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1. Introduction

Children’s language production is often more regular than their input. For
example, after hearing an artificial language that contains unpredictable variability,
children learn a grammar that is more deterministic and produces less variability
than what they heard [15, 14]. Given the overwhelming evidence that children are
sensitive to the statistical properties of their input while learning language (e.g.
Saffran et al. [28]), it is surprising to find cases in which they do not adhere to
those statistical properties. Children’s regularization behavior is robust to both the
amount of variability and the number of variants present in the artificial language,
and it contrasts with the behavior of adults, who tend to learn a grammar that
closely matches the statistics of their input [15, 14].

In this paper we focus on a case study by Singleton and Newport [29], who
found similar regularization behavior in a naturalistic setting. They looked at Simon,
a deaf child of non-native American Sign Language (ASL) speaking parents. At
the time of the study, Simon’s parents were the only speakers of ASL in his town,
and so Simon likely had no access to native ASL input. Simon’s parents’ ASL
production was significantly more variable than a control group of native ASL
speakers. Despite having more variability in his input, Simon performed similarly
to children of native ASL speakers on a collection of ASL production tasks.

We propose that this type of regularization behavior arises through a noisy
channel assumption that children make during learning. Specifically, we propose
that they assume some portions of their input are signal and other portions are noise
with respect to the learning problem at hand. They then filter out the noise data
points during the learning process and acquire grammars consistent with only the
remaining signal input [24, 26]. The intuition is that if children filter out all of the
low-frequency variants of a grammatical item that varies unpredictably, then they
learn a grammar that disallows those variants, effectively regularizing their input.
We implement a learning model that incorporates this noisy channel assumption
and show that our simulated learner regularizes its input.
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2. Noisy Channel Models

Noisy channel models assume that some of their input might be noise rather
than signal generated by the source of the communication. They have to determine
which parts of their input are noise that should be filtered out and ignored, and
which are signal that should be used to accomplish the task at hand (in this case,
language learning). Without prior knowledge about which parts of the input are
noise, noisy channel models decide what is signal and what is noise by considering
how likely a set of signal inputs is under a model of how the signal was generated.

A number of noisy channel models have been proposed to explain human
language processing, where each sentence or segment of speech that a listener
perceives is assumed to have been corrupted by a noise process. These models
have captured diverse phenomena in language processing ranging from categor-
ical perception of speech sounds [9, 18] to local coherence effects in sentence
processing [20, 21] to the use of sentence fragments in conversation [3].

More recently, Perkins et al. [26] proposed a noisy channel model for explain-
ing how children learn certain aspects of linguistic structure. The authors started
from the basic observation that children may misparse portions of their input before
they have acquired a fully adult-like grammar [27, 11, 23]. This means that children
could internally experience a mix of well-parsed “signal” and misparsed “noise” at
early stages of grammar learning. Perkins et. al. hypothesized that children might
learn from this mixture of signal and noise by assuming that some proportion of
their input was generated by a noise process, and filtering out that noise. They
found that a noisy channel model of input filtering learned more accurately than a
baseline model that did not filter its input.

If children use a noisy channel-like input filtering mechanism to filter mis-
parses—that is, to filter noise from their infake [22]—it is natural to ask whether
they might also use that same mechanism to filter unpredictable variability in their
input. Here we use the model from Perkins et. al. [26] to learn from non-native
input, and ask whether the model shows the type of regularization behavior that has
been observed in children like Simon [29], who experience unpredictable variation
in their input from non-native speakers.

3. Case Study: English Determiner Agreement

Our case study in modeling children’s regularization from non-native input
looks at English determiner agreement. Simon was an ASL learner and was tested
on ASL grammatical morphemes, so to best simulate his learning environment,
the noisy channel model would have been provided with child-directed non-native
ASL. However, large ASL corpora of any kind were not available for the model to
learn from, whereas corpora of texts written by late learners of English are readily
available. We chose to look at English determiner agreement because non-native
speakers of English often make errors in determiner agreement [16], providing a
source of variation that children of non-native speakers would need to filter.
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Table 1: Determiners tested in this study. Checkmarks indicate the noun types that
can be used with each class of determiner. We only considered determiners that
were used often enough in the input corpora, and as a result of this filtering, no
determiners in our study are in the class that can be used only with mass nouns,
although determiners in this class do exist (e.g. much).

