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ABSTRACT

Road network data can provide rich information about cities and thus become the
base for various urban research. However, processing large-volume world-wide
road network data requires intensive computing resources and the processed results
might be different to be unified for benchmark downstream tasks. Therefore, in
this paper, we process the OpenStreetMap data and release a structured world-wide
1-billion-node road network graph database with high accessibility and usability.
We have presented three illustrative use cases, traffic prediction task, city boundary
detection task and traffic policy control task. Moreover, for the well-investigated
traffic prediction task, we release a new benchmark with 31 datasets, which is much
more comprehensive than the previously frequently-used datasets. While for the
relatively novel traffic policy control task, we release a new 6 city datasets with
much larger scale than the previous datasets. Along with the OSM+ dataset, the
release of data converters facilitates the integration of multimodal spatial-temporal
data based on map information for large model training, thereby expediting the
process of uncovering compelling scientific insights.

1 INTRODUCTION

Road network has formed the skeleton of cities, as it connect between regions within city and between
different cities. For long time, urban regions and road networks stretch along each other. Therefore,
road networks can essentially reflect the landscape and function zones in cities, and thus affect human
mobility. For instance, sky-scrappers, restaurants, and shopping centers tend to locate at places
with dense in-city road networks. Hence, investigating road network structures is the base for urban
research, e.g., urban planning, urban traffic prediction.

However, obtaining accurate road network data for open public research is difficult for the following
two reasons. (1) Accurate road network data is collected at extremely high expense by map providers
like Google (Google Maps), Bing (Bing Maps), Baidu (Baidu Maps) and Gaode (Gaode Maps). Thus,
these products are mainly designed for commercial use with only very limited specific high-level
API open to the public, e.g., POI searching, origin-destination route planning. This can not satisfy
the need of academic researchers and start-up companies to conduct flexible low-level computing
operations on open road network data to quickly iterate ideas or products. (2) Open-source map
services, e.g., OpenStreetMap (Haklay & Weber, 2008a), built from crowdsourcing mechanisms by
world-wide users, seems to be the cure. However, due to the massive amount of the road network data
and the complex data format in map object storage, processing the road network data from scratch to
obtain desired format for experiments are always challenging and time-consuming. Hence, it is highly
desirable that an intermediate format of processed road network data can support diverse downstream
applications so as to speed up the scientific discovery.

Following this path, some studies (Grinberger et al., 2022; Bartzokas-Tsiompras, 2022; Ding et al.,
2022) have been conducted utilizing open road network data like OpenStreetMap, while several issues
remain. First, the cleaning of OpenStreetMap contains a complex pipeline, including converting,
reducing, transforming and aggregating. This pipeline may take about 10 hours even only for
processing a region with 1,000km2 size, when running on a computer with 32 CPU cores and 128GB
memory. Second, the computing of world-wide map data requires memory far more than that of a
single machine. The world-wide raw OSM data is roughly 1.1 TB before processing, and finally
processed structured OSM data can be a graph with more than 1 billion nodes. Although segmenting
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the regions and process each region separately may make it possible to process the data locally, this
requires hand-crafted distributed computing strategies and further aggregating the processed data
may introduce extra errors to the data. Because of the aforementioned two issues, researchers created
different ways to process the road networks and thus obtained various versions of same raw data. In
this large model era, this has become the barrier for comparison among different studies and creation
of multi-modal spatial temporal data for large model training. Hence, these issues can be solved
with building a pre-computed structured version of OpenStreetMap for public use with a powerful
computer.

In this paper, we propose to make public a structured road network computing engine, OSM+. OSM+
is composed of three components: (1) a road network graph database with world-wide intersections
(nodes) and road segments (links), and side information contained in map, e.g., POI; (2) a series of
auto-parallel fundamental computing APIs to allow efficient node query and distance query, on which
researchers may build more comprehensive road network analysis; (3) a series of data converters to
tailor the road network data for three typical urban research problems. The contributions of this paper
can be summarized as follows.

• Data-wise. We provide an easy-to-use world-wide road network database and make it open-
source. This makes the dataset a benchmark for related research. The OSM+ dataset can be
accessed and the related code can be found at https://anonymous.4open.science/r/
OSM-dataset-3034.

• System-wise. We provide cloud-computing based APIs to enable efficient billion-scale graph query
and processing, allowing various subsequent data processing for extended applications.

• Application-wise. We provide three example application scenarios, traffic prediction task, traffic
signal control task and city boundary detection task. The data converters are released, which will
make it possible to use map data as the base to fuse multi-modal spatial temporal data for large
model training and accelerate interesting scientific discovery.

• Benchmark and standardization. For these three tasks with different investigation levels by
the community, we provide different benchmark and standardization achievements. For the well-
investigated traffic prediction task, we construct a new large-scale benchmark. with 31 cities. This
contains much more comprehensive data than the 6 previously commonly-used datasets (from
PEMS and METR-LA) and further covers more challenging in-city scenarios. For traffic policy
control task, we release 6 city datasets with each city containing at most 18,948 intersections. This
scale is much larger than the datasets used by most of the previous studies. While for the city
boundary detection task, we clearly define this novel problem which may attract more people to
develop new methods in this field. These data will largely push the three fields forward on city-scale
modeling and generalizability to various cities.

2 RELATED WORKS

Map databases and services. Map databases and services are the base for various research. The
major map databases include two types, commercial services and open-source maps. The commercial
services include Google (Google Maps), Bing (Bing Maps), Apple (Apple Maps), Baidu (Baidu
Maps), and Gaode (Gaode Maps). Though varying in serving regions, these map providers usually
only provide high-level APIs (e.g., plotting, routing) for users to develop their own applications.
This kind of APIs can not support research need for querying external elements on the map, e.g.,
population count. To facilitate faster research progress and small business, some open-source
map providers release their products, including OpenStreetMap (Haklay & Weber, 2008b; Bennett,
2010; Mooney et al., 2017), Mapbox (Eriksson & Rydkvist, 2015), Leaflet (Edler & Vetter, 2019),
GeoServer (Kshetri et al., 2021). These products store the map in various formats, which are difficult
to be processed into a uniform format and need to be further cleaned in order to research use. Hence,
in this paper, we propose to solve this problem by mapping the open-source map information into a
well-structured graph database, with road network as the bone, and other information as the attributes.
This intermediate format will accelerate numerous downstream applications.

Map computing engine. To better utilize map data, many map computing engines have been invented.
These tools can be categorized into two types: commercial map tools and open-source map tools. For
commercial map engines, Hu & Dai (2013) developed an online map application based on the Google
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Figure 1: The overall framework of OSM+.

Maps API, using commercial databases to provide users with complex data manipulation functions.
Amani et al. (2020) processed remote sensing map data of Canadian agriculture on the Google Earth
Engine (GEE) and obtained the annual crop list of Canada. Nguyen et al. (2019) combined GEE with
the automatic water extraction index (AWEI) to address the long processing times in monitoring water
surface dynamics. For open-source map engines, Elleuch et al. (2014) accomplished the process
of converting large-scale databases collected by cars into road tracks. Boeing (2017a;b) developed
OSMnx, which simplifies data collection and road network analysis from the perspectives of graph
theory, transportation, and urban design. Although these tools succeed to help process the map data
efficiently, they still have two deficiencies. First, the processed data are not well-defined uniform
structured data and are usually only used for one-time use. Thus, repetitive computation are needed
when the map data is needed for another similar use. Second, the data processing program is running
on local machines, which limits the capability to extend to large-scale analysis, e.g., world-wide.

3 OSM+: READY-TO-USE WORLD-WIDE ROAD NETWORK DATABASE

To solve the aforementioned problems, we propose OSM+ (OpenStreetMap Plus), a structured
road network computing engine. It is composed of three components: (1) a road network graph
database that includes world-wide intersections (nodes) and road segments (links), and supplementary
information from maps, e.g., POI; (2) a series of auto-parallel fundamental computing APIs to allow
efficient node query and distance query; (3) a series of data converters designed to customize the road
network data for typical urban research problems.

3.1 GRAPH DATABASE

We generalize the road network as a graph with 1.9 billion nodes under the following definition.

• Node: Each node represents a road intersection in the OpenStreetMap road network or POI point.

• Link: Each link represents a road segment in OpenStreetMap with a starting intersection and ending
intersection. Since each road segment may have multiple parts segmented by minor intersections or
direction turning point in geometry, each link may contain multiple line segments.

3
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Figure 2: Graph database with worldwide edges and points by OSM+.

Based on these definitions, we may project urban concepts into graph concepts. Note that, a lot of
downstream machine learning tasks in the transportation domain, such as traffic prediction, rely on
road network graph structures. Our OSM+ dataset, which is a graph-structured database based on
ODPS, can thus offer significant advantages for researchers. It facilitates quick queries and seamless
table joining, thereby enhancing the efficiency of traffic prediction tasks and other studies when you
need to directly use the world map data as a graph, or need to join the map data with another dataset.

Overall numbers. The overall statistics are shown in Table 1. Since in the original OpenStreetMap,
road is represented by a linestrings, we divide linestrings into several "split edges" with only one start
point and one end point. The "split edges" representing the road are called "split edges on roadnet". It
is easy to observe that the worldwide road network is a huge graph with billions of nodes and edges.
In addition, the density of points may suggest the different population and civilization levels.

Spatial distribution & categories. It is obvious that the spatial distribution of road data is imbalanced.
Thus, the number of road network nodes and the number of road network edges in terms of each
continent are further shown in Figure 3 (a). Europe has the most, Asia is the second, and Oceania
has the least. Further, we calculate the total total length of the road network in the five countries or
regions, and we find the International Road Federation statistics for the total road length in the five
countries or regions in 2019. These statistics are presented in Table 2. Comparing these data, we can
find that the data of OSM in the United States, the Russian Federation and Canada are more detailed,
while the data in China and India are relatively incomplete. The category statistics is shown as in
Figure 3(b). It is observed that the number of roads increases exponentially as the road level drops.

Table 1: Some basic statistics of our OSM+ database.

Roads and POI Roadnet Only Total
Nodes Split Edges Linestrings Nodes Split Edges Linestrings Length(km)

7,475,535,808 1,964,857,157 8,039,543,656 2,180,447,343 833,401,275 197,775,476 84,662,999

Table 2: Total length of road (km) in different countries from OSM+ and IRF data sources.

Data Source China America Russia India Canada
OSM+ 3,805,919 13,731,271 9,956,729 2,878,553 1,592,642

IRF Statistics 5,012,496 6,638,329 1,542,196 6,371,847 1,126,600
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Figure 3: Basic continent and category statistics of OSM database.
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3.2 EFFICIENT QUERY APIS

We introduce how to use cloud computing resources to enable efficient parallel query of the OSM+
data. In comparison to directly downloading data from the OpenStreetMap API, using the OSM+
dataset can save approximately 4 days of preprocessing and cleaning time for global data. Meanwhile,
we implement several simple optimization techniques, "window check" and "k-d tree" as examples.
Researchers are welcome to implement their own optimization tricks.

Point Query Operation Point query operation is one of the most basic query operations. Given a
point and a radius, select all points within a given radius around the given point in osm_node. A
simple method is to traverse all other points in the dataset and filter the points that meet the conditions.
However, doing so will result in a huge amount of calculations. "window check" technique first
divides the geographic space evenly into several grids according to a certain accuracy, and then
only needs to retrieve data points in adjacent grids during retrieval. We conduct 1,000 point queries
with/without "window check" on cloud computing infrastructure. The results in Table 3 show that
"window check" can significantly improve the efficiency of point query.

