 1125 22.2
TransH 42.4 5875 18.6

TransH + KGRefiner 51.4 1534 20.8
HAKE 52.2 4433 40.0

HAKE + KGRefiner 53.8 2125 25.0
RotatE 54.7 4274 47.3

RotatE + KGRefiner 57.0 683 44.8

Table 1: Link prediction results on WN18RR and its
refined version.

Baseline H@10 MR MRR
TransE 45.6 347 29.4

TransE + Attribute 47.6 221 28.8
TransE + KGRefiner 47 203 29.1

HAKE 40.8 282 23.8
HAKE + Attribute 38.4 287 21.7

HAKE + KGRefiner 39.0 267 21.4
RotatE 47.4 185 29.7

RotatE + Attribute 43.8 218 27.3
RotatE + KGRefiner 43.9 226 27.9

TransH 36.6 311 21.1
TransH + Attribute 47.7 237 28.2

TransH + KGRefiner 48.9 221 30.2

Table 2: Link prediction results on FB15k-237 and its
refined version.

4.2 Baselines266

To demonstrate the effectiveness of our models, we267

compare results with the original translational mod-268

els TransE (Bordes et al., 2013), TransH (Wang269

et al., 2014), RotatE (Sun et al., 2019), and HAKE 270

(Zhang et al., 2020), with fair setting (see Ap- 271

pendix B). In addition, we used FB15k-237-Attr 272

(Shang et al., 2019) to compare our work with other 273

data augmentation methods as base models plus at- 274

tributes. 275

For WN18RR, GrCluster (Ranganathan et al., 276

2020) tried to improve link prediction on Word- 277

net by using hierarchical data using path similarity. 278

Nevertheless, their report did not show improve- 279

ment in WN18RR. 280

4.3 Experimental Results 281

Table 1 and 2 compares the experimental results of 282

our KGRefiner plus translational models and with 283

previously published results. Results in bold font 284

are the best results in the group, and the underlined 285

results denote the best results in the column. KGRe- 286

finer with TransH obtains the highest H@10 and 287

MRR on FB15k-237, and also KGRefiner with Ro- 288

tatE reached the best MR and H@10 in WN18RR. 289

In tables, results of TransE is taken from 290

(Nguyen et al., 2018), TransH from (Zhang et al., 291

2018). For other rows, we used OpenKE (Han 292

et al., 2018) and original HAKE implementation to 293

get the scores. 294

5 Conclusion and Future work 295

In this work, we propose KGRefiner, a KG refine- 296

ment method that alleviates the limitations of trans- 297

lational models by capturing additional informa- 298

tion in knowledge graph hierarchies. We used hi- 299

erarchy components as auxiliary nodes. Refined 300

KG comes by connecting these auxiliary nodes to 301

proper entities. Our empirical results show that our 302

KGRefiner outperforms other state-of-the-art trans- 303

lational models and data augmentation methods on 304

WN18RR. Some models’ performance improved 305

on FB15k-237 but was not as good as WN18RR. 306

Furthermore, it is the first augmentation method 307

that works with both Wordnet and Freebase, while 308

old methods only perform only on one dataset. 309

In our work, we had to manually determine the 310

depth cut of hierarchy and minimum repetition for 311

ontology components extraction. In future works, 312

we will automate these two elements, so the model 313

determines each component. Additionally, KGRe- 314

finer cannot improve the accuracy of deep learning 315

methods; therefore, another study is needed to en- 316

hance deep models by using ontological informa- 317

tion. 318
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A Proof of theory427

Translational link prediction methods, such as428

TransE, create transition property in their embed-429

dings. For example, in TransE, embeddings are430

made as e⃗s + r⃗ ≈ e⃗o. This means the tail entity431

should be close to the sum of head and relation in432

embedding space. Let us consider n entities share433

an ontology component O in their hierarchy. If434

we add O to the KG and connect the O to those n435

entities, the following optimization will happen in436

TransE:437

E⃗1 + ⃗RelatedTo ≈ O⃗438

E⃗2 + ⃗RelatedTo ≈ O⃗439

...440

E⃗n + ⃗RelatedTo ≈ O⃗441

The loss function minimizes the distance between442

two sides of equations:443

Loss = ||E⃗1+ ⃗RelatedTo− O⃗||+444

||E⃗2+ ⃗RelatedTo− O⃗||+445

...446

||E⃗n+ ⃗RelatedTo− O⃗||447

In the implementation, they are optimized batch-448

wised. Also, assume it uses the L1 norm as a dis-449

tance measure. Therefore, the batch loss will be:450

Loss =
n∑
n=
1

Distance(E⃗i + ⃗RelatedTo, O⃗)451

=
n∑
n=
1

Distance(E⃗i, O⃗ − ⃗RelatedTo)452

=

n∑
n=
1

||E⃗i, O⃗ − ⃗RelatedTo||1453

Since (O⃗ − ⃗RelatedTo) can be considered con-454

stant, all E⃗i will be dragged to where (O⃗ −455
⃗RelatedTo) is located in the embedding space.456

