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Abstract

A key strategy to enhance specialized hardware
accelerators, such as GPUs and FPGA, is to re-
duce the numerical precision in arithmetic op-
erations, which increases processing speed and
lowers latency—both crucial for real-time AI ap-
plications. In this work, we consider NP-hard
Quadratic Unconstrained Binary Optimization
(QUBO) problems, which arise in machine learn-
ing and beyond. We show that these problems
often require high numerical precision, posing
challenges for hardware solvers. We introduce
a principled Branch-and-Bound algorithm for re-
ducing the precision requirements of QUBO prob-
lems by utilizing the dynamic range as a mea-
sure of complexity. Experiments demonstrate that
our method reduces the dynamic range in subset
sum, clustering, and vector quantization problems,
thereby increasing their solvability on actual quan-
tum annealers and FPGA-based digital annealers.

1. Introduction
Hardware acceleration is a major driving force in the recent
advent of artificial intelligence (AI). Virtually all large-scale
AI models rely on hardware accelerated training via Ten-
sor Processing Units (TPUs), Graphics Processing Units
(GPUs), or Field-Programmable Gate Arrays (FPGAs). A
key ingredient of these accelerators is parallelism—a large
computation is split into smaller pieces, solved via multiple
compute units. Clearly, each compute unit must read its
inputs from memory. However, memory bandwidth is lim-
ited. Hence, to achieve a large level of parallelism, the input
that each compute unit needs must be as small as possible.
To this end, model parameters with limited precision, e.g.,
16-bit, 8-bit, or even smaller, are considered and special
training procedures are employed to directly train models
with low-precision parameters (Choukroun et al., 2019). AI
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Figure 1: Illustration of parameter perturbation for finite pre-
cision hardware. The original QUBO Q is perturbed through
quantization errors which can lead to spurious optima.

accelerators usually rely on parallel implementations of ba-
sic linear algebra routines. There is, however, a multitude of
AI problems whose inherent computational complexity does
not stem from linear algebra operations. Examples include
clustering (Aloise et al., 2009), probabilistic inference (Er-
mon et al., 2013), or feature selection (Brown, 2009). At the
core of these tasks lies a combinatorial optimization (CO)
problem. As of today, solving such ML-related CO prob-
lems exactly is out of reach for high-dimensional instances.
However, analog devices (Yamamoto et al., 2020; Mohseni
et al., 2022; Mastiyage Don et al., 2023), ASICs (Matsubara
et al., 2020), FPGAs (Mücke et al., 2019; Kagawa et al.,
2020), and quantum computers (Albash & Lidar, 2018) have
recently made promising progress when it comes to solving
CO problems. In particular, we consider Quadratic Uncon-
strained Binary Optimization (QUBO) (Punnen, 2022) and
equivalent Ising problems

min
z∈{0,1}n

z⊤Qz ⇔ min
s∈{−1,1}n

s⊤Js+ h⊤s , (1)

where Q, J and h are real (proper definitions follow in
Sec. 3). Despite (1)’s simple structure, it is NP-hard, and
hence covers a plethora of real-world optimization chal-
lenges, from problems like the traveling salesperson and
graph coloring (Lucas, 2014) to machine learning (ML)
(Bauckhage et al., 2018; Mücke et al., 2023) and various
other applications (Biesner et al., 2022; Chai et al., 2023).
One common issue of QUBO hardware solvers, also called
Ising machines, is limited physical precision of the matrix
entries, as real-world hardware devices use finite numerical
representations. It turns out that simply truncating decimal
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Dynamic Range Reduction via Branch-and-Bound

digits of Q is not sufficient, since the resulting optimization
problem will have different local and global optima (Mücke
et al., 2025) (see Fig. 1). In the paper at hand, we develop
an algorithmic machinery for reducing the numeric preci-
sion required to represent QUBO instances. The proposed
method relies on the dynamic range (DR) of any QUBO
matrix as a measure of its complexity.

We present a novel iterative procedure, which reduces the
DR while preserving the optimal solution of the underlying
QUBO. Moreover, we explain why greedy methods are
likely to produce sub-optimal results and propose a novel
method that is based on policy rollout (Bertsekas et al., 1997;
Silver et al., 2016) to adress the greedy nature of baseline
methods. Our contributions can be summarized as follows:

• We formulate the problem of reducing the required
precision via a Markov decision process and introduce
a fully principled Branch-and-Bound algorithm for ex-
actly solving the problem in a finite number of steps.

• We propose effective and efficiently computable
bounds for pruning the search space.

• Combining our algorithm with the well-known rollout
policy, we further improve efficiency and performance.

• We support our theoretical insights with an experimen-
tal analysis for ML-related problems on quantum hard-
ware and an FPGA-based digital annealer. The results
demonstrate the effectiveness of our precision reduc-
tion, its superiority over baseline methods, and the
benefits it provides for hardware solvers.

2. Related Work
It is well known that hardware devices tailored towards
solving QUBO problems suffer from a limited parameter
precision (Oku et al., 2020). While FPGA-based digital
annealing devices (Şeker et al., 2022) have a fixed bit-width
for representing problem parameters, e.g., 16-bit, quantum
computers are prone to integrated control errors (Booth
et al., 2017; Vyskočil et al., 2019). For preserving global
optima, in (Oku et al., 2020) the bit-width is reduced by
introducing exponentially many auxiliary variables depen-
dent on the number of reduced bits. This can be combined
with the heuristic rounding of the parameters (Yachi et al.,
2022), which however, can lead to different optima. A sim-
ilar method respecting the underlying hardware topology
of a D-Wave quantum annealer can be found in (Mooney
et al., 2019). Instead of enlargening the problem size, (Yachi
et al., 2023) follows the approach of solving topologically
equivalent instances, each with reduced precision require-
ments. The number of these instances is exponential in the
number of reduced bits and optimum preservation is only
guaranteed if all instances have the same global optimum.