Singular | Plural Mass Class Determiners tested
(dog) (cats) | (water)
a-class a, an, another, each, every
v these-class both, these, those
v v which-class which!
v much-class
v v this-class this, that
v v all-class all
v v v the-class any, no, some, the, what

In this study we considered the case of number and countability in the English
determiner system, i.e., whether a particular determiner can occur with mass vs.
count nouns, and singulars vs. plurals. For example, that can be used with only
singular and mass nouns: we can say that dog and that water, but not *that cats.
Because the singular/plural distinction only occurs in the count domain, there are
in principle seven possible classes of determiners that allow different patterns of
combination with singular, plural, and mass nouns (Table 1). Our question is how
a learner can identify, for each determiner in the input, the class that it belongs
to. For the purposes of this discussion, we abstract away from questions of how
number and countability are represented in the grammar, and in particular the
treatment of plurals vs. mass nouns [6, 19].

4. Input Filtering Model

Our Bayesian noisy channel model assumes that its inputs are a mixture of
signal and noise. It consists of a generative model, which encodes assumptions
about how this mixture of signal and noise is generated, and an inference process
to recover parameters of the generating process based on observed data.

Our learning model observes determiner-noun type pairs. That is, in this model
we make the assumption that learners can (imperfectly) determine the number and
countability of the nouns used with each determiner. When and how children
identify these noun properties is a topic of debate in the literature (e.g., [5, 12,
4], but recent findings suggest that even very young learners are sensitive to the

I'The authors had differing judgments on whether which can be used with mass nouns,
but in this study we assume it cannot. Some approaches have argued for a typology of
determiners that rules out determiners in one or more of these classes [6]; we leave for future
work the question of what differences in learning such an approach would imply.
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conceptual correlates of singular vs. plural and mass vs. count [8, 7, 31, 30]. It is
therefore possible that children have some approximate knowledge of noun number
and countability while learning determiner agreement.

The signal process uses the grammar to generate these determiner-noun type
pairs. For each determiner, the grammar specifies which noun types it can be used
with, and the frequency with which it occurs with each noun type. For example,
this can be used with both singular and mass nouns, but in our corpora this is used
much more often with singular nouns than mass nouns.

The model also assumes that some of its input was generated by a noise
process, and thus might be ungrammatical. The model assumes there is a noise
rate which governs what proportion of observations are generated by the noise
process instead of the grammar. If an observation is generated from noise, the type
of the noun is generated according to the characteristics of the noise instead of the
characteristics of the grammar.

The signal and noise processes operate in parallel, generating a mixture of
signal and noise as the model’s input. The model does not know a priori if any
particular observation was signal or noise while learning the parameters of the
grammar. To resolve this, the model performs statistical inference to infer both the
grammar and noise parameters simultaneously. It learns which noun types each
determiner can occur with in the grammar, how often noise occurs, and with what
proportion those noise instances will be each noun type.

Within the inference procedure, the model considers every partition of the
observations of each determiner into signal and noise. If a partition assigns no
usages of the determiner with nouns of certain types as signal (e.g., no usages of
this with plural nouns are inferred to be signal, all are inferred to be noise), then
that partition is consistent with more deterministic determiner classes (in this case,
classes that disallow plural nouns). Considering all possible partitions allows the
model to infer that determiners belong to more restrictive classes, even when it
observes those determiners occurring in the input with all three noun types.

4.1. Generative Model

The generative model describes the learning model’s assumptions about how
determiner-noun type pairs in the input are generated. A specific observation of the
type of a noun used with determiner d is represented by the random variable X ().
Each observation is drawn from either the distribution of noun types generated by
the grammar or the distribution of noun types generated by the noise process.

The signal process starts with the determiner’s class. For each determiner
d, the set of allowed noun types is represented by ald) = (Ocl(d), Ocz(d), aéd)>, a
three dimensional vector of binary random variables. otl(d) =1 if determiner d

can be used with singular nouns, aéd) = 1 if d can be used with plural nouns, and

a3(d> = 1 if d can be used with mass nouns. The model assumes that &(¢) is drawn
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from a uniform distribution with % probability for each determiner class. There
is a specific distribution over noun types that governs the frequency with which
determiner d is observed with each noun type represented by the random variable

6@ = (Gl(d), 92(d>, 93(d)). 6(@) is drawn from a modified Dirichlet distribution with

(d) ()

& as its parameters. This distribution sets 8;"" = 0 when ¢;;"’ = 0 and otherwise

samples the remaining components of 6@ according to a Dirichlet distribution.
This means that under 6(), noun types disallowed by the determiner class will
never occur, and allowed noun types can occur together with any combination of
proportions. Because all non-zero Ocl-(d)
with @@ is equally likely.

