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ABSTRACT

Linear temporal logic (LTL) and, more generally, w-regular objectives are alterna-
tives to the traditional discount sum and average reward objectives in reinforcement
learning (RL), offering the advantage of greater comprehensibility and hence ex-
plainability. In this work, we study the relationship between these objectives. Our
main result is that each RL problem for w-regular objectives can be reduced to
a limit-average reward problem in an optimality-preserving fashion, via (finite-
memory) reward machines. Furthermore, we demonstrate the efficacy of this
approach by showing that optimal policies for limit-average problems can be found
asymptotically by solving a sequence of discount-sum problems approximately.
Consequently, we resolve an open problem: optimal policies for LTL and w-regular
objectives can be learned asymptotically.

1 INTRODUCTION

Reinforcement learning (RL) is a machine learning paradigm whereby an agent aims to accomplish a
task in a generally unknown environment [Sutton & Barto| (2018). Traditionally, tasks are specified via
a scalar reward signal obtained continuously through interactions with the environment. These rewards
are aggregated over entire trajectories either through averaging or by summing the exponentially
decayed rewards. However, in many applications, there are no reward signals that can naturally be
extracted from the environment. Moreover, reward signals that are supplied by the user are prone
to error in that the chosen low-level rewards often fail to accurately capture high-level objectives.
Generally, policies derived from local rewards-based specifications are hard to understand because it
is difficult to express or explain their global intent.

As a remedy, it has been proposed to specify tasks using formulas in Linear Temporal Logic (LTL)
Wolff et al.| (2012)); |Perez et al.| (2024); Brazdil et al.| (2014)); |Voloshin et al.| (2022); [Fu & Topcu
(2014); Shao & Kwiatkowskal (2023)); [Ding et al.| (2014) or w-regular languages more generally
Perez et al.|(2024). In this framework, the aim is to maximise the probability of satisfying a logical
specification. LTL can precisely express a wide range of high-level behavioural properties such as
liveness (infinitely often P), safety (always P), stability (eventually always P), and priority (P then
Q@ then 7).

Motivated by this, a growing body of literature study learning algorithms for RL with LTL and
w-regular objectives (e.g.[Wolff et al.| (2012); |[Fu & Topcu! (2014); Perez et al.| (2024); |Bozkurt et al.
(2019); Sadigh et al.|(2014); Hasanbeig et al.| (2023};|2020); |Gao et al.|(2019)). However, to the best
of our knowledge, all of these approaches may fail to learn provably optimal policies without prior
knowledge of a generally unknown parameter such as the optimal e-return mixing time |Fu & Topcu
(2014) or the e-recurrence time [Perez et al.| (2024)), which depend on the (unavailable) transition
probabilities of the MDP. Moreover, it is known that neither LTL nor (limit) average reward objectives
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are PAC (probably approximately correct) learnable |Alur et al.|(2022). Consequently, approximately
optimal policies can only possibly be found asymptotically but not in bounded time.

In this work, we pursue a different strategy: rather than solving the RL problem directly, we study
optimality-preserving translations |Alur et al.| (2022)) from w-regular objectives to more traditional
rewards, in particular, limit-average rewards. This method offers a significant advantage: it enables
the learning of optimal policies for w-regular objectives by solving a single more standard problem,
for which we can leverage existing off-the-shelf algorithms (e.g. Kearns & Singh|(2002)); [Fu & Topcu
(2014); Perez et al.|(2024)). In this way, all future advances—in both theory and practice—for these
much more widely studied problems carry over directly, whilst still enjoying significantly more
explainable and comprehensible specifications. It is well-known that such a translation from LTL
to discounted rewards is impossible |Alur et al.| (2022). Intuitively, this is because the latter cannot
capture infinite horizon tasks such as reachability or safety |Alur et al.| (2022)); |Yang et al.| (2022);
Hahn et al.|(2019). Hence, we instead investigate translations to limit-average rewards in this paper.

Contributions. We study reinforcement learning of w-regular and LTL objectives in Markov
decision processes (MDPs) with unknown probability transitions, translations to limit-average reward
objectives and learning algorithms for the latter. In detail:

1. We prove a negative result (Proposition[d): in general it is not possible to translate w-regular
objectives to limit average objectives in an optimality-preserving manner if rewards are
memoryless (i.e., independent of previously performed actions, sometimes called history-
free or Markovian).

2. On the other hand, our main result (Theorem@ resolves Open Problem 1 in|Alur et al.
(2022): such an optimality-preserving translation is possible if the reward assignment may
use finite memory as formalised by reward machines |[carte (2022)); Icarte et al.|(2018)).

3. To underpin the efficacy of our reduction approach, we provide the first convergence proof
(Theorem of an RL algorithm (Algorithm |1)) for average rewards. To the best of our
knowledge (and as indicated by [Dewanto et al.| (2021))), this is the first proof without
assumptions on the induced Markov chains. In particular, the result applies to multichain
MDPs, which our translation generally produces, with unknown probability transitions.
Consequently, we also resolve Open Problem 4 of |Alur et al.|(2022): RL for w-regular and
LTL objectives can be learned in the limit (Theorem [14).

Outline. We start by reviewing the problem setup in Section [2| Motivated by the impossibility
result for simple reward functions, we define reward machines (Section . In Section 4| we build
intuition for the proof of our main result in Section 5] Thereafter, we demonstrate that RL with
limit-average, w-regular and LTL objectives can be learned asymptotically (Section[6). Finally, we
review related work and conclude in Section 7l

2 BACKGROUND

Recall that a Markov Decision Process (MDP) is a tuple M = (S, A, s, P) where S is a finite
set of states, so € S is the initial state, A is the finite set of actions and P : S x A x S — [0, 1]
is the probability transition function such that >~ , ¢ P(s,a,s’) = 1 forevery s € Sanda € A.
MDPs may be graphically represented; see e.g. Fig We let Runsg (S, A) = S x (A x S)* and
Runs(S, A) = (S x A)“ denote the set of finite runs and the set of infinite runs in M respectively.

A policy m : Runsg (S, A) — D(A) maps finite runs to distributions over actions. We let II(.S, A)
denote the set of all such policies. A policy 7 is memoryless if w(spag . .. s,) = w(sgay - - - s),) for
all finite runs sgag . . . s, and sjay . . . s, such that s,, = s},,. For each MDP M and policy , there
is a natural induced probability measure D on its runs.

