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Abstract

Large Language Models (LLMs) have cat-001
alyzed transformative advances across a spec-002
trum of natural language processing tasks003
through few-shot or zero-shot prompting, by-004
passing the need for parameter tuning. While005
convenient, this modus operandi aggravates006
“hallucination” concerns, particularly given the007
enigmatic “black-box” nature behind their gi-008
gantic model sizes. Such concerns are exacer-009
bated in high-stakes applications (e.g., health-010
care), where unaccountable decision errors can011
lead to devastating consequences. In contrast,012
human decision-making relies on nuanced cog-013
nitive processes, such as the ability to sense014
and adaptively correct misjudgments through015
conceptual understanding. Drawing inspira-016
tion from human cognition, we propose an017
innovative metacognitive approach, dubbed018
CLEAR, to equip LLMs with capabilities for019
self-aware error identification and correction.020
Our framework facilitates the construction of021
concept-specific sparse subnetworks that illu-022
minate transparent decision pathways. This023
provides a novel interface for model interven-024
tion after deployment. Our intervention of-025
fers compelling advantages: (i) at deployment026
or inference time, our metacognitive LLMs027
can self-consciously identify potential mispre-028
dictions with minimum human involvement,029
(ii) the model has the capability to self-correct030
its errors efficiently, obviating the need for ad-031
ditional tuning, and (iii) the rectification proce-032
dure is not only self-explanatory but also user-033
friendly, enhancing the interpretability and ac-034
cessibility of the model. By integrating these035
metacognitive features, our approach pioneers036
a new path toward engendering trustworthiness037
and accountability in the deployment of LLMs.038

1 Introduction039

Recent years have witnessed laudable achieve-040

ments of Large Language Models (LLMs) (Raffel041

et al., 2020; Zhou et al., 2022b; OpenAI, 2023).042

However, LLMs are not infallible; they err due to 043

factors like “hallucination” (McKenna et al., 2023). 044

These vulnerabilities pose critical challenges for 045

the trustworthy deployment of LLMs in high-stakes 046

settings where errors can precipitate significant 047

repercussions. As an example, for LLM-assisted 048

medical diagnoses (Monajatipoor et al., 2022), a 049

single misdiagnosis can inflict profound physical 050

and financial costs on the patient. 051

Despite its significance, the current literature 052

lacks an effective approach to LLM intervention 053

after deployment to help the model overcome those 054

errors. One intuitive method, few-shot or zero-shot 055

prompting (Wei et al., 2022; OpenAI, 2023) re- 056

cently has shown promising results. Users can di- 057

rectly query LLMs and point out their mistakes 058

using usually “hand-crafted” prompts. Though 059

they are simple, the post-prompting performance 060

remains uncertain. Moreover, it necessitates human 061

expertise both for error identification and prompt 062

design. (2) Another potential method is to fine-tune 063

part of the parameters in LLMs (e.g, the final lay- 064

ers) on erroneously predicted examples (Hardt and 065

Sun, 2023). Besides costly human involvement, 066

this method risks model overfitting on those exam- 067

ples and “catastrophic forgetting” of prior knowl- 068

edge. (3) Some initial work (Li et al., 2023) repet- 069

itively performs activation-level intervention on 070

all examples to get better performance, thus re- 071

sulting in inflated inference latency. Against this 072

backdrop, we trifurcate the challenges for LLM 073

intervention into three folds. ❶ The “black-box” 074

nature of LLMs obscures the malfunction source 075

within the multitude of parameters, impeding tar- 076

geted intervention. ❷ Rectification typically relies 077

on domain experts to identify errors, hindering scal- 078

ability and automatic intervention. ❸ The archi- 079

tectural complexity and sheer size of LLMs render 080

targeted intervention a daunting task. 081

In this paper, we advocate that an ideal inter- 082

vention should be metacognitive, where LLMs 083
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Figure 1: Metacognitive LLMs are able to preceive
concepts to self-correct potential errors.

are capable of self-aware error identification and084

correction. This perspective is informed by sev-085

eral key insights from cognitive science literature:086

(a) Cognitive Perception of Concepts - humans087

demonstrate the ability to swiftly identify and rec-088

tify judgment errors by perceptively recognizing089

essential features, or “concepts” (Malafouris, 2013;090

Koh et al., 2020). This ability to hone in on vi-091

tal features underscores the efficiency of human092

cognitive processes. (b) Neural Sparsity for Effi-093

ciency - building upon the notion of efficiency, the094

architecture of the human brain provides a valu-095

able lesson. The distribution of neural connec-096

tions and activity patterns in our brains is char-097

acterized by a high degree of sparsity (Gerum et al.,098

2020). This sparse configuration is believed to fa-099

cilitate rapid cognitive responses. (c) Conscious100

Anomaly Detection - human brain exhibits an in-101

trinsic ability to consciously identify anomalies102

or challenging problems (Penfield, 2015). Upon103

encountering such situations, it channels addi-104

tional neural resources to address them effectively.105

Building on this premise, we propose an avant-106
garde Concept-Learning-Enabled metAcognitive107