A more general precision measure than the bit-width, which
is only defined for integer parameters, is discussed in (Stol-
lenwerk et al., 2019a;b). The maximum coefficient ratio of
a QUBO problem is directly related to the performance on
D-Wave quantum annealers. It is mentioned that it is largely
affected by penalty parameters for incorporating constraints.
(Verma & Lewis, 2022; Alessandroni et al., 2023) try to
optimize these penalties by using bounds on the optima
of the underlying problem. However, these methods are
not applicable for arbitrary QUBO instances, e.g., when the
large precision stems from the underlying data and not the
problem formulation. In (Mücke et al., 2025), the dynamic
range is identified as an improved complexity measure, and
a method for iteratively reducing it is proposed. The method
can be applied for any QUBO instance. The underlying idea
is to update single QUBO matrix entries within specific inter-
val boundaries, computed by bounding the optimal QUBO
value. The method is guaranteed to preserve the original
optima. However, the heuristics presented in that work are
greedy and often get stuck in local optima. In what follows,
we build upon (Mücke et al., 2025) by formulating a more
elaborate algorithm that overcomes this issue.

3. Background
We denote matrices with bold capital letters (e.g. A) and
vectors with bold lowercase letters (e.g. a). Sets will be
symbolized by calligraphical or blackboard bold capital let-
ters (e.g. A, A). Let the index set from 1 to n be denoted
as [n] ..= {1, . . . , n}. For an optimization problem, some-
thing optimal will be denoted by the superscript “*”. We
use “ ˆ ” or “ ˇ ” to indicate a maximum/upper bound or a
minimum/lower bound, respectively.

3.1. QUBO

A QUBO problem is completely characterized by an upper
triangular matrix Q ∈ Rn×n. The QUBO energy of a bi-
nary vector z ∈ {0, 1}n is defined as EQ(z) ..= z⊤Qz =∑

i≤j Qijzizj . Note that any real QUBO matrix can be
brought into an equivalent upper triangular form. The
objective of a QUBO problem is to find a binary vector
z∗ ∈ {0, 1}n which optimizes the QUBO energy

z∗ ∈ Z∗(Q) ..= argmin
z∈{0,1}n

EQ(z) , (2)

where Z∗(Q) is the set of optimizers for the QUBO problem
with matrix Q. Let Qn denote the set of upper triangular
matrices in Rn×n. The problem in (1) is NP-hard (Pardalos
& Jha, 1992), i.e., in the worst case, the best known algo-
rithm is an exhaustive search over an exponentially large
candidate space. Furthermore, any problem in NP can be
reduced to QUBO with only polynomial overhead, mak-
ing this formulation a very general form for combinatorial
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optimization. A range of solution techniques has been de-
veloped over past decades, e.g., exact methods (Narendra
& Fukunaga, 1977; Rehfeldt et al., 2023) with worst-case
exponential running time, approximate techniques such as
simulated annealing (Kirkpatrick et al., 1983), tabu search
(Glover & Laguna, 1998), and genetic programming (Gold-
berg & Kuo, 1987); see (Kochenberger et al., 2014) for a
comprehensive overview.

3.2. Dynamic Range

Although the entries of a QUBO matrix are theoretically
real-valued, real-world computing devices have limits on the
precision with which numbers can be represented. To quan-
tify the precision required to accurately represent QUBO
parameters, we adopt the concept of dynamic range (DR)
from signal processing. For this, we first define the set
absolute differences between all elements of X ⊂ R as
D(X ) ..= {|x − y| : x, y ∈ X , x ̸= y}, and write
Ď(X ) ..= minD(X ) and D̂(X ) ..= maxD(X ). For a given
QUBO matrix Q ∈ Qn the DR is defined as

DR(Q) ..= log2

(
D̂(U(Q))

Ď(U(Q))

)
, (3)

where U(Q) ..= {Qij : i, j ∈ [n]}. Note that always
0 ∈ U(Q), since Q is upper triangular, that is Qij = 0 for
i > j. A large DR indicates that many bits are required
to represent all parameters of Q accurately in binary, as
the parameters span a wide range of values and require
fine gradations. Taking the next larger integer larger than
the DR quantifies how many bits are required to faithfully
implement the parameters of a QUBO matrix.

Different measures for describing the required precision are
the coefficient ratio (CR) (Stollenwerk et al., 2019b)

CR(Q) =
max{|Qij | : i, j ∈ [n]}

min{|Qij | : i, j ∈ [n]} \ {0} ≤ 2DR(Q) ,

and the bit-width (BW) (Yachi et al., 2023)

BW(Q) = ⌈log2 max{|Qij | : i, j ∈ [n]}⌉+ 1 ≥ DR(Q) ,

which is only defined for integer entries. The BW does
not capture inter-weight distances, making it an inaccurate
measure when scaling parameters to a specific range. Even
though CR might be very small, the DR can still be large,
but the reverse does not hold. That is to say, we understand
DR as an accurate measure of representational complexity.

4. Methodology
Our main goal is to reduce the DR of a given QUBO problem
by transforming the corresponding QUBO matrix subject to
the requirement that a global optimizer must be kept intact.

a2 a3, . . .a1

r = 0.21 r = 0.15

DR = 9.49 DR = 9.28 DR = 9.13 DR = 8.89

V π = 0.24

Figure 2: Illustration of the MDP described in Sec. 4. Every
step t, we choose an action at in form of an index pair and
update our state st to st+1 to obtain a matrix with a smaller
DR. The goal is to maximize the value function V π .

To this end, we define the notion of optimum inclusion ( ∗⊑)
on QUBO instances as Q ∗⊑ Q′ ⇔ Z∗(Q) ⊆ Z∗(Q′). We
formulate the precision reduction problem as follows:

argmin
A∈Qn

DR(Q+A) (4a)

s.t. Q+A ∗⊑ Q . (4b)

Let us give a small example for clarification.