The model further assumes that each observation might have been generated
by the noise process instead of the signal process. This is represented by a binary
random variable e per observation that is 1 if that observation is noise and 0
otherwise. The probability of X (@) being generated by the noise process (P(e=1))
is the value of a random variable €, which the model assumes is drawn from the
uniform distribution between 0 and 1. e is thus drawn from a Bernoulli distribution
with parameter €. When e = 0, that observation X (@) is drawn from a categorical
distribution with parameter 6(@. When e = 1, the observation X @ is instead drawn

=1, each value of 6@ that is consistent

from a categorical distribution of noise with parameter 5= (81,02, 03) which has
the same structure as 6(@). Our model assumes that & is sampled from a uniform
prior distribution, Dirichlet(1,1,1), so that all possible noise distributions over
singular, plural, and mass nouns are equally likely a priori.

We collapse the observations X (4) into a vector of counts of how often each

@) 1)

determiner was used with each noun type k(@) = (kgd),k2 ,k37). The total number

of observations n(¢) and the count of observations by noun type k@ can be split
into the number and type counts of observations generated by the grammar, nld+
and ¥t and number and type counts of observations generated by the noise
process, n(9)~ and k@~ In this view, the number of observations generated by
the noise process n(4)~ is sampled from a binomial distribution with parameters
n@ and €, and n(+ is fixed as n?) — n(9)~. The observations generated by the
grammar KD+ are then sampled from a multinomial distribution with parameters
n@+ and 6@ and the observations generated by the noise process are sampled
from a multinomial distribution with parameters n@= and §.

4.2. Inference

Given the observed counts k(@) for each determiner, the model uses Gibbs
sampling to jointly infer the class of each determiner &%), the rate of noise €, and
the characteristics of noise 6 integrating over the characteristics of signal 6@ and
the noise counts k(@) =

The noise parameters € and § are initialized randomly. To sample @@ given
€ and 8, the exact probabilities of each of the seven possible values of &(?) given
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these noise parameters are computed for all determiners according to Bayes’ rule
(superscripts per determiner are omitted from here onward),

P(alfk,e,8,n) =

P(k|a,e,8,n)P(dle, s,
(s 3 r(@le ) 0

,8.n)P(8€,5,n)

and new values of & are sampled for each determiner. After sampling all &, a new
value of € is sampled using ten iterations of Metropolis-Hastings sampling

P(elk, @, 8,n) < P(K|di, ,8,n)P(e|, 8,n) 2)

followed by a new value of 5 also sampled with ten iterations of Metropolis-
Hastings sampling

P(8|k,a,€,n) = P(k|ti,€,8,n)P(8|Q,¢€,n) 3)

These sampling steps are repeated for 1000 iterations of Gibbs sampling.

The priors P(&|g,8,n), P(€|&,8,n), and P(8|@, €, n) are all uniform, and the
likelihood P(H(fc, €, 5 ,n) in Equations (1) to (3) can be calculated by first consider-
ing each possible number of observations generated by the noise process n~ and
then further considering each possible way to attribute n~ of the observations in k
as noise and n™" as signal

P(Kle,e,8,n)= Y P(n |e,n) Y PG |8,n7)P(kF|c,n") 4)
n==0 k-ek-

where K~ is the set of values that X~ can take that are consistent with ¢,n", and k.
This likelihood is

. o no (M) (1) n- kT oky oky
P(d.e,0.m) = ), ()—WZ (k K k>5ll R

nt

5. Simulations

We conducted two simulations in which the model jointly inferred the class of
each determiner, the noise rate, and the characteristics of the noise.2 In Simula-
tion 1, the model inferred these based on counts of how often determiners were used
with each noun type in a non-native English corpus to simulate a child learning
exclusively from non-native input like Simon. In Simulation 2, the model inferred
the same parameters based on counts from a native English corpus, simulating
children learning from native input like Simon’s peers.

2Model inputs and code are available at https://github.com/jordan-schneider/input-filter.
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5.1. Corpora and Preprocessing

Each simulation requires a corpus to model the learning environment of the
children being simulated. The non-native corpus was the EFCAMDAT 2 corpus [13,
10], a corpus of text written for an online course for learning English. This corpus
was chosen because it was large and had been annotated with errors, allowing
us to compute the rates at which various grammatical phenomena were produced
erroneously. We note that this corpus provides an imperfect model of a child’s
learning environment, which would ideally use a corpus of child-directed speech;
however, we were unaware of a suitably large and annotated corpus of child-
directed non-native English at the time of writing.