The desirability of policies for a given MDP M can be expressed as a function 7 : II(S, A) — R.
Much of the RL literature focuses on discounted-sum j% and limit-average reward objectives Jhns,
which lift a reward function R : § x A x S — R for single transitions to runs p = sgagpsiay ... as

'Formally, for some ¢, § > 0 it is impossible to learn e-approximately optimal policies with probability 1 — &
in finite time.
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(a) An MDP where all transitions occur with
probability 1, A(so,b,s1) = {p} and the rest (b) ADRA, where F' := {({q1}, D)}, for the objective
are labeled with (). to visit the petrol station p exactly once.

Figure 1: Examples of an MDP and DRA.

follows:
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where 7; = R(8;, a4, si+1) and 7y € (0, 1) is the discount factor.

w-Regular Objectives. w-regular objectives (which subsume LTL objectives) are an alternative to
these traditional objectives. Henceforth, we fix an alphabet AP and a label function A : S x Ax S —
2AP for transitions, where 2% is the power set of a set X. Each run p = sgagsiaiss ... induces a
sequence of labels A\(p) = (s, ao, s1)A(s1,a1,52) . ... Thus, for aset L C (24%)« of “desirable”
label sequences we can consider the probability of a run’s labels being in that set: P, .pm [A(p) € L.

Example 1. For instance, an autonomous car may want to “visit a petrol station exactly once” to
conserve resources (e.g. time or petrol). Consider the MDP in Fig. [Ta] where the state s; represents a
petrol station. We let AP = {p} (p for petrol), A(sg, b, s1) = {p}, and the rest are labeled with {).
The desirable label sequences are L = {A1 A2 - - - | for exactly one i € N, A\; = {p}}.

In this work, we focus on L which are w-regular languages. It is well known that w-regular languages
are precisely the languages recognised by Deterministic Rabin Automata (DRA) Khoussainov &
Nerode| (2001); |[Kozen| (2006)):

Definition 2. A DRA is a tuple A = (Q, 247 qo, 6, F) where Q is a finite state set, 27 is the
alphabet, gy € Q is the initial state, & : Q x 247 — (@ is the transition function, and F =
{(A1,Ry),...,(A,, Ry)}, where A;, R; C (@, is the accepting condition. Let p € (247)“ be an
infinite run and InfS(p) the set of states visited infinitely often by p. We say p is accepted by A if
there exists some (4;, R;) € F such that p visits some state in A; infinitely often whilst visiting
every state in R; finitely often, i.e. InfS(p) N A; # () and InfS(p) N R; = 0.

For example, the objective in Example [[| may be represented by the DRA in Fig. [T
Thus, the desirability of 7 is the probability of 7 generating an accepting sequence in the DRA A:
T () = P,.pm[A(p) is accepted by the automaton A] (1

Remarks. The class of w-regular languages subsumes languages expressed by Linear Temporal
Logic (LTL, see e.g. (Baier & Katoen, [2008, Ch. 5)), a logical framework in which e.g. reachability
(eventually P, QP), safety (always P, [JP) and reach-avoid (eventually P whilst avoiding @,
(=Q) U P) properties can be expressed concisely and intuitively. The specification of our running
Example|l|to visit the petrol station exactly once can be expressed as the LTL formula (—p) U (p A
O 0O-p), where OQ denotes “@ holds at the next step”.

Optimality-Preserving Specification Translations. Rather than solving the problem of synthe-
sising optimal policies for Eq. (I)) directly, we are interested in reducing it to more traditional RL
problems and applying off-the-shelf RL algorithms to find optimal policies. To achieve this, the
reduction needs to be optimality preserving:

Definition 3 (Alur et al.|(2022))). An optimality-preserving specification translation from w-regular
objectives to limit-average rewards is a computable function mapping each tuple (S, A4, A, A) to

R(S,A,)\,A) s.t.
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(b) Product MDP for Fig. where all
(a) A reward machine for the objective of visiting the petrol  transitions have probability 1 and Faq :=

station exactly once. (The rewards are given following “/”.)  {({(s0,q1), (51,q1)},0)}.

Figure 2: A reward machine and the product MDP for the running Example

policies maximising j{z\ﬁfg also maximise J' j‘\" where R := R( S,A\,4)
for every MDP M = (S, A, s, P), label function A : S x A x S — 247 and DRA A.

We stress that since the probability transition function P is generally not known, the specification
translation may not depend on it.

3 NEGATIVE RESULT AND REWARD MACHINES

Reward functions emit rewards purely based on the transition being taken without being able to take
the past into account. On the other hand, DRAs have finite memory. Therefore, there cannot generally
be optimality-preserving translations from w-regular objectives to limit average rewards provided by
reward functions (see Appendix [C|for the proof):

Proposition 4. There is an MDP M and an w-regular language L for which it is impossible to find
a reward function R : S x A x S — R such that every j{z\ﬁg-optimal policy of M also maximises
the probability of membership in L.

Remarkably, this rules out optimality-preserving specification translations even if transition probabili-
ties are fully known.

Since simple reward functions lack the expressiveness to capture w-regular objectives, we employ a
generalisation, reward machines [Icarte] (2022); [Icarte et al.| (2018)), whereby rewards may also depend
on an internal state:

Definition 5. A reward machine (RM) is a tuple R = (U,
states, ug € U is the initial state, §, : U x (S x A X
dy : U x (S x A x S) — U is the update function.

w0, 0y, 0) Where U is a finite set of
S) —> R is the reward function, and
Intuitively, a RM R utilises the current transition to update its states through d,, and assigns the

rewards through §,.. For example, Fig.[2adepicts a reward machine for the MDP of Fig.[1a] where
the states count the number of visits to s; (0 times, once, more than once).

Let p = spagsy - -+ be arun. Since §,, is deterministic, it induces a sequence uguy . . . of states in R,
where e; = (s;,a;,8;+1) and u;11 = 0, (u;, ;). The limit-average reward of a policy 7 is:

t—1
1
M — iy s . e
Tiwe () 1= htHllIlf]EpN'DWM |ﬁ go 5,.(uz,el)]

It is seen that limit-average optimal policies 7* for the MDP in Fig. [Ta] and the RM in Fig. 4]
eventually select action b exactly once in state s to achieve J4d, (7*) = 1.

In the following two sections, we present a general translation from w-regular languages to limit-
average reward machines, and we show that our translation is optimality-preserving (Theorem|[TT).
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4  WARM-UP: TRANSITIONS WITH POSITIVE PROBABILITY ARE KNOWN

To help the reader gain intuition about our construction, we first explore the situation where the support
{(s,a,8') € S x Ax S| P(s,a,s") > 0} of the MDP’s transition function is known. Crucially,
we do not assume that the magnitude of these (non-zero) probabilities are known. Subsequently, in
Section 5] we fully eliminate this assumption.