Example 1. Consider the following 2× 2 matrices:

Q =

[
0.8 −1.5
0 −1000

]
, Q′ =

[
0.8 −1.5
0 −2

]
.

Observing the corresponding QUBO problems, we get

argmin
z∈{0,1}2

z⊤Qz = argmin
z∈{0,1}2

z⊤Q′z =

(
1
1

)
,

that is, Q and Q′ have the same optimizer, therefore Q ∗⊑
Q′. Furthermore, it holds that

Q+A = Q′, A ..=

[
0 0
0 998

]
.

When we compare the DR of Q and Q′, we find that
DR(Q) ≈ 10.29, DR(Q′) ≈ 2.49.

Example 1 demonstrates that, in principle, it is possible to
reduce the DR while preserving an optimizer of the QUBO
problem. Interestingly, we can find an optimal solution
A∗ = (δij(1− 2z∗i ))

n
i,j=1 − Q to (4), when we already

know an optimizer z∗ ∈ Z∗(Q). Q + A∗ is a diagonal
matrix only consisting of the entries −1, 0, 1 with a min-
imum DR(Q + A∗) = 1. Nevertheless, solving an arbi-
trary QUBO problem with matrix Q is NP-hard, but the
resulting optimum of (4) is a diagonal matrix, for which
the corresponding QUBO problem is solvable in linear time
O(n). Taking the common assumption that P ̸= NP, solv-
ing (4) is also NP-hard and thus as intractable to solve as
the QUBO problem itself. Thus, we consider a slightly more
constrained version than (4).

4.1. Markov Decision Process Formulation

We consider the state space as S = Qn and the action space
A ⊂ [n] × [n]. The state transition function is given by

3
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Q

r∗ < ř r∗ < ř

r∗ < ř

r∗ < ř r∗ < ř r∗ < ř

T = 5

T = 4

T = 3

T = 2

Rollout

Figure 3: Exemplary depiction of the search space when applying our B&B algorithm (Sec. 5) to some QUBO matrix Q. In
every step, we expand our search space (from top to bottom, Sec. 5.1) and check whether a branch can be pruned (r∗ < ř,
Sec. 5.3). The small filled circles indicate the visited states of our algorithm and the pruned parts are depicted as gray dashed
lines. The fraction of pruned states is 40/85 = 0.47 (without rollout). Since the search space size grows exponentially with
the horizon T = 5, we execute a PR (Sec. 5.2) for T̃ = 2 steps. From here on, a base policy is followed without expanding
further, which is depicted in blue. The red path indicates the optimal solution and the yellow path shows the base policy.

f(s, a) = f(Q, (k, l)) = Q + h(Q, (k, l))eke
⊤
l , where

ek, el are the standard basis vectors with zeros everywhere
except at index k and l, respectively. h : Qn×[n]×[n] → R,
is a function for determining the parameter update and we
consider the following heuristic (Mücke et al., 2025): Matrix
entries are changed by a parameter w, Qkl → Qkl +w with
k, l ∈ [n], k ≤ l such that an optimizer is preserved, i.e.,
y−(Q) ≤ w ≤ y+(Q) ⇒ Q + weke

⊤
l

∗⊑ Q. Details
on heuristic h and how to compute the bounds y−(Q) and
y+(Q) can be found in (Mücke et al., 2025) and are given
in the Appendix. Note that y−(Q) ≤ 0 ≤ y+(Q) and h is
illustrated in Fig. 4a. We define the reward as the change
of DR, r(s, a) ..= DR(s) − DR(f(s, a)). The four-tuple
(S,A, f, r) defines a Markov decision process (MDP). Now
assume that we want to change T QUBO matrix entries such
that the accumulated reward is maximized. Formally, the
goal is to find a policy π∗ : S → A, s.t.,

π∗ = argmax
π :S→A

V π(s0) = argmax
π :S→A

T−1∑
t=0

r (st, π(st)) (5a)

= argmin
π :S→A

DR (fT (Q, π)) , (5b)

where the equality follows through a telescopic sum and
the t-time state transition ft following policy π is defined
as ft(s0, π) ..= f (st, π(st)) = st+1, s0 ..= Q. Our MDP
is illustrated in Fig. 2. Observing that the transition is a
simple matrix addition, we can write fT (Q, π) = Q+A′,
where Q + A′ ∗⊑ Q. Thus, the optimization objective of
the decision process in (5) is a more restricted version of
the problem in (4). That is, we do not optimize over the set
of all optimum inclusive matrices, but over the subset of
matrices which can be created with any policy following our
MDP framework. The cumulative sum in (5a) is also called
the value function V π for a policy π. Using the recursive
Bellman equation

V π∗
(st) = max

a∈A

[
r(st, a) + V π∗

(f(st, a))
]
, (6)

we can find an optimal policy in (5) with dynamic program-
ming (DP), using a shortest path-type method. In our case,
we have no knowledge about the final state fT (Q, π) and
thus the search space is exponentially large (see Fig. 3).
Choosing the number of iterations T logarithmic in the
problem dimension, i.e., T = log2(n

2) = 2 log2(n), re-
sults in a sub-exponential (o(2n)) state space size. Thus,
we have an asymptotically slower growth than the expo-
nentially large state space size 2n of the original QUBO
problem. However, in practice, super-polynomial runtimes
are often not tractable, especially for large n. Due to this
fact, (6) is typically solved with approximate DP methods
such as Monte Carlo Tree Search (MCTS), policy rollout
(PR) or reinforcement learning (Bertsekas, 2019; 2021). We
present a Branch and Bound (B&B) algorithm utilizing PR
to reduce the complexity of solving (5).

5. Branch and Bound
Following all paths of possible QUBO matrix updates is
intractable. We combine PR with the B&B paradigm to
obtain a trade-off between computational complexity and
solution quality—solution paths which cannot lead to an
optimum are pruned, based on bounds on the best found
solution. The algorithm is given in Fig. 3: the search space
is expanded (branch) and every state is checked whether it
can be pruned (bound). This is done until the final horizon
T is reached and the state with the minimum DR is returned.

