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Abstract

Large Language Models (LLMs) have cat-
alyzed transformative advances across a spec-
trum of natural language processing tasks
through few-shot or zero-shot prompting, by-
passing the need for parameter tuning. While
convenient, this modus operandi aggravates
“hallucination” concerns, particularly given the
enigmatic “black-box” nature behind their gi-
gantic model sizes. Such concerns are exacer-
bated in high-stakes applications (e.g., health-
care), where unaccountable decision errors can
lead to devastating consequences. In contrast,
human decision-making relies on nuanced cog-
nitive processes, such as the ability to sense
and adaptively correct misjudgments through
conceptual understanding. Drawing inspira-
tion from human cognition, we propose an
innovative metacognitive approach, dubbed
CLEAR, to equip LLMs with capabilities for
self-aware error identification and correction.
Our framework facilitates the construction of
concept-specific sparse subnetworks that illu-
minate transparent decision pathways. This
provides a novel interface for model interven-
tion after deployment. Our intervention of-
fers compelling advantages: (i) at deployment
or inference time, our metacognitive LLMs
can self-consciously identify potential mispre-
dictions with minimum human involvement,
(if) the model has the capability to self-correct
its errors efficiently, obviating the need for ad-
ditional tuning, and (ii7) the rectification proce-
dure is not only self-explanatory but also user-
friendly, enhancing the interpretability and ac-
cessibility of the model. By integrating these
metacognitive features, our approach pioneers
a new path toward engendering trustworthiness
and accountability in the deployment of LLMs.

1 Introduction

Recent years have witnessed laudable achieve-
ments of Large Language Models (LLMs) (Raffel
et al., 2020; Zhou et al., 2022b; OpenAl, 2023).

However, LLMs are not infallible; they err due to
factors like “hallucination” (McKenna et al., 2023).
These vulnerabilities pose critical challenges for
the trustworthy deployment of LLMs in high-stakes
settings where errors can precipitate significant
repercussions. As an example, for LLM-assisted
medical diagnoses (Monajatipoor et al., 2022), a
single misdiagnosis can inflict profound physical
and financial costs on the patient.

Despite its significance, the current literature
lacks an effective approach to LLM intervention
after deployment to help the model overcome those
errors. One intuitive method, few-shot or zero-shot
prompting (Wei et al., 2022; OpenAl, 2023) re-
cently has shown promising results. Users can di-
rectly query LLMs and point out their mistakes
using usually “hand-crafted” prompts. Though
they are simple, the post-prompting performance
remains uncertain. Moreover, it necessitates human
expertise both for error identification and prompt
design. (2) Another potential method is to fine-tune
part of the parameters in LLMs (e.g, the final lay-
ers) on erroneously predicted examples (Hardt and
Sun, 2023). Besides costly human involvement,
this method risks model overfitting on those exam-
ples and “catastrophic forgetting” of prior knowl-
edge. (3) Some initial work (Li et al., 2023) repet-
itively performs activation-level intervention on
all examples to get better performance, thus re-
sulting in inflated inference latency. Against this
backdrop, we trifurcate the challenges for LLM
intervention into three folds. @ The “black-box”
nature of LLMs obscures the malfunction source
within the multitude of parameters, impeding tar-
geted intervention. @ Rectification typically relies
on domain experts to identify errors, hindering scal-
ability and automatic intervention. & The archi-
tectural complexity and sheer size of LLMs render
targeted intervention a daunting task.

In this paper, we advocate that an ideal inter-
vention should be metacognitive, where LLMs



Figure 1: Metacognitive LLMs are able to preceive
concepts to self-correct potential errors.

are capable of self-aware error identification and
correction. This perspective is informed by sev-
eral key insights from cognitive science literature:
(a) Cognitive Perception of Concepts - humans
demonstrate the ability to swiftly identify and rec-
tify judgment errors by perceptively recognizing
essential features, or “concepts” (Malafouris, 2013;
Koh et al., 2020). This ability to hone in on vi-
tal features underscores the efficiency of human
cognitive processes. (b) Neural Sparsity for Effi-
ciency - building upon the notion of efficiency, the
architecture of the human brain provides a valu-
able lesson. The distribution of neural connec-
tions and activity patterns in our brains is char-
acterized by a high degree of sparsity (Gerum et al.,
2020). This sparse configuration is believed to fa-
cilitate rapid cognitive responses. (c) Conscious
Anomaly Detection - human brain exhibits an in-
trinsic ability to consciously identify anomalies
or challenging problems (Penfield, 2015). Upon
encountering such situations, it channels addi-
tional neural resources to address them effectively.

Building on this premise, we propose an avant-
garde Concept-Learning-Enabled metAcognitive

inteRvention framework, herein termed CLEAR,
for LLM deployment. CLEAR facilitates LLMs
in mastering concept-specific sparse subnetworks.
These subnetworks elucidate transparent decision-
making pathways, thereby providing a unique in-
terface for surgical model intervention, that auto-
matically allocates more sparse computing mod-
ules to potentially more challenging instances. Dis-
tinctively, our approach simultaneously tackles the
challenges highlighted above through the following
four core contributions:

* Metacognition. At deployment (inference) time,
our metacognitive framework autonomously de-
tects potential mispredictions by measuring logit
entropy in pivotal intermediate layers.

* Interpretability. Leveraging the transparency
of decision pathways, our CLEAR allows for a
logical backtrack to the input, thereby aiding user
comprehension and fostering trust in the model.

* Efficiency. Upon identification of a mispredic-
tion, the LLM architecture dynamically activates
extra internal experts to refine concept perception
without necessitating further parameter tuning.

* Effectiveness.  Experiments on real-world
datasets with LLM backbones in various sizes
and architectures manifest that our intervention
consistently improves inference-time predictions.