The native corpus was the ENRON corpus [17], a corpus of emails written by
employees of the ENRON corporation. This corpus was chosen over other larger
corpora because like the EFCAMDAT corpus, the ENRON corpus is primarily
business English. Although it is not certain that all text in the ENRON corpus was
written by native English speakers, there are twice as many (2.03% vs. 1.02%)
ungrammatical determiner-noun pairs in the EFCAMDAT corpus compared to the
ENRON corpus, and so the relative ordering between the corpora and the learning
environments of the children in the Simon case study [29] is preserved.

Determiner-noun pairs were extracted from each corpus. The corpora were
first cleaned by removing URLs, emails addresses, formatting marks, and other
text that interfered with parsing. Next, part of speech and dependency parses of
each corpus were produced using a pre-trained SyntaxNet parser [1]. From these
parses, all determiner-noun pairs in each corpus were extracted. Additionally,
SyntaxNet identified plural nouns. Nouns with null determiners were ignored. For
each remaining noun that was not identified as plural, a noun type was assigned by
referencing the CELEX?2 database [2]. If that noun had definitions in CELEX as a
mass noun and none as a singular, then that noun was marked as mass. All nouns
that had at least one singular definition were marked as singular. Using automated
methods, it was not possible to tell whether a noun that could be singular was being
used as singular or mass in any given instance; this contributed an additional source
of noise to the model. This issue is further compounded by the fact that nouns with
only singular definitions in CELEX can sometimes be used as mass nouns; e.g.
tomato is normally a count noun but has a mass reading in Tomato was splattered
on the wall. This noise was present in both the native and non-native corpora.

Finally, the counts of how often each determiner was used with each noun
type were aggregated, resulting in quadruplets like (both, 1452 singular nouns, 873
plural nouns, 262 mass nouns). Any determiner whose total count in either corpus
was under 500 instances was omitted. These counts were then downsampled by
taking the logarithm of each count, then normalizing all log-counts so the total input
size was 5000 determiner-noun type pairs. The log-weight was used to compensate
for the unbalanced distribution of determiners; specifically, the comprised 49%
of all determiners in the EFCAMDAT corpus and 55% of all determiners in the
ENRON corpus.
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Figure 1: How many determiners allow one, two, or three noun types under the
gold standard, and under the determiner class inferred by a non-filtering baseline
and by the filtering model trained on the non-native corpus and the native corpora.
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5.2. Simulation 1: Learning from Non-native English

The primary goal of this study is to suggest an input filtering mechanism to
model regularization. We test if our model can regularize by comparing its output
to that of a non-filtering baseline, and to a set of gold-standard determiner classes
specified by the authors (as given in Table 1). Specifically, we ask how often the
inferred determiner classes allow one, two, or all three noun types. For example,
the allows all three types, this allows two (singular and mass), and a allows one
(singular). The raw output of the model is a probability that each determiner is in
each of the seven determiner classes, but for this analysis we say that a determiner
is in the class with the highest probability under our model. The fewer noun types
allowed by the class, the fewer noun types will be produced after learning, and so
the more regular the language production will be under the acquired class.

Figure 1 shows how often our model and the non-filtering baseline inferred
determiner classes that allow each number of noun types, as well as the number
of noun types in the gold-standard. Larger bars for the classes that allow only one
or two noun types indicate more deterministic acquired classes, in aggregate. The
non-filtering baseline (Figure 1b) observes all determiners with all noun types, does
not filter any of those observations, and so infers that all determiners can be used
with all noun types. Since our model (Figure 1c¢) and the gold-standard (Figure 1a)
both assign some determiners to classes that allow one or two noun types, they are
both more deterministic than the non-filtering baseline. Our model is slightly more
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deterministic than the gold-standard since it infers that more determiners can be
used with both one (49% vs. 47%) and two (25% vs. 24%) noun types, and fewer
determiners can be used with all three noun types (26% vs. 29%). This means that,
in aggregate, our model not only regularizes, but slightly over-regularizes.