5.1. Branch

In the branch-step, the search space is expanded from the
current considered state. The question arises how to decide
which indices to consider in the current iteration, i.e., which
entries of QUBO matrix should be changed. The obvious
method is to use all n(n+ 1)/2 upper triangular indices of
the whole matrix, which we will further indicate by ALL.

4
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With large n, this expansion gets very large and thus we
also consider a different method in our experiments. This
method is based on the observation, that only four entries
of the QUBO matrix affect the DR when changing a single
weight. Namely the smallest/largest weight and the weights
which are closest to each other, which will be denoted by
IMPACT. This drastically reduces the search space search
size and the performance to ALL is compared in Sec. 6.

5.2. Policy Rollout

Having an index pair (k, l) at hand, a new state is created
from the current state Q by following the transition func-
tion f . Instead of solving the problem in (5) exactly and
expanding the search space for T steps, we also consider a
PR approach. It describes the concept of following a given
a base policy π̇ for a number of steps. For a given rollout
depth T̃ ≤ T , we denote the policy which optimizes its path
for T̃ steps and then follows π̇ for T − T̃ steps as π̄T̃ . We
use a greedy policy π̇(Q) ..= argmina∈A DR (f(Q, a))
which myopically optimizes the DR when taking a single
step. Since the solution quality is monotonically increas-
ing with T̃ , we obtain a trade-off between the size of the
state space and the performance of our algorithm. Using
PR is motivated by the well known rollout selection policy.
At time t, the optimal future reward V π∗

(f(st, a)) is ap-
proximated with the reward V π̇ (f(st, a)) following π̇. The
Bellman equation (6) is modified to

V π̃(st) = max
a∈A

[
r(st, a) + V π̇ (f(st, a))

]
. (7)

The resulting rollout selection policy π̃ is at least equal and
typically better than the base policy π̇. It is renowned for its
simplicity and strong performance, largely due to its close
relationship with the fundamental dynamic programming
algorithm of policy iteration. (7) represents the optimal one-
step look-ahead policy, when subsequently following a base
policy. This principle can be generalized to T̃ -step look-
ahead rollouts, T̃ ≤ T , where the solution quality increases
with increasing rollout horizon T̃ . The exact solution for (5)
is obtained if T̃ = T . Thus, PR can be seamlessly integrated
into our B&B algorithm. An experimental comparison
between π̄T̃ and π̃ with using the aforementioned variants
can be found in Sec. 6.1.

5.3. Bound

We want to prune states, which cannot lead to the opti-
mal solution. Deciding whether a state can be pruned, is
dependent on bounds of the reachable best solution from
that given state. Given the current best final DR r∗, we
can prune a state Q if it is smaller than a lower bound
ř(Q, T ) on the best reachable solution DR(fT (Q, π∗)), i.e.,
if r∗ ≤ ř(Q, T ) ≤ DR(fT (Q, π∗)). Pruning states, we do
not have to expand the search further and can drastically

R
−2 −1.5 0 0.8

Ď(U(Q))

D̂(U(Q))

h

(a) We can read off D̂(U(Q)) = 2.8 (red) and Ď(U(Q)) = 0.5
(green). Change of parameter Q01 using a heuristic h(Q, 0, 1) =
0.7 (yellow). The sorted parameters are given by q1 = −2, q2 =
−1.5, q3 = 0 and q4 = 0.8.

R

b̌(Q, 1)

b̂(Q, 1)

(b) Bounds when a single QUBO parameter is changed to 0:
A lower bound (top, green) is given by D̂(U(f1(Q, π∗))) ≥
b̌(Q, 1) = 2 and an upper bound (bottom, red) by
Ď(U(f1(Q, π∗))) ≤ b̂(Q, 1) = 0.8. The changed parameters
are indicated with rectangular boxes.

R

b̌(Q, 2)

b̂(Q, 2)

(c) Bounds when two QUBO parameters are changed, namely
b̌(Q, 2) = 0.8 and b̂(Q, 2) = 2. For details, see Fig. 4b.

Figure 4: Sorted QUBO matrix entries given in Example 1.
Heuristic h is depicted in Fig. 4a and the methods for finding
a lower bound on the DR are given in Figs. 4b and 4c.

reduce the computation time. We find a lower bound on
DR(fT (Q, π∗)) with a lower/upper bound b̌(Q, T )/b̂(Q, T )
on the numerator/denominator in (3)

DR(fT (Q, π∗)) ≥ log2

(
b̌(Q, T )

b̂(Q, T )

)
=.. ř(Q, T ) .

Let m ..= n2 be the number of entries of an n× n matrix.
For any Q ∈ Qn, there is an ordering (bijective map) σ :
[m] → [n] × [n] of entries such that qℓ ≤ qℓ+1, qℓ ≡
Qσ(ℓ), ∀ℓ ∈ [m]. With this notation, D̂(U(Q)) = qm − q1
and ∃j ∈ [m− 1] : Ď(U(Q)) = qj+1 − qj . A visualization
for an ordering of Example 1 is shown in Fig. 4a.

Lower Bound on Maximum Distance For finding a
lower bound on DR(fT (Q, π∗)), we optimistically assume
that we can set all parameters to 0 while maintaining an
optimizer of Q. Since 0 is always considered in the com-
putation of the DR, this corresponds to an optimal strat-
egy of changing the parameters, because the DR cannot
increase. Changing a single parameter, the numerator
D̂(U(Q)) in (3) is maximally reduced if we set q1/qm
larger/smaller than q2/qm−1. The maximum possible re-

5
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Figure 5: Fraction of pruned states. Different depths (2, 4,
6 and 8) for updating the current best DR are compared for
n = 8 (left) and n = 16 (right).

duction is equal to min{q2 − q1, qm − qm−1}. Iterating
this process for T times, we end up with b̌(Q, T ) ..=
min {qm−T+i − qi+1 : 0 ≤ i ≤ T}. An illustration for Ex-
ample 1 is found in Figs. 4b and 4c.