This assumption allows us to draw connections between our problem and a familiar scenario in
probabilistic model checking (Baier & Katoenl 2008}, Ch. 10), where the acceptance problem for
w-regular objectives can be transformed into a reachability problem. Intuitively, our reward machine
monitors the state of the DRA and provides reward 1 if the MDP and the DRA are in certain “good”
states (0 otherwise).

For the rest of this section, we fix an MDP without transition function (S, A, s¢), a set of possible
transitions £ C Sx Ax S, alabel function \ : Sx Ax S — 247 andaDRA A = (Q, 247, qo, 9, F).
Our aim is to find a reward machine R such that for every transition function P compatible with E/
(formally: E = {(s,a,s’) | P(s,a,s") > 0}), optimal policies for limit-average rewards are also
optimal for the acceptance probability of the DRA A.

4.1 PRrRoDUCT MDP AND END COMPONENTS

First, we form the product MDP M ® A (e.g. [Wolff et al| (2012)); [Fu & Topcu| (2014))), which
synchronises the dynamics of the MDP M with the DRA A. Formally, M @ A = (V, A, v, A, Fa)
where V' = S x @ is the set of states, A is the set of actions, vg = (sg,qo) is the initial state.
The transition probability function A : V x A x V' — [0, 1] satisfies A(v,a,v’) = P(s,a,s’)
given that v = (s,q), v' = (8',¢'), and 6(q, A(s,a, s’)) = ¢'. The accepting condition is Fq =
{(4},R}), (AL, RY), ...} where A, = S x A;, R, = S X R;, and (4;,R;) € F. Arun p =
(s0,qo)ag - - - is accepted by M @ A if there exists some (A}, R}) € Faq such that InfV (p) N A} # ()
and InfV(p) N R, = 0, where InfV is the set of states (s,v) in the product MDP visited infinitely
often by p.

Note that product MDPs have characteristics of both MDPs and DRAs which neither possesses in
isolation: transitions are generally probabilistic and there is a notion of acceptance of runs. For
example, the product MDP for Fig.[I]is shown in Fig.[2b Due to the deterministic nature of the DRA
A, every run p in M gives rise to a unique run p® in M ® A. Crucially, for every policy ,

P,pm|pis accepted by A] =P, prm [p® is accepted by M ® A] )

We make use of well-known characterisation of accepting runs via accepting end components:

Definition 6. An end component (EC) of M @ A = (V, A, vg, A, Faq) is a pair (T, Act) where
T C V and Act : T — 2 satisfies the following conditions

1. Forevery v € T and a € Act(v), we have ) , ., A(v,a,v') = 1, and

2. The graph (T, — act) is strongly connected, where v — ¢ v iff A(v,a,v") > 0 for some
a € Act(v).

(T, Act) is an accepting EC (AEC) if T N A, # 0 and T' N R, = () for some (A}, R}) € Fp.

Intuitively, an EC is a strongly connected sub-MDP. For instance, for the product MDP in
Fig. there are five end components, ({(s0,q0)}, (S0,90) — {a}), ({(s0,q1)}, (s0,q1) — {a}),
({(s0,42)}, (s0,92) = {a}), ({(50,92)}, (s0,q2) = {b}) and ({(s0,42)}, (s0,42) — {a,b}).

({(s0,q1)}, (s0,q1) — {a}) is its only accepting end component.

It turns out that, almost surely, a run is accepted iff it enters an accepting end component and never
leaves it|Alfaro| (1998). Therefore, a natural idea for a reward machine is to use its state to keep track
of the state ¢ € () the DRA is in and give reward 1 to transitions (s, a, ') if (s, ¢) is in some AEC
(and 0 otherwise). Unfortunately, this approach falls short since the AEC may contain non-accepting
ECs, thus assigning maximal reward to sub-optimal policiesE] As a remedy, we introduce a notion
of minimal AEC, and ensure that only runs eventually committing to one such minimal AEC get a
limit-average reward of 1.

’To illustrate this point, consider the product MDP ({so, 51}, {a, b}, s0, P, F') where P(so,b,s0) =
P(so,a,s1) = P(s1,a,s0) = 1and F = {({s1},0)}, i.e. the objective is to visit s1 infinitely often.
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Definition 7. An AEC (T, Act) is an accepting simple EC (ASEC) if | Act(v)| = 1 for every v € T..

Let Cy = (T, Acty),...,Cph = (Tn, Acty,) be a collection of ASECs covering all states in ASECs,
i.e.if (s, q) is in some ASEC then (s,q) € Ty U - -+ U Ty,. In particular, n < |.S x Q)| is sufficient.
We can prove that every AEC contains an ASEC (see Lemma[T6]in Appendix [D). Consequently,
Lemma 8. Almost surely, if p is accepted by A then p® reaches a state in some ASEC C; of M @ A.

4.2 REWARD MACHINE AND CORRECTNESS

Next, to ensure that runs eventually commit to one such ASEC we introduce the following notational
shorthand: for (s,q) € Ty U---UT,, let Crsq) = (T(s,q), Act(s,q)) be the C; with minimal
containing (s,q), i.e. C(S’q) = CUmin{1<i<n|(s,q) €T} }-

Intuitively, we give a reward of 1 if (s, q) is in one of the Cy, . ..,C,,. However, once an action is
performed which deviates from Act, ;) no rewards are given thereafter, thus resulting in a limit
average reward of 0. A state in the reward machine has the form ¢ € @), keeping track of the state
in the DRA, or 1, which is a sink state signifying that in a state in Cy, . .., C,, we have previously
deviated from Acty 4.

Finally, we are ready to formally define the reward machine R = R g, ,,.4) exhibiting our specifi-
cation translation as (Q U { L}, qo, 84, d,-), where
1 ifu=_1or
du(u, (s,a,8")) = ((s,u) €Ty U---UT, and a & Act (s, (s, u))
d(u, A(s,a,s’)) otherwise
1 ifus# Land(s,u) ey U---UT,
0 otherwise

5 (u, (s,a,8")) == {

For our running example, this construction essentially yields the reward machine in Fig. [2a] (with
some inconsequential modifications cf. Fig.d]in Appendix D).

Theorem 9. For all transition probability functions P with support E, policies maximising the
limit-average reward w.r.t. R also maximise the acceptance probability of the DRA A.

This result follows immediately from the following (the full proof is presented in Appendix D)
Lemma 10. Let P be a probability transition function with support E and M := (S, A, so, P).

1. For every policy w1, T4 (m) < T3 (7).
2. For every policy m, there exists some policy ' satisfying jj\\’t (m) < Tk (7).