2 Related Work

Intervention on Deep Models for Error Miti-
gation. Historically, error mitigation in machine
learning emphasized simpler models, such as Deci-
sion Trees and Random Forests, where corrections
were largely heuristic and human-driven (Doshi-
Velez and Kim, 2017). With the evolution of ma-
chine learning techniques, there was a pivot to-
wards leveraging algorithms themselves for error
detection, emphasizing the removal of non-relevant
data and unveiling crucial fault-application relation-
ships (Abich et al., 2021). The ascendance of neu-
ral networks, and LLLMs in particular, brought new
intervention paradigms. Fine-tuning emerged as a
primary strategy for addressing model shortcom-
ings, despite its challenges related to overfitting and
catastrophic forgetting of prior knowledge (Wang
etal., 2019; French, 1999). Few-shot and Zero-shot
prompting marked another avenue, guiding mod-
els without altering their internal makeup, leading
to inherent limitations in error repeatability (Wei
et al., 2022; Huang et al., 2023). Deeper inter-
ventions, targeting model architectures, have deliv-
ered promising accuracy, yet with computational
trade-offs (Li et al., 2023). Notably, quantum error
mitigation approaches, though out of our current
scope, underline the breadth of exploration in this
domain (Subramanian Ravi et al., 2021).
Concurrently, the push towards model inter-
pretability has intensified (Carvalho et al., 2019;
Yuksekgonul et al., 2022). The ultimate goal is to
design systems whose inner workings can be easily
understood, thereby facilitating targeted interven-
tions. Another series of recent work on concept
bottleneck models (Koh et al., 2020; Zarlenga et al.,
2022) utilize extra human-comprehensive concept
labels to guide the learning of LL.Ms. Those con-
cepts can be annotated by either human (Yuksek-
gonul et al., 2022; Wu et al., 2022) or large foun-
dation models (Oikarinen et al., 2022; Tan et al.,
2023b). However, those method cannot provide



transparency inside the LLM backbone, thus de-
manding specialized interventions that are usu-
ally hand-carfted by domain experts (Farrell, 2021;
Monajatipoor et al., 2022; Tan et al., 2023a).

Metacognitive Approaches. Metacognition,
commonly known as “thinking about thinking”, has
long been recognized in cognitive science (Flavell,
1979), resonating through educational and clinical
paradigms (Zimmerman, 2013; Moritz and
Woodward, 2007). This foundational knowledge
has segued into Al, aspiring towards machines
with self-reflective and adaptive capabilities (Cox,
2005). Recent endeavors strive to infuse cognitive
inspirations into models, affirming a deeper
“understanding” of their decisions (Malafouris,
2013). However, genuinely metacognitive LLMs
remain an elusive goal (Huang et al., 2023), with
challenges arising from their black-box nature and
vast, intricate architectures.

3 Methodology

The proposed framework Concept-Learning-
Enabled metAcognitive inteRvention, CLEAR, is
comprised of two crucial components: (1) Concept
Learning: the learning of concept-specific sparse
subnetworks for LLMs. (2) Metacognitive Inter-
vention: automatic error identification and rectifi-
cation. At the heart of our methodology lies the
insight that a refined understanding of LLMs can
facilitate targeted metacognitive intervention. To
this end, before jumping into the full picture of the
proposed CLEAR framework, we first explore the
learning of concept-specific sparse subnetworks.

3.1 Concept Learning for LLMs

Basic Setup. Our primary focus is the en-
hancement of Large Language Models (LLMs)
within the realm of text classification tasks dur-
ing the inference phase. Given a dataset D =
{(®,y@, )N 1 we utilize an LLM, denoted
by fg. to transform an input text x € R” into a
latent space representation z € R¥. This latent rep-
resentation is then classified via a linear classifier
Jg into the respective target label y (discrete for
classification and continuous for regression). Here
{c® MY | denotes the critical features, or “concepts”
annotated by humans (Koh et al., 2020; Abraham
et al., 2022) or very large language models (Tan
et al., 2023b; Ludan et al., 2023), such as GPT-
4 (OpenAl, 2023). These concepts are typically
represented using one-hot vectors. For instance, in

a restaurant review sentiment dataset, the concept
“Food” is denoted by [0, 0, 1], signifying a “Positive”
attitude towards food. The other vector positions
can represent “Negative” and “Unknown”.
Incorporating Concept Bottlenecks for LLMs.
Our general pipeline is inspired by a previous
work (Koh et al., 2020) on image classifications. In-
stead of altering LLM encoders fg—which might
compromise the integrity of the text representa-
tion—we incorporate a linear layer, characterized
by a sigmoid activation function py,. This layer
maps the latent representation z € R¥ to a con-
cept space ¢ € R, and then a white-box linear
model g4 maps the concepts to the target label y.
This creates a decision-making pathway depicted
as * — z — ¢ — y. By allowing for multi-class
concepts, we aim to achieve nuanced interpreta-
tions. Akin to common practice (Koh et al., 2020;
Tan et al., 2023b), the joint optimization harmo-
nizes the concept encoder and label predictor via
weighted sum, represented as Ljoint, as detailed in
Equation (5) in Appendix A.

Building Concept-Specific Sparse Subnetworks
via Mixture of Concept Experts. We presents
the Mixture of Concept Experts (MoCE) frame-
work, a novel approach to creating pathways an-
chored in specific concepts, thereby enhancing
targeted interventions. This model takes cues
from mixture-of-expert (MoE) paradigms (Shazeer
et al., 2017), known for their dynamic activation of
unique network subsets per input. By conditioning
on concept-based computation, MoCE crafts sparse
modules, fine-tuning the encoding of text inputs as

per their inherent concepts.
We structure blocks of MoCEs as the expert

layer. This layer comprises a multi-head atten-
tion block combined with multiple parallel experts.
Specifically, we adapt MoCE for Transformer archi-
tectures, integrating MoE layers within successive
Transformer blocks. Crafting a MoCE expert in-
volves segmenting the conventional MLP of trans-
formers into more compact segments (Zhang et al.,
2021) or duplicating the MLP (Fedus et al., 2022).
Note that the majority of extant MoE studies have
predominantly focused on the MLP segment within
transformers. This focus arises because MLPs ac-
count for approximately two-thirds of the entire
model parameter set, serving as key repositories of
accrued knowledge within memory networks (Geva
et al., 2020; Dai et al., 2022). The experts can be
symbolized as {e,,}}_,, where m signifies the

m=1>
expert index and M is the total count of experts.



Sinput: [Excellent lobster and nice decor,

but rude waiter || Logit Entropy Scrutiny

oo o
Cimimisl 11l

Routers MoCE =3

] "Food" "Ambiance" fiService"
Router 1 Router 2 \Router

Routing Logits Concept Logits

,Hﬂﬂmﬂﬂ

T=38 D D

LLM Backbone

Dynamic Expert Allocation

; "Food" "Ambiance" "Service"
oncept Concept 2 Concept K

Pseudo Intervention during Concept Learning

"Service" Value of T
Routerk/ ¢

Concept Bottleneck

v

Retrospective Accountability via Backtracking

|| Sentiment: % * K K Y% (4)

8 oo ﬁn:.:rlﬂﬂﬂ Froct

(a) Concept Learning for LLMs

(b) Inference-time Metacognitive Intervention

Figure 2: The illustration of the proposed framework CLEAR, comprised of two components: (a) Concept Learinng, where

the LLM backbone learns to construct concept-specific sparse networks via MoCE; and (b) Metacognitive Intervention, which

involves logit entropy scrutiny, dynamic expert allocation, and pseudo intervention, and offers retrospective accountability.