Nearest pair query and k-Nearest pair query Given a point and a latitude and longitude range, the
aim is to find the nearest point or points in this latitude and longitude range. We apply k-d tree, a binary
tree that represents a division of k-dimensional space to reduce the time complexity. Constructing
a k-d tree from OSM+ dataset is equivalent to continuously dividing the k-dimensional space with
hyperplanes perpendicular to the coordinate axis to form a series of k-dimensional hyperrectangular
regions. Since OSM+ dataset has huge amounts of records but low dimension (which means n >> d),
the optimal time complexity of k-d tree to find the nearest neighbor is O(log2 n). As shown in
Table 3, the k-d tree technique can significantly reduce the running time needed for this query.

Table 3: Effectiveness of adding "window check" and "k-d tree" optimization technique.

Method
Point Query Nearest Pair Query

Runtime(s) Core × min Runtime(s) Core × min

With Optimization 79 1.33 1.49 0.01

W/O Optimization 310 2.06 41.14 0.05

An Example on Using Optimized Query Based on these basic APIs, we build an example compre-
hensive calculation task to conduct the KDE kernel density estimate of each intersection node on the
global road network data, to illustrate why it is necessary to run experiments on cloud computing.
We use three different sampling rates to sample the original global road network data and compare
the runtime and memory cost by different platforms. The experimental results are shown in Table
4. It is observed that by utilizing the ODPS computing engine, we could employ optimized query
algorithm which significantly outperforms that of other computing platforms in terms of both runtime
and memory utilization. Moreover, its judicious use of memory resources minimizes the memory

5
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Table 4: Efficiency of global KDE estimation on different computing cluster.

Platform
Sample Rate 1/1,000 1/10,000 1/100,000

Runtime(s) Core × min Runtime(s) Core × min Runtime(s) Core × min

ECS OOM OOM 841.62 14.02 6.04 0.10

Spark 29,014.66 17,408.49 197.02 118.21 7.21 4.32

ODPS 72.13 1.02 34.26 0.30 33.06 0.22

cost, enabling query tasks on large-scale datasets. Note that, continuing to increase the sample rate
(e.g., 1/100, 1/10) will make the other two platforms fail to finish, hence, these results are not reported.
Consequently, ODPS not only enhances computational speed but also mitigates memory resources
cost, making it a good choice for applications on OSM+ dataset.

4 TYPICAL APPLICATION SCENARIOS

In this section, we introduce three typical applications of OSM+ database. To establish a benchmark
at the city scale, one needs a comprehensive roadnet graph, and compile their dataset with the roadnet
data. This initiative could be easily built upon our provided OSM+ dataset and enables researchers to
curate a dataset specifically for these benchmarks.

4.1 CITY-SCALE TRAFFIC PREDICTION AND TRAFFIC GENERATION

Traffic prediction has been investigated a lot by researchers due to its important applications. Studies
usually use the famous PEMS datasets and METR-LA dataset for experiments. However, in recent
years, it has been noticed that newly proposed methods can hardly exhibit significant improvements
over existing ones. Thus, we are here to propose 31 new city-level datasets associated with traffic
flow data, to provide a more comprehensive benchmark for this problem. In addition to the many more
cities compared with previous datasets, the newly proposed datasets are different from previously
used datasets for several reasons as shown in Figure 5.

• Dynamic in-city Scenario: Unlike previous datasets, which may have focused on more uniform
highway conditions, these datasets capture a broader spectrum of in-city scenarios. This introduces
greater variability in the data, reflecting the diverse and dynamic nature of urban environments.
Such variability is crucial for developing models that can effectively handle the complexities and
unpredictability inherent in city traffic patterns and infrastructure.

• Sparsity Challenge: The number of sensors is relatively low compared to the road intersections
of segments. Modeling sparsity is critical as it mirrors real-world conditions where data points
can be irregular or missing. Addressing sparsity effectively can significantly improve the accuracy
and reliability of the model, ensuring it performs well even in less-than-ideal data conditions.
This aspect of the dataset pushes the boundaries of current modeling techniques, encouraging the
development of more sophisticated and resilient algorithms.

To evaluate the performance of OSM+ datasets, we test 7 frequently-cited baseline methods on these
31 cities. We test these algorithms on three different prediction horizons (3,6,12) following the widely
used setting. Due to the limited space, the average results (over different prediction horizons) are
shown in Table 5. It is easy to observe that these methods perform completely differently on these
datasets. Compared with the benchmark results in previous papers (Shao et al., 2023), we can have
the following conclusions. (1) New datasets induce more variance and bring a more challenging
problem for these methods to work on. (2) Currently, there is no single dominating method that
can outperform other methods on most of the datasets. Therefore, these datasets will bring great
stimulation for the development of this field.

6
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Table 5: Experiment results of traffic prediction task on 31 cities in OSM+(UTD19) with 7 baseline
methods. Two metrics MAE and MAPE(%) are reported. Best results in each row are in bold.

City
AGCRN Crossformer DCRNN DLinear FEDformer GWNet MTGNN

MAE MAPE MAE MAPE MAE MAPE MAE MAPE MAE MAPE MAE MAPE MAE MAPE

AA 47.92 44.03 44.40 35.34 OOM OOM 47.80 37.84 51.94 45.19 47.06 37.14 46.97 40.47

BSL 64.51 55.38 62.82 65.68 119.15 184.45 61.50 51.74 59.37 61.78 81.07 106.88 78.41 93.81

BRN 51.00 231.93 49.84 201.84 OOM OOM 52.18 253.27 55.58 248.00 50.59 319.09 70.90 405.07

BHX 112.08 70.94 84.13 48.08 303.46 195.15 111.22 66.91 119.52 65.15 107.09 66.83 91.68 49.44

BOL 31.27 21.07 32.74 20.98 38.00 26.82 37.27 34.12 37.87 29.83 35.03 25.67 32.31 21.12

BOD 71.65 39.69 67.13 36.19 232.07 276.51 67.13 44.54 70.14 46.29 74.18 57.18 89.14 56.70

BRE 56.31 36.52 58.08 34.22 OOM OOM 63.27 42.47 61.42 41.98 57.01 36.98 56.69 35.50

KN OOM OOM 44.78 48.85 117.40 292.38 38.69 61.19 40.98 67.71 43.85 55.18 47.89 75.01

DA 57.22 51.76 53.28 50.75 OOM OOM 54.76 53.99 57.41 61.16 54.69 51.74 57.20 50.30

ESS 41.95 34.65 40.47 41.68 174.64 294.77 50.35 43.85 44.70 41.95 38.99 34.87 38.41 36.46

FRA 163.16 54.95 145.88 47.61 179.03 51.37 99.62 30.19 107.78 31.76 190.85 62.23 284.10 92.89

GRZ 61.15 113.62 52.78 66.74 183.88 464.62 60.83 72.86 56.16 73.15 58.03 68.32 56.60 74.38

GRQ 69.64 35.57 68.02 32.53 158.26 114.53 66.03 37.54 79.09 42.20 67.99 34.95 74.99 39.00

HAM 46.50 44.89 44.49 44.87 97.85 108.12 46.69 49.81 47.85 50.69 44.25 43.83 45.02 44.18

INN 72.80 31.56 69.28 37.40 342.05 314.50 89.95 39.55 74.44 32.32 67.03 28.53 OOM OOM

KS 81.26 106.06 86.38 118.43 233.90 427.98 75.29 107.43 89.83 127.22 71.23 94.88 191.45 316.68

MAN 106.16 42.54 97.48 41.10 336.42 280.35 101.38 46.21 110.81 52.15 95.91 38.95 97.30 40.74

MEL 50.24 45.88 45.36 42.73 OOM OOM 63.72 66.55 53.25 56.25 51.91 36.10 45.48 40.26

RTM 52.48 40.29 53.83 50.52 179.76 347.68 68.83 53.19 68.43 65.17 67.03 50.91 57.34 41.07

SDR 103.63 59.74 102.25 65.34 262.60 271.61 97.97 54.70 125.51 95.71 89.36 47.38 97.54 44.61

SP 49.08 39.57 47.93 37.74 119.56 119.22 52.95 45.39 53.42 44.88 48.34 38.34 48.05 37.48

SXB 78.34 39.40 76.17 38.72 261.11 223.11 85.62 46.72 84.71 46.10 76.86 39.46 76.01 37.36

STR 58.93 20.37 56.60 19.52 68.19 23.30 65.80 24.52 68.38 23.48 55.80 19.05 OOM OOM

TPE 136.50 48.04 134.51 48.18 502.95 274.25 142.61 46.21 149.12 53.31 129.13 40.14 130.36 41.42

TO 89.48 57.66 81.70 44.44 314.62 390.29 85.13 48.01 87.85 56.18 102.69 60.64 104.28 68.82

YTO 51.73 39.35 51.54 40.18 161.46 145.72 90.53 71.76 62.92 59.10 58.04 38.73 52.24 37.42

TLS 257.82 751.49 255.29 756.09 268.70 847.32 263.95 870.21 296.55 836.03 255.26 751.62 258.62 730.09

UTC OOM OOM 50.35 62.80 OOM OOM 50.78 54.42 66.80 88.25 74.98 88.33 39.92 36.74

VNO 88.95 54.81 84.09 49.34 OOM OOM 76.03 43.69 88.84 49.53 73.80 39.27 96.47 64.87

WOB 54.48 41.34 52.21 39.71 0.44 47.61 62.24 50.94 57.60 50.15 54.32 42.30 53.24 40.17

ZRH OOM OOM 54.73 36.93 OOM OOM 60.36 43.84 60.12 43.74 66.51 53.31 53.52 35.16

# Win 3 2 10 10 0 0 4 2 1 0 9 8 4 8

(b) Histogram and Probability Density Function (PDF) of 
average MAPE on OSM+ and PEMS datasets. 

(c) Performance comparison on average MAE 
between OSM+(UTD19) dataset and PEMS dataset.

(a) The variance of traffic 
flow for both UTD19 and 
PEMS dataset.

Figure 5: Comparison between OSM+(UTD19) dataset and PEMS dataset in three aspects.
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Figure 6: Map of Toronto, Los Angeles and Tokyo. The green points on the graph represent road
nodes in OSM+, the blue lines represent road segments in OSM+, and the red points represent loop
sensors. It can be seen that the road network information of OSM+ is very consistent with the actual
ground truth. The loop sensors cover almost all the nodes in the central area of the city, which can
better reflect the traffic flow information of the city.

Table 6: Basic statistics of traffic signal control experiments.

Indicator
Former datasets OSM+ dataset

Hangzhou Manhattan
New Los

Beijing Shanghai London Paris
York Angeles

Intersections 16 2,510 5,971 6,663 18,948 14,750 5,895 1,721

Vehicles 2,983 48,079 90,059 112,291 130,851 85,480 107,105 101,929

4.2 TRAFFIC POLICY CONTROL

Based on data from OpenStreetMap, we can further build simulation environments for traffic policy
control experiments (e.g., traffic signal control). The typical procedure of building the traffic policy
experiments is in Figure 1.

Compared with previously-used datasets for traffic signal control experiments (Wei et al., 2019), we
can now easily provide benchmark scenarios with a much larger scale. Here, we show six example
city scenarios that we have cleaned up. Basic statistics are shown in Table 6. These datasets will
allow researchers to work on close-to-reality city-scale traffic policy experiments, which bring both
new challenges and opportunities for continuous model improvement.

We have successfully applied this pipeline in the scenario of a real-world city and help tested
hundreds of traffic signal control algorithms in this scenario. The best algorithm can improve over
30% compared with the baseline algorithm.