Proof sketch. 1. By construction, every run receiving a limit-average reward of 1, must have entered
some ASEC C; and never left it. Furthermore, almost surely all states are visited infinitely often and
the run is accepted by definition of accepting ECs.

2. By Lemma (8] almost surely, a run is only accepted if it enters some C;. We set 7’ to be the

policy agreeing with 7 until reaching one of the Cy, ..., C,, and henceforth following the action
Act(s, q,)(5¢,qt), where g; is the state of the DRA at step ¢, yielding a guaranteed limit-average
reward of 1 for the run by construction. O

5 MAIN RESULT

In this section, we generalise the approach of the preceding section to prove our main result:

Theorem 11. There exists an optimality-preserving translation from w-regular languages to limit-
average reward machines.

Again, we fix an MDP without transition function (S, A, s ), a label function A : S x A x S — QAP
and aDRA A = (Q, 24P 40,6, F'). Note that the ASECs of a product MDP are uniquely determined
by the non-zero probability transitions. Thus, for each set of transitions £ C (S x Q) x A x (S x Q),
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we let CF = (Ty, Acty),...,CE = (T, Act,,) denote a collection of ASECs covering all states in

ASECs w.r.t. the MDPs in which F is the set of non-zero probability transitions. Then, for each set
Eand state (s,q) € T{" U---UT7, welet C, = (T(7 . Act(; ) be the ASEC CF that contains
(s, q) in which the index 4 is minimal.

Our reward machine R = R(g,4,,4) extends the ideas from the preceding section. Importantly,
we keep track of the set of transitions F taken so far and assign rewards according to our current
knowledge about the graph of the product MDP. Therefore, we propose employing states of the
form (q, f, E), where g € ( keeps track of the state of the DRA, f € {T, L} is a status flag and
E C(SxQ)xAx(Sx Q) memorises the transitions in the product MDP encountered thus far.

Intuitively, we set the flag to L if we are in MDP state s, (s, q) is in one of the C¥, ..., CZ and the
chosen action deviates from Actf;’ ¢)(8,9). We can recover from L by discovering new transitions.

Besides, we give reward 1 if f = T and (s, ¢) is in one of the C¥, ... ,CZ (and 0 otherwise). The
status flag is required since discovering new transitions changes the structure of (accepting simple)
end components. Hence, differently from the preceding section, it is not sufficient to have a single
sink state.

The initial state of our reward machine is ug := (go, T, ) and we formally define the update and
reward functions as follows:
(¢, L, E) iff=_1lande€ F
(¢, L1, E) iff=T,ec E,(s,q € TFU---UTF and
a ¢ Actﬂq)(s, q)
(¢, T,EU{e}) otherwise
1 iff=T,(s,q) eTFU---UTFE
0 otherwise

6”((qafa E)7 (S7a38/)) :

6 ((¢, 1, E), (s,a,5")) := {

where ¢’ := §(q, A(s,a,s")) and e := ((q, s),a, (¢, s")).

Example 12. For our running example (see Example |1| and Fig. [1)) initially no transitions are
known (hence no ASECs). Therefore, all transitions receive reward 0. Once action a has been
performed in state s¢ in the MDP M and (g1, f, E) in the reward machine R, we have discovered the
ASEC ({(s0,¢1)}, (s0,q1) — {a}) and a reward of 1 is given henceforth unless action b is selected
eventually. In that case, we leave the ASEC and we will not discover further ASECs since there is
only one. From here, it is not possible to return to state g; in the DRA and henceforth only reward 0
will be obtained.

Theorem [I]is proven by demonstrating an extension of Lemma[I0](see Lemma[I8]in Appendix [E).
Intuitively, to see part 1 of Lemma [I8]we note: If an average reward of 1 is obtained for a run, the
reward machine believes, based on the partial observation of the product MDP, that the run ends
up in an ASEC. Almost surely, we eventually discover all possible transitions involving the same
state-action pairs as this ASEC and therefore this must also be an ASEC w.r.t. the true, unknown
product MDP. For part 2, we modify the policy 7 similarly as in Lemma [I0] by selecting actions
Act(s¢, g;) once having entered an ASEC C = (T, Act) w.r.t. the true, unknown product MDPE]

Note that Lemma [T8|immediately proves that the reduction is not only optimality preserving (Theo-
rem I T)) but also robust: every e-approximately limit-average optimal policy is also e-approximately
optimal w.r.t. J J{‘V‘. This observation is important because exactly optimal policies for the limit
average problem may be hard to find.

6 CONVERGENCE FOR LIMIT AVERAGE, w-REGULAR AND LTL OBJECTIVES

Thanks to the described translation, advances (in both theory and practice) in the study of RL with
average rewards carry over to RL with w-regular and LTL objectives. In this section, we show that it
is possible to learn optimal policies for limit average rewards in the limit. Hence, we resolve an open
problem |Alur et al.|(2022): also RL with w-regular and LTL objectives can be learned in the limit.

3NB The modified policy depends on the true, unknown support of the probability transition function; we
only claim the existence of such a policy.
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We start with the case of simple reward functions R : S x A x .S — R. Recently, (Grand-Clément &
Petrik, [2023| Theorem 4.2) have shown that discount optimal policies for sufficiently high discount
factor 5 € [0,1) are also limit average optimal This result alone is not enough to demonstrate
Theorem[I3]since 7 is generally not known and in finite time we might only obtain approximately
limit average optimal policies.

Our approach is to reduce RL with average rewards to a sequence of discount sum problems with
increasingly high discount factor, which are solved with increasingly high accuracy. Our crucial
insight is that eventually the approximately optimal solutions to the discounted problems will also be
limit average optimal (see Lemma|[I9]in Appendix [F):

Thanks to the PAC (probably approximately correct) learnability of RL with discounted rewards
Kearns & Singh|(2002); Strehl et al.| (2009), there exists an algorithm Discounted which receives
as inputs a simulator for M, R as well as , € and §, and with probability 1 — § returns an e-optimal
memoryless policy for discount factor . In view of Lemma our approach is to run the PAC
algorithm for discount-sum RL for increasingly large discount factors ~ and increasingly low ¢ and e
(Algorithm [T} see Appendix [Ffor a brief discussion).

Algorithm 1 RL for limit average rewards

Require: simulator for M, R

for £ € Ndo
Tg < Discounted(M,R,1— 1/k, 1/k,1/k?)
——
end for Vi e O

Theorem 13. RL with average reward functions can be learned in the limit by Algorithm[I} almost
surely there exists kg € N such that m, is limit-average optimal for k > k.