Upper Bound on Minimum Distance Obtaining a lower
bound is a little more tricky and an iterative procedure is
given in Algorithm 1. Since we are concerned with the
smallest distance between two QUBO parameters, we con-
sider the set of distances between “neighboring” parame-
ters D̄(U(Q)) ..= {qi+1 − qi : i ∈ [m− 1]} = {di : i ∈
[m − 1]}. We iteratively set QUBO weights to 0, which
are part of the minimum distance, maximizing the mini-
mum distance. Define an ordering ρ : [m− 1] → [m− 1],
s.t., dρ(i) ≤ dρ(i+1). It then holds that Ď(U(Q)) = dρ(1).
Ď(U(Q)) is maximally reduced if we change qρ(1)+1 or
qρ(1), s.t., dρ(1) is not the smallest distance anymore. We
change the weight with the smaller corresponding distance
(Lines 6 and 7, Algorithm 1). If qρ(1) is changed, dρ(1)−1

is updated to dρ(1)−1 + dρ(1) = qρ(1)+1 − qρ(1)−1 and if
qρ(1)+1 is changed, dρ(1)+1 is updated to dρ(1)+1 + dρ(1) =
qρ(1)+2 − qρ(1) (Algorithm 1, Algorithm 1). No update is
required if ρ(1) = 1 or ρ(1) + 1 = m. The new smallest
distance either equals the second smallest distance dρ(2) or
one of the two newly updated ones. The smallest distance
dρ(1) is removed (Line 12, Algorithm 1) from D̄ and the
ordering ρ is updated with the updated distances (Line 13,
Algorithm 1). In Figs. 4b and 4c, this is illustrated for Ex-
ample 1. The computational complexity of our bounds is
derived and discussed in the Appendix.

6. Experiments
In what follows, we consider numerical experiments and
study the impact of our method on a D-Wave Advantage
System 5.4 quantum annealer (QA) and an FPGA-based
digital annealer (DA) (Mücke et al., 2019). Three exemplary
problems are considered: BINCLUS represents 2-means
clustering, SUBSUM consists of finding a subset from a list
of values that sum up to a given target value and VECQUANT

Algorithm 1 LOWERBOUND

Input: Q, T
Output: Lower bound ř ≤ DR(U(Qπ∗

T ))

1: b̌← min {qm−T+i − qi+1 : 0 ≤ i ≤ T}
2: Compute σ, s.t., qℓ ≤ qℓ+1, qℓ ≡ Qσ(ℓ) ▷ Sort weights
3: D̄ ← {di : i ∈ [m− 1]}, di = qi+1 − qi
4: Compute ρ, s.t., dρ(ℓ) ≤ dρ(ℓ+1) ▷ Sort distances
5: for t = 1 to T do
6: I ← {ρ(1), ρ(1) + 1}
7: i∗ = argmini∈I di
8: if i∗ = ρ(1) then
9: i∗ ← i∗ − 1

10: end if
11: di∗ ← di∗ + dρ(1) ▷ Update distance
12: D̄ ← D̄ \ {dρ(1)}
13: Recompute ρ, s.t., dρ(ℓ) ≤ dρ(ℓ+1)

14: end for
15: b̂← dρ(1)
16: ř ← b̌/b̂

aims for finding prototype vectors. All three problems have
known QUBO embeddings (Bauckhage et al., 2018; Biesner
et al., 2022; Bauckhage et al., 2019). The specific setups
are described in the Appendix.

6.1. Numerical Experiments

We compare different policies: the base policy π̇ (baseline
from (Mücke et al., 2025)), our B&B policy π̄T̃ with dif-
ferent rollout horizons T̃ and our rollout selection policy π̃.
The relative DR reduction for a horizon up to T = 10 can be
found in Fig. 6. We compare ALL (left) and IMPACT (right)
for choosing the indices in the branch step. It is apparent
that every single policy reduces the DR with an increasing
horizon T . The base policy π̇ is largely outperformed by
our π̄T̃ and π̃. π̄T̃ is increasing its performance with an
increasing rollout horizon T̃ . We can see that the exact
method ALL has the same performance as using the sim-
plified version IMPACT, while being more computational
demanding. It scales quadratically with the problem size n,
where IMPACT is basically independent of n. The policy π̃
already almost achieves optimal performance (c.f. to π̄10).

Evaluating the quality of our bounds (see Sec. 5.3), we
indicate the fraction of the pruned state space in Fig. 5. We
here consider the exact solution, that is π̄T . We vary the
depth until the upper bounds are updated. Increasing this
depth, as well as increasing the horizon leads to pruning a
larger fraction of the whole search space. The number of
pruned states does not heavily depend on an updated current
best, indicating the strength of our lower bound (Sec. 5.3).

6.2. Performance on Hardware Solvers

We first compare the DR reduction performance of the base
policy π̇ and a randomized base policy π̇R with our rollout

6
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Figure 6: Relative DR reduction for 100 BINCLUS instances with n = 8 (first and third column plot) and n = 16 (second
and fourth column plot). Different policies are compared for choosing the indices with ALL (left) and IMPACT (right).
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Figure 7: Performance of our developed policy π̃ compared to the base policy π̇ and the randomized base policy π̇R. The
DR reduction is compared for a SUBSUM (left), a BINCLUS (middle) and a VECQUANT (right) instance.

selection policy π̃ in Fig. 7 for three different instances of
SUBSUM, BINCLUS and VECQUANT of dimensions n =
16, 20, 20. We can see that π̇ ends up in local optima pretty
fast while our π̃ is more robust and is steadily improving
with an increasing horizon. It also outperforms π̇R, which
needs a lot of iterations for an increasing QUBO dimension.