inteRvention framework, herein termed CLEAR,108

for LLM deployment. CLEAR facilitates LLMs109

in mastering concept-specific sparse subnetworks.110

These subnetworks elucidate transparent decision-111

making pathways, thereby providing a unique in-112

terface for surgical model intervention, that auto-113

matically allocates more sparse computing mod-114

ules to potentially more challenging instances. Dis-115

tinctively, our approach simultaneously tackles the116

challenges highlighted above through the following117

four core contributions:118

⋆ Metacognition. At deployment (inference) time,119

our metacognitive framework autonomously de-120

tects potential mispredictions by measuring logit121

entropy in pivotal intermediate layers.122

⋆ Interpretability. Leveraging the transparency123

of decision pathways, our CLEAR allows for a124

logical backtrack to the input, thereby aiding user125

comprehension and fostering trust in the model.126

⋆ Efficiency. Upon identification of a mispredic- 127

tion, the LLM architecture dynamically activates 128

extra internal experts to refine concept perception 129

without necessitating further parameter tuning. 130

⋆ Effectiveness. Experiments on real-world 131

datasets with LLM backbones in various sizes 132

and architectures manifest that our intervention 133

consistently improves inference-time predictions. 134

2 Related Work 135

Intervention on Deep Models for Error Miti- 136

gation. Historically, error mitigation in machine 137

learning emphasized simpler models, such as Deci- 138

sion Trees and Random Forests, where corrections 139

were largely heuristic and human-driven (Doshi- 140

Velez and Kim, 2017). With the evolution of ma- 141

chine learning techniques, there was a pivot to- 142

wards leveraging algorithms themselves for error 143

detection, emphasizing the removal of non-relevant 144

data and unveiling crucial fault-application relation- 145

ships (Abich et al., 2021). The ascendance of neu- 146

ral networks, and LLMs in particular, brought new 147

intervention paradigms. Fine-tuning emerged as a 148

primary strategy for addressing model shortcom- 149

ings, despite its challenges related to overfitting and 150

catastrophic forgetting of prior knowledge (Wang 151

et al., 2019; French, 1999). Few-shot and Zero-shot 152

prompting marked another avenue, guiding mod- 153

els without altering their internal makeup, leading 154

to inherent limitations in error repeatability (Wei 155

et al., 2022; Huang et al., 2023). Deeper inter- 156

ventions, targeting model architectures, have deliv- 157

ered promising accuracy, yet with computational 158

trade-offs (Li et al., 2023). Notably, quantum error 159

mitigation approaches, though out of our current 160

scope, underline the breadth of exploration in this 161

domain (Subramanian Ravi et al., 2021). 162

Concurrently, the push towards model inter- 163

pretability has intensified (Carvalho et al., 2019; 164

Yuksekgonul et al., 2022). The ultimate goal is to 165

design systems whose inner workings can be easily 166

understood, thereby facilitating targeted interven- 167

tions. Another series of recent work on concept 168

bottleneck models (Koh et al., 2020; Zarlenga et al., 169

2022) utilize extra human-comprehensive concept 170

labels to guide the learning of LLMs. Those con- 171

cepts can be annotated by either human (Yuksek- 172

gonul et al., 2022; Wu et al., 2022) or large foun- 173

dation models (Oikarinen et al., 2022; Tan et al., 174

2023b). However, those method cannot provide 175

2



transparency inside the LLM backbone, thus de-176

manding specialized interventions that are usu-177

ally hand-carfted by domain experts (Farrell, 2021;178

Monajatipoor et al., 2022; Tan et al., 2023a).179

Metacognitive Approaches. Metacognition,180

commonly known as “thinking about thinking”, has181

long been recognized in cognitive science (Flavell,182

1979), resonating through educational and clinical183

paradigms (Zimmerman, 2013; Moritz and184

Woodward, 2007). This foundational knowledge185

has segued into AI, aspiring towards machines186

with self-reflective and adaptive capabilities (Cox,187

2005). Recent endeavors strive to infuse cognitive188

inspirations into models, affirming a deeper189

“understanding” of their decisions (Malafouris,190

2013). However, genuinely metacognitive LLMs191

remain an elusive goal (Huang et al., 2023), with192

challenges arising from their black-box nature and193

vast, intricate architectures.194

3 Methodology195

The proposed framework Concept-Learning-196

Enabled metAcognitive inteRvention, CLEAR, is197

comprised of two crucial components: (1) Concept198

Learning: the learning of concept-specific sparse199

subnetworks for LLMs. (2) Metacognitive Inter-200

vention: automatic error identification and rectifi-201

cation. At the heart of our methodology lies the202

insight that a refined understanding of LLMs can203

facilitate targeted metacognitive intervention. To204

this end, before jumping into the full picture of the205

proposed CLEAR framework, we first explore the206

learning of concept-specific sparse subnetworks.207

3.1 Concept Learning for LLMs208

Basic Setup. Our primary focus is the en-209

hancement of Large Language Models (LLMs)210

within the realm of text classification tasks dur-211

ing the inference phase. Given a dataset D =212

{(x(i), y(i), c(i))Ni=1}, we utilize an LLM, denoted213

by fθ, to transform an input text x ∈ RD into a214

latent space representation z ∈ RE . This latent rep-215

resentation is then classified via a linear classifier216

gϕ into the respective target label y (discrete for217

classification and continuous for regression). Here218

{c(i)}Ni=1 denotes the critical features, or “concepts”219

annotated by humans (Koh et al., 2020; Abraham220

et al., 2022) or very large language models (Tan221

et al., 2023b; Ludan et al., 2023), such as GPT-222

4 (OpenAI, 2023). These concepts are typically223

represented using one-hot vectors. For instance, in224

a restaurant review sentiment dataset, the concept 225

“Food” is denoted by [0, 0, 1], signifying a “Positive” 226

attitude towards food. The other vector positions 227

can represent “Negative” and “Unknown”. 228

Incorporating Concept Bottlenecks for LLMs. 229

Our general pipeline is inspired by a previous 230

work (Koh et al., 2020) on image classifications. In- 231

stead of altering LLM encoders fθ—which might 232

compromise the integrity of the text representa- 233

tion—we incorporate a linear layer, characterized 234

by a sigmoid activation function pψ. This layer 235

maps the latent representation z ∈ RE to a con- 236

cept space c ∈ RK , and then a white-box linear 237

model gϕ maps the concepts to the target label y. 238

This creates a decision-making pathway depicted 239

as x → z → c → y. By allowing for multi-class 240

concepts, we aim to achieve nuanced interpreta- 241

tions. Akin to common practice (Koh et al., 2020; 242

Tan et al., 2023b), the joint optimization harmo- 243

nizes the concept encoder and label predictor via 244

weighted sum, represented as Ljoint, as detailed in 245

Equation (5) in Appendix A. 246

Building Concept-Specific Sparse Subnetworks 247

via Mixture of Concept Experts. We presents 248

the Mixture of Concept Experts (MoCE) frame- 249

work, a novel approach to creating pathways an- 250

chored in specific concepts, thereby enhancing 251

targeted interventions. This model takes cues 252

from mixture-of-expert (MoE) paradigms (Shazeer 253

et al., 2017), known for their dynamic activation of 254

unique network subsets per input. By conditioning 255

on concept-based computation, MoCE crafts sparse 256

modules, fine-tuning the encoding of text inputs as 257

per their inherent concepts. 258
We structure blocks of MoCEs as the expert 259

layer. This layer comprises a multi-head atten- 260

tion block combined with multiple parallel experts. 261

Specifically, we adapt MoCE for Transformer archi- 262

tectures, integrating MoE layers within successive 263

Transformer blocks. Crafting a MoCE expert in- 264

volves segmenting the conventional MLP of trans- 265

formers into more compact segments (Zhang et al., 266

2021) or duplicating the MLP (Fedus et al., 2022). 267

Note that the majority of extant MoE studies have 268

predominantly focused on the MLP segment within 269

transformers. This focus arises because MLPs ac- 270

count for approximately two-thirds of the entire 271

model parameter set, serving as key repositories of 272

accrued knowledge within memory networks (Geva 273

et al., 2020; Dai et al., 2022). The experts can be 274

symbolized as {em}Mm=1, where m signifies the 275

expert index and M is the total count of experts. 276
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Figure 2: The illustration of the proposed framework CLEAR, comprised of two components: (a) Concept Learinng, where
the LLM backbone learns to construct concept-specific sparse networks via MoCE; and (b) Metacognitive Intervention, which
involves logit entropy scrutiny, dynamic expert allocation, and pseudo intervention, and offers retrospective accountability.