Next, we turn to the more general case of reward machines. [carte| (2022)); Icarte et al.| (2018]) observe
that optimal policies for reward machines can be learned by learning optimal policies for the modified
MDP which additionally tracks the state the reward machine is in and assigns rewards accordingly.

Finally, harnessing Theorem@] we resolve Open Problem 4 of |Alur et al.|(2022):
Theorem 14. RL with w-regular and LTL objectives can be learned in the limit.

7 RELATED WORK AND CONCLUSION

Various studies have explored reductions of w-regular objectives to discounted rewards, and sub-
sequently applied Q-learning and its variants for learning optimal policies Bozkurt et al.[| (2019);
Sadigh et al.|(2014); Hasanbeig et al.| (2023} 2020); |Gao et al.|(2019). In a similar spirit, Voloshin
et al.|(2023) present a translation from LTL objectives to eventual discounted rewards, where only
strictly positive rewards are discounted. These translations are generally not optimality preserving
unless the discount factor is selected in a suitable way. This is impossible without prior knowledge of
the exact probability transition functions in the MDP. [Kazemi et al.|(2022) propose a translation to
limit-average rewards for w-regular specifications which are also absolute liveness properties. Their
translation is optimality-preserving provided the MDP is communicating and the magnitute of penalty
rewards in their construction are chosen sufficiently large (which requires knowledge of the MDP).

Whilst there are numerous convergent RL algorithms for average rewards for unichain or communicat-
in MDPs (e.g. Brafman & Tennenholtz (2003)); [Yang et al.| (2016)); Gosavi| (2004)); [Schwartz (1993);
Auer et al.| (2008)); Wan et al.|(2021)), it is unknown whether such an algorithm exists for general
multichain MDPs with a guaranteed convergence property. In fact, a negative result in |Alur et al.
(2022); Bazille et al.|(2020) shows that there is no PAC (probably approximately correct) algorithm
for LTL objectives and limit-average rewards when the MDP transition probabilities are unknown.
(We discuss additional related work in Appendix

“Recall (see e.g. (Hordijk & Yushkevichl 2002, Sec. 8.1)) that for any policy = € II, limy (1 — ) -
Tity (m) = Tighs ().

SThese assumptions generally fail for our setting, where MDP states also track the states of the reward
machine. For instance, in the reward machine in Fig. @it is impossible to reach w1 from us.
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Conclusion. We have presented an optimality-preserving translation from w-regular objectives to
limit-average rewards furnished by reward machines. As a consequence, off-the-shelf RL algorithms
for average rewards can be employed in conjunction with our translation to learn policies for w-
regular objectives. Besides, we have developed an algorithm asymptotically learning provably optimal
policies for limit-average rewards. Hence, also optimal policies for w-regular and LTL objectives can
be learned in the limit. Our results provide affirmative answers to two open problems in |Alur et al.
(2022)).
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A ADDITIONAL RELATED WORK

The connection between acceptance of w-regular languages in the product MDP and AECs is well-
known in the field of probabilistic model checking Baier & Katoen| (2008); |de Alfaro|(1999). As an
alternative to DRAsWolff et al.|(2012); Ding et al.| (2014)); Sadigh et al.|(2014), Limit Deterministic
Biichi Automata [Sickert et al.| (2016) have been employed to express w-regular languages for RL
Voloshin et al.[(2022)); Bozkurt et al.|(2019); |Cai et al.|(2023)); |Hasanbeig et al.| (2023 2020).

A pioneering work on RL for w-regular rewards is [Wolff et al.| (2012)), which expresses w-regular
objectives using Deterministic Rabin Automata. Similar RL approaches for w-regular objectives can
also be found in Ding et al.| (2014); Voloshin et al.| (2022); (Cai et al.| (2023); [Fu & Topcu| (2014).
The authors of |Fu & Topcu| (2014); |[Perez et al.| (2024} approach RL for w-regular objectives directly
by studying the reachability of AECs in the product MDP and developing variants of the R-MAX
algorithm Brafman & Tennenholtz](2003) to find optimal policies. However, these approaches require
prior knowledge of the MDP, such as the structure of the MDP, the optimal e-return mixing time |Fu
& Topcu! (2014, or the e-recurrence time |Perez et al.| (2024)).

Various studies have explored reductions of w-regular objectives to discounted rewards, and subse-
quently applied Q-learning and its variants for learning optimal policies Bozkurt et al.| (2019); Sadigh
et al.| (2014)); |Hasanbeig et al.| (2023} 12020); |Gao et al.| (2019)). In a similar spirit, [Voloshin et al.
(2023) present a translation from LTL objectives to eventual discounted rewards, where only strictly
positive rewards are discounted. These translations are generally not optimality preserving unless
the discount factor is selected in a suitable way. Again, this is impossible without prior knowledge of
the exact probability transition functions in the MDP.

Kazemi et al.| (2022) propose a translation to limit-average rewards for w-regular specifications
which are also absolute liveness properties. (In particular, optimal policies satisfy such specifications
with either probability 0 or 1.) Their translation is optimality-preserving provided the MDP is
communicating and the magnitute of penalty rewards in their construction are chosen sufficiently
large (which requires knowledge of the MDP).

Furthermore, whilst there are numerous convergent RL algorithms for average rewards for unichain
or communicatingﬂ MDPs (e.g.|Brafman & Tennenholtz| (2003); |Yang et al.| (2016); |Gosavi (2004);
Schwartz (1993)); |/Auer et al.|(2008); Wan et al.| (2021))), it is unknown whether such an algorithm
exists for general multichain MDPs with a guaranteed convergence property. In fact, a negative result
in|Alur et al.{(2022); Bazille et al.[(2020) shows that there is no PAC (probably approximately correct)
algorithm for LTL objectives and limit-average rewards when the MDP transition probabilities are
unknown.

Brafman & Tennenholtz] (2003) have proposed an algorithm with PAC guarantees provided e-return
mixing times are known. They informally argue that for fixed sub-optimality tolerance e, this
assumption can be lifted by guessing increasingly large candidates for the e-return mixing time. This
yields e-approximately optimal policies in the limit. However, it is not clear how to asymptotically
obtain exactly optimal policies as this would require simultaneously decreasing e and increasing
guesses for the e-return mixing time (which depends on ¢).