We are also interested in determining if our model succeeds in its job as a noisy
channel model: does it separate signal from noise? We can answer this question
by comparing the determiner classes inferred by our model to the gold-standard
determiner classes. If the model assigns the highest probability to the gold-standard
determiner class, then it filtered the disallowed noun types as noise, and did not
filter the allowed noun types. We compare the accuracy of our model relative to
this gold-standard to the accuracy of a learner that guessed each determiner class
uniformly, and the accuracy of the non-filtering baseline. Figure 2 shows that our
model acquired the gold-standard class for ten of the 17 determiners (59%). This is
well above the accuracy of both the random baseline of one in seven correct (14%),
and the non-filtering baseline, which infers that all determiners can be used with all
three noun types, yielding five in 17 correct (29%). This indicates that the model is
effectively separating signal from noise.

Model Performance on Non-native Input
Chance
I Correct

B ncorrect

Figure 2: The posterior probability assigned to the correct and incorrect determiner
classes for each determiner in Simulation 1. On the x-axis are all the determiners
in the study grouped by the gold-standard determiner class. Black bars represent
the posterior probability the model assigned to the correct class for that determiner,
and dark grey bars represent the sum of the probabilities the model assigned to
the incorrect determiner classes. A light grey horizontal line marks the chance
probability of one in seven that guessing uniformly at random would achieve.
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Figure 2 aggregates the probability assigned to all incorrect classes, but looking
at the probability of each category individually can provide insight into why the
model regularized and what kind of mistakes the model made. Figure 3 show
these probabilities for the, which, and both. In Figure 3a, the model assigns
56% probability to the correct determiner classes for the, which allows all three
noun types. However, in other cases, the model made mistakes by over- or under-
regularizing its input. For example, that can occur with both singular and mass
nouns. However, Figure 3b shows that the model assigned the most probability
to the class that allows only singular nouns, implying that it interpreted the mass
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usages of that as noise. The incorrect determiner class that the model learned was
more deterministic than the gold-standard determiner class. Figure 3c shows that
the model made the opposite mistake with both. Both can only occur with plural
nouns, but the model assigned a 94% probability that both can occur with all noun
types. In this case, the model failed to filter out the noise singular and mass nouns
and so learned a less deterministic determiner class than the gold-standard. Of the
seven determiners for which the model disagreed with the gold standard, three are
under-regularized and four are over-regularized.

Acquired Determiner Class of Acquired Determiner Class of Acquired Determiner Class of
the that both

1 00
B [ncorrect ,6 ” 5 B [ncorrect
I Correct I Correct
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E100
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I Correct
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Figure 3: The probability assigned by the model to each determiner class for the,
that, and both. On the x-axis are the seven possible determiner classes, labeled by
an example determiner in that class. On the y-axis is the posterior probability the
model assigned to each of the determiner classes after training on the non-native
dataset. The correct class is in black.

The model’s inferred noise parameters are difficult to interpret but are pre-
sented for later comparison. The mean noise rate sampled was 15%, and the mean
noise characteristics would generate noise as 47% singular, 26% plural, and 26%
mass nouns. Although the corpus has only 2% ungrammatical determiners, we
cannot say that the 15% overall noise rate is inappropriate as the model’s noise rate
includes observations generated by the noise process that happen to be grammatical
by chance. Additionally, it is plausible that the risk of being misled by noise is
greater than the benefit to learning from having additional input to learn from,
causing children to prefer to over-filter early in learning. Further study is necessary
to evaluate the appropriateness of these noise parameters.

Our results show that our noisy channel model regularized its input and learned
accurate determiner classes compared to a baseline, behaving qualitatively like
Simon in the Singleton & Newport case study [29]. We cannot directly compare
our results to Simon’s behavior because the learning environments and tasks were
not matched. But qualitatively, Simon and our model were both given variable
input and, relative to that input, produced more regular language and a more regular
grammar respectively. Overall, our first simulation provides evidence that noisy
channel models regularize similarly to children learning from non-native input.

Although we have demonstrated that our model can regularize like Simon, we
have yet to show that our model is similar to Simon in performing just as well as
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the children of native speakers. To test this we ran a second simulation in which
our model was given native English input. If our model were like Simon, then
it would perform similarly well after learning from both native and non-native
input, suggesting that an input filtering mechanism could fully explain Simon’s
performance. If our model performed differently on native input and non-native
input, then it would be unlike Simon in this regard. This may indicate that Simon
is using another mechanism in addition to an input filter, or that our simulation
does not accurately imitate Simon’s learning environment.

Model Performance on Native Input

Chance
I Correct

N [ncorrect
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Figure 4: The model learns the gold-standard determiner classes of those, this,
that, and what in addition to those in Simulation 1. The model did not learn the
gold-standard properties for every and all despite doing so in Simulation 1. Overall
the model is more accurate when learning from native input.