For each concept ck, an auxiliary routing mecha-277

nism, dubbed rk(·), is deployed. This mechanism278

identifies the top-T experts based on peak scores279

rk(x)m, with x representing the present intermedi-280

ate input embedding. Generally, T is much smaller281

than N , which underscores the sparse activations282

among modules of the LLM backbone, making the283

inference of the model more efficient. The output,284

x′, emanating from the expert layer is:285

x′ =

K∑
k=1

T∑
m=1

rk(x)m · em(x);

rk(x) = top-T(softmax(ζ(x)), T ),

(1)286

where ζ is a shallow MLP representing learnable287

routers (Fedus et al., 2022). For the kth concept,288

the expert et(·) initially processes the given fea-289

tures, after which the router amplifies it using coef-290

ficient rk(x)t. The combined embeddings across291

concepts yield the output x′. The top-T opera-292

tion retains the top T values, nullifying the others.293

Typically, a balancing mechanism, such as load or294

importance balancing loss (Shazeer et al., 2017),295

is implemented to avert the risk of representation296

collapse, preventing the system from repetitively297

selecting the same experts across diverse inputs.298

Transitioning to matrix representation for all MoE299

layers in the LLM structure, we derive:300

ŷ =

K∑
k=1

ϕk · σ(ψk · fθk (x))

=

K∑
k=1

ϕk · σ(ψk ·
T∑

m=1

Rk(x)m ·Em(x)),

(2)301

where σ(·) is the sigmoid activation, withR(·) and302

E(·) symbolizing matrix incarnations of all expert303

layer routers and experts. Equation (2) portrays a 304

factorized decision trajectory for model prediction. 305

This can be optimized through a single backward 306

iteration of the composite loss as outlined in Equa- 307

tion (1). Equation (2) accomplishes a core objec- 308

tive: during inference, the LLM’s final prediction 309

intrinsically rely on the learned routing policies, the 310

chosen experts, and the perceived concepts. This 311

accountability offers an interface for targeted error 312

identification and interventions. 313

3.2 Tuning-free Metacognitive Intervention 314

The rationale of our metacognitive intervention 315

is that, different data samples pose varying lev- 316

els of difficulty for LLMs. Drawing inspiration 317

from human cognitive processes—where the brain 318

identifies and navigates potential challenges—our 319

CLEAR framework proactively detects such issues. 320

It strategically allocates additional sparse neural re- 321

sources, specifically experts, to effectively address 322

these challenges. This dynamic allocation tailors 323

the response to the complexity of each sample, pre- 324

venting the model from overfitting on simpler tasks 325

and underfitting on more complex ones. Here, we 326

detail how this is implemented through our defined 327

sparse decision pathways, presenting three research 328

questions, RQ1-3, to guide our discussion. 329

RQ1: How to achieve “metacognition” for
intervention on LLMs?
A1: By autonomously monitoring anomalous
pattern at critical intermediate layers.
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Figure 3: Logit entropy scrutiny. It can be observed
that logits of predictions with errors tend to demonstrate
lower confidence and larger entropy.
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(a) Concept Logits.
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IMDB-C - correct
IMDB-C - error

(b) Routing Logits.

Figure 4: Studies on using K-means for logits scrutiny.
This figure illustrates the effectiveness of K-means in
distinguishing between correct and erroneous logits for
both routing and concept prediction. Logits are nor-
malized via softmax, reducing the impact of noise and
extreme values.
� Logit Entropy Scrutiny. The foremost goal is330

to automatically identify potential errors or more331

complex cases. As inferred from Equation Equa-332

tion (2), two critical decision-making phases no-333

tably impact the ultimate label prediction: (a) the334

deduced routing {Rk(x)}Kk=1 of the final MoCE335

layer, and (b) the determined concept activation336

â = {âk}Kk=1 = ψ · fθ(x). Intuitively, an elevated337

entropy of predictive logits denotes a more dis-338

persed distribution over experts or concept options,339

signifying lower model confidence and pinpointing340

instances that deserve additional attention. For this341

purpose, the Shannon entropy is utilized for logits342

within the routing and concept activation:343

H(p) = −
J∑

j=1

softmax(lj) log(softmax(lj)), (3)344

where j iterates through the logits’ space (J =M345

for routing and J = K for concept activation). For346

illustration, the distributions of logits and entropy347

for concept prediction are depicted using kernel348

density estimation in Figure 3. It is evident that349

predictions with errors tend to demonstrate lower350

confidence and augmented entropy, reinforcing our351

premise. For automation, as we iterate through the352

concepts, K-Means clustering is employed to di-353

vide confidence levels into two clusters (K=2). The354

subset with lower confidence is considered to stem355

from the more challenging instances. K-Means356

offers the advantage of determining thresholds dy-357

namically, eliminating human involvement. If, for358

a single concept prediction relating to an instance,359

the confidence levels of both the routing and con- 360

cept activation surpass the corresponding thresh- 361

olds, we tag this concept prediction as potentially 362

erroneous. We show further studies on the scrutiny 363

in Figure 4 (a) and (b). 364

RQ2: Once a potential error is identified
during inference, how to intervene on LLMs

“without extra parameter tuning”?
A2: By dynamically allocating experts and en-
forcing preparatory rehearsal during training.

� Tuning-free Intervention. Once an erroneous pre- 365

diction is identified, we allocate augmented com- 366

putational resources to secure a more reliable pre- 367

diction. This operation can be easily achieved by 368

setting the maximum expert number from T to a 369

larger number T ′ for the router as below. Note 370

that this operation is very efficient since no extra 371

parameter tuning is involved. 372

rk(x) = top-T(softmax(ζ(x)), T ′) (4) 373

� Pseudo Intervention during Concept Learning. 374

Both existing research (Chen et al., 2023) and our 375

experiments (Figure 6 (c) and (d)) indicate that di- 376

rectly adding more experts at the inference stage 377

results in marginal improvements. Drawing inspi- 378

ration from how humans reinforce understanding 379

of challenging subjects through repeated practice 380

before the final examination, we emulate a simi- 381

lar rehearsal mechanism during concept learning 382

for better metacognitive intervention. As the LLM 383

model is fine-tuned on the task dataset, we pro- 384

gressively raise the count of experts from T to 385

T ′ linearly after a predetermined number of train- 386

ing epochs, typically post the halfway mark. This 387

strategy of pseudo intervention during the training 388

phase significantly enhances predictions when the 389

expert count is increased during the inference-time 390

metacognitive intervention, as depicted in Figure 6 391

(c) and (d). Through this essential rehearsal setup, 392

and by sequentially executing the steps outlined in 393

Equation (3) and Equation (4), the LLM backbone 394

is empowered to autonomously detect possible er- 395

rors, addressing them more robustly with minimal 396

human oversight. 397

RQ3: How can users understand and trust the
intervention?
A3: By backtracking from the task label,
through the sparse pathway, to the input text.