B LIMITATIONS

We focus on MDPs with finite state and action sets and assume states are fully observable. The
assumption of Section [ that the support of the MDP’s probability transition function is known is
eliminated in Section[5] Whilst the size of our general translation—the first optimality-preserving
translation—is exponential, the additional knowledge in Section 4] enables a construction of the
reward machine of the same size as the DRA expressing the objective. Hence, we conjecture that
this size is minimal relative to the DRA specification. Since RL with average rewards is not PAC
learnable, we cannot possibly provide finite-time complexity guarantees of our Algorithm [I]

SThese assumptions generally fail for our setting, where MDP states also track the states of the reward
machine. For instance, in the reward machine in Fig. @it is impossible to reach w1 from us.
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C SUPPLEMENTARY MATERIALS FOR SECTION

Proposition 4. There is an MDP M and an w-regular language L for which it is impossible to find
a reward function R : S x A x S — R such that every jéﬁg-optimal policy of M also maximises
the probability of membership in L.

Proof. Consider the deterministic MDP in Fig.|laland the objective of Example|l|“to visit s; exactly
once” expressed by the DRA A in Fig. [Ib] Assume towards contradiction there exists a reward
function R : S x A x S — R such that optimal policies w.r.t. 73, maximise acceptance by .A. Note
that every policy 7* maximising acceptance by the DRA induces the run so(asg)™bs1bso(asg)®
for some n € N, and J4!(7*) = 1. Thus, its limit-average reward is J%% (7*) = R(s0,a, so).
Now, consider the policy 7 always selecting action a with probability 1. As the run induced by 7
is s0(aso)“, we deduce that J3*(7) = 0 and JZ:(7) = R(s0,a,s0) = Jhee(7*), which is a
contradiction since 7 is not J j“" -optimal. O

Recall that a w-regular language L is prefix-independent if for every infinite label sequence
w € (24%)%, we have w € L iff w’ € L for every suffix w’ of w. Next, we prove that there is no
optimality-preserving translation for reward functions regardless of whether L is prefix-independent
or not. The prefix-dependent case was given in Section[3] Here we focus on the other case:

Proposition 15. There exists a tuple (S, A, so, A) and a prefix-independent w-regular language L for
which it is impossible to find a reward function R : S x A x S — R such that for every probability
transition P, let M = (S, A, so, P, \), then every R™$-optimal policy of M is also L-optimal (i.e.
maximizing the probability of membership in L).

Proof. Our proof technique is based on the fact that we can modify the transition probability function.
Consider the MDP in Fig. [3a] where the objective is to visit either s; or s infinitely often. It can
be checked that the DRA in Fig. 3b|captures the given objective and the language accepted by A is
prefix-independent. There are only two deterministic memoryless policies: 71, which consistently
selects action a, and 7o, which consistently selects action b. For the sake of contradiction, let’s
assume the existence of a reward function R that preserves optimality for every transition probability
function P. Pick p; = 1 and p» = 0. Then J3"(m1) = 1 and J4"(m2) = 0, which implies that
71 is A-optimal whereas 7o is not. Thus R(s1,a,s1) = Jhes(m1) > Thte(m2) = R(s0,b, $0)-
Now, assume p1,p2 € (0,1). Accordingly, we have J3%.(m1) > pi1R(s1,a,s1) and we can
deduce that (e.g. by solving the linear equation system described in (Puterman, [1994, §8.2.3))
Tt (mg) = 2322 R(s0,b,s0) + ;:gz (R(s0,b,s3) + R(ss,b,50)). As a result:

lim J3%(m) > R(s1,a,51) > R(s0,b,80) = lim JZde(m2)
p1—1 p2—1

Consequently, if p1, po are sufficiently large then j/z‘j‘ (m) > jﬁj‘ (m2). However, this contradicts
to the fact that 75 is A-optimal and 7 is not, since jﬁ" (ma) =1>p = jj\\’t (m1). Hence, there is
no such reward function R.

Remarks. Our definition of RM is more general than the one presented in [Icarte| (2022)); [Icarte
et al[(2018), where &/, : U — [S x A x S — R]and ¢’. : U x 247 — U. Note that (¢/,, ") can be
reduced to (d,, d,-) by expanding the state space of the RM to include the previous state and utilising
the inverse label function A~1. It is worth pointing out that Theoremdoes not contradict a negative
result in|Alur et al.|(2022) regarding the non-existence of an optimality-preserving translation from
LTL constraints to abstract limit-average reward machines (where only the label of transitions is

provided to 6, and 6,.).

D SUPPLEMENTARY MATERIALS FOR SECTION

Lemma 16. Every AEC contains an ASEC.
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start —

(a) An MDP M where A(s1,a,s1) = A(s3,b,s0) = {c}, (b) ADRA A for the objective of visiting s1 or
and the rest are labeled with (). sg infinitely often where F' := {({q1},0)}.

Figure 3: Counter-example for prefix-independent objectives.

Proof. Consider an AEC C = (T, Act) of M _4. We will prove this by using induction on the number
of actions in C, denoted as size(C) := >, | Act(s)| > 1. For the base case where size(C) = 1, it
can be deduced that C consists of only one accepting state with a self-loop. Therefore, C itself is an
ASEC.

Now, let’s assume that size(C) = k + 1 > 2. If C is already an ASEC, then we are done. Otherwise,
there exists a state s € T such that | Act(s)| > 1. Since C is strongly connected, there exists a
finite path p = sasja; ... s,a,SF Where sg is an accepting state and all the states sy, ..., s, are
different from s. Let a’ € Act(s) such that a’ # a. We construct a new AEC C' = (T, Act’) by
first removing a’ from Act(s) and then removing all the states that are no longer reachable from s
along with their associated transitions. It is important to note that after the removal, s € T since
we can reach sp from s without taking the action a’. (Besides, the graph is still strongly connected.)
Since size(C’) < k, we can apply the induction hypothesis to conclude that C’ contains an ASEC,
thus completing the proof. O

Lemma 8. Almost surely, if p is accepted by A then p® reaches a state in some ASEC C; of M ® A.

To proof this result, we recall a well-known result in probabilistic model checking that with probability
of one (wpo), every run p of the policy 7 eventually stays in one of the ECs of M 4 and visits every
transition in that EC infinitely often. To state this formally, we define for any run p = spapsy - - -,

InfSA(p) :={(s,a) e Sx A||{i eN|s; =sAa; =a}| =00}

the set of state-action-pairs occurring infinitely often in p. Furthermore, a state-action set x C S x A
defines a sub-MDP sub(x) := (T, Act), where

T:={se€S|(s,a) € xforsomeac A} Act(s) :={a (s,a) € x}
Lemma 17 (de Alfaro|(1999)). P, e [sub(InfSA(p)) is an end component] = 1.

For the sake of self-containedness, we recall the proof of |de Alfaro|(1999).