For each concept ci, an auxiliary routing mecha-
nism, dubbed (), is deployed. This mechanism
identifies the top-7" experts based on peak scores
7k (2)m, With  representing the present intermedi-
ate input embedding. Generally, 7" is much smaller
than N, which underscores the sparse activations
among modules of the LLM backbone, making the
inference of the model more efficient. The output,
2/, emanating fron;{ theT expert layer is:

m':ZZTk(m)m-em(m); )

m=

ri(x) = IE:;—T(;oftmax(((m)), ),

where ( is a shallow MLP representing learnable
routers (Fedus et al., 2022). For the kth concept,
the expert e;(-) initially processes the given fea-
tures, after which the router amplifies it using coef-
ficient 74 (x);. The combined embeddings across
concepts yield the output x’. The top-T opera-
tion retains the top 7' values, nullifying the others.
Typically, a balancing mechanism, such as load or
importance balancing loss (Shazeer et al., 2017),
is implemented to avert the risk of representation
collapse, preventing the system from repetitively
selecting the same experts across diverse inputs.
Transitioning to matrix representation for all MoE
layers in th}? LLM structure, we derive:

§=> ¢ o(thr- fo,())
B . @)
=Y b1 0¥ Y Ri(@)m - En(x)),

k=1 m=1
where o () is the sigmoid activation, with R(-) and
E(-) symbolizing matrix incarnations of all expert

layer routers and experts. Equation (2) portrays a
factorized decision trajectory for model prediction.
This can be optimized through a single backward
iteration of the composite loss as outlined in Equa-
tion (1). Equation (2) accomplishes a core objec-
tive: during inference, the LLM’s final prediction
intrinsically rely on the learned routing policies, the
chosen experts, and the perceived concepts. This
accountability offers an interface for targeted error
identification and interventions.

3.2 Tuning-free Metacognitive Intervention
The rationale of our metacognitive intervention
is that, different data samples pose varying lev-
els of difficulty for LLMs. Drawing inspiration
from human cognitive processes—where the brain
identifies and navigates potential challenges—our
CLEAR framework proactively detects such issues.
It strategically allocates additional sparse neural re-
sources, specifically experts, to effectively address
these challenges. This dynamic allocation tailors
the response to the complexity of each sample, pre-
venting the model from overfitting on simpler tasks
and underfitting on more complex ones. Here, we
detail how this is implemented through our defined
sparse decision pathways, presenting three research
questions, RQ1-3, to guide our discussion.

RQ1: How to achieve “metacognition” for
intervention on LLMs?

A1l: By autonomously monitoring anomalous
pattern at critical intermediate layers.
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Figure 3: Logit entropy scrutiny. It can be observed

that logits of predictions with errors tend to demonstrate
lower confidence and larger entropy.

the confidence levels of both the routing and con-
cept activation surpass the corresponding thresh-
olds, we tag this concept prediction as potentially
erroneous. We show further studies on the scrutiny
in Figure 4 (a) and (b).

RQ2: Once a potential error is identified
during inference, how to intervene on LLMs
“without extra parameter tuning”?

A2: By dynamically allocating experts and en-
forcing preparatory rehearsal during training.
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Figure 4: Studies on using K-means for logits scrutiny.
This figure illustrates the effectiveness of K-means in
distinguishing between correct and erroneous logits for
both routing and concept prediction. Logits are nor-
malized via softmax, reducing the impact of noise and
extreme values.

> Logit Entropy Scrutiny. The foremost goal is
to automatically identify potential errors or more
complex cases. As inferred from Equation Equa-
tion (2), two critical decision-making phases no-
tably impact the ultimate label prediction: (a) the
deduced routing { Ri ()}, of the final MoCE
layer, and (b) the determined concept activation
a = {ar < | = fo(z). Intuitively, an elevated
entropy of predictive logits denotes a more dis-
persed distribution over experts or concept options,
signifying lower model confidence and pinpointing
instances that deserve additional attention. For this
purpose, the Shannon entropy is utilized for logits

within the routing and concept activation:
J

H(p) =— Z softmax(l;) log(softmax(l;)), (3)

where j iterates] tlllrough the logits’ space (J = M
for routing and J = K for concept activation). For
illustration, the distributions of logits and entropy
for concept prediction are depicted using kernel
density estimation in Figure 3. It is evident that
predictions with errors tend to demonstrate lower
confidence and augmented entropy, reinforcing our
premise. For automation, as we iterate through the
concepts, K-Means clustering is employed to di-
vide confidence levels into two clusters (K=2). The
subset with lower confidence is considered to stem
from the more challenging instances. K-Means
offers the advantage of determining thresholds dy-
namically, eliminating human involvement. If, for
a single concept prediction relating to an instance,

> Tuning-free Intervention. Once an erroneous pre-
diction is identified, we allocate augmented com-
putational resources to secure a more reliable pre-
diction. This operation can be easily achieved by
setting the maximum expert number from 7' to a
larger number 7" for the router as below. Note
that this operation is very efficient since no extra
parameter tuning is involved.

r(x) = top-T(softmax({(x)),T") (4)

> Pseudo Intervention during Concept Learning.
Both existing research (Chen et al., 2023) and our
experiments (Figure 6 (c) and (d)) indicate that di-
rectly adding more experts at the inference stage
results in marginal improvements. Drawing inspi-
ration from how humans reinforce understanding
of challenging subjects through repeated practice
before the final examination, we emulate a simi-
lar rehearsal mechanism during concept learning
for better metacognitive intervention. As the LLM
model is fine-tuned on the task dataset, we pro-
gressively raise the count of experts from 7' to
T linearly after a predetermined number of train-
ing epochs, typically post the halfway mark. This
strategy of pseudo intervention during the training
phase significantly enhances predictions when the
expert count is increased during the inference-time
metacognitive intervention, as depicted in Figure 6
(c) and (d). Through this essential rehearsal setup,
and by sequentially executing the steps outlined in
Equation (3) and Equation (4), the LLM backbone
is empowered to autonomously detect possible er-
rors, addressing them more robustly with minimal
human oversight.

RQ3: How can users understand and trust the
intervention?

A3: By backtracking from the task label,
through the sparse pathway, to the input text.

D> Retrospective Accountability. A standout fea-
ture of our metacognitive intervention is its in-
herent explicability. Using the decision-making



Table 1: Statistics of experimented datasets and concepts.