� Retrospective Accountability. A standout fea- 398

ture of our metacognitive intervention is its in- 399

herent explicability. Using the decision-making 400
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Table 1: Statistics of experimented datasets and concepts.
Dataset CEBaB (5-way classification) IMDB-C (2-way classification) ASAP-C (regression)

Train / Dev / Test 1755 / 1673 / 1685 Train / Dev / Test 100 / 50 / 50 Train / Dev / Test 1005 / 281 / 283

Concept

Label Negative Positive Unknown Label Negative Positive Unknown Label Negative Positive Neutral

Food 1693 (33.1%) 2087 (40.8%) 1333 (26.1%) Acting 76 (38%) 66 (33%) 58 (29%) Content 421 (26.8%) 684 (43.6%) 464 (29.6%)
Ambiance 787 (15.4%) 994 (19.4%) 3332 (65.2%) Storyline 80 (40%) 77 (38.5%) 43 (21.5%) Reasoning 764 (48.7%) 467 (29.8%) 338 (21.5%)

Service 1249 (24.4%) 1397 (27.3%) 2467 (48.2%) Emotional Arousal 74 (37%) 73 (36.5%) 53 (26.5%) Language 382 (24.3%) 569 (36.3%) 618 (39.4%)
Noise 645 (12.6%) 442 (8.6%) 4026 (78.7%) Cinematography 118 (59%) 43 (21.5%) 39 (19.4%) Supportiveness 541 (34.5%) 685 (43.7%) 343 (21.9%)

pathways showcased in Equation (2), one can trace401

back from the task label prediction, passing through402

perceived concepts and activated subnetworks (ex-403

perts), all the way to the initial text input, as shown404

in Figure 2. Illustrative examples are provided405

in Figure 5. The incorporation of our framework,406

CLEAR, represents a harmony of precision, flexi-407

bility, and accountability.408

4 Experiments409

Datasets. Our experiments are conducted on410

three datasets, including two widely-used real-411

world datasets, CEBaB (Abraham et al., 2022) and412

IMDB-C (Tan et al., 2023b) and a self-curated413

dataset ASAP-C. Each of them is a text classifi-414

cation or regression dataset comprised of human-415

annotated concepts and task labels. Their statistics416

are presented in Table 1. The prosedures of cu-417

ration of the ASAP-C dataset are similar to those418

two existing datasets. More details of datasets are419

included in Appendix C.420

Baselines. For an in-depth analysis, we examine421

both (a) the performance on the test sets and (b) the422

performance on the development sets, before and af-423

ter the intervention. This dual-faceted examination424

allows us to assess the intervention’s effectiveness425

and evaluate the model’s potential deterioration in426

generalizability and catastrophic forgetting of crit-427

ical prior knowledge. Four LLM backbones are428

employed in our analysis: BERT (Devlin et al.,429

2018), OPT (Zhang et al., 2022), and T5 (Raffel430

et al., 2020). In this study, our evaluation primarily431

involves two categories of frameworks as baselines.432

We adjust our choice of LLM backbone per the433

specific methods employed:434

� Direct Intervention Methods: (i) Directly435

prompting the LLM with human identifying mis-436

predictions. For this method, we use GPT-4 (Ope-437

nAI, 2023) with zero and few-shot prompting, since438

it is widely regarded as the most capable LLMs cur-439

rently. (ii) Directly fine-tuning the LLM backbones440

on mispredicted instances identified by humans.441

(iii) Employing the activation intervention method,442

ITI (Li et al., 2023).443

� Concept Bottleneck Models (CBMs) support 444

concept-level interventions, but still require hu- 445

man experts to identify mispredictions. We con- 446

sider the following recent CBM frameworks as 447

baselines: (iv) Vanilla CBMs (Koh et al., 2020) 448

map the text into concepts using the LLM back- 449

bone and involve another linear classifier to per- 450

form the final classification. (v) Label-free CBMs 451

(LF-CBMs) (Oikarinen et al., 2022) use GPT-4 to 452

obtain the concept labels. (vi) Concept embedding 453

models (CEMs) (Zarlenga et al., 2022) that learn 454

continuous embeddings for concepts. 455

4.1 Superior Performance of CLEAR 456

Table 2 presents comparative results, averaged over 457

three independent runs, showcasing CLEAR’s su- 458

periority across concept and task label predictions, 459

for both classification and regression tasks, and at 460

every intervention stage. We adopt an "early stop- 461

ping" strategy, as per Abraham et al. (2022), to 462

mitigate overfitting, with further details provided 463

in Appendix B and G. 464

a) Effectiveness. CLEAR consistently outper- 465

forms baseline models due to its robust MoCE 466

layers, which create sparse, concept-specific 467

subnetworks. This structure not only improves 468

concept internalization but also lays the ground- 469

work for effective interventions during infer- 470

ence, resulting in significantly improved pre- 471

diction accuracy by addressing the challenges 472

specific to each task. 473

b) Metacognition. CLEAR demonstrates critical 474

metacognitive strengths: (a) Efficiency: With- 475

out the need for fine-tuning tuning, CLEAR 476

avoids the common pitfalls of catastrophic for- 477

getting (shaded in gray). (b) Autonomy: It 478

operates independently of human intervention, 479

which is crucial in scenarios where expertise is 480

scarce. Unlike LF-CBMs that suffer from us- 481

ing noisy labels from GPT-4 (shaded in pink), 482

CLEAR’s autonomy emphasizes the impor- 483

tance of precise intervention. (c) Accountabil- 484

ity: Through transparent decision-making pro- 485

cesses at concept, subnetwork, and input levels, 486

CLEAR significantly boosts user trust. 487
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Table 2: Comparative results on the CEBaB and IMDB-C datasets, using Macro F1 (↑) as the evaluation metric,
expressed in percentages (%). Scores shaded in gray highlight instances where the model experienced catastrophic
forgetting, leading to a decline in performance on the development set. Scores shaded in pink indicate a decrease in
performance following the intervention. Scores shaded in blue are from CLEAR. Results on the ASAP-C dataset in
given in Table 6 in Appendix E.

CEBaB IMDB-C

Pre-intervention Post-intervention Pre-intervention Post-intervention

Dev Test Dev Test Dev Test Dev TestMethods Backbones

Concept Task Concept Task Concept Task Concept Task Concept Task Concept Task Concept Task Concept Task

Direct Intervention Methods

Prompting GPT4 - 46.52 - 45.87 - 46.52 - 48.32 - 69.35 - 68.74 - 69.35 - 69.84

BERT - 80.03 - 79.75 - 76.43 - 81.23 - 74.52 - 72.11 - 71.69 - 74.26
OPT - 82.65 - 81.37 - 80.84 - 82.16 - 80.62 - 79.98 - 75.42 - 81.05Fine-tuning
T5 - 82.64 - 82.65 - 80.67 - 83.34 - 81.85 - 79.87 - 77.62 - 81.53