We also compare the results of our policies with two other
methods from the literature. We denote the method of tuning
penalty parameters for incorporating constraints in (Alessan-
droni et al., 2023) as PEN and the method of introducing
auxiliary variables to reduce the BW (Oku et al., 2020) as
AUX. However, they are not generally applicable to ar-
bitrary QUBO problems, i.e., PEN can only be applied to
VECQUANT since it incorporates a constraint of finding
exactly k prototypes and AUX can only be applied to SUB-
SUM, since we here use QUBO instances with integer values.
However, our method can be applied to arbitrary QUBO
problems. Specifics on the obtained DR can be found in
Tab. 1—our method always achieves the smallest DR.

Further, we assess the impact of the reduced QUBO instances
on two hardware QUBO solvers (Ising machines)—QA and
DA. QAs are prone to Integrated Control Errors which
constrain the DR of the hardware parameters. If the DR of
the given QUBO is too large, it can happen that a completely
different problem is solved due to implementation noise of
the parameters. A similar problem appears for hardware
solvers with a fixed bit precision: the parameters have to
be rounded/quantized to that precision, which can lead to

different optima (see Fig. 1). Furthermore, DA designs can
be improved by considering a reduced bit precision. In our
experiments, the hardware plattform for the digital annealer
is an AMD Virtex UltraScale+ FPGA VCU118 evaluation
board. By implementing the digital annealer chip design
with AMD Vivado for 16, 8 and 4 bit precision, we find
that when using 4 instead of 16 bit precision, the number
of on-chip signals is reduced by 28.29%. This has multiple
benefits: First, the improvement allows us to run the orginal
design with a reduced power consumption when operating
the hardware solver. E.g., the power requirement for on-
chip memory1 shrinks from 1.4W to 0.3W. Second, due
to less occupied chip space, the reduction also allows for
an increase of the maximum number of QUBO problem
variables. However we did not evaluate this option as it
requires significant changes of the chip design which are
out of scope of our study.

Now, after adressing the resource consumption, we answer
the question whether reducing the DR leads to an opti-
mized performance for QA and DA. Due to their prob-
abilistic nature, we generate 1000 samples and use de-
fault parameters. For DA, we use three different bit pre-
cisions of the internal arithmetics, i.e., 16, 8 and 4 bit.
For making the performances comparable we evaluate the

1Block RAM and Ultra RAM combined.
See https://docs.amd.com/v/u/en-US/
ug573-ultrascale-memory-resources. Numbers
reported here are estimated by the FPGA design software.
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Figure 8: Performance of the D-Wave Advantage 5.4 (top row) and an FPGA-based digital annealer with 4-bit precision
(bottom row): we compare the original QUBO Q (Orig), the QUBO using the greedy base policy (GRE) for 100 steps
f100(Q, π̇), the method in (Alessandroni et al., 2023) (PEN) for computing the penalty, the method of adding auxiliary
variables (AUX) (Oku et al., 2020) and our rollout selection policy for 100 steps f100(Q, π̃). The relative energies vQ for
1000 samples are shown for a SUBSUM (left), a BINCLUS (middle) and a VECQUANT (right) instance.

Table 1: Comparison of QUBO hardware solvers using different methods (details in Fig. 8). We depict the DR along with the
number of optimal samples (from 1000) obtained by QA and DA with 16, 8 and 4 bit precision. Optima are bold and dashes
indicate that the method is not applicable for the respective problem.

SUBSUM BINCLUS VECQUANT

DR QA DA16 DA8 DA4 DR QA DA16 DA8 DA4 DR QA DA16 DA8 DA4

Orig 25.68 0 5 1 0 22.79 3 1000 1000 1 19.19 18 1000 1000 0

GRE 15.94 3 687 3 0 20.52 605 462 0 0 9.51 1 1000 0 0

AUX 25.68 0 7 2 2 — — — — — — — — — —

PEN — — — — — — — — — — 24.63 0 1000 1 0

Ours 9.89 26 1000 0 0 8.87 865 585 579 528 2.68 356 1000 1000 487

original QUBO energy EQ(z) for every sample z and
have a look at the relative distance to the optimum energy
vQ(z) ..= (EQ(z) − EQ(z∗))/EQ(z∗). This is depicted
in Fig. 8, where we indicate the energy distribution for the
initial QUBO matrix Q, the base policy f100(Q, π̇), AUX
for SUBSUM, PEN for VECQUANT and our rollout selection
policy f100(Q, π̃). Even though our DR reduction method
can change the overall energy landscape, we are interested in
the low energy values since we aim to minimize the energy.
In Tab. 1, we depict the total number of optimal samples
from the 1000 drawn samples, using different methods for
QA and DA. We can see that our method almost always
outperforms the baselines in terms of ability of the hardware
solver to find optimal solutions.

7. Conclusion
In this paper, we developed a principled Branch-and-Bound
algorithm for reducing the required precision for quadratic

unconstrained binary optimization problems (QUBO). In
order to achieve this, we consider the dynamic range (DR)
as a measure of complexity, which we iteratively reduce in
a Markov decision process (MDP) framework. We propose
computationally efficient and theoretically sound bounds
for pruning, leading to drastic reduction of the search space
size. Furthermore, we combine our approach with the well-
known policy rollout for improving computational efficiency
and the performance of already existing heuristics. Our ex-
tensive experiments comply with the theoretical insights.
We use our method to reduce the DR of NP-hard real-word
problems, such as clustering, subset sum and vector quan-
tization. Our proposed algorithm largely outperforms re-
cently developed algorithms, while also being applicable to
arbitrary QUBO problems. The effectiveness for hardware
solvers is shown for a real quantum annealer (QA) and an
FPGA-based digital annealer (DA). We conclude that our
method enhances the reliability of QA and DA in finding
the optimum, and reduces the power consumption of DA.
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A. State Space Size
We proof the sub-exponential state space size given in
Sec. 4.1 in the main paper. We have no knowledge about
the final state fT (Q, π) and thus the search space is expo-
nentially large

T∑
t=0

(n2)t =
(n2)T+1 − 1

n2 − 1
∈ O(n2(T+1)) . (8)

Choosing the number of iterations T logarithmic in the
problem dimension, i.e., T = log2(n

2) = 2 log2(n), results
in the sub-exponential state space size of

O
(
n4 log2(n)+2

)
= O

(
n22(4 log2

2(n))
)
⊆ o(2n) .