Dataset ‘ CEBaB (5-way classification) ‘

IMDB-C (2-way classification)

‘ ASAP-C (regression)

| Train/Dev/Test | 1755/ 1673 / 1685 | Train / Dev / Test | 100/50/50 | Train / Dey / Test | 1005/281/283
‘ Label Negative Positive Unknown ‘ Label Negative Positive Unknown ‘ Label Negative Positive Neutral
Food 1693 (33.1%) 2087 (40.8%) 1333 (26.1%) Acting 76 (38%) 66 (33%) 58 (29%) Content 421 (26.8%) 684 (43.6%) 464 (29.6%)

Concept | A ibiance 787 (15.4%) 994 (19.4%) 3332 (65.2%) Storyline
Service 1249 (24.4%) 1397 (27.3%) 2467 (48.2%) | Emotional Arousal
Noise 645 (12.6%) 442 (8.6%) 4026 (78.7%) | Cinematography

80 (40%)
74 (31%)
118 (59%) 43 (21.5%) 39 (19.4%) | Supportiveness 541 (34.5%) 685 (43.7%) 343 (21.9%)

77 (38.5%) 43 (21.5%)
73 (36.5%) 53 (26.5%)

Reasoning
Language

764 (48.7%) 467 (29.8%) 338 (21.5%)
382 (24.3%) 569 (36.3%) 618 (39.4%)

pathways showcased in Equation (2), one can trace
back from the task label prediction, passing through
perceived concepts and activated subnetworks (ex-
perts), all the way to the initial text input, as shown
in Figure 2. Illustrative examples are provided
in Figure 5. The incorporation of our framework,
CLEAR, represents a harmony of precision, flexi-
bility, and accountability.

4 Experiments

Datasets. Our experiments are conducted on
three datasets, including two widely-used real-
world datasets, CEBaB (Abraham et al., 2022) and
IMDB-C (Tan et al., 2023b) and a self-curated
dataset ASAP-C. Each of them is a text classifi-
cation or regression dataset comprised of human-
annotated concepts and task labels. Their statistics
are presented in Table 1. The prosedures of cu-
ration of the ASAP-C dataset are similar to those
two existing datasets. More details of datasets are
included in Appendix C.

Baselines. For an in-depth analysis, we examine
both (a) the performance on the fest sets and (b) the
performance on the development sets, before and af-
ter the intervention. This dual-faceted examination
allows us to assess the intervention’s effectiveness
and evaluate the model’s potential deterioration in
generalizability and catastrophic forgetting of crit-
ical prior knowledge. Four LLM backbones are
employed in our analysis: BERT (Devlin et al.,
2018), OPT (Zhang et al., 2022), and TS (Raffel
et al., 2020). In this study, our evaluation primarily
involves two categories of frameworks as baselines.
We adjust our choice of LLM backbone per the
specific methods employed:

> Direct Intervention Methods: (i) Directly
prompting the LLM with human identifying mis-
predictions. For this method, we use GPT-4 (Ope-
nAl, 2023) with zero and few-shot prompting, since
it is widely regarded as the most capable LLMs cur-
rently. (if) Directly fine-tuning the LLM backbones
on mispredicted instances identified by humans.
(iif) Employing the activation intervention method,
ITI (Li et al., 2023).

> Concept Bottleneck Models (CBMs) support
concept-level interventions, but still require hu-
man experts to identify mispredictions. We con-
sider the following recent CBM frameworks as
baselines: (iv) Vanilla CBMs (Koh et al., 2020)
map the text into concepts using the LLM back-
bone and involve another linear classifier to per-
form the final classification. (v) Label-free CBMs
(LF-CBMs) (Oikarinen et al., 2022) use GPT-4 to
obtain the concept labels. (vi) Concept embedding
models (CEMs) (Zarlenga et al., 2022) that learn
continuous embeddings for concepts.

4.1 Superior Performance of CLEAR

Table 2 presents comparative results, averaged over
three independent runs, showcasing CLEAR’s su-
periority across concept and task label predictions,
for both classification and regression tasks, and at
every intervention stage. We adopt an "early stop-
ping" strategy, as per Abraham et al. (2022), to
mitigate overfitting, with further details provided
in Appendix B and G.

a) Effectiveness. CLEAR consistently outper-
forms baseline models due to its robust MoCE
layers, which create sparse, concept-specific
subnetworks. This structure not only improves
concept internalization but also lays the ground-
work for effective interventions during infer-
ence, resulting in significantly improved pre-
diction accuracy by addressing the challenges
specific to each task.

b) Metacognition. CLEAR demonstrates critical
metacognitive strengths: (a) Efficiency: With-
out the need for fine-tuning tuning, CLEAR
avoids the common pitfalls of catastrophic for-
getting (shaded in gray). (b) Autonomy: It
operates independently of human intervention,
which is crucial in scenarios where expertise is
scarce. Unlike LF-CBMs that suffer from us-
ing noisy labels from GPT-4 (shaded in ),
CLEAR’s autonomy emphasizes the impor-
tance of precise intervention. (c) Accountabil-
ity: Through transparent decision-making pro-
cesses at concept, subnetwork, and input levels,
CLEAR significantly boosts user trust.



Table 2: Comparative results on the CEBaB and IMDB-C datasets, using Macro F1 (1) as the evaluation metric,
expressed in percentages (%). Scores shaded in gray highlight instances where the model experienced catastrophic
forgetting, leading to a decline in performance on the development set. Scores shaded in pink indicate a decrease in
performance following the intervention. Scores shaded in blue are from CLEAR. Results on the ASAP-C dataset in
given in Table 6 in Appendix E.