Proof. We start with two more definitions: for any sub-MDP (7', Act) Alfaro| (1998), let
sa(T, Act) :={(s,a) e T x A|a € Act(s)}
be the set of state-action pairs (s, a) such that a is enabled in s. Finally, let
QTAY . — 1) e Runs(S, A) | InfSA(p) = sa(T, Act)}

be the set of runs such that action « is taken infinitely often in state s iff s € T"and a € Act(s). Note
that the Q(T-A¢%) constitute a partition of Runs(S, A).

Therefore, it suffices to establish for any sub-MDP (T, Act), (T, Act) is an end-component or
Plp € Q4] = 0,
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(so,a,s0)/0 (s0,a,80)/1 /0 */0
start —{ 4o (80,[),81)/0 @ (S(),b,sl)/l 6
(81,1),30)/0 (Sl,b,So)/O

Figure 4: Reward machine yielded by our construction in Section for the running example.

Let (T, Act) be an arbitrary sub-MDP. First, suppose there exist s € T and a € Act(t) such that
p =Y gcp At a,t') < 1. By definition each p € Q(T*AY) takes action a in state s infinitely often.
Hence, not only P[p € Q(T-AY] < pk for all k € N but also P[p € Q(T-A)] = 0.

Thus, we can assume that for all s € T and @ € Act(t), ¥, cp At a,t') = 1. If QA = ¢

then clearly P[p € Q(T-A¢)] = ( follows. Otherwise, take any p = sgaga; - - - € QA and let
t,t’ € T be arbitrary. We show that there exists a connecting path in (7', — A ), which implies that
(T, Act) is an end component.

Evidently, there exists an index iy such that all state-action pairs occur infinitely often in p, i.e.

{(8ig, @ig)s (Sig+1, @ig+1), - - -} = InfSA(p)

Thus, for all ¢ > i, s; € T and a; € Act(s;), and for all i’ > i > 4, there is a path from s; to s;/ in
(T, — Act)- Finally, it suffices to note that clearly for some ¢’ > i = ig, s; =t and s;y = t'. O

Proof of Lemmal8} By Lemma almost surely sub(InfSA(p)) is an accepting end component.
Clearly, p is only accepted by the product MDP if this end component is an accepting EC. By
Lemmal(16|this AEC contains an ASEC. Therefore, by definition of sub(InfSA(p)), p almost surely
in particular enters some ASEC. Finally, since the Cy, . ..,C, cover all states in ASECs, p almost
surely enters some C;. O

Before turning to the proof of Lemma let jﬁﬁ,g(p) = liminf;_ % . Zﬁ;é r; denote the limit-
average reward of a run p. Note that, for any run p, jﬁ‘;‘vg(p) € {0,1}. Thus, by the dominated
convergence theorem (Klenke, 2014, Cor. 6.26),

t—1
PpND,/er [\77%% (p) = 1} = IEpND,/,"1 [«77%’@ (p)] = litrgiogf ]Eme,frVI |jf : Z Ti] = \77%% (71')
- 3)
Lemma 10. Letr P be a probability transition function with support E and M := (S, A, so, P).
1. For every policy 1, T4 (m) < T3 (7).
2. For every policy T, there exists some policy 7' satisfying T3 (7) < T34 (7).
Proof. 1. For any run p, jﬁ,g(p) = 1 only if p® enters a C; and never leaves it. (p® might

have entered other C;’s earlier but then those necessarily need to overlap with yet another
Cr, such that i < k < j to avoid being trapped in state L, resulting in Jﬁ\fvg (p) = L
Furthermore, this C; can only overlap with C; if ¢ < j. Otherwise, the reward machine
would have enforced transitioning to C;.)

Since C; is an ASEC, p® is accepted by the product MDP M ® A. Hence, by Egs.
and (3),

T (7) = Bypupy [Tite(p) =1] < Ppuppe [p¥ acceptedby M@ A] = T3 (m)

2. Let 7 be arbitrary. For a run sgag - - - let ¢; be the state of the DRA in step ¢. Define 7’
to follow 7 until reaching s; such that (s¢, q;) € 71 U - - - U T},. Henceforth, we select the
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(unique) action guaranteeing to stay in the C; with minimal ¢ including the current state, i.e.
Actg,u)(q,u). Formall

7' (soag - - - 5¢) = (5000 - - 5t) if (st,qe) gTHU---UT, @

o . Act(s, q,)(5¢,q:) otherwise

Note that whenever a run p ~ Dfr‘f‘ follows the modified policy 7’ and its induced run p®
reaches some ASEC C; then J{Qﬁ&s (p) = 1. Thus,

P,y [p® reaches some ] < B, pm [T ()] = T4 ()

Furthermore, by Lemma almost surely, every induced run p® accepted by the product
MDP must reach some C;. Consequently, by Eq. (2),

jj\w(ﬂ) =P, pm [p® is accepted by M ® A]
<P, opm [p® reaches some C;]

=P, _pm|[p® reaches some C;] < Tt (7"

In the penultimate step, we have exploited the fact that = and 7" agree until reaching the
first C;. O]

D.1 EFFICIENT CONSTRUCTION

Our construction in Section [ considers a collection of ASECs covering all states in ASECs. Whilst
it does not necessarily require listing all possible ASECs but only (up to) one ASEC per state, it is
unclear whether this can be obtained in polynomial time. Next, we present an alternative (yet more
complicated) construction which has polynomial time complexity.

We consider a different collection Cy, . .., C,, of ASECs:

Suppose Cf,...,C/ is a collection of AECs (not necessarily simple ones) con-
taining all states in AECs. Then we consider ASECs Cy, . ..,C, such that C; is
contained in C.

The definition of the reward machine in Section4.2] and the extension in Section[3]do not need to be
changed. Next, we argue the following:

1. This collection can be obtained efficiently (in time polynomial in the size of the MDP and
DRA).

2. Lemma(T0|and hence the correctness result (Theorem [9) still hold.

For 1. it is well-known that a collection of maximal AECs (covering all states in AECs) can be
found efficiently using graph algorithms (Alfaro| |1998| Alg. 3.1),[Fu & Topcu| (2014); Chatterjee &
Henzinger| (2011) and (Baier & Katoen, 2008} Alg. 47 and Lemma 10.125). Subsequently, Lemma
can be used to obtain an ASEC contained in each of them. In particular, note that the proof of
Lemma|I6]immediately gives rise to an efficient algorithm. (Briefly, we iteratively remove actions
and states whilst querying reachability properties.)

For 2., the first part of Lemma[I0]clearly still holds. For the second, we modify policy 7 as follows:
Once, 7 enters a maximal accepting end component we select an action on the shortest path to
the respective ASEC C; inside C,. Once we enter one of the C; we follow the actions specified by
the ASEC as before. Observe that the probability that under an AEC is entered is the same as the
probability that one of the C; is entered under the modified policy. The lemma, hence Theorem [9}
follow.