4.3 CITY BOUNDARY DETECTION

Modern cities come into being and evolved in the last 200 years. By 2050, more than half of the
world population will live in cities (Ritchie & Roser, 2018). This is because the city, as a unit for
urban service providing, can boost the efficiency and convenience of the daily life of people, e.g.,
retailing, delivery, ride-hailing. Meanwhile, the planning of city development is usually supported by
local government funding. Hence, it is essential to identify the city boundary so as to improve urban
service providing. It is notable that, areas of cities are connected via thousands of roads. Therefore,
a straightforward intuition is to detect city boundaries by road network density. Different from the
registration boundary, this definition can better illustrate the local economic connection between
different areas naturally formed by human activities.

Here, we showcase how to use the OSM+ database to define city boundaries and compare the detected
boundary with the actual administrative boundary of the city in Database of Global Administrative
Areas (GADM, 2015). By overlapping the two kinds of boundary data, we aim to find out the
consistent and contradictory parts between them. If we find that the cluster boundary is not consistent

8
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Europe America China

Figure 7: The city boundary map obtained from the clustering results of central Europe, the east coast
of the United States and the Yangtze River Delta in China is overlaid with the road maps of the three
regions on OpenStreetMap, and latitude and longitude are added to distinguish them.

Roadnet Population Nightlight

Figure 8: Comparing the road, population and night lighting data map in the same area, the road
density is positively correlated with the population and night lighting data density.

with the actual administrative boundary, it may indicate that the city is developing rapidly, showing a
trend of gradually expanding its scale.

We overlay the cluster boundary and the actual administrative boundary of the Yangtze River Delta in
China, and the result is shown in Figure 7. The different color blocks stand for the obtained clusters
while the lines represent the registration boundary. It is easy to observe that some administrative
boundaries are made up of several colors, which shows that the areas within a single administrative
boundary might be composed of several relatively separated urban areas. The clustering results of
many cities match the actual administrative boundaries well, such as Shanghai and Jiaxing in China.
The detected borderlines and ground truth of these cities almost coincide. In contrast, there are also
some mismatches. This is mostly because there are many roads near the registration boundary of
two cities (indicating close economic interactions) and this leads to these two cities being clustered
together. This shows the trend of urban agglomeration, and proves the rationality of clustering.

In addition to the direct research on road networks, scholars can also combine road network with other
economical data to investigate how road network contribute to the city development and civilization.
The 3D scatter plots of the road network, population and night light data of the city are shown in
Figure 8. The density of points around a point is represented by different colors in the last two maps.
The darker red place in the population data map represents the denser population, and the brighter
place in the city night lighting data map represents the more lights at night.

Comparing these three figures, we can easily observe that the dense road network usually indicates
dense population and and intensive night lights, i.e., there is a positive correlation among them. In
fact, the closer to the city center, the more people and buildings there are, so come more lights at
night. In addition, looking at the latter two figures separately, for the population data figure, we can
filter out those points whose R value is higher than a certain threshold according to the RGB values
of the colors of the points, which are the point sets of the city center, and the range they form is the
city center. Similarly, for the night lighting data, we can filter according to the brightness and also get
the range of the city center.

9
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5 DATA PROCESSING

Step	1

Step	2

Step	3 Step	4 Step	5

Step	6

Figure 9: The flow chart of data processing.

The overall procedure of the OpenStreetMap data processing is shown in Figure 9. It can be described
as the following steps:

1. Download continental osm files data from http://download.geofabrik.de/.
2. Decompose continental osm files (larger than 100G) into several small osm files.
3. Convert osm files into csv files which can be divided into nodes.csv files and edges.csv files.

In node files, each record represents a node on OpenStreetMap with about 30 attributes. In
edge files, similarly, each record represents an edge on OpenStreetMap.

4. Split linestrings on OpenStreetMap and transform edges.csv files into start-end pair. Each
edge file will be transformed into a fulltag.csv file and a split.csv file. The schema of
fulltag.csv is the same as edges.csv except for removing the “nodes” tag. Each record in
split.csv represents a link on OpenStreetMap. The split operation is shown in Figure 9.

5. Upload these files to ODPS.
6. Select nodes and edges on the roadnet from tables on ODPS. Finally, we generate three tables

on ODPS: osm_node_roadnet, osm_split_edge_roadnet and osm_fulltag_edge_roadnet. The
detailed schemas of these three tables are introduced in Section A in Appendix.

6 CONCLUSION

In this paper, we introduce a structured road network computing engine called OSM+. OSM+
comprises three main components: (1) a road network graph database featuring global intersections
(nodes) and road segments (links), along with supplementary map information such as points of
interest (POIs); (2) a series of auto-parallel fundamental computing APIs designed for efficient node
and distance queries, providing a foundation for more comprehensive road network analysis; and
(3) a collection of data converters to adapt the road network data for three typical urban research
problems. We present three example application scenarios: traffic prediction task, and traffic policy
control task and city boundary detection. The released data converters allow map data to be used
as a foundation for integrating multi-modal spatial-temporal data, supporting large model training
and accelerating scientific discovery. Especially, for traffic prediction task and traffic signal control
task, we release a new benchmark covering 31 cities and 6 cities respectively. These datasets will
significantly advance city-scale modeling and improve the generalizability of research across various
urban environments.

10
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A DATA FIELDS

There are three tables in our dataset, which are: osm_node_roadnet, osm_split_edge_roadnet and
osm_fulltag_edge_roadnet. The meanings of the data fields in each table are as follows. Note that, the
released data fully describe the road network structure over the world. Meanwhile, OpenStreetMap
also contains billions of records for the other types of nodes (including buildings, POIs, etc.) and
related edges, 7,475,535,808 nodes and 8,039,543,656 edges in total. Nodes and edges also contain
tag information. We have selected 32 node features and 60 edge features which appear the most. We
are cleaning these data and processing it to avoid interest conflicts and ethical issues. The release
plan for these data and attributes will be determined later.

TABLE osm_node_roadnet: (1,964,857,157 rows and 3 columns)

• osmid A unique identifier for each node; different nodes or edges have different osmid.
• x The longitude of a node.
• y The latitude of a node.

TABLE osm_split_edge_roadnet: (2,180,447,343 rows and 7 columns)

• lsid The identifier of a road segment in the osm_split_edge_roadnet table.
• osmid_start The osmid of the starting node of a road segment in the osm_split_edge_roadnet table.
• osmid_start_x The longitude of the starting node of a road segment in the osm_split_edge_roadnet

table.
• osmid_start_y The latitude of the starting node of a road segment in the osm_split_edge_roadnet

table.
• osmid_end The osmid of the ending node of a road segment in the osm_split_edge_roadnet table.
• osmid_end_x The longitude of the ending node of a road segment in the osm_split_edge_roadnet

table.
• osmid_end_y The latitude of the ending node of a road segment in the osm_split_edge_roadnet

table.

TABLE osm_fulltag_edge_roadnet: (197,775,476 rows and 2 columns)

• osmid A unique identifier for each edge; different nodes or edges have different osmid.
• highway The road hierarchy for different roads, starting from the highest level: motorway, trunk,

primary, secondary, etc.

If a split edge A in osm_split_edge_roadnet belongs to a fulltag edge B in osm_fulltag_edge_roadnet,
then the lsid of A is equal to the osmid of B. Thus, in table osm_fulltag_edge_roadnet, each edge’s
osmid is unique, with each osmid value appearing only once in the table. Conversely, in table
osm_split_edge_roadnet, the lsid values may be repeated; they are the same if and only if two split
edges belong to the same full tag edge.

B DATA ACCESS

Our OSM+ dataset is distributed under the CC-BY-SA 4.0 license. Researchers can easily access
OSM+ dataset through interfaces provided in https://anonymous.4open.science/r/
OSM-dataset-3034. Please note that, we only process the dataset from the original OSM dataset
rather than create the data. Since OpenStreetMap is a crowdsourcing project, we are not responsible
for any potential interest conflicts in the data.

C DETAILED EXPERIMENT SETTINGS

C.1 BASIC QUERY OPERATION

This section describes the details of optimizing basic query operations. For point query, we divide the
entire map into grids of 0.2° by 0.2° in latitude and longitude, and determine which grid the point to

13

https://anonymous.4open.science/r/OSM-dataset-3034
https://anonymous.4open.science/r/OSM-dataset-3034


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

be queried is located in. Then, we only need to retrieve data points in adjacent grids during retrieval.
For the nearest neighbor query, we also used the "window check" method. In addition, we utilized the
k-d tree, a binary tree that represents a division of k-dimensional space to reduce the time complexity.

C.2 CITY BOUNDARY DETECTION

This section mainly describes the process of using OSM+ data for city boundary detection. First, we se-
lect several representative areas for experiment, including China Yangtze River Delta (115°E∼122°E,
29°N∼32°N), New York in USA (84°W∼70.5°W, 37.8°N∼45.6°N), Central Europe (2°W∼11.5°E,
45.5°N∼53°N), Nigeria in Africa (0.5°E∼14°E, 4.2°N∼11.7°N). We integrate the roadnet data,
raster image population data, and raster image nightlight data of these areas, by converting them into
point-wise data. Next, we perform clustering on the road net data, nightlight data, and population data
respectively, and then weigh and sum the results of clusterings to obtain a new clustering result. After
that, we divide the entire map into a grid structure with a size of 0.05° in latitude and longitude. We
then count the number of points of each type within each grid and assign the grid to the category with
the most points, obtaining a rough boundary. Finally, we examine the empty grids by considering
a grid nine times its size centered on it and reclassifying it to make the boundary smoother. This
process allows us to discover a more reasonable city boundary.

C.3 CITY-SCALE TRAFFIC PREDICTION

We conduct all the experiments on machines with two NVIDIA 3090 GPUs and 128 GB memory on
Ubuntu 20.04. All models are implemented in Python 3. For the problem setting, we set the input
sequence length and output sequence length both to 12. The traffic flow data is extracted from Loder
et al. (2020). The ratio of training set, validation set, and test set is 6:2:2 for all 31 city datasets. The
evaluation metrics we choose include mean absolute error (MAE), root mean squared error (RMSE),
and mean absolute percentage error (MAPE). Here we list some details of our implemented baseline
methods. For the hyper-parameters that are not mentioned, we adopt the default hyper-parameters
from Shao et al. (2023):
AGCRN (Bai et al., 2020) We use two layers of AGCRN to capture the node-specific spatial and
temporal dynamics. For the hyper-parameters, we set the hidden unit to 64 for all the AGCRN cells
and the batch size also to 64. We set the learning rate to 0.003 and the embedding dimension to 64 for
all 31 city datasets extracted from OSM+ dataset. Besides, we choose L1 Loss as the loss function.
Crossformer (Zhang & Yan, 2022) When implementing Crossformer, we set segment length Lseg

to 24, as it is related to both the model performance and computation efficiency. Besides, we set the
window size to 2. We use Adam optimizer with a 0.0002 learning rate and 0.0005 weight decay rate.
DCRNN (Li et al., 2017) Both encoder and decoder contain two recurrent layers. In each recurrent
layer, there are 64 units and the initial learning rate is set to 0.003. Besides, the maximum step of
random walks, i.e., K, is set to 2. For scheduled sampling, the thresholded inverse sigmoid function
is used as the probability decay:

ϵi =
τ

τ + exp(i/τ)
(1)

where i is the number of iterations while τ is the parameter to control the speed of convergence,
which is set to 2,000 in the experiments.
DLinear (Diagne et al., 2012) For implementation details about DLinear, we adopt the default
hyper-parameters from Shao et al. (2023) to train the models. The training epoch is set to 100.
FEDformer (Zhou et al., 2022) The FEDformer is trained using Adam optimizer with a learning
rate of 0.0005. The batch size is set to 64. An early stopping counter is employed to stop the training
process after three epochs if no loss degradation on the valid set is observed.
GWNet (DHANKHAR et al.) We use two layers of Graph WaveNet with a sequence of dilation
factors {1, 2}. We randomly initialize node embeddings by a uniform distribution with a size of
10. We train our model using Adam optimizer with an initial learning rate of 0.0005. Dropout with
p = 0.3 is applied to the outputs of the graph convolution layer.