Thus, we have an asymptotically slower growth than the
exponentially large state space size 2n of the original QUBO
problem.

B. Details on Boundaries and Heuristic
We recall how the boundaries y−(Q) ≤ w ≤ y+(Q)
from Sec. 4.1 are computed in (Mücke et al., 2025). Let
B ..= {0, 1}, z ∈ Bn and k, l ∈ [n]. The n-dimensional
vector which variables indexed by k and l fixed to the values
(a, b) ∈ B2 is indicated by zab. Then

z∗
ab ∈ argmin

zab∈{0,1}n

EQ(zab) ,

and define y∗ab
..= EQ(x∗

ab). Naturally, y∗ab are just as hard
to compute as solving QUBO itself. Therefore, we work
with upper and lower bounds on the true values to determine
the update parameter w, which are much easier to compute.
Bounds for y∗ab are denoted by ŷab and y̌ab, such that

y̌ab ≤ y∗ab ≤ ŷab, ∀(a, b) ∈ B2 .

Further, let

y− ..= min{0,min{ŷ00, ŷ01, ŷ10} − y̌11} ,

y+ ..= max{0,min{y̌00, y̌01, y̌10} − ŷ11} ,

if k ̸= l. Otherwise, when k = l, let y− = min{0, ŷ00 −
y̌11} and y+ = max{0, y̌00− ŷ11}. Then Q+weke

⊤
l

∗⊑ Q
if (Theorem 1 in (Mücke et al., 2025))

y− ≤ w ≤ y+ .

For the proof, we refer to the paper. The lower bound y̌ can
be efficiently computed, e.g. with roof-duality (Boros et al.,
2008) and an upper bound ŷ with a local optimum obtained
through any QUBO solver.

With the boundaries in Appendix B at hand, we have an
interval in which a QUBO weight can be changed to preserve

an optimizer. Instead of considering the weight update as
another degree of freedom, we use the best performing
heuristic from (Mücke et al., 2025). It is a greedy strategy
where the QUBO parameter Qkl is increased if qℓ < 0 and
decreased otherwise, where σ(ℓ) = (k, l). For increasing
(decreasing) Qkl, w is chosen maximally (minimally) while
not increasing the DR. Recall that there is always a qu = 0
for some u ∈ [m], and thus we may set parameters to 0. For
certain target platforms, such as quantum annealers, this is
particularly beneficial, as setting a parameter to 0 allows to
discard the coupling between the qubits indexed by k and
l, which saves hardware resources. Thus, we always set
parameters to 0 if possible. More technical details on the
used heuristic can be found in (Mücke et al., 2025).

C. Complexity Analysis
The following complexity analysis belongs to computing the
bounds in Sec. 5.3 of the main paper. Even though we are
able to prune a large amount of the search space, it would
be beneficial for the bounds to be computable efficiently.
It turns out that the bounds can be dynamically computed
in O(Tn2). Through the use of memoization, this can be
efficiently combined with PR.

Upper Bound For the transition f(Q, (k, l)) = Q +
h(Q, (k, l))eke

⊤
l we need to compute the value h(Q, (k, l))

which is implicitly dependent on y−(Q) and y+(Q). For
computing a lower bound y̌, we use the roof dual technique
(Boros et al., 2008). A flow network is build with O(n)
nodes, and the lower bound is given by the maximum flow
value, which is computable in O(n3). Exploiting the top-
down nature of our B&B approach, we can dynamically
update the flow network and recompute the maximum flow
in O(n2). An upper bound ŷ is given by performing local
descent using a discrete analogue of a gradient (Boros et al.,
2006). Having an initial runtime of O(n3) it also can be
dynamically updated making it computable in O(n2). This
leads to an initial computational effort of O(n3) and O(n2)
for every subsequent branched state.

Having y−(Q) and y+(Q) at hand, h can be computed in
O(n). This leads to a total computational cost of O(n2)
for a single state. Thus, every upper bound r̂(Q, T ) (policy
rollout) can be computed in O(Tn2).

Lower Bound For the computational complexity of the
lower bound ř(Q, T ), we first consider the lower bound
b̌(Q, T ). Initially, the parameters of Q and the elements
in D̄ can be sorted in O(n2 log(n)) . Updating single pa-
rameters, this sorting can be dynamically updated in O(n2).
For b̂(Q, T ), this is repeated T times, leading to a com-
putational effort of O(Tn2). The bound b̌(Q, T ) can be
computed in O(T ). Thus, the computational complexity of
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the lower bound ř(Q, T ) is O(Tn2). Combined with the
runtime for computing an upper bound r̂(Q, T ) results in a
total runtime O(Tn2) of the bound-step.

D. Data Generation
The following setup for the datasets are used in Sec. 6 in the
main paper.

D.1. BINCLUS

To generate data for BINCLUS, we begin by sampling n
independent and identically distributed 2-dimensional points
from an isotropic normal distribution N (0, 0.1). Next, we
create two clusters by transforming the first n/2 points
with (x1, x2) 7→ (x1 − 1, x2) and the last n/2 points with
(x1, x2) 7→ (x1 + 1, x2). Finally, we select the first and last
points and multiply their coordinates by 100, introducing
two outliers into the data set. For analyzing the behaviour
of our B&B algorithm, we sample 100 BINCLUS QUBO
instances for n = 8, 16.