For example, if we connect all KG countries to457

an ontology node "country", then all countries will458

be embedded closer.459

460

B Hyperparameter Settings461

We employed the implementation of baselines by462

OpenKE (Han et al., 2018), and HAKE (Zhang463

Model Time to train Time to train
with KGRefiner

TransE [⊕] 2.8× 102 s 5.6× 102 s
TransH [⊕] 5.2× 102s 1× 103s
TransD [⊕] 5.2× 102s 1× 103s
RotatE [⊕] 5× 102s 1× 103s
HAKE [⊕] 1.5× 104s 3× 104s
ConvE [⊖] 2.7× 105s -
ConvKB [⊖] 4× 104s -
BERT-ResNet [⊖]
(Lovelace et al., 2021) 9.7× 104s -

Table 3: Comparison between translational technique
and deep learning methods in training time on the small-
standard Freebase sub-graph (FB15k-237) . [⊕]: These
models are implemented by OpenKE (Han et al., 2018)
and [⊖] are produced by their original implementations.

et al., 2020) to produce the result. 464

To have a fair comparison between translational 465

models, we used an embedding dimension of 200 466

for all models (to produce the same result as in their 467

paper, some models need more than 1000 dimen- 468

sions for entity embedding). Also, we removed 469

self adversarial negative sampling from TransE, 470

RotatE, and HAKE and replaced it with typical 471

negative sampling. Moreover, we tried {200, 500, 472

1000, 2000} epochs, and we picked the best one 473

according to MRR on the validation set for final 474

comparison. Other hyperparameters of the models 475

are those mentioned in OpenKE and HAKE. Hyper- 476

parameters for FB15k-237 and FB15k-237-Refined 477

and also WN18RR and WN18RR-Refined are the 478

same. Interestingly, HAKE heavily relied on 1000 479

embedding dimensions to reproduce the result on 480

its paper. 481

C Speed of Models 482

The training time of translational models is much 483

less than deep learning approaches such as ConvE, 484

SACN, ConvKB, etc. The complexity of scoring 485

function and neural network layers in their architec- 486

ture reduces training speed in deep learning meth- 487

ods. Table 3 compares the time that each model 488

needs to be trained for one epoch on FB15k-237. 489

We ran models on Nvidia K80. For fair comparison 490

embedding dimension for all models is 200. It can 491

be observed that the runtime difference between 492

our best result with KGRefiner (TransH + KGRe- 493

finer ) and BERT-ResNet (Lovelace et al., 2021) 494

for a small dataset FB15k-237 is around 9.6×105s. 495

In other words, our method is 100 times faster. In 496

terms of their accuracy (H@10, MRR, MR), BERT- 497

ResNet scores are ( 0.514, 0.346, 186) but TransH 498
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Dataset FB15k-237 FB15k-237-Refined WN18RR WN18RR-Refined FB15k-237-Attr
Entities 14541 14826 40943 41150 14744
Relations 237 239 11 12 484
Train Edges 272115 550998 86835 230135 350449
Val. Edges 17535 17535 3034 3034 17535
Test Edges 20466 20466 31134 31134 20466

Table 4: Statistics of the experimental datasets. The refined version represents that graph has some auxiliary nodes.
These auxiliary nodes are extracted from entities hierarchy in the original knowledge graph.

+ KGRefiner are ( 0.489, 0.302, 221). The scores499

are slightly lower, but speed is uncomparable.500

Apart from that, according to table 4, KGRefiner501

adds triplets to the training section of these KGs.502

Therefore, it only increases the training time of503

WN18RR and FB15k-237 by a factor of 2.65 and504

2.02, respectively. It does not increase other mea-505

surements’ complexity because it adds few nodes506

to the KGs. Consequently, the training cost of the507

translational models with KGRefiner is still much508

cheaper than deep learning techniques.509

D Limitations510

KGRefiner needs a KG that has ontology for either511

its nodes or edges. Therefore, in other developing512

KGs, KGRefiner cannot be applied. In addition,513

since it brings similar entities closer, this can only514

improve distance-based models (translational).515
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