ITI T5 - 82.64 - 82.65 - 82.64 83.29 - 81.85 - 79.87 - 81.85 - 81.25

Concept Bottleneck Models

BERT 85.86 78.32 85.29 78.11 85.86 78.32 88.52 79.52 64.52 72.51 62.76 70.41 64.52 72.51 65.31 71.96
OPT 87.84 80.03 87.27 79.73 87.84 80.03 89.62 80.12 67.15 78.96 66.53 78.21 67.15 78.96 69.47 79.34Vanilla-CBMs
T5 88.20 81.05 87.96 80.63 88.20 81.05 90.21 81.05 68.85 79.58 67.94 78.26 68.85 79.58 70.26 79.95

BERT 82.37 75.24 83.45 75.69 82.37 75.24 83.52 75.82 62.51 70.49 60.35 68.21 62.51 70.49 61.32 68.13
OPT 84.54 77.62 84.62 76.84 84.54 77.62 85.36 76.64 64.18 75.24 63.37 75.06 64.18 75.24 63.58 74.65LF-CBMs
T5 85.68 78.25 85.74 77.22 85.68 78.25 85.59 76.87 65.16 76.83 64.92 76.30 65.16 76.83 64.43 75.68

BERT 86.78 79.10 86.62 78.64 86.78 79.10 88.67 80.04 64.86 72.61 62.84 71.05 64.86 72.61 65.57 72.33
OPT 87.98 80.51 87.92 79.86 87.98 80.51 89.89 80.65 68.29 79.67 66.97 78.68 67.84 79.62 70.34 79.75CEMs
T5 88.64 81.32 88.34 80.69 88.64 81.32 90.65 81.42 68.98 79.83 68.65 79.64 68.98 79.83 70.93 80.72

Metacognition Intervention

CLEAR OPT-MoCE 88.24 80.96 88.24 80.39 89.04 80.85 90.46 81.24 68.83 79.75 68.47 79.52 68.39 79.86 71.02 80.12
CLEAR T5-MoCE 89.65 81.62 89.63 81.30 89.65 81.62 91.25 82.14 69.46 80.25 69.65 80.63 69.46 80.25 71.67 80.95

c) Flexibility. CLEAR’s architecture-agnostic de-488

sign facilitates its integration with a variety489

of LLMs, such as OPT and T5, demonstrat-490

ing its broad adaptability. However, we have491

not conducted experiments with exceedingly492

large MoEs like LLaMA-MoE (Team, 2023)493

and Mixtral (Jiang et al., 2024) due to their sub-494

stantial size, which makes them impractical for495

training on the datasets. Efficient fine-tuning496

strategies for these larger models presents a497

promising avenue for future research.498

4.2 Extra Investigation and Ablation Study499

Accoutability. CLEAR excels by offering retro-500

spective interpretability and deep insights into its501

intervention processes, enhancing transparency at502

multiple levels. Through backtracking, it provides503

explanations from the concept, subnetwork, to in-504

put levels, significantly increasing user trust and505

comprehension of the model’s decisions.506

� Case Study. A case study showcased in Fig-507

ure 5 (with additional examples in Appendix H)508

illustrates CLEAR’s intervention process. It high-509

lights how CLEAR corrects the predicted label for510

"Cinematography" from incorrect “-” to correct511

“+”, refining the overall task label. This example,512

particularly the analysis of activations before and513

after intervention, uncovers the neural strategy be-514

hind CLEAR’s corrections, enhancing real-world515

applicability. For instance, we can compute the516

influence I of each concept ck to the final decision 517

by the product of the concept activation âk and 518

the corresponding weight wk in the linear classi- 519

fier: I(ck) = âk · wk, as visualized in Figure 5 (c), 520

demonstrating CLEAR’s ability to not only rectify 521

but also explain prediction errors. 522

Table 3: Efficiency comparison between interventions

Method Human labels Parameter tuning Targeted intervention

Prompting ✔ ✘ ✘

Fine-tuning ✔ ✔ ✘

ITI ✘ ✘ ✘

CBM ✔ ✘ ✘

CLEAR ✘ ✘ ✔

Autonomy and Efficiency. CLEAR’s autonomy 523

and tuning-free approach distinguish it from other 524

models. As shown in Table 3, CLEAR uniquely im- 525

proves without requiring human input or complex 526

tuning, a necessity in other models. This indepen- 527

dence not only simplifies CLEAR’s operation but 528

also heightens its reliability and efficacy, ensuring 529

robustness and trustworthiness. 530

Ablation Study. We conducted ablation studies 531

to assess CLEAR’s core components with each 532

finding detailed below: 533

� Intervention Mechanism. Table 4 reveals that in- 534

discriminate expert activation for all instances 535

diminishes performance due to overfitting. Com- 536

paratively, CLEAR’s metacognitive intervention 537

closely matches the precision of oracle interven- 538

tions using human-annotated labels, underscor- 539

7



... The story is not that good... The acting is pretty poor too... manges to work with some
very creepy visuals and atmosphere.,. It's a quiet kind of horror that isn't made anymore...

''Acting''

Router 2

''Storyline''

Router 3

''Cinematography''

Router 4

''Emotional Arousal''

Router 1

Allocate more experts

A S C YE

+

+

+

-

-

-

-

-

-

-

+

+ +

+

-

(b)(a) (c)

Figure 5: Illustration of an case study for the accountable metacognitive intervention from the IMDB-c dataset. (a)
shows how CLEAR perform the intervention by allocating more experts. (b) demonstrates the rectification of the
concept label prediction. (c) visualizes the contributions of different concepts.

Table 4: Ablation study on intervention mechanism. “Null” means no intervention is taken. “Max” means directly
actiavte all the experts for all samples. Scores are reported in % and those shaded in pink and blue respectively
indicate negative and positive improvements.

CEBaB IMDB-C ASAP-C

Pre-intervention Post-intervention Improvement (↑) Pre-intervention Post-intervention Improvement (↑) Pre-intervention Post-intervention Improvement (↑)Methods
Concept Task Concept Task Concept Task Concept Task Concept Task Concept Task Concept Task Concept Task Concept Task

CLEAR (null) 89.63 81.30 89.63 81.30 0 0 69.65 80.63 69.65 80.63 0 0 87.35 0.694 87.35 0.694 0 0
CLEAR (max) 89.63 81.30 86.62 78.81 -3.01 -2.49 69.65 80.63 65.74 78.55 -3.91 -2.08 87.35 0.694 85.34 0.726 -2.01 -0.032

CLEAR 89.63 81.30 91.25 81.80 1.62 0.5 69.65 80.63 71.67 80.95 2.02 0.32 87.35 0.694 89.65 0.624 2.30 0.070
CLEAR (oracle) 89.63 81.30 91.98 82.06 2.35 0.76 69.65 80.63 72.64 81.36 2.99 0.73 87.35 0.694 90.82 0.597 3.47 0.097
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Figure 6: Extra studies on CLEAR. (a) and (b) investigate logit entropies for scrutiny under different expert numbers, where RE
denotes routing entropy, and CE denotes concept prediction entropy. (c) and (d) examine the effects of w/wo pseudo intervention
(PI) on gradually increased intervention expert number T ′. (e) indicates the FLOPs counts v.s. expert number. As expected, the
results indicate an approximately linear increase in computational complexity with the number of experts.