C.4 TRAFFIC POLICY EXPERIMENT

We use the script provided by CBData (Liang et al., 2023) to convert the roadnet file to the corre-
sponding format required by CBEngine (Liang et al., 2023). Then, we conduct traffic flow simulation
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experiments of 100,000 vehicles in six cities (Beijing, London, Los Angeles, New York, Paris and
Shanghai). The simulation runs for a total of 3600 steps, with traffic flow data being introduced into
the road at a uniform rate during the first 300 steps.

D EXTENDED EXPERIMENT RESULTS

To further illustrate supporting performance of the OSM+ dataset over traffic flow prediction task, we
repeat each set of experiments five times and report their means and standard deviations on horizon 3,
6 and 12, following the common setting in this problem (Tedjopurnomo et al., 2020). Comprehensive
results are shown in Table 7, Table 8 and Table 9.

Table 7: The performance comparison for seven baseline methods over 31 real-world city datasets
with horizon=3. The best results in each row are in bold. All experiments are repeated five times, and
the mean and standard deviation are reported.

City Metric AGCRN Crossformer DCRNN DLinear FEDformer GWNet MTGNN

AA

MAE 42.53 ± 0.22 39.89 ± 0.11 OOM 40.56 ± 0.00 46.15 ± 0.03 40.65 ± 0.19 40.76 ± 0.38

RMSE 87.82 ± 0.22 85.21 ± 0.92 OOM 82.00 ± 0.00 99.68 ± 0.34 81.14 ± 1.17 83.04 ± 0.33

MAPE(%) 38.97 ± 0.18 31.21 ± 1.72 OOM 32.43 ± 0.02 39.76 ± 0.10 32.09 ± 0.95 33.27 ± 2.39

BSL

MAE 55.00 ± 0.15 49.76 ± 0.96 116.48 ± 1.50 49.12 ± 0.00 52.55 ± 0.18 68.47 ± 0.15 65.86 ± 0.60

RMSE 82.77 ± 0.08 74.24 ± 2.83 155.13 ± 0.43 79.39 ± 0.03 76.74 ± 0.37 93.83 ± 1.64 90.52 ± 1.20

MAPE(%) 45.85 ± 0.35 43.38 ± 2.60 171.29 ± 7.33 42.93 ± 0.01 52.67 ± 1.15 91.08 ± 3.34 75.48 ± 2.24

BRN

MAE 46.82 ± 1.30 45.65 ± 0.17 OOM 48.76 ± 0.02 51.16 ± 0.10 47.49 ± 0.56 59.36 ± 0.86

RMSE 468.78 ± 9.95 454.56 ± 1.64 OOM 454.98 ± 0.18 431.93 ± 0.45 440.49 ± 7.76 477.32 ± 13.68

MAPE(%) 222.50 ± 13.23 233.32 ± 18.35 OOM 229.36 ± 2.05 232.49 ± 17.64 278.14 ± 19.92 347.74 ± 20.37

BHX

MAE 88.84 ± 0.35 84.86 ± 7.57 289.70 ± 11.26 92.86 ± 0.80 104.66 ± 0.44 90.95 ± 0.18 84.13 ± 0.64

RMSE 137.05 ± 0.61 134.05 ± 8.50 425.16 ± 37.43 144.99 ± 0.88 158.84 ± 0.19 144.59 ± 1.12 130.56 ± 0.88

MAPE(%) 43.38 ± 0.35 40.51 ± 2.58 191.60 ± 57.29 48.95 ± 0.11 52.14 ± 0.90 51.86 ± 1.83 45.67 ± 3.76

BOL

MAE 29.63 ± 0.27 32.03 ± 1.73 32.74 ± 0.38 33.31 ± 0.02 34.19 ± 0.04 32.69 ± 1.92 29.68 ± 0.23

RMSE 84.46 ± 0.07 84.23 ± 0.25 87.89 ± 0.04 83.81 ± 0.06 87.51 ± 0.13 84.37 ± 0.56 81.28 ± 0.13

MAPE(%) 18.44 ± 1.09 19.69 ± 0.44 22.48 ± 0.69 30.71 ± 0.10 26.86 ± 1.25 22.51 ± 0.53 18.63 ± 0.50

BOD

MAE 62.34 ± 0.22 60.21 ± 0.60 244.58 ± 20.30 58.23 ± 0.00 58.51 ± 0.30 59.78 ± 0.05 71.17 ± 1.11

RMSE 100.52 ± 0.47 95.41 ± 0.16 324.45 ± 24.77 92.86 ± 0.01 92.09 ± 0.27 93.00 ± 0.09 109.95 ± 2.32

MAPE(%) 37.45 ± 1.21 33.47 ± 0.43 280.19 ± 14.03 37.59 ± 0.05 38.28 ± 0.84 43.06 ± 0.33 45.75 ± 0.42

BRE

MAE 55.40 ± 0.02 56.33 ± 1.40 OOM 58.99 ± 0.03 58.80 ± 0.04 55.45 ± 0.09 55.18 ± 0.17

RMSE 92.18 ± 0.08 93.06 ± 1.74 OOM 97.06 ± 0.11 95.33 ± 0.02 91.31 ± 0.11 91.72 ± 0.48

MAPE(%) 36.08 ± 0.26 33.69 ± 1.66 OOM 40.12 ± 0.12 40.41 ± 0.49 36.10 ± 0.27 34.93 ± 0.22

KN

MAE OOM 39.17 ± 1.36 119.00 ± 0.09 35.47 ± 0.00 38.35 ± 0.37 37.55 ± 0.55 40.06 ± 0.38

RMSE OOM 62.75 ± 2.15 152.84 ± 0.67 54.99 ± 0.00 58.78 ± 0.32 58.21 ± 0.67 61.15 ± 0.86

MAPE(%) OOM 47.64 ± 0.56 293.93 ± 0.88 54.02 ± 0.17 61.77 ± 1.36 47.54 ± 0.59 58.71 ± 1.08

DA

MAE 56.32 ± 0.04 51.12 ± 0.79 OOM 50.77 ± 0.00 54.26 ± 0.08 51.80 ± 0.11 54.58 ± 0.23

RMSE 88.65 ± 0.20 77.01 ± 1.12 OOM 75.41 ± 0.00 79.78 ± 0.25 78.39 ± 0.16 86.54 ± 1.08

MAPE(%) 50.79 ± 0.00 45.51 ± 0.49 OOM 51.38 ± 0.02 58.16 ± 0.89 48.27 ± 0.64 48.10 ± 0.11

ESS

MAE 40.66 ± 0.28 36.95 ± 0.10 172.66 ± 0.19 41.06 ± 0.00 40.51 ± 0.07 36.86 ± 0.08 35.94 ± 0.07

RMSE 59.07 ± 0.76 53.29 ± 0.27 224.47 ± 3.72 59.39 ± 0.01 58.41 ± 0.03 53.72 ± 0.22 52.57 ± 0.03

MAPE(%) 35.54 ± 1.10 34.79 ± 1.28 302.81 ± 15.18 34.62 ± 0.40 36.01 ± 0.71 32.85 ± 0.28 31.51 ± 2.29

FRA

MAE 124.69 ± 0.05 140.18 ± 14.57 185.87 ± 2.29 71.58 ± 0.30 84.83 ± 1.13 139.06 ± 1.84 170.44 ± 12.29

RMSE 157.09 ± 0.09 166.53 ± 16.07 237.20 ± 2.82 90.90 ± 1.09 108.23 ± 2.00 163.25 ± 2.09 190.32 ± 12.38

MAPE(%) 39.40 ± 0.02 41.18 ± 3.19 47.65 ± 0.59 20.21 ± 0.07 23.41 ± 0.15 42.48 ± 0.68 51.70 ± 3.62

GRZ

MAE 59.06 ± 0.02 50.55 ± 1.02 174.96 ± 0.00 52.27 ± 0.00 50.95 ± 0.24 55.07 ± 0.74 53.48 ± 0.62

RMSE 89.07 ± 0.02 74.28 ± 0.84 220.49 ± 0.00 75.95 ± 0.01 74.23 ± 0.17 81.10 ± 1.00 82.35 ± 1.49

MAPE(%) 116.57 ± 0.80 68.30 ± 4.29 467.17 ± 0.00 63.68 ± 0.15 66.96 ± 2.12 68.11 ± 1.24 71.41 ± 0.40

GRQ

MAE 63.24 ± 0.01 62.25 ± 1.53 162.87 ± 0.00 60.08 ± 0.41 72.11 ± 1.47 64.33 ± 0.16 63.21 ± 1.50

RMSE 87.02 ± 0.08 86.03 ± 0.07 218.69 ± 0.00 82.72 ± 0.56 99.96 ± 1.73 88.41 ± 0.03 86.27 ± 1.51
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MAPE(%) 30.46 ± 0.19 28.82 ± 0.24 112.24 ± 0.00 31.41 ± 0.29 36.83 ± 0.57 31.79 ± 0.19 30.87 ± 1.08

