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This abstract is based on the conference publication [2]. We also mention
some additional recent results.

Abstract. We study optimization problems with orthogonality con-
straints of the form

min
X∈Rn×p

f(X) subject to X>X = Ip,

where f is smooth and possibly nonconvex. The feasible set is the Stiefel
manifold

St(n, p) = {X ∈ Rn×p : X>X = Ip}.
Orthogonality constraints play a role in the performance of neural net-
works and large language models [3,4]. Classical algorithms for such prob-
lems split into feasible methods, which maintain iterates on the manifold
(e.g., Riemannian optimization), and infeasible methods, which converge
to feasibility via penalties or augmented Lagrangians.
Recently, the landing framework has emerged as an attractive infeasible
approach. The method is based on the central observation that for X ∈
Rn×p∗ , the set

StX>X := {Y ∈ Rn×p |Y >Y = X>X}

is a smooth manifold. Each step of the landing is the weighted sum of a
normal component, which decreases infeasibility, and a tangent compo-
nent, which decreases the cost while maintaining feasibility at the first
order.
There are natural choices for the normal part, which are descent direction
from the current iterate for the problem of minimizing the infeasibility

N (X) :=
∥∥∥X>X − Ip

∥∥∥2

F
. (1)

In [2], we focus on the design of the tangent part. We have two main
contributions.
1. We outline that the choice of metric in the ambient space yields a

different projected gradient term for the tangent part. Let g denote
a Riemannian metric on Rn×p∗ . A natural choice for the tangent part
is the negative of the constrained Riemannian gradient gradgf(X)
defined by

gradgf(X) = ProjX,g(∇gf(X)), (2)
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Fig. 1. Illustration of landing algorithm.

where ∇gf(X) is the unconstrained gradient of f in the metric g,
and ProjX,g is the projection onto the tangent space TXStX>X with
respect to the metric g.

2. We introduce a family of metrics on the ambient space Rn×p∗ , extend-
ing the so-called β-metrics on the Stiefel manifold. The family of β-
metrics includes the Euclidean and Canonical choices [1]. For every
β > 0, we compute the corresponding normal space and, through (2),
the constrained Riemannian gradient gradβf(X), which is required
to build the landing update.

Recent work A key limitation of prior landing-type algorithms is their
reliance on fixed stepsizes, which can be inefficient and sensitive to scal-
ing. We propose the first backtracking linesearch for landing methods.
Our criterion is based on the nonsmooth and exact `2 merit function

Fµ(x) = f(x) + µ‖h(x)‖2,

for the general constrained problem

min
x∈Rn

f(x) subject to h(x) = 0,

where h : Rn → Rm for m ≤ n. The penalty Fµ is exact in the sense that
local minimizers of the constrained problem are also local minimizers of
Fµ for all µ above a certain threshold µ∗. The descent property of the
landing direction ensure that backtracking is well-defined. This bridges
the gap between landing flows and practical optimization algorithms.
We also establish a link with the sequential quadratic programming
method (SQP) [5]. We show that SQP and the landing are closely re-
lated, a key difference being that the landing offers more flexibility in
the normal term.

Discussion Our developments provide both a theoretical and practical
advance. On the theoretical side, we show a generalization of the landing
for a family of metric in the ambient space. On the algorithmic side,
the linesearch improves robustness and efficiency, overcoming the main
bottleneck of fixed-step schemes.

Keywords: constrained optimization · landing algorithms · stiefel man-
ifold · penalty methods.
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