A corresponding QUBO embedding is given as follows:
Assume we are given a set of n data points X ⊂ Rd,
|X | = n. We want to partition X into disjoint clusters
X1,X2 ⊂ X , X1∪̇X2 = X . We gather the data in a matrix
X ..=

[
x1, . . . ,xn

]
,∀i : xi ∈ X , and assume that it is

centered, i.e., X1 = 0, where 1 denotes the n-dimensional
vector consisting only of ones. A QUBO formulation was
derived in (Bauckhage et al., 2018), which minimizes the
within cluster scatter:

min
s∈{−1,+1}n

− s⊤X⊤Xs (10a)

⇔ min
z∈{0,1}n

− z⊤X⊤Xz + 1⊤X⊤Xz , (10b)

where s = 2z − 1. A value zi = 1 indicates that data point
xi is in cluster X1, and in X2 for zi = 0. Observing that
X⊤X is a Gram matrix leads to a possible application of
the kernel trick. For this, we consider a centered kernel
matrix K ∈ Rn×n with elements k(xi,xj), where k :
Rn×Rn → R is a kernel function. k(xi,xj) indicates how
similar data points xi and xj are in some feature space. We
can reformulate (10b) to

min
z∈{0,1}n

1⊤Kz − z⊤Kz ,

which gives us our QUBO formulation. For our experiments,
we choose a linear kernel. For evaluating the hardware
solver performance, we use the same instance as in (Mücke
et al., 2025).

D.2. SUBSUM

For the SUBSUM problem, we are given a set A =
{a1, . . . , an} ⊂ Z and T ∈ Z. The goal is to find I ⊂ [n],

s.t.,
∑

i∈I ai = T . We use the same problem instance as is
given in (Mücke et al., 2025), Section 4.2. We set n = 16
and generate the elements of A as |⌊10 · Z⌉|, where Z fol-
lows a standard Cauchy distribution. This approach leads
to occasional outliers with large magnitudes, which in turn
produced QUBO instances with a high degree of difficulty
due to large dynamic ranges (DR). Next, we determined the
number of summands k by sampling from a triangular dis-
tribution ⌊U⌉, where U is defined with parameters a = n

5 ,
b = n

2 , and c = 4n
5 , ensuring that, on average, half of the

elements of A contribute to the sum. Finally, we selected k
indices from [n] without replacement to form the subset I
and set T =

∑
i∈I ai, thereby creating problems where the

global optimum is predetermined.

We obtain a QUBO formulation, where we use n binary
variables which indicate if i ∈ S for each i. With a =
(a1, . . . , an), a QUBO formulation is given by

min
z∈{0,1}n

(
a⊤z − T

)2 ⇔ min
z∈{0,1}n

z⊤a⊤az − 2Ta⊤z .

D.3. VECQUANT

Vector quantization deals with the problem of finding pro-
totypes of a given set of vectors, which give a best repre-
sentation according to some measure. We use the approach
from (Bauckhage et al., 2019), where the goal is to find k
medoids according to the well known k-medoids objective
function. A QUBO formulation is given by

min
z∈{0,1}n

z⊤ (γ11⊤ − αD
)
z + (βD1− 2γk1)

⊤
z ,

where D is a pairwise distance matrix for, α is a weight
for identifying far apart data points, β is for identifying
central data points and γ ensures that we choose exactly
k vectors. We follow (Bauckhage et al., 2019) and set
α = 1/k, β = 1/n and use Welsh’s distance

d(x,y) ..= 1− exp

(
−∥x− y∥22

2

)
,

for computing D. The penalty parameter γ, which enforces
that exactly k prototypes are chosen, is set to 2. For hard-
ware evaluation, we use the same dataset as BINCLUS and
set k = 4.

E. Baselines
We compare our approaches to different baseline methods
from the literature.

E.1. Adding Auxiliary Variables

In (Oku et al., 2020), a method is proposed which reduces
the bit-width of single parameters of the underlying Ising
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model. It adds auxiliary variables to the problem in a way
such that an optimal configuration still corresponds to an
optimum of the original problem. It is assumed that all
problem parameters are integer, i.e., J ∈ Zn×n,h ∈ Zn.
If we want to change a parameter Jij , i ̸= j to reduce its
bit-width, we can do this by introducing a new variable x to
the problem to obtain J ′ ∈ Zn+1×n+1 such that

J ′
ij = Jij − r, J ′

ix = |r|, J ′
xj = −r .

If we want to change hi, optimality is ensured by

h′
i = hi − r, h′

ix = −|r|, h′
x = r .

That is, if s̄ ..= argmins∈{−1,1}n+1 s⊤J ′s+ s⊤h′, then

s̄⊤[n]Js̄[n] + s̄⊤[n]h = min
s∈{−1,+1}n

s⊤Js+ s⊤h ,

where the subscript [n] denotes the vector consisting of the
first n entries. However, to reduce the bit-width by m bits,
O(n2m) auxiliary variables are introduced. Due to limited
capability of hardware solvers in terms of representable
problem size, this can pose a problem on finding a solution.

In our experiments we apply this method to SUBSUM, since
our datasets are integer. We reduce the bit-width of our
parameters by 2, since no further benefit on the performance
of hardware solvers was observed for introducing more
variables.

E.2. Tuning Penalty Parameters

As a second baseline, we use the method from (Alessandroni
et al., 2023). It is assumed that the optimization problem is
given in a quadratic binary constrained form

min
z∈{0,1}n

z⊤Qz

s.t. Az = b ,

which can be brought in an equivalent QUBO form by intro-
ducing a penalty parameter λ > 0

min
z∈{0,1}n

z⊤Qz + λ(Az − b)⊤(Az − b) .

This parameter has to be chosen large enough to ensure
equivalence. We use the method

λ = ẑ⊤Qẑ − ĚQ ,

where ẑ is a feasible solution, i.e., Aẑ = b and ĚQ is a
lower bound on the optimum, i.e., ĚQ ≤ min z⊤Qz. For
increasing λ the DR is also increased, thus choosing λ as
small as possible is favourable. Hence, we use the exact
solutions for computing λ in our experiments. However,
this is intractable in realistic scenarios.
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