"We slightly abuse notation in the “otherwise”-case and denote by Act (s, ,q,)(st, g¢) the distribution selecting
the state in the singleton set Act(s, 4,)(St, g:) with probability 1.
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E SUPPLEMENTARY MATERIALS FOR SECTION

Lemma 18. Suppose M = (S, A, s, P) is an arbitrary MDP.

1. For every policy , jf/z\ﬁ,g (m) < jj“’l (m).
2. For every policy , there exists some policy 7' satisfying T3 (7) < T4k (7).

Proof.

1. For arun p, let £, be the set of transitions encountered in the product MDP. Note

that jﬁj{,g(p) = 1 only if p® enters some CZE ¢ and never leaves it. (p® might have entered
other CJE s earlier for £ C F,.)

With probability 1, E, contains all the transitions present in Cf ” in the actual MDP. (NB
possible transitions outside of Cf ” might be missing from E,.) In particular, with probability
1, CZ-E ? is also an ASEC for the true unknown MDP and p® is accepted by the product MDP
M ® A. Consequently, using Eq. (3) again,

TR (7) = Popsi [T (p) = 1] < Ppopi[p® accepted by M @ A] = T4(x)

. Let 7 be arbitrary. We modify 7 to 7’ as follows: until reaching an ASEC C = (T, Act)

w.r.t. the true, unknowrﬂ set of transitions E* follow w. Henceforth, select action
o
ACt(st,qt)(Shqt)'

We claim that whenever p ~ DM follows the modified policy ' and p® reaches some
ASEC in the true product MDP, jé\;{-g (p) =1

To see this, suppose p ~ DM is such that for some minimal ¢ty € N, (s4,,q1,) € T U
S UTE  LetC = (T, Act) := CE’

(8t9,qto)"
0+9to

Define E; to be the transitions encountered up to step ¢ € N, ie. E; :=
{((8k,qr)s Ak, (Sk+1,qk+1)) | 0 < k < t}. Then almost surely for some minimal ¢ > tg,
E; contains all transitions in C, and no further transitions will be encountered, i.e. for all
t' > t, Eyv = E;. Define F := E;. Note that for all ((s,q),a,(s’,¢")) € E such that
(s,q) € T, Act(s,q) = {a}. (This is because upon entering the ASEC C we immediately
switch to following the action dictated by Act. Thus, we avoid “accidentally” discovering
other ASECs w.r.t. the partial knowledge of the product MDP’s graph, which might other-
wise force us to perform actions leaving C.) Consequently, there cannot be another ASEC
C' = (T’, Act") w.r.t. E overlapping with C, i.e. T N'T" # (). Therefore, for all (s, q) € C,

Act(E:’q) = Act. Consequently, 724, (p) = 1.
Thus,
Pyprm [p® reaches some ASEC in true product MDP] < E D [Tate(p)] = TAL(n)
Consequently,
T (m) =P, pm[p® is accepted by M ® A]
<P, pm [p® reaches some ASEC in true product MDP]
=P DM [p® reaches some ASEC in true product MDP] < jfz‘ﬂyg (")

In the penultimate step we have exploited that 7w and 7’ agree until reaching some ASEC in
true product MDP. O

F SUPPLEMENTARY MATERIALS FOR SECTION

Let II be the set of all memoryless policies and II* be the set of all limit-average optimal policies.
Besides, let w* := J4%, (1) the limit average reward of any optimal 7* € IT*.

$NB The modified policy depends on the true, unknown E*; we only claim the existence of such a policy.
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Lemma 19. Suppose v, /1, €, \, 0 and suppose each my, is a memoryless policy. Then there exists
ko such that for all K 5 k > kg, m is limit average optimal, where K is the set of k € N satisfying
TpA (m1) > T4, (7) — e, for all memoryless policies .

Our proof harnesses yet another notion of optimality: a policy 7 is Blackwell optimal (cf. Blackwell
(1962) and (Hordijk & Yushkevich, 2002, Sec. 8.1)) if there exists 7 € (0, 1) such that 7 is y-discount
optimal for all ¥ < v < 1. It is well-known that memoryless Blackwell optimal policies always exist
Blackwell| (1962); Grand-Clément & Petrik| (2023)) and they are also limit-average optimal [Hordijk &
'Yushkevich! (2002); /Grand-Clément & Petrik|(2023).

Lemma|[T9]is proven completely analagously to the following (where K = N):

Lemma 20. Suppose v, 1, €, \( 0 and each my, is a memoryless policy satisfying jﬁﬁ‘k (m) >
j’RMYk (m) — ex for all m € I1. Then there exists ko such that for all k > ko, 7y, is limit average
optimal.

Proof. We define A := min ¢ - T4 () — w* > 0. Recall (see e.g. (Hordijk & Yushkevich|
2002, Sec. 8.1)) that for any policy 7 € II,

lim (1 — ) - T4 (m) = Tide (m) )
771

Since I1 is finite, due to Eq. (5)) there exists 7y such that

| Thke () = (1 =) - Tpa ()| < (6)

| >

forall 7 € IT and 7y € [y, 1). Let 7* be a memoryless Blackwell optimal policy (which exists due to
Blackwell| (1962); \Grand-Clément & Petrik (2023)). Note that

w* = Jph () )
and there exists 7 € [0, 1) such that
T () 2 Jgi (m) ®

forall v € [¥,1) and 7 € II. Moreover, there clearly exists kg such that ¢, < A/4 and vy, > 79,7
forall £ > kg.

Therefore, for any k > ko,

A
Ttk ms) — 0] < (1) - | T () — T () + 5 Eas. ) and
A
< (1 =) e+ 5 premise and Eq. (B)
<3 A
-3
Consequently, by definition of A, m; € IT*. O

Theorem 13. RL with average reward functions can be learned in the limit by Algorithm[I} almost
surely there exists kg € N such that my, is limit-average optimal for k > k.

Proof. Using the definition for K of Lemma[I9]of iterations where the PAC-MDP algorithm succeeds,

1
E[#(N\ K)] < ) P[PAC-MDP fails in iteration k] < » 6 = 7 <
keN kEN kEN
The claim follows immediately with Lemma [I9] O

Discussion. ~Algorithm[I|makes independent calls to black box algorithms for discount sum rewards.
Many such algorithms with PAC guarantees are model based (e.g.|[Kearns & Singh|(2002); [Strehl et al.
(2009)) and sample from the MDP to obtain suitable approximations of the transition probabilities.
Thus, Algorithm [I] can be improved in practice by re-using approximations obtained in earlier
iterations and refining them.
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