\ CEBaB \ IMDB-C
\ Pre-intervention Post-intervention \ Pre-intervention Post-intervention
Methods Backbones ‘ Dev Test Dev Test ‘ Dev Test Dev Test
‘ Concept Task Concept Task Concept Task Concept Task ‘ Concept Task Concept Task Concept Task Concept Task
Direct Intervention Methods
Prompting GPT4 ‘ 46.52 45.87 46.52 48.32 ‘ 69.35 68.74 69.35 69.84
BERT 80.03 79.75 76.43 81.23 74.52 72.11 71.69 74.26
Fine-tuning OPT - 82.65 81.37 80.84 82.16 80.62 79.98 75.42 81.05
T5 - 82.64 82.65 80.67 83.34 81.85 79.87 77.62 81.53
ITI T5 82.64 82.65 82.64 83.29 81.85 79.87 81.85 81.25
Concept Bottleneck Models
BERT 8586 7832 8529 78.11 8586 7832 8852 7952 | 6452 7251 6276 7041 6452 7251 6531 71.96
Vanilla-CBMs OPT 87.84 80.03 8727  79.73 87.84 80.03 89.62 80.12 67.15 78.96 66.53 78.21 67.15 78.96 6947  79.34
T5 8820 81.05 8796 80.63 8820 81.05 9021 81.05| 6885 79.58 6794 7826 6885 79.58 7026  79.95
BERT 8237 7524 8345 7569 8237 7524 8352 7582 | 6251 7049 6035 6821 6251 7049 6132  68.13
LF-CBMs OPT 84.54  77.62 84.62  76.84 84.54  77.62 8536  76.64 64.18  75.24 63.37  75.06 64.18 7524 63.58  74.65
TS 85.68 78.25 85.74  77.22 85.68 7825 85.59  76.87 65.16  76.83 64.92  76.30 65.16  76.83 64.43 75.68
BERT 86.78 79.10 86.62  78.64 86.78 79.10 88.67 80.04 64.86  72.61 62.84 71.05 64.86 72.61 65.57 72.33
CEMs OPT 8798 8051 8792 7986 8798 8051 8989 80.65| 6829 79.67 6697 7868 67.84 79.62 7034 79.75
TS 88.64 81.32 88.34 80.69 88.64 81.32  90.65 81.42 68.98  79.83 68.65 79.64 68.98  79.83 70.93 80.72
Metacognition Intervention
CLEAR OPT-MoCE 88.24 80.96 88.24 80.39 89.04 80.85 90.46 81.24 68.83 79.75 6847 79.52 6839 79.86  71.02 80.12
CLEAR T5-MoCE 89.65 81.62 89.63 8130 89.65 81.62 9125 8214 | 6946 8025 69.65 80.63 6946 8025 71.67 80.95

c) Flexibility. CLEAR’s architecture-agnostic de-
sign facilitates its integration with a variety
of LLMs, such as OPT and T5, demonstrat-
ing its broad adaptability. However, we have
not conducted experiments with exceedingly
large MoEs like LLaMA-MoE (Team, 2023)
and Mixtral (Jiang et al., 2024) due to their sub-
stantial size, which makes them impractical for
training on the datasets. Efficient fine-tuning

influence I of each concept ¢y, to the final decision
by the product of the concept activation a; and
the corresponding weight wy, in the linear classi-
fier: I(ck) = ay - w, as visualized in Figure 5 (¢),
demonstrating CLEAR’s ability to not only rectify
but also explain prediction errors.

Table 3: Efficiency comparison between interventions

Method  Human labels Parameter tuning Targeted intervention

< Prompting v X X
strategies for these larger models presents a  Fine-tuning v v X
romising avenue for future research. I X X X
p g CBM v X X
CLEAR X x v

4.2 Extra Investigation and Ablation Study

Accoutability. CLEAR excels by offering retro-
spective interpretability and deep insights into its
intervention processes, enhancing transparency at
multiple levels. Through backtracking, it provides
explanations from the concept, subnetwork, to in-
put levels, significantly increasing user trust and
comprehension of the model’s decisions.

> Case Study. A case study showcased in Fig-
ure 5 (with additional examples in Appendix H)
illustrates CLEAR’s intervention process. It high-
lights how CLEAR corrects the predicted label for
"Cinematography" from incorrect “-” to correct
“+”, refining the overall task label. This example,
particularly the analysis of activations before and
after intervention, uncovers the neural strategy be-
hind CLEAR’s corrections, enhancing real-world
applicability. For instance, we can compute the

Autonomy and Efficiency. CLEAR’s autonomy
and tuning-free approach distinguish it from other
models. As shown in Table 3, CLEAR uniquely im-
proves without requiring human input or complex
tuning, a necessity in other models. This indepen-
dence not only simplifies CLEAR’s operation but
also heightens its reliability and efficacy, ensuring
robustness and trustworthiness.

Ablation Study. We conducted ablation studies
to assess CLEAR’s core components with each
finding detailed below:

> Intervention Mechanism. Table 4 reveals that in-
discriminate expert activation for all instances
diminishes performance due to overfitting. Com-
paratively, CLEAR’s metacognitive intervention
closely matches the precision of oracle interven-
tions using human-annotated labels, underscor-
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Figure 5: Illustration of an case study for the accountable metacognitive intervention from the IMDB-c dataset. (a)
shows how CLEAR perform the intervention by allocating more experts. (b) demonstrates the rectification of the
concept label prediction. (c) visualizes the contributions of different concepts.

Table 4: Ablation study on intervention mechanism. “Null” means no intervention is taken. “Max” means directly
actiavte all the experts for all samples. Scores are reported in % and those shaded in pink and blue respectively
indicate negative and positive improvements.

| CEBaB | IMDB-C | ASAP-C

Method ‘Pre-imervenlion Post-intervention  Improvement (1) ‘ Pre-intervention  Post-intervention Improvement (1) ‘ Pre-intervention ~ Post-intervention  Improvement (1)

Concept Task Concept Task Concept Task | Concept Task Concept Task Concept Task | Concept Task Concept Task Concept  Task

CLEAR (null) 89.63  81.30 89.63  81.30 0 0 69.65 80.63  69.65  80.63 0 0 87.35 0.694 8735 0.694 0 0
CLEAR (max) 89.63  81.30 86.62 788l -3.01 249 | 69.65 80.63 6574 7855  -391 -2.08 8735 0.694 8534  0.726  -2.01 -0.032
CLEAR 89.63  81.30 91.25  81.80 1.62 0.5 69.65 80.63  71.67  80.95 2.02 0.32 87.35 0.694 89.65  0.624 2.30 0.070

CLEAR (oracle) | 89.63  81.30 91.98  82.06 2.35 0.76 69.65 80.63  72.64  81.36 2.99 0.73 87.35 0.694  90.82 0.597 3.47 0.097
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Figure 6: Extra studies on CLEAR. (a) and (b) investigate logit entropies for scrutiny under different expert numbers, where RE
denotes routing entropy, and CE denotes concept prediction entropy. (c) and (d) examine the effects of w/wo pseudo intervention
(PI) on gradually increased intervention expert number 7”. (e) indicates the FLOPs counts v.s. expert number. As expected, the
results indicate an approximately linear increase in computational complexity with the number of experts.

ing its effective error correction and metacog- throughout CLEAR’s operation.

nitive capacity without human-annotated labels.