5.3. Simulation 2: Learning from Native English

We evaluate if our model performed similarly when learning from native and
non-native input using the regularity and accuracy measures from Simulation 1.
We found that our model regularized its input to a lesser extent when learning from
native English input than when learning from non-native input, and acquired more
accurate determiner classes overall. This indicates that our model is not like Simon
in learning a native-like grammar from non-native input.

Using the same regularity metric as in Section 5.2, Figure 1 shows that in
Simulation 2 the model (Figure 1d) regularized its input much more than a non-
filtering baseline (Figure 1b) again because the model infers that many determiners
can be used with only one or two noun types. However, the model regularized less
than it did in Simulation 1 (Figure 1c), inferring that fewer determiners can be used
with one noun type (36% vs. 49%), roughly the same can be used with two noun
types (26% vs. 25%), and more can be used with all three noun types (38% vs.
26%). The noisy channel model regularizes regardless of its input, but when there
is less noise to filter, the model regularizes less.

This difference in regularization comes with an increase in the accuracy of the
acquired determiner classes. In Simulation 2, the model acquired the gold-standard
determiner class for 12 of 17 (70%) of determiners, well above both the chance and
non-filtering baselines of one in seven (14%) and five in 17 (29%), respectively.
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Comparing Figure 2 and Figure 4 shows that in Simulation 2, the model learns the
gold-standard determiner classes for those, this, that, and what in addition to all
determiners correctly learned in Simulation 1 except every and all. This, that, and
what all allow two or three noun types and were over-regularized by the model in
Simulation 1.

Where the model had a mix of under- and over-regularization mistakes in
Simulation 1, all five mistakes in Simulation 2 were due to under-regularization.
This can be explained as a consequence of the different amounts of noise present
in the native vs. non-native corpora. The model correctly learns that there is less
noise in the native corpus than the non-native corpus, inferring a distribution over
the noise rate with lower mean (12% in Simulation 2 corpus vs. 15% in Simulation
1) while the characteristics of the noise did not change much (56% singular, 18%
plural, and 25% mass in Simulation 2 vs. 47% singular, 26% plural, and 26%
mass in Simulation 1). This lower noise rate in turn increases the probability
that input was generated from the grammar and so the generative model assigns
higher probability to less deterministic determiner classes, which can generate
these examples through the signal process. In aggregate, the lower noise rate
caused the model to regularize less in Simulation 2 than in Simulation 1.

As our model regularized less and was more accurate when learning from
native input than from non-native input, it does not replicate Simon’s behavior of
acquiring a native-like grammar. We consider various reasons for this difference in
the discussion below.

6. Discussion

We tested whether a noisy channel model could account for the regularization
behavior seen in child language learners by applying the model to the problem
of learning the agreement behavior of determiners in English. Specifically, we
tested if a noisy channel model adapted from Perkins et al. [26] would regularize
input from non-native speakers of English, paralleling the behavior of a child of
non-native speakers of ASL in Singleton & Newport [29]. We found that, despite
all determiners occurring with all noun types in the input, the model acquired more
deterministic classes for 74% of determiners, demonstrating that noisy channel
models like ours can account for regularization.

Furthermore, the model acquired the gold standard determiner classes for ten
of the 17 determiners in its input, despite not being optimized for the accuracy of
its acquired determiner classes and never receiving feedback about its accuracy.
In addition to being able to account for child regularization behavior, the noisy
channel model also solves a variable input problem in an effective way so that
accurate learning can occur in the presence of statistical noise.