HAM

MAE 45.68 ± 0.09 43.50 ± 0.10 97.51 ± 0.56 44.82 ± 0.00 46.34 ± 0.05 43.28 ± 0.01 44.05 ± 0.09

RMSE 75.36 ± 0.60 70.76 ± 0.19 150.67 ± 2.84 73.13 ± 0.01 74.96 ± 0.18 70.69 ± 0.07 73.02 ± 0.19

MAPE(%) 44.67 ± 0.36 42.79 ± 0.51 111.42 ± 5.09 47.93 ± 0.10 48.93 ± 0.17 43.48 ± 0.16 43.30 ± 0.13

INN

MAE 70.05 ± 0.15 67.34 ± 1.24 333.14 ± 2.31 76.43 ± 0.01 70.66 ± 0.65 65.65 ± 0.12 OOM

RMSE 101.84 ± 0.05 97.03 ± 0.57 443.91 ± 2.79 113.93 ± 0.09 102.62 ± 0.80 95.28 ± 0.17 OOM

MAPE(%) 31.38 ± 0.83 35.24 ± 5.44 304.36 ± 0.76 33.84 ± 0.45 30.70 ± 0.10 28.00 ± 0.42 OOM

KS

MAE 69.88 ± 0.37 73.22 ± 1.27 244.28 ± 0.00 63.22 ± 2.52 80.77 ± 0.65 63.34 ± 1.06 154.46 ± 1.90

RMSE 203.93 ± 0.33 204.17 ± 2.19 342.80 ± 0.00 158.72 ± 4.21 177.02 ± 0.31 155.08 ± 0.53 233.89 ± 3.73

MAPE(%) 80.45 ± 1.04 87.42 ± 3.53 440.12 ± 0.00 81.40 ± 4.85 105.62 ± 1.65 81.47 ± 2.36 235.91 ± 0.42

MAN

MAE 97.96 ± 0.71 87.80 ± 0.65 336.72 ± 0.00 92.36 ± 5.65 99.05 ± 1.29 84.26 ± 0.20 85.24 ± 0.93

RMSE 169.67 ± 0.73 160.48 ± 1.62 448.89 ± 0.00 156.98 ± 7.85 167.30 ± 2.46 151.48 ± 0.49 154.15 ± 2.57

MAPE(%) 39.66 ± 1.35 37.73 ± 0.54 283.06 ± 0.00 42.24 ± 2.20 46.21 ± 1.60 32.83 ± 0.26 36.21 ± 1.39

MEL

MAE 37.39 ± 0.00 36.21 ± 0.95 OOM 42.57 ± 0.85 40.80 ± 0.58 36.26 ± 0.01 35.86 ± 0.95

RMSE 56.63 ± 0.01 54.30 ± 2.21 OOM 64.49 ± 1.03 60.80 ± 1.36 54.35 ± 0.06 54.78 ± 1.68

MAPE(%) 37.60 ± 0.03 35.63 ± 0.72 OOM 37.82 ± 0.99 43.56 ± 0.04 27.22 ± 0.07 31.77 ± 0.80

RTM

MAE 49.08 ± 0.16 50.46 ± 0.06 170.03 ± 0.00 55.93 ± 0.01 58.45 ± 0.73 54.45 ± 0.28 51.45 ± 0.08

RMSE 87.20 ± 0.12 87.80 ± 0.13 232.29 ± 0.00 95.05 ± 0.02 96.26 ± 0.90 92.68 ± 0.52 88.92 ± 0.36

MAPE(%) 36.76 ± 0.05 41.26 ± 0.01 320.02 ± 0.00 44.61 ± 0.19 57.44 ± 1.81 43.72 ± 1.04 38.46 ± 1.26

SDR

MAE 88.07 ± 0.25 86.61 ± 1.76 259.05 ± 0.00 80.68 ± 0.02 107.62 ± 1.33 77.84 ± 0.41 78.50 ± 2.26

RMSE 230.51 ± 0.94 231.19 ± 0.49 434.97 ± 0.00 187.89 ± 0.01 216.83 ± 2.05 202.47 ± 1.86 211.89 ± 0.85

MAPE(%) 54.00 ± 1.15 53.10 ± 6.85 257.82 ± 0.00 43.89 ± 0.16 81.61 ± 0.53 44.22 ± 3.89 36.34 ± 0.17

SP

MAE 48.92 ± 0.05 47.51 ± 0.03 121.12 ± 2.04 50.74 ± 0.01 52.37 ± 0.11 47.84 ± 0.05 47.75 ± 0.11

RMSE 70.45 ± 0.06 68.34 ± 0.07 172.55 ± 9.56 72.60 ± 0.06 74.68 ± 0.06 68.91 ± 0.17 68.90 ± 0.02

MAPE(%) 39.84 ± 0.53 36.77 ± 0.11 102.07 ± 25.06 43.49 ± 0.00 43.79 ± 0.59 37.92 ± 0.33 37.04 ± 0.13

SXB

MAE 76.69 ± 0.07 73.93 ± 0.14 259.67 ± 0.00 78.84 ± 0.05 80.54 ± 0.24 74.23 ± 0.03 73.87 ± 0.41

RMSE 134.85 ± 0.14 130.71 ± 0.32 360.44 ± 0.00 138.48 ± 0.03 141.88 ± 0.15 131.69 ± 0.05 131.14 ± 0.23

MAPE(%) 40.04 ± 1.09 40.73 ± 2.09 223.03 ± 0.00 43.50 ± 0.18 43.51 ± 0.74 37.64 ± 0.26 36.53 ± 0.63

STR

MAE 57.40 ± 0.43 57.84 ± 3.60 59.86 ± 1.67 60.07 ± 0.08 68.33 ± 1.18 55.70 ± 0.02 OOM

RMSE 74.79 ± 0.28 75.55 ± 4.24 78.25 ± 3.02 78.53 ± 0.16 89.06 ± 1.27 72.13 ± 0.07 OOM

MAPE(%) 18.44 ± 0.08 19.11 ± 2.18 19.07 ± 0.70 20.01 ± 0.01 22.32 ± 0.45 18.10 ± 0.06 OOM

TPE

MAE 126.81 ± 0.07 126.02 ± 3.81 490.25 ± 8.98 125.41 ± 0.01 134.61 ± 0.09 117.30 ± 0.40 121.00 ± 0.90

RMSE 555.59 ± 1.23 561.67 ± 10.18 988.24 ± 11.03 482.59 ± 0.38 540.48 ± 5.15 493.02 ± 0.48 512.90 ± 1.36

MAPE(%) 42.20 ± 0.35 45.74 ± 5.09 266.56 ± 4.39 41.80 ± 0.12 47.72 ± 0.55 38.30 ± 1.75 40.01 ± 1.54

TO

MAE 77.75 ± 0.14 71.06 ± 0.96 313.88 ± 0.21 68.52 ± 0.01 74.48 ± 0.07 74.91 ± 1.05 80.07 ± 1.05

RMSE 131.86 ± 0.13 114.97 ± 2.10 415.51 ± 1.03 111.00 ± 0.07 118.37 ± 0.35 116.63 ± 0.82 124.72 ± 1.31

MAPE(%) 50.86 ± 0.32 39.42 ± 0.29 400.19 ± 7.19 40.27 ± 0.47 48.37 ± 0.98 46.33 ± 2.97 52.21 ± 2.04

YTO

MAE 45.81 ± 0.12 45.25 ± 0.40 129.55 ± 18.89 59.49 ± 0.01 52.16 ± 0.04 46.68 ± 0.25 44.65 ± 0.07

RMSE 77.29 ± 0.30 74.48 ± 0.06 192.41 ± 21.36 95.84 ± 0.09 81.85 ± 0.04 77.47 ± 0.47 75.03 ± 0.00

MAPE(%) 33.49 ± 0.02 32.72 ± 1.55 114.20 ± 27.77 42.70 ± 0.66 46.45 ± 1.69 35.18 ± 0.38 33.36 ± 2.07

TLS

MAE 257.32 ± 0.36 255.21 ± 0.28 264.24 ± 6.15 263.84 ± 0.00 296.07 ± 0.02 255.32 ± 0.00 259.00 ± 0.03

RMSE 349.78 ± 0.86 342.51 ± 0.43 352.70 ± 9.62 348.15 ± 0.03 410.70 ± 0.70 341.22 ± 0.34 349.09 ± 0.86

MAPE(%) 754.88 ± 3.75 746.38 ± 4.66 791.79 ± 77.77 872.83 ± 0.91 836.22 ± 1.06 747.55 ± 5.53 726.09 ± 9.80

UTC

MAE OOM 51.67 ± 0.80 OOM 44.40 ± 1.21 61.74 ± 1.37 75.85 ± 0.25 39.61 ± 0.20

RMSE OOM 83.26 ± 3.39 OOM 75.24 ± 1.49 91.06 ± 0.40 120.97 ± 0.66 68.41 ± 0.37

MAPE(%) OOM 57.21 ± 15.30 OOM 45.37 ± 1.44 77.81 ± 4.77 91.81 ± 5.44 37.55 ± 2.65

VNO

MAE 82.75 ± 0.08 77.98 ± 0.27 OOM 69.08 ± 1.53 81.57 ± 0.28 69.25 ± 0.23 89.80 ± 1.00

RMSE 112.24 ± 0.29 106.39 ± 0.56 OOM 94.18 ± 2.13 110.65 ± 0.82 94.42 ± 0.06 118.34 ± 1.00

MAPE(%) 47.89 ± 0.26 42.38 ± 0.14 OOM 35.59 ± 0.75 42.38 ± 0.60 35.32 ± 0.81 57.14 ± 1.75

WOB

MAE 52.66 ± 0.05 51.73 ± 1.69 54.51 ± 0.05 56.05 ± 0.02 54.89 ± 0.01 51.27 ± 0.18 51.12 ± 0.01

RMSE 81.81 ± 0.31 79.60 ± 3.58 84.03 ± 0.30 85.65 ± 0.02 82.31 ± 0.02 78.15 ± 0.24 78.27 ± 0.04

MAPE(%) 40.76 ± 0.38 37.38 ± 0.17 42.23 ± 0.24 46.71 ± 0.06 46.64 ± 0.10 39.56 ± 0.58 39.41 ± 0.80

ZRH

MAE OOM 53.23 ± 0.05 OOM 56.33 ± 0.00 56.72 ± 0.08 59.24 ± 7.75 52.34 ± 0.18
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RMSE OOM 75.13 ± 0.05 OOM 79.32 ± 0.01 79.36 ± 0.01 83.96 ± 11.26 74.05 ± 0.34

MAPE(%) OOM 35.77 ± 1.18 OOM 40.87 ± 0.04 41.31 ± 0.53 44.88 ± 11.14 34.95 ± 0.46

Table 8: The performance comparison for seven baseline methods over 31 real-world city datasets
with horizon=6. The best results in each row are in bold. All experiments are repeated five times, and
the mean and standard deviation are reported.