D> Options for Logit Entropy Scrutiny. Analysis in 5 Conclusion

Figure 6 (a) and (b) shows superior model per-  This paper outlines a novel framework, CLEAR,
formance when utilizing both entropy thresholds  in its robust capabilities in autonomously identi-
together rather than separately. Particularly, omit-  fying and correcting errors, thereby reducing the
ting concept prediction entropy significantly re-  need for extensive human oversight and intricate ad-
duces performance, validating CLEAR’s design ~ justments. By employing a metacognitive strategy
of concept-specific subnetworks that are crucial  inspired by human cognitive processes, CLEAR
for its precision in intervention. enables the construction of transparent, concept-

> Pseudo Intervention. Demonstrated in Figure 6  specific sparse subnetworks. This attribute ensures
(c) and (d), incorporating pseudo intervention  clear, comprehensible decision pathways and eases
markedly improves CLEAR’s performance, af-  post-deployment model intervention. In tackling
firming the strategy of increasing expert numbers  the enduring “black-box” issue prevalent in LLMs,
during training as a rehearsal enhances prepared- CLEAR confidently showcases its effectiveness
ness for real-time interventions. in diminishing mispredictions and bolstering over-

> Sensitivity Analysis on the Number of Experts.  all model interpretability and accessibility. These
Figures 6 (a) and (b) indicate performance boosts ~ advances by CLEAR underscore a significant en-
with additional experts, attributing to expanded  hancement in both the performance and reliability
model capacity and learning ability. Furthermore, = of LLMs, ensuring their more trustworthy and ac-
Figures 6 (c) and (d) highlight enhanced accu-  countable deployment in diverse real-world scenar-
racy in correcting mispredictions with more ex-  ios. Moving forward, the widespread application
perts during the intervention phase, underscoring  of CLEAR promises a tangible, positive shift for
the importance of a higher number of experts  safe deployment of LLMs.



Limitations

While our proposed framework, CLEAR, in-
troduces significant advancements in leveraging
metacognitive approaches for Large Language
Models (LLMs), it is important to acknowledge
certain limitations for future research:

1. Dependency on Pre-defined Concepts: Inher-
ent from the literature of concept bottleneck
models, CLEAR’s efficacy also relies on the
availability of pre-defined, human-annotated
concept labels. This requirement could restrict
its application in domains where such labels are
scarce or in settings that demand the discovery
of emergent concepts. Some existing solution
including use other very large langugae model,
such as, GPT-4, to get those annotaions (Tan
et al., 2023b; Ludan et al., 2023), or using active
learning (Tan et al., 2024) or self-training (Singh
et al., 2023) to select only subset of samples for
concept annotation.

2. Scalability with Larger Models: Our current
implementation and evaluations primarily focus
on models of specific sizes. The adaptability
and performance of CLEAR with much larger,
particularly proprietary models like GPT-4 or
emerging architectures, remain less explored.
The reasons include: (1) many of the very large
MoE models are proprietary and not accessible
for us to train; (2) those models hosting billions
of parameters require very large datasets for
training, which is not available in the concept
learning literature. Even though we have ex-
perimented on all available datasets and curated
a new dataset for regression task, the amount
of tokens remains insufficient for training huge
MoE models such as Mixtral (Jiang et al., 2024)
and Grok (Corp, 2024) This limitation is indeed
a broader challenge within the research commu-
nity, one that has not been adequately resolved.

3. Fairness and Bias: The reliance of CLEAR
on pre-defined concepts may inadvertently per-
petuate biases present in the training data or
annotations. Ensuring fairness and mitigating
bias in the model’s predictions require careful
scrutiny of the data and possibly the incorpo-
ration of fairness-aware algorithms. This chal-
lenge echoes with the previous mentioned data
insufficiency issue. We hope our work can at-
tract more attention in this field and advocate
for curating larger-scale opensource datasets.

4. Adaptation to Dynamic Environments: The
ability of CLEAR to adapt to changing data
distributions over time has not been thoroughly
examined. Continuous learning environments,
where concepts and relationships may evolve,
present a critical test for the framework’s long-
term viability. This can be a potential direction
for future work.

Ethical Statement

In developing CLEAR, we have conscientiously
considered the ethical implications of our work
with Large Language Models (LLMs). We aimed
to balance technical innovation with ethical respon-
sibility, focusing on fairness, transparency, and min-
imizing bias. Efforts were made to safeguard pri-
vacy and data integrity, recognizing the potential
societal impacts of our technology. We acknowl-
edge the importance of continuous ethical evalua-
tion and welcome constructive dialogue with the
broader research community to address emerging
ethical challenges in Al development.
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A Definitions of Different Training Strategies

Given a text input x € RP, concepts ¢ € R¥ and its label y, the strategies for fine-tuning the text encoder
fo, the projector p,, and the label predictor g4 are defined as follows:

i) Vanilla fine-tuning an LLM: The concept labels are ignored, and then the text encoder fy and the label
predictor g, are fine-tuned either as follows:

Ha ¢ - ar%f;lil’l £CE<g¢>(f9 ($)7 y)a

or as follows (frozen text encoder fy):

¢ = arg;nin Lcr(9¢(fo(),v),

where Lo indicates the cross-entropy loss. In this work we only consider the former option for its
significant better performance.

ii) Independently training LLM with the concept and task labels: The text encoder fjy, the projector p,, and
the label predictor g are trained seperately with ground truth concepts labels and task labels as follows:

0,y = ar%I:blin Lcor(py(fo(x)),c),

¢ = arg;nin Lcoe(gs(c),y).

During inference, the label predictor will use the output from the projector rather than the ground-truth
concepts.

iii) Sequentilally training LLM with the concept and task labels: We first learn the concept encoder as the
independent training strategy above, and then use its output to train the label predictor:

¢ = arg;nin Lcr(9e(py(fo(r),y).

iv) Jointly training LLM with the concept and task labels: Learn the concept encoder and label predictor
via a weighted sum L., of the two objectives described above:

07 wa ¢ = argmin Ejoint(xa C, y)
07w7¢

= argmin[Lcr(g4(py (fo(2), )
0,9

+7vLerpy(fo(2)), ).

It’s worth noting that the LLM-CBMs trained jointly are sensitive to the loss weight . We tune the value
for ~y for better performance (Tan et al., 2023b).