However, the model did not perfectly reproduce the findings of Singleton
& Newport [29]. In their case study, Simon’s production was similar to that of
children of native speakers, and so an accurate model would have acquired similar
determiner classes from native and non-native input. Our model learned the correct
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classes for two more determiners when learning from the native input than it did
learning from the non-native input, a 12% difference in accuracy. Where errors
were made in both simulations, the model also made different mistakes, both over-
and under-regularizating on non-native input but always under-regularizing on
native input. These differences between the model’s output on native and non-
native input are the largest way our model does not match Simon’s performance.
There are many possible reasons for this difference between our model and
Simon’s performance. It may be a result of using a corpus of non-child directed
speech to simulate a child’s learning. Alternatively, acquisition of determiner
agreement from non-native English may not be parallel to the acquisition of
verb morphology from non-native ASL; assessing this possibility would require
additional empirical data. Finally, it is also possible that learners like Simon need
additional mechanisms beyond a noisy channel assumption to acquire language
from variable input [24]. Further research is needed to determine which, if any of
these, are responsible for the difference between the model and the observations.
In Bayesian models, a noisy channel allows a model to consider parameter
values that are in the hypothesis space, but are inconsistent with its observations.
In doing so, the noisy channel reinforces prior biases by allowing the model to
attribute observations that are unlikely under the prior to noise. It also makes the
bias more robust: whereas a bias encoded in the prior is eventually overwhelmed by
evidence in most Bayesian models, a noisy channel model can continue to account
for some proportion of its data as noise, regardless of the absolute quantity of data.
Noisy channel models can also provide an account of how, over time, adults
come to match their input instead of regularizing. As adults understand more and
more of the language that they hear, noise from misparses is eliminated. Adults
might eventually come to believe that much less of their input is noise than children
do (i.e. they infer that the value of € is lower). This would lead them to believe
that more new language information that they hear is signal, and so become more
perfect statistical learners. In the limit, if adults using an input filtering model
believe there is no noise, then they would match the statics of their input exactly.
The similarity between the model presented in this paper and the models
proposed by Perkins et. al. [26, 25, 24] suggests that there might be a general
input filtering mechanism that children use while learning language, and that
regularization occurs because of this more general process. There are many sources
of statistical noise which might be present in children’s input or intake before they
have acquired the grammatical knowledge to represent their input veridically. Thus,
there are many circumstances in which children might benefit from filtering their
input while learning. If a noisy channel-like mechanism is filtering these sources
of noise, that same mechanism might filter noise from unpredictable variation and
so be the cause of regularization.



546

References

(1]

(2]
(3]

(4]

(3]
(6]
(7]

(8]

(9]

[10]

(11]

[12]

(13]

(14]

[15]

[16]

[17]

(18]

Daniel Andor et al. “Globally Normalized Transition-Based Neural Networks”. In:
arXiv:1603.06042 [cs] (June 8, 2016).

R H. Baayen, R Piepenbrock, and L Gulikers. CELEX2 LDC96L14. 1995.

Leon Bergen and Noah D. Goodman. “The Strategic Use of Noise in Pragmatic
Reasoning”. In: Topics in Cognitive Science 7 (2015), pp. 336-350.

Paul Bloom. “Semantic competence as an explanation for some transitions in lan-
guage development”. In: Other children, Other languages—Theoretical issues in
language acquisition. Hillsdale, NJ: Erlbaum (In press).

Roger W. Brown. “Linguistic determinism and the part of speech.” In: The Journal
of Abnormal and Social Psychology 55.1 (1957), p. 1.

Gennaro Chierchia. “Plurality of mass nouns and the notion of “semantic parameter™’.
In: Events and grammar. Springer, 1998, pp. 53-103.

Lisa Feigenson and Susan Carey. “Tracking individuals via object-files: evidence
from infants’ manual search”. In: Developmental Science 6.5 (2003), pp. 568-584.
Lisa Feigenson, Susan Carey, and Marc Hauser. “The representations underlying
infants’ choice of more: Object files versus analog magnitudes”. In: Psychological
Science 13.2 (2002), pp. 150-156.

Naomi H. Feldman, Thomas L. Griffiths, and James L. Morgan. “The influence
of categories on perception: Explaining the perceptual magnet effect as optimal
statistical inference”. In: Psychological Review 116.4 (2009), pp. 752-782.

Jeroen Geertzen, Theodora Alexopoulou, Anna Korhonen, et al. “Automatic linguistic
annotation of large scale L2 databases: The EF-Cambridge Open Language Database
(EFCAMDAT)”. In: Proceedings of the 31st Second Language Research Forum.
Somerville, MA: Cascadilla Proceedings Project. 2013, pp. 240-254.

Lila Gleitman. “The Structural Sources of Verb Meanings”. In: Language Acquisition
1.1 (1990), pp. 3-55.

Peter Gordon. “Evaluating the semantic categories hypothesis: The case of the
count/mass distinction”. In: Cognition 20.3 (1985), pp. 209-242.

Yan Huang et al. “Dependency parsing of learner English”. In: International Journal
of Corpus Linguistics 23.1 (2018), pp. 28-54.

Carla L. Hudson Kam and Elissa L. Newport. “Getting it right by getting it wrong:
When learners change languages”. In: Cognitive Psychology 59.1 (2009), pp. 30-66.
Carla L. Hudson Kam and Elissa L. Newport. “Regularizing Unpredictable Variation:
The Roles of Adult and Child Learners in Language Formation and Change”. In:
Language Learning and Development 1 (Apr. 2005), pp. 151-195.