City Metric AGCRN Crossformer DCRNN DLinear FEDformer GWNet MTGNN

AA

MAE 47.27 ± 0.41 43.29 ± 0.11 OOM 46.25 ± 0.00 50.21 ± 0.02 46.22 ± 0.59 45.61 ± 0.55

RMSE 100.54 ± 0.22 95.50 ± 1.21 OOM 97.90 ± 0.03 112.57 ± 0.37 97.17 ± 2.27 97.30 ± 0.43

MAPE(%) 43.35 ± 0.73 33.68 ± 0.45 OOM 36.33 ± 0.15 42.69 ± 0.09 36.93 ± 1.56 37.46 ± 3.09

BSL

MAE 63.95 ± 0.02 61.81 ± 3.57 118.10 ± 0.84 59.01 ± 0.01 59.94 ± 1.42 81.55 ± 1.76 78.88 ± 1.13

RMSE 94.86 ± 0.09 91.78 ± 4.55 157.37 ± 1.12 99.52 ± 0.04 87.06 ± 2.86 114.99 ± 4.41 110.81 ± 2.49

MAPE(%) 54.81 ± 0.20 68.11 ± 2.43 175.12 ± 9.70 49.76 ± 0.16 59.65 ± 0.08 109.78 ± 3.98 91.64 ± 2.08

BRN

MAE 49.20 ± 1.52 48.47 ± 0.32 OOM 51.65 ± 0.01 54.01 ± 0.18 50.27 ± 0.10 69.27 ± 0.82

RMSE 481.50 ± 16.19 465.00 ± 1.10 OOM 464.66 ± 0.33 450.70 ± 0.37 468.88 ± 0.39 508.09 ± 12.22

MAPE(%) 216.94 ± 6.34 186.02 ± 20.85 OOM 244.39 ± 5.93 242.43 ± 19.54 293.55 ± 20.22 411.51 ± 30.03

BHX

MAE 101.87 ± 0.00 86.82 ± 7.11 299.18 ± 30.69 103.14 ± 2.28 113.03 ± 0.16 99.17 ± 0.39 89.68 ± 0.34

RMSE 148.33 ± 0.23 133.22 ± 9.67 426.46 ± 61.57 156.29 ± 2.41 175.26 ± 0.51 150.67 ± 0.76 137.11 ± 1.22

MAPE(%) 59.01 ± 0.56 45.71 ± 1.30 229.60 ± 44.64 57.28 ± 1.81 57.12 ± 0.60 56.87 ± 5.04 49.85 ± 1.96

BOL

MAE 30.99 ± 0.09 32.53 ± 1.31 37.09 ± 0.61 35.99 ± 0.07 35.71 ± 0.38 33.47 ± 0.60 31.57 ± 0.32

RMSE 87.74 ± 0.14 87.00 ± 0.68 93.43 ± 0.01 88.23 ± 0.03 87.93 ± 0.81 82.40 ± 0.12 82.26 ± 0.01

MAPE(%) 19.58 ± 1.26 20.30 ± 0.26 26.38 ± 0.99 33.56 ± 0.24 29.66 ± 1.49 28.79 ± 0.72 21.63 ± 0.37

BOD

MAE 69.25 ± 0.17 65.32 ± 0.92 242.05 ± 12.05 64.43 ± 0.01 64.68 ± 0.20 70.55 ± 0.22 86.45 ± 0.91

RMSE 112.27 ± 0.50 103.95 ± 0.50 321.50 ± 16.12 102.17 ± 0.01 101.21 ± 0.16 108.43 ± 0.09 135.49 ± 2.53

MAPE(%) 39.52 ± 1.05 35.61 ± 0.49 280.80 ± 1.26 42.14 ± 0.23 42.19 ± 0.72 52.86 ± 0.88 55.08 ± 1.37

BRE

MAE 56.30 ± 0.01 56.94 ± 0.75 OOM 62.32 ± 0.01 60.38 ± 0.08 56.86 ± 0.01 56.26 ± 0.27

RMSE 93.86 ± 0.02 94.36 ± 0.99 OOM 101.83 ± 0.07 97.83 ± 0.11 93.62 ± 0.02 93.58 ± 0.67

MAPE(%) 36.30 ± 0.14 34.78 ± 0.07 OOM 41.95 ± 0.28 41.36 ± 0.48 37.02 ± 0.02 35.45 ± 0.29

KN

MAE OOM 43.36 ± 1.67 118.57 ± 2.65 37.85 ± 0.00 40.09 ± 0.24 43.01 ± 1.18 45.06 ± 0.30

RMSE OOM 69.19 ± 2.16 151.98 ± 2.99 61.54 ± 0.01 61.47 ± 0.14 68.27 ± 1.68 68.58 ± 0.14

MAPE(%) OOM 47.64 ± 0.45 294.00 ± 8.92 59.41 ± 0.17 64.05 ± 1.65 53.57 ± 1.58 68.56 ± 3.07

DA

MAE 58.34 ± 0.14 53.03 ± 0.05 OOM 53.93 ± 0.01 56.35 ± 0.07 55.08 ± 0.19 59.16 ± 0.15

RMSE 92.05 ± 0.44 80.86 ± 0.21 OOM 81.10 ± 0.07 83.79 ± 0.23 84.75 ± 0.59 96.79 ± 0.57

MAPE(%) 51.28 ± 0.03 47.58 ± 0.26 OOM 53.46 ± 0.08 59.83 ± 0.81 50.41 ± 1.14 50.52 ± 0.23

ESS

MAE 41.58 ± 0.11 39.69 ± 0.44 173.69 ± 0.75 47.27 ± 0.00 43.48 ± 0.01 38.23 ± 0.14 37.59 ± 0.06

RMSE 61.02 ± 0.33 57.73 ± 0.93 226.42 ± 2.28 68.86 ± 0.02 63.05 ± 0.26 56.05 ± 0.23 55.76 ± 0.09

MAPE(%) 34.29 ± 0.34 40.50 ± 4.51 299.82 ± 15.01 40.99 ± 0.15 39.62 ± 0.40 34.16 ± 0.17 34.01 ± 2.44

FRA

MAE 158.46 ± 0.09 141.89 ± 33.64 187.73 ± 7.77 93.49 ± 1.42 107.62 ± 2.29 173.62 ± 3.08 258.38 ± 13.05

RMSE 192.87 ± 0.02 172.02 ± 35.30 236.87 ± 10.11 115.65 ± 1.17 136.75 ± 3.69 202.44 ± 2.63 279.20 ± 13.65

MAPE(%) 52.05 ± 0.01 43.28 ± 8.91 52.30 ± 1.53 27.45 ± 0.40 30.92 ± 0.64 54.62 ± 1.16 81.61 ± 3.79

GRZ

MAE 60.79 ± 0.01 52.70 ± 0.96 185.12 ± 0.00 58.29 ± 0.01 54.03 ± 0.24 58.32 ± 0.87 56.03 ± 0.20

RMSE 91.77 ± 0.08 77.53 ± 0.71 233.72 ± 0.00 84.30 ± 0.04 78.69 ± 0.12 86.47 ± 1.17 87.69 ± 0.61

MAPE(%) 110.69 ± 1.77 65.44 ± 6.48 465.95 ± 0.00 72.50 ± 1.27 69.79 ± 3.62 71.75 ± 1.36 72.35 ± 0.12

GRQ

MAE 68.43 ± 0.01 65.61 ± 1.26 161.01 ± 0.00 64.78 ± 0.91 79.46 ± 0.32 66.49 ± 0.22 71.04 ± 3.46

RMSE 93.25 ± 0.24 90.55 ± 0.25 217.62 ± 0.00 89.18 ± 1.54 110.72 ± 0.49 91.41 ± 0.15 95.64 ± 4.02

MAPE(%) 33.78 ± 0.31 30.45 ± 1.73 114.12 ± 0.00 35.59 ± 0.64 41.81 ± 0.46 33.33 ± 0.42 36.21 ± 1.79

HAM

MAE 46.44 ± 0.12 44.26 ± 0.07 97.38 ± 0.48 46.26 ± 0.01 47.54 ± 0.10 44.16 ± 0.01 45.04 ± 0.01

RMSE 77.82 ± 0.73 74.06 ± 0.10 150.66 ± 2.47 77.55 ± 0.01 79.25 ± 0.22 74.06 ± 0.10 79.08 ± 1.23

MAPE(%) 45.57 ± 0.70 44.25 ± 2.04 111.18 ± 3.96 49.44 ± 0.06 50.07 ± 0.06 43.68 ± 0.20 44.06 ± 0.07

INN

MAE 71.83 ± 0.48 67.78 ± 0.30 337.43 ± 6.70 86.47 ± 0.02 73.73 ± 0.55 66.95 ± 0.28 OOM

RMSE 104.72 ± 0.59 98.77 ± 1.04 452.25 ± 0.27 133.76 ± 0.11 107.19 ± 0.71 97.41 ± 0.45 OOM
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MAPE(%) 29.79 ± 1.13 34.04 ± 3.08 294.18 ± 24.63 37.85 ± 0.91 32.08 ± 0.02 28.82 ± 1.09 OOM