For ease of reference, LLMs integrated with Concept Bottlenecks are termed LLM-CBMs (e.g., BERT-
CBM). The training of LLM-CBMs is dual-faceted: (1) Ensure the concept prediction ¢ = py(fo(x))
aligns with the input’s true concept labels c. (2) Ensure the label prediction § = gg(py(fo(x)))
corresponds with true task labels y. The two objectives are jointly optimized, skin to common practice (Koh
et al., 2020; Tan et al., 2023b). The joint optimization harmonizes the concept encoder and label predictor
via weighted sum, represented as Ljint:

0*, ¢*> d)* = argmin Ejoint(m; (& y)
= argmin[Lon (g4 (py (fo (@), 1) + YLor(py (fo()), )]
0.4b,0 5)

K

= argmin Y _[Lon(9g, (P, (fo(2),y) + VLcE Py, (fo(2)), ck)],
04¢ 15
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where, Lcg, represents the Cross-Entropy loss (for regression tasks, it’s replaced by the RMSE loss).
The third line of the equation incorporates the loss iterating across the concepts, a detail that will prove
pivotal soon. Notably, the sensitivity of jointly trained LLM-CBMs to the loss weight v requires attention.
By default, we set v to 5.0, based on its optimized performance as observed in Tan et al. (2023b).
Further details on varying training strategies are expounded in Appendix A. It should be noted that
conventional LLM-CBMs (Koh et al., 2020) tend to train all concepts simultaneously. This concurrent
training potentially muddles the parameters meant for individual concept prediction, thus hampering
precise intervention.

B Implementation Detail

The data and implementation of our framework will be publicly released at: https://github.com/
Anonymous-submit-24/CLEAR.git.

B.1 Experimental Setup

In this section, we provide more details on the implementation settings of our experiments. Specifically,
we implement our framework with PyTorch (Paszke et al., 2017) and HuggingFace (Wolf et al., 2020) and
train our framework on a single 80 GB Nvidia A100 GPU. We follow a prior work (Abraham et al., 2022)
for backbone implementation. All backbone models have a maximum token number of 512 and a batch
size of 8. We use the Adam optimizer to update the backbone, projector, and label predictor according to
Section 3.1. The values of other hyperparameters (Table 5 in the next page) for each specific PLM type are
determined through grid search. We run all the experiments on 4 Nvidia A100 GPUs with 80GB RAM.

For the LLM backbones, we use their pubic versions available on Huggingface. Specifically, we
deploy bert-base-uncased, facebook/opt-350m, and t5-base. In our implementation, we also in-
clude other baseline backbones from more langugae model families. We intentionally include the
above three in the main experiment results for their similar sizes. The other backbones include:
roberta-base, distilbert-base-uncased, gpt2, facebook/opt-125m, facebook/opt-1.3b, and
switch-transformer-base. We use logistic regression and linear regression as the head for classi-
fication and regression tasks, respectively.

Table 5: Key parameters in this paper with their annotations and evaluated values. Bold values indicate the optimal
ones.

Notations Specification Definitions or Descriptions Values
max_len - maximum token number of input 128 /256 /512
batch_size - batch size 8
epoch - maximum training epochs 30
DistilBERT  learning rate when the backbone is DistilBERT le-3/1e-4/1e-5/ 1e-6
BERT learning rate when the backbone is BERT le-3/1e-4/1e-5/ 1e-6
RoBERT learning rate when the backbone is ROBERT le-3/1e-4/1e-5/ 1e-6
Ir OPT-125M  learning rate when the backbone is OPT-125M le-3/1e-4/1e-5/ 1e-6
OPT-350M learning rate when the backbone is OPT-350 le-4/1e-5/1e-6 / 1e-7
OPT-1.3B learning rate when the backbone is OPT-1.3B le-4/1e-5/1e-6 / 1e-7
CLEAR learning rate for CLEAR le-4 / 3e-4 / 5e-4 / Te-4/ 1e-5
DistilBERT value of v when the backbone is DistilBERT 1/3/5/7/9
BERT value of v when the backbone is BERT 1/3/5/7/9
RoBERT value of v when the backbone is ROBERT 1/3/5/7/9
¥ OPT-125M value of v when the backbone is OPT-125M 1/3/5/7/9
OPT-350M value of v when the backbone is OPT-350 1/3/5/7/9
OPT-1.3B value of v when the backbone is OPT-1.3B 1/3/5/7/9
CLEAR value of v for CLEAR 5/7/9/10/11/13/15
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C Description of Datasets

In this section, we provide detailed descriptions of the benchmark datasets used in our experiments. Thier
specific concepts are presented in Table 1.

CEBaB (Abraham et al., 2022) contains restaurant reviews from Opentable. Possible labels include 1
Star, 2 Stars, 3 Stars, 4 Stars, 5 Stars, indicating different sentiment score with 5 Stars indicating the
most positive sentiment.

IMDB-C (Tan et al., 2023b) consists of movie reviews from IMDB datasets. Possible labels include
positive and negative.

ASAP-C is comprised of students essays with their scores from the ASAP dataset (Hamner et al., 2012).
The original scores range from 0 - 100. In our study, we evenly split the datasets into 10 grade categories,
ranging from O - 9, corresponding to 10 widely-used letter grades, D, C-, C, C+, ..., A, A+. We know
that in real-world, students’ grades tend to be normally distributed. Here we use even split to make the
task easier by mitiagting the class imbalance issue, which is out of the scope of this work.

C.1 Data Anotation for ASAP-C

Our annotation policy is following a previous work (Cai et al., 2021) for NLP datasets annotating. For the
ASAP dataset, we annotate the four concepts (Contents, Reasoning, Language, Supportiveness) manually.
Even though the concepts are naturally understandable by humans, two Master students familiar with
English writing tutoring are selected as annotators for independent annotation with the annotation tool
introduced by Yang et al. (2017). The strict quadruple matching F1 score between two annotators is
87.3%, which indicates a consistent agreement between the two annotators (Kim and Klinger, 2018). In
case of disagreement, a third expert will be asked to make the final decision. The instruction is as follows
(the concepts are listed in Table 1):

a. According to the essay “{text1 }”, the “{concepti }” of the essay is “positive”.

b. According to the essay “{texts}”, the “{concepts}” of the essay is “negative”.

c. According to the essay “{texts}”, the “{concepts}” of the essay is “unknown”.

d. According to the essay “{text;}”, how is the “{concept;}” of the essay? Please answer with one option in “positive,
negative, or unknown”.

D Acknowledgment of AI Assistance in Writing and Revision

We utilized ChatGPT-4 for revising and enhancing sections of this paper.
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E Comparative Results on the ASAP-C dataset

Table 6: Comparative results on the ASAP-C dataset, using Macro F1 (1) as the evaluation metric for concept
classification, expressed in percentages (%) and RMSE (]) as the evaluation metric for essay score regression.
Scores shaded in gray highlight instances where the model experienced catastrophic forgetting, leading to a decline
in performance on the development set. Scores shaded in pink indicate a decrease in performance following the
intervention. Scores shaded in blue are from CLEAR.