Jacqueline S. Johnson and Elissa L. Newport. “Critical period effects in second
language learning: The influence of maturational state on the acquisition of English
as a second language”. In: Cognitive Psychology 21.1 (Jan. 1, 1989), pp. 60-99.
Bryan Klimt and Yiming Yang. “The Enron Corpus: A New Dataset for Email
Classification Research”. In: Machine Learning: ECML 2004. Ed. by Jean-Francois
Boulicaut et al. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer,
2004, pp. 217-226.

Yakov Kronrod, Emily Coppess, and Naomi H. Feldman. “A unified account of
categorical effects in phonetic perception”. In: Psychonomic Bulletin and Review
23.6 (2016), pp. 1681-1712.



(19]

(20]

(21]

[22]
(23]
[24]

[25]

[26]

[27]
(28]

[29]

(30]

(31]

547

Peter Lasersohn. “Mass Nouns and Plurals”. In: Semantics: An International Hand-
book of Natural Language Meaning. Ed. by Claudia Maienborn, Klaus von Heusinger,
and Paul Portner. De Gruyter Mouton, 2011, p. 2.

Roger Levy. “A noisy-channel model of rational human sentence comprehension
under uncertain input”. In: Proceedings of the Conference on Empirical Methods in
Natural Language Processing (2008).

Roger Levy et al. “Eye movement evidence that readers maintain and act on un-
certainty about past linguistic input”. In: Proceedings of the National Academy of
Sciences 106.50 (2009), pp. 21086-21090.

Jeffrey Lidz and Annie Gagliardi. “How Nature Meets Nurture: Universal Grammar
and Statistical Learning”. In: Annual Review of Linguistics 1.1 (2015), pp. 333-353.
Jeffrey Lidz and Lila Gleitman. “Yes, we still need Universal Grammar”. In: Cogni-
tion 94 (Nov. 2004), pp. 85-93.

Laurel Perkins. “How Grammars Grow: Argument Structure and the Acquisition of
Non-Basic Syntax”. PhD thesis. 2019.

Laurel Perkins, Naomi H. Feldman, and Jeffery Lidz. “Mind the Gap: Learning
the Surface Forms of Movement”. Boston University Conference on Language
Development. 2019.

Laurel Perkins, Naomi Feldman, and Jeffrey Lidz. “Learning an input filter for
argument structure acquisition”. In: Proceedings of the 7th Workshop on Cognitive
Modeling and Computational Linguistics (CMCL 2017). 2017, pp. 11-19.

Steven Pinker. Language Learnability and Language Development (1984/1996).
Cambridge, MA: Harvard University Press, 1996.

Jenny R. Saffran, Richard N. Aslin, and Elissa L. Newport. “Statistical Learning by
8-Month-Old Infants”. In: Science 274.5294 (1996), pp. 1926-1928.

Jenny L. Singleton and Elissa L. Newport. “When learners surpass their models:
The acquisition of American Sign Language from inconsistent input”. In: Cognitive
Psychology 49.4 (2004), pp. 370-407.

Nancy N. Soja, Susan Carey, and Elizabeth S. Spelke. “Ontological categories guide
young children’s inductions of word meaning: Object terms and substance terms”. In:
Cognition 38.2 (1991), pp. 179-211.

Elizabeth S. Spelke. “Perception of Unity, Persistence, and Identity: Thoughts on
Infants” Conceptions of Objects”. In: Neonate Cognition: Beyond the Blooming
Buzzing Confusion. Ed. by Jacques Mehler and R. Fox. Lawrence Erlbaum, 1985,
pp. 89-113.



Proceedings of the 44th annual
Boston University Conference
on Language Development

edited by Megan M. Brown
and Alexandra Kohut

Cascadilla Press Somerville, MA 2020

Copyright information

Proceedings of the 44th annual Boston University Conference on Language Development
© 2020 Cascadilla Press. All rights reserved

Copyright notices are located at the bottom of the first page of each paper.
Reprints for course packs can be authorized by Cascadilla Press.

ISSN 1080-692X

ISBN 978-1-57473-057-9 (2 volume set, paperback)

Ordering information

To order a copy of the proceedings or to place a standing order, contact:

Cascadilla Press, P.O. Box 440355, Somerville, MA 02144, USA
phone: 1-617-776-2370, sales @cascadilla.com, www.cascadilla.com