ing its effective error correction and metacog-540

nitive capacity without human-annotated labels.541

542 � Options for Logit Entropy Scrutiny. Analysis in543

Figure 6 (a) and (b) shows superior model per-544

formance when utilizing both entropy thresholds545

together rather than separately. Particularly, omit-546

ting concept prediction entropy significantly re-547

duces performance, validating CLEAR’s design548

of concept-specific subnetworks that are crucial549

for its precision in intervention.550

� Pseudo Intervention. Demonstrated in Figure 6551

(c) and (d), incorporating pseudo intervention552

markedly improves CLEAR’s performance, af-553

firming the strategy of increasing expert numbers554

during training as a rehearsal enhances prepared-555

ness for real-time interventions.556

� Sensitivity Analysis on the Number of Experts.557

Figures 6 (a) and (b) indicate performance boosts558

with additional experts, attributing to expanded559

model capacity and learning ability. Furthermore,560

Figures 6 (c) and (d) highlight enhanced accu-561

racy in correcting mispredictions with more ex-562

perts during the intervention phase, underscoring563

the importance of a higher number of experts564

throughout CLEAR’s operation. 565

5 Conclusion 566

This paper outlines a novel framework, CLEAR, 567

in its robust capabilities in autonomously identi- 568

fying and correcting errors, thereby reducing the 569

need for extensive human oversight and intricate ad- 570

justments. By employing a metacognitive strategy 571

inspired by human cognitive processes, CLEAR 572

enables the construction of transparent, concept- 573

specific sparse subnetworks. This attribute ensures 574

clear, comprehensible decision pathways and eases 575

post-deployment model intervention. In tackling 576

the enduring “black-box” issue prevalent in LLMs, 577

CLEAR confidently showcases its effectiveness 578

in diminishing mispredictions and bolstering over- 579

all model interpretability and accessibility. These 580

advances by CLEAR underscore a significant en- 581

hancement in both the performance and reliability 582

of LLMs, ensuring their more trustworthy and ac- 583

countable deployment in diverse real-world scenar- 584

ios. Moving forward, the widespread application 585

of CLEAR promises a tangible, positive shift for 586

safe deployment of LLMs. 587
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Limitations588

While our proposed framework, CLEAR, in-589

troduces significant advancements in leveraging590

metacognitive approaches for Large Language591

Models (LLMs), it is important to acknowledge592

certain limitations for future research:593

1. Dependency on Pre-defined Concepts: Inher-594

ent from the literature of concept bottleneck595

models, CLEAR’s efficacy also relies on the596

availability of pre-defined, human-annotated597

concept labels. This requirement could restrict598

its application in domains where such labels are599

scarce or in settings that demand the discovery600

of emergent concepts. Some existing solution601

including use other very large langugae model,602

such as, GPT-4, to get those annotaions (Tan603

et al., 2023b; Ludan et al., 2023), or using active604

learning (Tan et al., 2024) or self-training (Singh605

et al., 2023) to select only subset of samples for606

concept annotation.607

2. Scalability with Larger Models: Our current608

implementation and evaluations primarily focus609

on models of specific sizes. The adaptability610

and performance of CLEAR with much larger,611

particularly proprietary models like GPT-4 or612

emerging architectures, remain less explored.613

The reasons include: (1) many of the very large614

MoE models are proprietary and not accessible615

for us to train; (2) those models hosting billions616

of parameters require very large datasets for617

training, which is not available in the concept618

learning literature. Even though we have ex-619

perimented on all available datasets and curated620

a new dataset for regression task, the amount621

of tokens remains insufficient for training huge622

MoE models such as Mixtral (Jiang et al., 2024)623

and Grok (Corp, 2024) This limitation is indeed624

a broader challenge within the research commu-625

nity, one that has not been adequately resolved.626

3. Fairness and Bias: The reliance of CLEAR627

on pre-defined concepts may inadvertently per-628

petuate biases present in the training data or629

annotations. Ensuring fairness and mitigating630

bias in the model’s predictions require careful631

scrutiny of the data and possibly the incorpo-632

ration of fairness-aware algorithms. This chal-633

lenge echoes with the previous mentioned data634

insufficiency issue. We hope our work can at-635

tract more attention in this field and advocate636

for curating larger-scale opensource datasets.637

4. Adaptation to Dynamic Environments: The 638

ability of CLEAR to adapt to changing data 639

distributions over time has not been thoroughly 640

examined. Continuous learning environments, 641

where concepts and relationships may evolve, 642

present a critical test for the framework’s long- 643

term viability. This can be a potential direction 644

for future work. 645

Ethical Statement 646

In developing CLEAR, we have conscientiously 647

considered the ethical implications of our work 648

with Large Language Models (LLMs). We aimed 649

to balance technical innovation with ethical respon- 650

sibility, focusing on fairness, transparency, and min- 651

imizing bias. Efforts were made to safeguard pri- 652

vacy and data integrity, recognizing the potential 653

societal impacts of our technology. We acknowl- 654

edge the importance of continuous ethical evalua- 655

tion and welcome constructive dialogue with the 656

broader research community to address emerging 657

ethical challenges in AI development. 658
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A Definitions of Different Training Strategies 907

Given a text input x ∈ RD, concepts c ∈ RK and its label y, the strategies for fine-tuning the text encoder 908

fθ, the projector pψ and the label predictor gϕ are defined as follows: 909

i) Vanilla fine-tuning an LLM: The concept labels are ignored, and then the text encoder fθ and the label 910

predictor gϕ are fine-tuned either as follows: 911

θ, ϕ = argmin
θ,ϕ

LCE(gϕ(fθ(x), y), 912

or as follows (frozen text encoder fθ): 913

ϕ = argmin
ϕ

LCE(gϕ(fθ(x), y), 914

where LCE indicates the cross-entropy loss. In this work we only consider the former option for its 915

significant better performance. 916

ii) Independently training LLM with the concept and task labels: The text encoder fθ, the projector pψ and 917

the label predictor gϕ are trained seperately with ground truth concepts labels and task labels as follows: 918

θ, ψ = argmin
θ,ψ

LCE(pψ(fθ(x)), c),

ϕ = argmin
ϕ

LCE(gϕ(c), y).
919

During inference, the label predictor will use the output from the projector rather than the ground-truth 920

concepts. 921

iii) Sequentilally training LLM with the concept and task labels: We first learn the concept encoder as the 922

independent training strategy above, and then use its output to train the label predictor: 923

ϕ = argmin
ϕ

LCE(gϕ(pψ(fθ(x), y). 924

iv) Jointly training LLM with the concept and task labels: Learn the concept encoder and label predictor 925

via a weighted sum Ljoint of the two objectives described above: 926

θ, ψ, ϕ = argmin
θ,ψ,ϕ

Ljoint(x, c, y)

= argmin
θ,ψ,ϕ

[LCE(gϕ(pψ(fθ(x), y)

+ γLCE(pψ(fθ(x)), c)].