KS

MAE 77.06 ± 0.53 83.40 ± 5.34 229.47 ± 0.00 72.68 ± 1.41 85.40 ± 0.05 70.79 ± 0.35 190.66 ± 2.64

RMSE 216.34 ± 0.41 218.00 ± 4.66 332.48 ± 0.00 177.06 ± 2.66 187.31 ± 0.67 174.04 ± 0.28 277.37 ± 5.51

MAPE(%) 97.13 ± 1.41 111.00 ± 17.20 410.19 ± 0.00 99.24 ± 1.87 116.48 ± 0.61 93.42 ± 0.13 308.03 ± 0.63

MAN

MAE 106.44 ± 1.13 94.31 ± 0.83 335.71 ± 0.00 103.64 ± 10.23 110.65 ± 0.92 93.95 ± 1.00 94.68 ± 2.13

RMSE 180.81 ± 1.54 169.06 ± 0.26 448.79 ± 0.00 172.31 ± 13.89 184.62 ± 2.27 163.00 ± 3.21 168.90 ± 4.47

MAPE(%) 43.13 ± 1.40 43.34 ± 2.45 279.02 ± 0.00 47.57 ± 4.43 51.47 ± 0.57 37.68 ± 0.64 42.02 ± 1.16

MEL

MAE 48.56 ± 0.00 43.98 ± 1.73 OOM 58.89 ± 0.02 50.66 ± 0.49 49.02 ± 0.20 46.12 ± 1.29

RMSE 75.34 ± 0.01 66.14 ± 3.55 OOM 89.81 ± 0.46 76.23 ± 0.70 74.99 ± 0.31 72.62 ± 2.27

MAPE(%) 44.66 ± 0.05 40.38 ± 0.06 OOM 54.22 ± 0.50 53.21 ± 0.56 33.97 ± 0.06 39.97 ± 1.00

RTM

MAE 51.36 ± 0.14 52.84 ± 1.05 179.34 ± 0.00 64.94 ± 0.05 65.13 ± 0.38 63.44 ± 0.77 55.79 ± 0.08

RMSE 92.19 ± 0.07 91.97 ± 0.65 240.67 ± 0.00 110.95 ± 0.04 106.66 ± 0.68 106.73 ± 1.16 97.29 ± 0.25

MAPE(%) 39.55 ± 0.86 48.88 ± 3.29 349.98 ± 0.00 50.56 ± 0.21 63.69 ± 0.70 49.48 ± 0.75 40.87 ± 1.70

SDR

MAE 101.26 ± 0.42 98.18 ± 2.76 256.61 ± 0.00 93.27 ± 0.06 119.78 ± 2.36 86.47 ± 0.70 91.34 ± 2.73

RMSE 252.60 ± 0.01 249.70 ± 1.91 433.47 ± 0.00 214.37 ± 0.03 239.59 ± 2.95 220.15 ± 1.88 235.42 ± 0.34

MAPE(%) 58.36 ± 1.09 52.17 ± 5.47 255.29 ± 0.00 51.78 ± 0.42 89.07 ± 2.29 49.86 ± 5.91 41.60 ± 0.36

SP

MAE 49.19 ± 0.05 47.78 ± 0.02 122.39 ± 4.19 52.40 ± 0.01 53.30 ± 0.09 48.28 ± 0.09 48.06 ± 0.17

RMSE 70.83 ± 0.02 68.35 ± 0.03 175.09 ± 12.25 75.17 ± 0.04 75.91 ± 0.14 69.62 ± 0.23 69.28 ± 0.15

MAPE(%) 39.89 ± 0.29 39.42 ± 0.10 102.80 ± 22.32 44.96 ± 0.02 44.63 ± 0.37 37.82 ± 0.32 37.33 ± 0.28

SXB

MAE 78.07 ± 0.07 75.86 ± 0.22 261.26 ± 0.00 83.83 ± 0.05 83.48 ± 0.26 76.43 ± 0.07 76.10 ± 0.20

RMSE 137.75 ± 0.13 134.97 ± 1.08 361.96 ± 0.00 146.93 ± 0.03 147.22 ± 0.28 135.84 ± 0.06 136.00 ± 0.61

MAPE(%) 39.38 ± 0.52 36.88 ± 0.64 223.02 ± 0.00 46.07 ± 0.29 44.95 ± 0.49 38.86 ± 0.28 36.87 ± 0.37

STR

MAE 58.31 ± 0.07 55.90 ± 0.33 65.43 ± 3.82 63.52 ± 0.53 67.70 ± 0.29 55.29 ± 0.12 OOM

RMSE 75.53 ± 0.02 72.34 ± 0.67 86.65 ± 5.08 82.43 ± 0.47 86.71 ± 0.16 71.79 ± 0.33 OOM

MAPE(%) 20.16 ± 0.01 18.61 ± 0.29 21.85 ± 1.88 22.95 ± 0.11 24.03 ± 0.61 18.78 ± 0.04 OOM

TPE

MAE 134.51 ± 0.20 130.49 ± 1.84 509.35 ± 13.02 138.44 ± 0.00 144.56 ± 0.25 126.48 ± 0.29 129.85 ± 0.99

RMSE 604.37 ± 1.42 606.52 ± 6.88 1002.98 ± 12.83 592.89 ± 0.12 616.55 ± 3.87 567.78 ± 0.27 589.03 ± 1.28

MAPE(%) 45.86 ± 0.49 43.77 ± 0.72 285.05 ± 4.83 44.76 ± 0.06 50.48 ± 0.57 40.21 ± 1.83 41.77 ± 1.29

TO

MAE 87.26 ± 0.28 77.97 ± 0.72 315.29 ± 0.01 80.61 ± 0.02 83.05 ± 0.09 95.23 ± 1.17 97.61 ± 0.70

RMSE 149.60 ± 0.47 128.32 ± 1.66 421.69 ± 3.47 134.94 ± 0.10 133.55 ± 0.26 150.90 ± 1.60 154.19 ± 0.30

MAPE(%) 55.62 ± 0.22 43.26 ± 0.12 390.80 ± 15.64 46.08 ± 0.69 53.08 ± 1.63 56.75 ± 2.22 63.98 ± 1.64

YTO

MAE 52.35 ± 0.07 51.04 ± 0.30 148.49 ± 17.87 86.46 ± 0.04 60.73 ± 0.19 57.26 ± 0.38 51.26 ± 0.14

RMSE 88.15 ± 0.01 83.84 ± 0.62 219.71 ± 22.22 137.24 ± 0.27 95.65 ± 0.01 95.71 ± 0.74 86.95 ± 0.04

MAPE(%) 38.58 ± 0.02 37.69 ± 3.84 110.54 ± 44.26 65.08 ± 1.92 53.94 ± 2.03 37.79 ± 0.83 37.62 ± 1.48

TLS

MAE 257.69 ± 0.41 255.12 ± 0.04 264.27 ± 6.31 263.95 ± 0.00 294.82 ± 0.19 255.35 ± 0.01 259.64 ± 0.41

RMSE 350.19 ± 1.23 342.33 ± 0.54 352.67 ± 9.87 348.26 ± 0.09 408.19 ± 0.21 340.68 ± 0.33 351.37 ± 2.05

MAPE(%) 761.22 ± 0.81 745.90 ± 7.41 792.14 ± 78.55 869.43 ± 1.90 833.62 ± 1.57 749.50 ± 6.72 730.89 ± 9.58

UTC

MAE OOM 66.56 ± 26.30 OOM 48.87 ± 0.11 68.00 ± 0.85 74.93 ± 0.19 40.09 ± 0.10

RMSE OOM 95.10 ± 17.24 OOM 83.02 ± 0.25 99.18 ± 0.36 122.75 ± 1.30 72.37 ± 0.03

MAPE(%) OOM 104.15 ± 72.84 OOM 51.11 ± 0.40 90.66 ± 5.26 89.98 ± 4.19 37.86 ± 3.07

VNO

MAE 87.69 ± 0.14 83.21 ± 0.40 OOM 74.00 ± 1.45 86.63 ± 0.41 72.98 ± 0.37 96.27 ± 0.67

RMSE 118.99 ± 0.33 113.23 ± 0.07 OOM 100.58 ± 1.74 118.15 ± 0.43 99.91 ± 0.11 127.62 ± 0.73

MAPE(%) 53.52 ± 0.14 48.97 ± 1.46 OOM 41.17 ± 0.65 46.50 ± 0.59 38.67 ± 1.02 64.60 ± 1.76

WOB

MAE 53.64 ± 0.29 54.06 ± 3.31 58.06 ± 0.03 61.11 ± 0.00 56.56 ± 0.08 53.34 ± 0.36 52.71 ± 0.12

RMSE 84.29 ± 0.58 83.78 ± 6.06 91.34 ± 0.32 95.94 ± 0.02 85.20 ± 0.03 82.52 ± 0.55 81.89 ± 0.16

MAPE(%) 40.44 ± 0.19 39.46 ± 1.23 45.09 ± 0.29 49.95 ± 0.02 48.87 ± 0.60 41.26 ± 0.69 40.60 ± 1.35

ZRH

MAE OOM 54.55 ± 0.39 OOM 59.12 ± 0.01 58.25 ± 0.02 62.40 ± 10.21 53.08 ± 0.23

RMSE OOM 77.09 ± 0.55 OOM 83.71 ± 0.00 81.89 ± 0.11 89.30 ± 15.55 75.22 ± 0.44

MAPE(%) OOM 35.78 ± 2.65 OOM 43.08 ± 0.12 42.26 ± 0.44 46.00 ± 11.94 35.18 ± 0.34

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Table 9: The performance comparison for seven baseline methods over 31 real-world city datasets
with horizon=12. The best results in each row are in bold. All experiments are repeated five times,
and the mean and standard deviation are reported.