ASAP-C

Pre-intervention Post-intervention

Methods Backbones Dev Test Dev Test

Concept (F1 1) Task (MSE |) Concept (F1 1) Task (MSE |) Concept (F171) Task (MSE]) Concept(F11) Task (MSE )

Direct Intervention Methods

Prompting GPT4 - 1.637 - 1.534 - 1.637 - 1.685
BERT - 0.804 - 0.753 - 0.939 - 0.626

Fine-tuning OPT - 0.769 - 0.728 - 0.862 - 0.604
TS - 0.752 - 0.714 - 0.842 - 0.581

ITI TS5 - 0.752 - 0.714 - 0.752 0.634

Concept Bottleneck Models

BERT 81.24 0.896 80.67 0.904 81.24 0.896 83.68 0.884
Vanilla-CBMs OPT 83.62 0.853 82.64 0.872 83.62 0.853 84.24 0.842
TS 85.34 0.834 84.36 0.857 85.34 0.834 86.69 0.826
BERT 77.64 1.034 76.48 1.165 77.64 1.034 77.96 0.980
LF-CBMs OPT 78.57 0.924 77.26 0.968 78.57 0.924 76.18 1.158
TS5 79.66 0.864 78.81 0.891 79.66 0.864 78.48 0.936
BERT 82.37 0.867 82.64 0.856 82.37 0.867 83.79 0.796
CEMs OPT 84.41 0.842 83.29 0.879 84.41 0.842 86.67 0.723
TS5 86.58 0.704 85.62 0.713 86.58 0.704 88.32 0.684

Metacognition Intervention
CLEAR OPT-MoCE ‘ 85.63 0.765 85.27 0.771 85.63 0.765 88.24 0.679
CLEAR T5-MoCE 87.62 0.684 87.35 0.694 87.62 0.684 89.65 0.624

F Comparison with Existing Works on MoE for LLMs

Mixture of Experts in Large Language Models. The incorporation of Mixture of Experts (MoE) into
Large Language Models (LLMs) has evolved significantly, with early research by Shazeer et al. (2017)
laying the groundwork. These foundational studies (Fedus et al., 2022; Zhou et al., 2022a; Du et al.,
2022; Artetxe et al., 2021; Shen et al., 2023) focused primarily on improving model performance and
computational efficiency in a black-box manner. On the contrary, in this work, we utilize the design of
MoE in LLMs for metacognitive capabilities. This novel approach, distinct from earlier efficiency-focused
applications, uses MoE for error detection and correction, a critical step towards solving the interpretability
and trust issues in Al decision-making. Our framework, CLEAR, contributes to this evolving landscape
by embedding MoE within a metacognitive framework, emphasizing error rectification, transparency,
and autonomy in LLMs. This shift marks a significant advancement from traditional MoE applications,
positioning CLEAR at the forefront of innovative LLM enhancement strategies.

G Analysis of Overfitting in Concept Learning

Training Loss and Validation Accuracy over Epochs Training Loss and Validation Accuracy over Epochs Training Loss and Validation Accuracy over Epochs

I’ AV

—=— Training Loss == Validation Accuracy | —— Training Loss A —— Validation Accuracy

A VA

Validation Accuracy (%)

Training Loss
Training Loss
Training Loss

“Validation Acwcuraky (%)

Ep‘«:)chs = 3 = 7 T = Epéchs = = B T 7 5 Ep‘échs

(a) CEBaB (b) IMDB-C (c) ASAP-C

Figure 7: Visualization of training dynamics of one run on CEBaB, IMDB-C and ASAP-C datasets. We adopt the “early
stop" strategy to avoid overfitting, where models with the highest validation accuracy are selected and evaluated on
test sets.
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H More Examples from Real-world Datasets

This place is super cool. Felt like | was in NYC vs downtown Y Service Ambiance ! Ns | Task Label
Phoenix
+ & + I Unk I 4

Ice cream, coffee, beer, wine, drinks,

food, whatever you want. The beer selection is actually better !y 1 |

than most bars I've been too and high end joints. Old Rasputin e/y + + + I + I

on nitro. What the pho? Great choice. I'd come back for sure and o

highly recommend! /Yy + * < ok | e
| S |

Figure 8: An example for the metacognitive intervention on one instance from the CEBaB dataset.

Some films just simply should not be remade. This is one of them. In and
of itself it is not a bad film. But it fails to cap the flavor and the terror
of the 1963 film of the same title. Liam Neeson was excellent as he always
is, and most of the cast holds up, with the exception of Owen Wilson, who

Emotional fj = . lStor line Cinemato- Task
Arousal Y graphy Label

just did not bring the right feel to the character of Luke. But the major /Yy 5 + I Unk - +
fault with this version is that it strayed too far from the Shirley Jackson I
story in it's attempts to be grandiose and lost some of the thrill of the &y B I 4 I Unk . i
earlier film in a trade off for snazzier special effects. Again | will say that in K l
and of itself it is not a bad film. But you will enjoy the friction of terror in N I
. /vy = + || unk = +
the older version much more. I
S ‘

Figure 9: An example for the metacognitive intervention on one instance from the IMDB-C dataset.

ﬁa\m not a patient person at all. But sometimes | have to be like my birthday for
instance, | would love it if my birthday came at least every month. But of course, |
only have @NUM1 birthday a year, so | have to wait. | would like to be a patient
person. It’s just not in the cards for me. My father on the other hand is more
patient than anyone. | know he will tell me to clean the car @DATE1 | told him |
didn’tdo it yet so he says he will give me more time. | couldn’t be that patient
with my kids. | would tell them to clean it now or they would be grounded. |
wouldn’t force them to or anything but I'm not gonna wait a whole month before |
get my car cleaned! | guess | could try to be as patient with my father but that
would be really hard. Although if I'm “patient,” I'm sure | will be able to do it! J

Content Language Supportive- | Task
=5

Figure 10: An example for the metacognitive intervention on one instance from the ASAP-C dataset.

17



	Introduction
	Related Work
	Methodology
	Concept Learning for LLMs
	Tuning-free Metacognitive Intervention

	Experiments
	Superior Performance of CLEAR
	Extra Investigation and Ablation Study

	Conclusion
	Definitions of Different Training Strategies
	Implementation Detail
	Experimental Setup

	Description of Datasets
	Data Anotation for ASAP-C

	Acknowledgment of AI Assistance in Writing and Revision
	Comparative Results on the ASAP-C dataset
	Comparison with Existing Works on MoE for LLMs
	Analysis of Overfitting in Concept Learning
	More Examples from Real-world Datasets