927

It’s worth noting that the LLM-CBMs trained jointly are sensitive to the loss weight γ. We tune the value 928

for γ for better performance (Tan et al., 2023b). 929

For ease of reference, LLMs integrated with Concept Bottlenecks are termed LLM-CBMs (e.g., BERT- 930

CBM). The training of LLM-CBMs is dual-faceted: (1) Ensure the concept prediction ĉ = pψ(fθ(x)) 931

aligns with the input’s true concept labels c. (2) Ensure the label prediction ŷ = gϕ(pψ(fθ(x))) 932

corresponds with true task labels y. The two objectives are jointly optimized, skin to common practice (Koh 933

et al., 2020; Tan et al., 2023b). The joint optimization harmonizes the concept encoder and label predictor 934

via weighted sum, represented as Ljoint: 935

θ∗,ψ∗,ϕ∗ = argmin
θ,ψ,ϕ

Ljoint(x, c, y)

= argmin
θ,ψ,ϕ

[LCE(gϕ(pψ(fθ(x), y) + γLCE(pψ(fθ(x)), c)]

= argmin
θ,ψ,ϕ

K∑
k=1

[LCE(gϕk
(pψk

(fθ(x), y) + γLCE(pψk
(fθ(x)), ck)],

(5) 936
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where, LCE represents the Cross-Entropy loss (for regression tasks, it’s replaced by the RMSE loss).937

The third line of the equation incorporates the loss iterating across the concepts, a detail that will prove938

pivotal soon. Notably, the sensitivity of jointly trained LLM-CBMs to the loss weight γ requires attention.939

By default, we set γ to 5.0, based on its optimized performance as observed in Tan et al. (2023b).940

Further details on varying training strategies are expounded in Appendix A. It should be noted that941

conventional LLM-CBMs (Koh et al., 2020) tend to train all concepts simultaneously. This concurrent942

training potentially muddles the parameters meant for individual concept prediction, thus hampering943

precise intervention.944

B Implementation Detail945

The data and implementation of our framework will be publicly released at: https://github.com/946

Anonymous-submit-24/CLEAR.git.947

B.1 Experimental Setup948

In this section, we provide more details on the implementation settings of our experiments. Specifically,949

we implement our framework with PyTorch (Paszke et al., 2017) and HuggingFace (Wolf et al., 2020) and950

train our framework on a single 80 GB Nvidia A100 GPU. We follow a prior work (Abraham et al., 2022)951

for backbone implementation. All backbone models have a maximum token number of 512 and a batch952

size of 8. We use the Adam optimizer to update the backbone, projector, and label predictor according to953

Section 3.1. The values of other hyperparameters (Table 5 in the next page) for each specific PLM type are954

determined through grid search. We run all the experiments on 4 Nvidia A100 GPUs with 80GB RAM.955

For the LLM backbones, we use their pubic versions available on Huggingface. Specifically, we956

deploy bert-base-uncased, facebook/opt-350m, and t5-base. In our implementation, we also in-957

clude other baseline backbones from more langugae model families. We intentionally include the958

above three in the main experiment results for their similar sizes. The other backbones include:959

roberta-base, distilbert-base-uncased, gpt2, facebook/opt-125m, facebook/opt-1.3b, and960

switch-transformer-base. We use logistic regression and linear regression as the head for classi-961

fication and regression tasks, respectively.962

Table 5: Key parameters in this paper with their annotations and evaluated values. Bold values indicate the optimal
ones.

Notations Specification Definitions or Descriptions Values

max_len - maximum token number of input 128 / 256 / 512
batch_size - batch size 8

epoch - maximum training epochs 30

lr

DistilBERT learning rate when the backbone is DistilBERT 1e-3 / 1e-4 / 1e-5 / 1e-6
BERT learning rate when the backbone is BERT 1e-3 / 1e-4 / 1e-5 / 1e-6

RoBERT learning rate when the backbone is RoBERT 1e-3 / 1e-4 / 1e-5 / 1e-6
OPT-125M learning rate when the backbone is OPT-125M 1e-3 / 1e-4 / 1e-5 / 1e-6
OPT-350M learning rate when the backbone is OPT-350 1e-4 / 1e-5 / 1e-6 / 1e-7
OPT-1.3B learning rate when the backbone is OPT-1.3B 1e-4 / 1e-5 / 1e-6 / 1e-7
CLEAR learning rate for CLEAR 1e-4 / 3e-4 / 5e-4 / 7e-4/ 1e-5

γ

DistilBERT value of γ when the backbone is DistilBERT 1 / 3 / 5 / 7 / 9
BERT value of γ when the backbone is BERT 1 / 3 / 5 / 7 / 9

RoBERT value of γ when the backbone is RoBERT 1 / 3 / 5 / 7 / 9
OPT-125M value of γ when the backbone is OPT-125M 1 / 3 / 5 / 7 / 9
OPT-350M value of γ when the backbone is OPT-350 1 / 3 / 5 / 7 / 9
OPT-1.3B value of γ when the backbone is OPT-1.3B 1 / 3 / 5 / 7 / 9
CLEAR value of γ for CLEAR 5 / 7 / 9 / 10 / 11 / 13 / 15

14

https://github.com/Anonymous-submit-24/CLEAR.git
https://github.com/Anonymous-submit-24/CLEAR.git
https://github.com/Anonymous-submit-24/CLEAR.git


C Description of Datasets 963

In this section, we provide detailed descriptions of the benchmark datasets used in our experiments. Thier 964

specific concepts are presented in Table 1. 965

• CEBaB (Abraham et al., 2022) contains restaurant reviews from Opentable. Possible labels include 1 966

Star, 2 Stars, 3 Stars, 4 Stars, 5 Stars, indicating different sentiment score with 5 Stars indicating the 967

most positive sentiment. 968

• IMDB-C (Tan et al., 2023b) consists of movie reviews from IMDB datasets. Possible labels include 969

positive and negative. 970

• ASAP-C is comprised of students essays with their scores from the ASAP dataset (Hamner et al., 2012). 971

The original scores range from 0 - 100. In our study, we evenly split the datasets into 10 grade categories, 972

ranging from 0 - 9, corresponding to 10 widely-used letter grades, D, C-, C, C+, ..., A, A+. We know 973

that in real-world, students’ grades tend to be normally distributed. Here we use even split to make the 974

task easier by mitiagting the class imbalance issue, which is out of the scope of this work. 975

C.1 Data Anotation for ASAP-C 976

Our annotation policy is following a previous work (Cai et al., 2021) for NLP datasets annotating. For the 977

ASAP dataset, we annotate the four concepts (Contents, Reasoning, Language, Supportiveness) manually. 978

Even though the concepts are naturally understandable by humans, two Master students familiar with 979

English writing tutoring are selected as annotators for independent annotation with the annotation tool 980

introduced by Yang et al. (2017). The strict quadruple matching F1 score between two annotators is 981

87.3%, which indicates a consistent agreement between the two annotators (Kim and Klinger, 2018). In 982

case of disagreement, a third expert will be asked to make the final decision. The instruction is as follows 983

(the concepts are listed in Table 1): 984

a. According to the essay “{text1}”, the “{concept1}” of the essay is “positive”.
b. According to the essay “{text2}”, the “{concept2}” of the essay is “negative”.
c. According to the essay “{text3}”, the “{concept3}” of the essay is “unknown”.
d. According to the essay “{texti}”, how is the “{concepti}” of the essay? Please answer with one option in “positive,
negative, or unknown”.