City Metric AGCRN Crossformer DCRNN DLinear FEDformer GWNet MTGNN

AA

MAE 55.05 ± 0.93 49.30 ± 0.79 OOM 56.58 ± 0.01 59.64 ± 0.20 55.81 ± 1.34 53.30 ± 0.80

RMSE 118.56 ± 0.58 110.08 ± 0.06 OOM 122.58 ± 0.10 132.58 ± 0.19 117.78 ± 3.74 115.28 ± 0.52

MAPE(%) 51.73 ± 1.84 41.13 ± 2.19 OOM 44.54 ± 0.12 53.19 ± 0.31 46.17 ± 2.80 44.31 ± 3.53

BSL

MAE 74.87 ± 0.54 81.11 ± 3.35 120.92 ± 0.42 76.52 ± 0.22 66.00 ± 0.70 97.61 ± 4.34 89.52 ± 0.36

RMSE 110.37 ± 0.82 122.17 ± 4.15 160.46 ± 2.57 126.12 ± 0.48 96.52 ± 0.35 139.03 ± 8.66 126.94 ± 0.56

MAPE(%) 65.54 ± 0.65 89.04 ± 5.12 183.70 ± 15.83 62.84 ± 0.30 69.59 ± 3.62 129.70 ± 6.69 111.43 ± 0.24

BRN

MAE 53.50 ± 2.10 54.20 ± 1.85 OOM 56.13 ± 0.01 61.14 ± 0.33 54.13 ± 0.47 84.36 ± 1.26

RMSE 500.59 ± 21.34 483.08 ± 0.25 OOM 495.21 ± 0.17 489.57 ± 0.68 479.82 ± 1.60 553.53 ± 12.87

MAPE(%) 245.52 ± 4.25 202.93 ± 62.89 OOM 290.64 ± 1.52 307.33 ± 16.91 340.44 ± 23.69 513.55 ± 31.06

BHX

MAE 146.03 ± 0.35 102.03 ± 15.50 282.12 ± 13.73 131.89 ± 9.65 140.17 ± 0.70 129.19 ± 2.55 101.51 ± 0.10

RMSE 208.28 ± 0.65 155.04 ± 22.46 384.96 ± 40.10 193.75 ± 6.56 214.60 ± 0.16 192.02 ± 0.76 154.51 ± 0.86

MAPE(%) 109.60 ± 0.28 63.90 ± 4.44 279.89 ± 61.60 90.05 ± 7.98 86.17 ± 0.27 80.07 ± 9.65 58.53 ± 2.38

BOL

MAE 33.38 ± 0.12 35.32 ± 0.68 45.53 ± 0.92 42.42 ± 0.09 44.03 ± 0.11 39.58 ± 2.22 34.94 ± 0.49

RMSE 93.57 ± 0.67 93.44 ± 2.09 106.98 ± 0.01 102.71 ± 0.26 105.61 ± 0.31 97.56 ± 0.15 92.74 ± 0.59

MAPE(%) 23.09 ± 0.63 22.13 ± 0.46 33.86 ± 1.51 38.07 ± 0.13 33.57 ± 0.61 27.38 ± 1.10 22.27 ± 0.29

BOD

MAE 84.17 ± 0.76 78.48 ± 2.18 234.94 ± 3.51 78.76 ± 0.01 87.29 ± 0.40 91.20 ± 1.25 109.35 ± 1.40

RMSE 138.13 ± 1.65 125.87 ± 0.23 312.43 ± 6.74 122.38 ± 0.08 131.87 ± 0.90 139.59 ± 1.34 173.27 ± 0.92

MAPE(%) 44.29 ± 0.82 41.19 ± 1.49 278.32 ± 1.47 54.23 ± 0.18 59.39 ± 0.18 73.00 ± 2.49 74.25 ± 5.28

BRE

MAE 57.33 ± 0.09 59.38 ± 0.08 OOM 68.48 ± 0.01 64.98 ± 0.09 58.62 ± 0.06 58.05 ± 0.39

RMSE 95.67 ± 0.22 98.02 ± 0.06 OOM 111.31 ± 0.02 103.81 ± 0.10 96.37 ± 0.06 96.10 ± 0.84

MAPE(%) 36.89 ± 0.01 35.19 ± 0.34 OOM 45.77 ± 0.22 44.95 ± 0.13 38.23 ± 0.29 36.70 ± 0.29

KN

MAE OOM 52.98 ± 1.36 116.61 ± 0.23 42.78 ± 0.05 44.75 ± 0.24 49.44 ± 0.46 57.22 ± 1.96

RMSE OOM 83.22 ± 0.84 149.74 ± 0.66 67.32 ± 0.14 65.83 ± 0.35 79.03 ± 0.50 86.98 ± 2.16

MAPE(%) OOM 54.05 ± 3.83 297.19 ± 1.49 70.57 ± 0.27 77.29 ± 3.06 61.92 ± 1.39 89.88 ± 6.97

DA

MAE 56.88 ± 0.01 56.19 ± 0.15 OOM 59.55 ± 0.01 61.34 ± 0.24 57.52 ± 0.40 57.85 ± 0.09

RMSE 88.16 ± 0.02 86.45 ± 0.70 OOM 90.81 ± 0.06 90.98 ± 0.34 87.83 ± 1.01 90.13 ± 0.16

MAPE(%) 53.29 ± 0.09 54.39 ± 6.00 OOM 57.20 ± 0.02 66.56 ± 0.19 55.03 ± 0.35 52.07 ± 0.04

ESS

MAE 44.08 ± 0.27 44.91 ± 0.32 179.03 ± 1.10 62.74 ± 0.04 49.97 ± 0.14 41.68 ± 0.05 41.42 ± 0.27

RMSE 65.43 ± 0.68 67.98 ± 0.93 232.52 ± 0.26 92.85 ± 0.16 73.19 ± 0.40 62.40 ± 0.24 63.04 ± 0.50

MAPE(%) 35.95 ± 1.15 49.74 ± 5.81 308.94 ± 8.39 55.33 ± 1.11 48.59 ± 1.21 37.57 ± 0.39 38.41 ± 2.97

FRA

MAE 205.72 ± 0.83 205.31 ± 22.15 168.51 ± 1.59 109.03 ± 36.74 132.32 ± 1.38 250.59 ± 11.89 386.51 ± 26.96

RMSE 238.54 ± 0.79 234.38 ± 24.27 209.58 ± 0.03 132.51 ± 38.23 165.66 ± 0.15 282.51 ± 11.51 408.51 ± 27.19

MAPE(%) 73.26 ± 0.25 70.54 ± 5.11 55.50 ± 0.97 35.27 ± 11.29 41.22 ± 0.39 85.66 ± 5.06 132.85 ± 10.28

GRZ

MAE 63.46 ± 0.17 57.03 ± 0.76 191.54 ± 0.00 71.93 ± 0.01 63.14 ± 0.03 62.37 ± 0.78 59.51 ± 0.28

RMSE 95.67 ± 0.07 83.99 ± 0.61 241.77 ± 0.00 103.75 ± 0.01 91.38 ± 0.00 92.58 ± 0.82 95.09 ± 0.61

MAPE(%) 109.30 ± 3.51 77.93 ± 5.43 460.74 ± 0.00 81.48 ± 0.13 78.44 ± 0.27 70.16 ± 4.58 77.40 ± 2.29

GRQ

MAE 77.05 ± 0.27 72.08 ± 3.04 150.91 ± 0.00 72.34 ± 1.76 83.37 ± 2.14 72.33 ± 0.77 82.93 ± 6.04

RMSE 104.16 ± 0.05 98.38 ± 2.63 205.49 ± 0.00 100.03 ± 0.44 115.72 ± 2.69 100.25 ± 0.83 110.28 ± 7.48

MAPE(%) 41.63 ± 0.69 35.60 ± 1.85 117.24 ± 0.00 44.18 ± 2.38 46.94 ± 1.33 38.69 ± 0.88 45.80 ± 2.96

HAM

MAE 47.08 ± 0.23 45.88 ± 0.41 97.51 ± 0.59 48.97 ± 0.02 49.77 ± 0.01 45.35 ± 0.05 46.06 ± 0.01

RMSE 80.67 ± 0.53 78.49 ± 1.08 150.82 ± 2.57 84.20 ± 0.08 83.90 ± 0.06 77.70 ± 0.01 82.77 ± 2.08

MAPE(%) 45.78 ± 0.83 44.31 ± 3.07 111.41 ± 4.58 52.32 ± 0.20 53.06 ± 0.21 44.81 ± 0.31 45.29 ± 0.06

INN

MAE 75.51 ± 0.80 72.05 ± 0.00 347.11 ± 2.98 106.94 ± 0.00 80.50 ± 1.00 69.08 ± 0.43 OOM

RMSE 110.87 ± 0.65 106.99 ± 0.06 464.48 ± 8.39 173.49 ± 0.15 117.77 ± 1.61 100.59 ± 0.79 OOM

MAPE(%) 31.27 ± 1.22 36.38 ± 0.72 300.48 ± 37.49 46.75 ± 0.75 34.23 ± 0.15 27.74 ± 0.06 OOM

KS

MAE 97.97 ± 0.72 103.19 ± 5.03 227.96 ± 0.00 78.86 ± 14.60 104.59 ± 1.19 80.04 ± 0.72 224.87 ± 1.62

RMSE 244.74 ± 0.48 244.15 ± 6.33 332.77 ± 0.00 188.64 ± 2.13 209.20 ± 1.15 195.69 ± 0.26 314.80 ± 4.13

MAPE(%) 143.62 ± 1.84 156.53 ± 13.18 433.64 ± 0.00 110.39 ± 41.23 162.29 ± 2.84 109.72 ± 2.55 407.04 ± 1.53
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MAN

MAE 117.20 ± 2.55 109.56 ± 2.55 336.84 ± 0.00 103.86 ± 9.84 123.20 ± 0.27 107.88 ± 1.14 107.97 ± 2.60

RMSE 196.04 ± 4.11 190.75 ± 4.72 450.82 ± 0.00 173.23 ± 12.91 198.08 ± 0.51 181.98 ± 4.00 186.65 ± 3.39

MAPE(%) 47.38 ± 0.86 45.64 ± 2.89 278.97 ± 0.00 46.64 ± 3.55 60.39 ± 0.14 44.84 ± 1.22 47.02 ± 1.75

MEL

MAE 64.79 ± 0.03 54.63 ± 4.48 OOM 87.95 ± 1.60 67.32 ± 0.31 69.54 ± 1.08 56.73 ± 0.94

RMSE 101.09 ± 0.06 81.23 ± 6.52 OOM 127.60 ± 1.41 97.39 ± 0.04 105.83 ± 1.53 87.59 ± 0.91

MAPE(%) 55.34 ± 0.02 49.10 ± 5.14 OOM 103.87 ± 4.79 70.74 ± 1.14 47.17 ± 0.20 50.21 ± 0.12

RTM

MAE 57.11 ± 0.15 58.08 ± 1.24 189.90 ± 0.00 85.30 ± 0.50 82.23 ± 0.36 85.20 ± 1.78 65.01 ± 0.31

RMSE 99.90 ± 0.34 98.98 ± 0.53 250.70 ± 0.00 141.23 ± 0.46 128.17 ± 0.09 136.93 ± 2.26 110.64 ± 0.98

MAPE(%) 43.47 ± 0.63 55.83 ± 11.21 373.03 ± 0.00 65.00 ± 0.87 76.28 ± 0.17 62.30 ± 2.15 46.88 ± 1.28

SDR

MAE 121.60 ± 0.24 129.77 ± 6.53 272.16 ± 0.00 120.00 ± 0.03 152.27 ± 0.77 104.78 ± 0.34 119.57 ± 0.47

RMSE 278.70 ± 0.41 279.99 ± 1.64 440.08 ± 0.00 262.91 ± 0.01 284.60 ± 0.05 249.10 ± 0.76 274.87 ± 3.75

MAPE(%) 67.07 ± 2.54 92.03 ± 14.14 301.72 ± 0.00 68.81 ± 0.28 119.83 ± 1.98 58.89 ± 5.49 55.51 ± 0.36

SP

MAE 49.26 ± 0.11 48.39 ± 0.19 122.84 ± 4.61 55.70 ± 0.01 54.59 ± 0.03 49.12 ± 0.17 48.70 ± 0.25

RMSE 70.97 ± 0.13 69.48 ± 0.62 175.83 ± 13.31 79.94 ± 0.01 77.28 ± 0.03 70.95 ± 0.34 70.28 ± 0.31

MAPE(%) 39.90 ± 0.46 38.25 ± 1.95 102.22 ± 24.13 47.80 ± 0.10 46.68 ± 0.32 38.51 ± 0.41 37.52 ± 0.37

SXB

MAE 80.33 ± 0.24 78.32 ± 0.23 262.40 ± 0.00 94.09 ± 0.05 89.88 ± 0.17 80.19 ± 0.36 78.71 ± 0.29

RMSE 142.42 ± 0.73 139.91 ± 0.95 363.49 ± 0.00 162.33 ± 0.05 156.75 ± 0.32 141.91 ± 0.63 141.32 ± 0.36

MAPE(%) 40.29 ± 0.54 38.22 ± 0.97 223.27 ± 0.00 51.18 ± 0.37 49.09 ± 0.17 40.96 ± 0.76 37.89 ± 0.11

STR

MAE 61.10 ± 0.38 57.78 ± 0.84 71.86 ± 5.01 73.59 ± 0.94 68.30 ± 0.33 56.40 ± 0.08 OOM

RMSE 81.05 ± 0.55 74.94 ± 1.18 96.17 ± 7.97 96.18 ± 1.48 90.50 ± 0.70 73.46 ± 0.06 OOM

MAPE(%) 22.32 ± 0.19 21.28 ± 1.87 25.56 ± 2.23 30.23 ± 0.66 25.02 ± 1.17 20.36 ± 0.09 OOM

TPE

MAE 147.54 ± 0.61 140.98 ± 2.89 499.95 ± 8.83 163.96 ± 0.02 168.31 ± 0.17 142.71 ± 0.55 142.86 ± 1.83

RMSE 670.14 ± 0.45 671.29 ± 2.58 996.04 ± 7.32 726.80 ± 0.40 726.73 ± 1.06 666.42 ± 0.36 678.02 ± 3.41

MAPE(%) 54.90 ± 0.81 47.50 ± 4.82 280.63 ± 13.88 52.22 ± 0.17 60.40 ± 0.77 45.94 ± 2.11 44.89 ± 0.61

TO

MAE 104.21 ± 0.69 92.97 ± 2.72 319.07 ± 5.97 106.30 ± 0.02 105.57 ± 0.66 139.93 ± 0.61 133.21 ± 1.02

RMSE 178.09 ± 1.38 154.59 ± 2.71 424.02 ± 8.74 182.49 ± 0.32 167.92 ± 0.92 231.65 ± 2.32 221.49 ± 0.33

MAPE(%) 67.26 ± 0.52 51.82 ± 1.26 400.37 ± 6.15 59.46 ± 1.38 69.03 ± 0.16 82.81 ± 0.41 87.58 ± 0.12

YTO

MAE 57.16 ± 0.24 56.66 ± 1.67 173.86 ± 9.18 125.57 ± 0.08 74.96 ± 1.04 70.85 ± 0.31 60.80 ± 0.21

RMSE 94.09 ± 0.11 90.75 ± 1.41 253.42 ± 9.38 191.73 ± 0.25 114.34 ± 1.97 115.62 ± 0.60 100.24 ± 0.45

MAPE(%) 44.91 ± 1.53 43.39 ± 4.12 128.97 ± 45.99 110.73 ± 1.97 73.18 ± 1.56 44.39 ± 0.43 43.66 ± 0.17

TLS

MAE 257.57 ± 0.47 255.17 ± 0.18 264.44 ± 6.13 264.06 ± 0.00 298.73 ± 0.16 255.11 ± 0.01 257.76 ± 0.30

RMSE 348.95 ± 1.83 342.20 ± 1.02 352.99 ± 9.76 348.31 ± 0.02 408.17 ± 0.23 340.28 ± 0.14 346.83 ± 0.97

MAPE(%) 746.15 ± 8.05 758.84 ± 36.31 791.75 ± 78.81 867.12 ± 0.77 842.35 ± 8.43 745.07 ± 5.77 746.42 ± 0.82

UTC

MAE OOM 55.13 ± 4.47 OOM 57.76 ± 0.72 73.45 ± 1.74 73.81 ± 0.57 40.36 ± 0.11

RMSE OOM 89.55 ± 1.67 OOM 97.52 ± 1.24 109.98 ± 1.82 123.95 ± 2.23 75.86 ± 0.31

MAPE(%) OOM 80.70 ± 18.35 OOM 64.93 ± 0.77 105.19 ± 2.55 93.66 ± 5.16 40.85 ± 2.82

VNO

MAE 96.16 ± 0.15 91.31 ± 0.19 OOM 81.71 ± 4.58 98.47 ± 0.10 80.01 ± 0.59 105.63 ± 1.55

RMSE 130.79 ± 0.34 124.11 ± 0.44 OOM 111.45 ± 2.76 131.28 ± 0.02 109.93 ± 0.18 141.02 ± 1.91

MAPE(%) 63.46 ± 0.21 58.74 ± 1.31 OOM 47.91 ± 8.96 60.49 ± 0.08 46.17 ± 1.50 77.00 ± 2.31

WOB

MAE 56.73 ± 0.26 53.73 ± 0.93 65.57 ± 0.76 69.50 ± 0.05 61.35 ± 0.11 57.82 ± 0.18 56.30 ± 0.43

RMSE 90.97 ± 0.48 83.48 ± 2.09 104.61 ± 1.31 111.82 ± 0.01 92.81 ± 0.13 91.64 ± 0.05 89.31 ± 0.69

MAPE(%) 42.48 ± 1.04 41.16 ± 3.01 53.82 ± 1.86 55.70 ± 0.59 54.53 ± 0.12 44.75 ± 0.61 43.14 ± 1.57

ZRH

MAE OOM 56.73 ± 0.03 OOM 65.62 ± 0.00 65.29 ± 0.20 61.77 ± 4.83 54.71 ± 0.20

RMSE OOM 80.80 ± 0.23 OOM 94.06 ± 0.01 91.54 ± 0.20 88.03 ± 6.88 77.75 ± 0.44

MAPE(%) OOM 36.22 ± 0.43 OOM 47.73 ± 0.13 48.20 ± 0.21 46.66 ± 8.57 35.87 ± 0.06

E LIMITATIONS

• Data quality needs more researchers to verify. Due to the fact that OpenStreetMap is a free,
open geographic database updated and maintained by a community of volunteers, the raw data
from OSM has not been thoroughly validated. Thus, we need more researchers from academia and
industries to join us to improve the data quality.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

• Application-unique APIs need more researchers to develop. Although we have released the
basic APIs for querying and processing the data which can be used for massive applications,
each application may require further unique processing steps. Thus, we kindly encourage more
researchers to contribute to the OSM+ dataset, processing tools and downstream applications.
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