D Acknowledgment of AI Assistance in Writing and Revision 985

We utilized ChatGPT-4 for revising and enhancing sections of this paper. 986
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E Comparative Results on the ASAP-C dataset987

Table 6: Comparative results on the ASAP-C dataset, using Macro F1 (↑) as the evaluation metric for concept
classification, expressed in percentages (%) and RMSE (↓) as the evaluation metric for essay score regression.
Scores shaded in gray highlight instances where the model experienced catastrophic forgetting, leading to a decline
in performance on the development set. Scores shaded in pink indicate a decrease in performance following the
intervention. Scores shaded in blue are from CLEAR.

ASAP-C

Pre-intervention Post-intervention

Dev Test Dev TestMethods Backbones

Concept (F1 ↑) Task (MSE ↓) Concept (F1 ↑) Task (MSE ↓) Concept (F1 ↑) Task (MSE ↓) Concept (F1 ↑) Task (MSE ↓)

Direct Intervention Methods

Prompting GPT4 - 1.637 - 1.534 - 1.637 - 1.685

BERT - 0.804 - 0.753 - 0.939 - 0.626
OPT - 0.769 - 0.728 - 0.862 - 0.604Fine-tuning
T5 - 0.752 - 0.714 - 0.842 - 0.581

ITI T5 - 0.752 - 0.714 - 0.752 0.634

Concept Bottleneck Models

BERT 81.24 0.896 80.67 0.904 81.24 0.896 83.68 0.884
OPT 83.62 0.853 82.64 0.872 83.62 0.853 84.24 0.842Vanilla-CBMs
T5 85.34 0.834 84.36 0.857 85.34 0.834 86.69 0.826

BERT 77.64 1.034 76.48 1.165 77.64 1.034 77.96 0.980
OPT 78.57 0.924 77.26 0.968 78.57 0.924 76.18 1.158LF-CBMs
T5 79.66 0.864 78.81 0.891 79.66 0.864 78.48 0.936

BERT 82.37 0.867 82.64 0.856 82.37 0.867 83.79 0.796
OPT 84.41 0.842 83.29 0.879 84.41 0.842 86.67 0.723CEMs
T5 86.58 0.704 85.62 0.713 86.58 0.704 88.32 0.684

Metacognition Intervention

CLEAR OPT-MoCE 85.63 0.765 85.27 0.771 85.63 0.765 88.24 0.679
CLEAR T5-MoCE 87.62 0.684 87.35 0.694 87.62 0.684 89.65 0.624

F Comparison with Existing Works on MoE for LLMs988

Mixture of Experts in Large Language Models. The incorporation of Mixture of Experts (MoE) into989

Large Language Models (LLMs) has evolved significantly, with early research by Shazeer et al. (2017)990

laying the groundwork. These foundational studies (Fedus et al., 2022; Zhou et al., 2022a; Du et al.,991

2022; Artetxe et al., 2021; Shen et al., 2023) focused primarily on improving model performance and992

computational efficiency in a black-box manner. On the contrary, in this work, we utilize the design of993

MoE in LLMs for metacognitive capabilities. This novel approach, distinct from earlier efficiency-focused994

applications, uses MoE for error detection and correction, a critical step towards solving the interpretability995

and trust issues in AI decision-making. Our framework, CLEAR, contributes to this evolving landscape996

by embedding MoE within a metacognitive framework, emphasizing error rectification, transparency,997

and autonomy in LLMs. This shift marks a significant advancement from traditional MoE applications,998

positioning CLEAR at the forefront of innovative LLM enhancement strategies.999

G Analysis of Overfitting in Concept Learning1000
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(a) CEBaB
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(b) IMDB-C
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(c) ASAP-C

Figure 7: Visualization of training dynamics of one run on CEBaB, IMDB-C and ASAP-C datasets. We adopt the “early
stop" strategy to avoid overfitting, where models with the highest validation accuracy are selected and evaluated on
test sets.
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H More Examples from Real-world Datasets 1001

This place is super cool. Felt like I was in NYC vs downtown 
Phoenix. They have hip hop playing and a cool staff. They offer 
something for everyone. Ice cream, coffee, beer, wine, drinks, 
food, whatever you want. The beer selection is actually better 
than most bars I've been too and high end joints. Old Rasputin 
on nitro. What the pho? Great choice. I'd come back for sure and 
highly recommend!

Y Service Food Ambiance Noisy Task Label

𝒄𝒌/𝒚 + + + Unk 4

𝒄$𝒌/𝒚% + + + + 5

𝒄$𝒌" /𝒚%" + + + Unk 4

Figure 8: An example for the metacognitive intervention on one instance from the CEBaB dataset.

Figure 9: An example for the metacognitive intervention on one instance from the IMDB-C dataset.

I am not a patient person at all. But sometimes I have to be like my birthday for 
instance, I would love it if my birthday came at least every month. But of course, I 
only have @NUM1 birthday a year, so I have to wait. I would like to be a patient 
person. It’s just not in the cards for me. My father on the other hand is more 
patient than anyone. I know he will tell me to clean the car @DATE1 I told him I 
didn’t do it yet so he says he will give me more time. I couldn’t be that patient 
with my kids. I would tell them to clean it now or they would be grounded. I 
wouldn’t force them to or anything but I’m not gonna wait a whole month before I 
get my car cleaned! I guess I could try to be as patient with my father but that 
would be really hard. Although if I’m “patient,” I’m sure I will be able to do it!

Y Content Reasoning Language Supportive-
ness

Task 
Label

𝒄𝒌/𝒚 + + - - 6

𝒄$𝒌/𝒚% + + + Unk 8

𝒄$𝒌" /𝒚%" + + - - 6

Figure 10: An example for the metacognitive intervention on one instance from the ASAP-C dataset.

17


	Introduction
	Related Work
	Methodology
	Concept Learning for LLMs
	Tuning-free Metacognitive Intervention

	Experiments
	Superior Performance of CLEAR
	Extra Investigation and Ablation Study

	Conclusion
	Definitions of Different Training Strategies
	Implementation Detail
	Experimental Setup

	Description of Datasets
	Data Anotation for ASAP-C

	Acknowledgment of AI Assistance in Writing and Revision
	Comparative Results on the ASAP-C dataset
	Comparison with Existing Works on MoE for LLMs
	Analysis of Overfitting in Concept Learning
	More Examples from Real-world Datasets

