PLAN-AND-ACT: Improving Planning of Agents for Long-Horizon Tasks

Lutfi Eren Erdogan“! Nicholas Lee”! Sehoon Kim' Suhong Moon! Hiroki Furuta?

Gopala Anumanchipalli! Kurt Keutzer

Abstract

Large language models (LLMs) have shown re-
markable advancements in enabling language
agents to tackle simple tasks. However, applying
them for complex, multi-step, long-horizon tasks
remains a challenge. Recent work have found
success by separating high-level planning from
low-level execution, which enables the model
to effectively balance high-level planning objec-
tives and low-level execution details. However,
generating accurate plans remains difficult since
LLMs are not inherently trained for this task.
To address this, we propose PLAN-AND-ACT, a
novel framework that incorporates explicit plan-
ning into LLM-based agents and introduces a scal-
able method to enhance plan generation through
a novel synthetic data generation method. PLAN-
AND-ACT consists of a PLANNER model which
generates structured, high-level plans to achieve
user goals, and an EXECUTOR model that trans-
lates these plans into environment-specific actions.
To train the PLANNER effectively, we introduce a
synthetic data generation method that annotates
ground-truth trajectories with feasible plans, aug-
mented with diverse and extensive examples to
enhance generalization. We evaluate PLAN-AND-
ACT using web navigation as a representative
long-horizon planning environment, demonstrat-
ing a state-of-the-art 57.58% success rate on the
WebArena-Lite benchmark as well as a text-only
state-of-the-art 81.36% success rate on WebVoy-
ager.

1. Introduction

Large language models (LLMs) have significantly advanced
in capability, enabling their application as language agents

*Equal contribution 'UC Berkeley >University of Tokyo SICSI.

Correspondence to: Amir Gholami <amirgh@berkeley.edu>.

Proceedings of the 42" [nternational Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

1 13

Amir Gholami

Gﬁ;ﬂtnt

............

'+ Action |
_________ Planner ;----------- | Executor
! Query > LLM _AGenerated;_b LLM
el b . Plan | Fo
= [' o
Exit

Figure 1. An illustration of PLAN-AND-ACT System Diagram.
First, the PLANNER LLM processes the initial user query and
generates an initial step by step plan (Section 3.1). This is then
passed to the EXECUTOR LLM which uses the plan and generates
an actions to interact with its Environment. The environment feed-
back is then fed back to both the EXECUTOR so it can generate
subsequent actions and/or to the PLANNER in case a new plan
needs to be generated. Existing methods have shown this separa-
tion of high-level planning and low-level execution can improve
accuracy. However, a major challenge is that LLMs are not gener-
ally trained to generate such plan/low-level action, a problem that
we focus on solving in this paper.

that can interact with environments through sequences of
actions. These agents are designed to tackle complex, multi-
step, long-horizon tasks by leveraging the model’s reasoning
and decision-making capabilities. At the heart of building
such effective agents lies a fundamental challenge: planning.
Even for seemingly simple tasks, an agent must understand
the goal, break it down into manageable steps, and adapt
those steps as circumstances change. However, despite these
advancements, planning remains a significant challenge for
several reasons. First, agents often struggle to break down
high-level user goals (like "book me a flight to New York™)
into specific, actionable steps (like “open the airline web-
site”, “enter travel dates”, etc.). Second, as tasks grow
longer and more complex, maintaining a coherent strategy
becomes increasingly difficult - agents lose track of what
they’ve accomplished and what remains to be done. Third,
real-world environments are dynamic and unpredictable,
requiring agents to constantly revise their plans. These chal-
lenges are further amplified by the scarcity of high-quality

PLAN-AND-ACT: Improving Planning of Agents for Long-Horizon Tasks

@ Action 1

— Executor

Click on 'Contributors’ link
do(action="Click", element="13")

l

HTML with the top contributor
"John Doe"

E] Action 2

Plan 1
E] ## Step 1
User Query Navigate to the
“Follow the top “Contributors” section
contributor of this Blanneq
GitHub project” ## Step 2
Identify the top contributor
and follow them
P
1 Replan@
1
1
I
1
1
E] Plan 2
Planner ## Step 1
Follow “John Doe”

— Executor # Click on ‘John Doe’

do(action="Click", element="2")

Figure 2. PLAN-AND-ACT System Diagram. Given the initial user query, the PLANNER (Section 3.1) breaks it down into a high-level
plan, which is given to the EXECUTOR (Section 3.2) which uses the plan to guide its actions. Once the action has been taken and the
HTML changes, the PLANNER dynamically generates a new plan that incorporates the changes in the environment (Section 3.3).

training data that demonstrate effective planning strategies.

Previous approaches to improve agent performance for long-
range tasks such as web navigation (Qi et al., 2024; Yang
et al., 2024a; Gur et al., 2023; Zhang et al., 2024b) and
device control (Erdogan et al., 2024; Pawlowski et al., 2024)
have shown promise. However, most rely on a single model
to directly translate user requests into actions. This creates
a difficult balancing act - the model must simultaneously
reason about the high-level strategy while managing the
low-level execution details (Yang et al., 2024a). Under this
load, models often lose sight of their ultimate objectives
and struggle to maintain consistent behavior (Sridhar et al.,
2023). Recent work has explored the use of Reinforcement
Learning (RL) (Sutton, 2018) to improve performance (Bai
et al., 2024; Qi et al., 2024), but these methods can be
unstable and highly sensitive to hyperparameters and reward
design (Rafailov et al., 2024; Furuta et al., 2024).

To equip LLMs to effectively plan for long-horizon tasks
more reliably, we introduce PLAN-AND-ACT, a framework
that incorporates explicit planning into LLM-based agents.
Unlike traditional approaches like ReAct based methods (Qi
et al., 2024; Gur et al., 2023; Yang et al., 2024b) that rely
on a single model to directly map user queries to a sequence
of actions, PLAN-AND-ACT adopts a framework similar to
LLMCompiler (Kim et al., 2023b) which consists of two
modules: a PLANNER and an EXECUTOR (Figure 1). The
PLANNER model generates a sequence of plans that outline
the high-level steps required to achieve the goal, while the
Executor translates these steps into environment-specific
actions. Furthermore, our framework provides an effective
and scalable solution for generating training data to train
the PLANNER without requiring manual annotation or a
sandbox environment. The difference with LLMCompiler is

that we introduce a scalable method that allows finetuning
the PLANNER and EXECUTOR components. In particular,
our contributions are as follows:

* We propose PLAN-AND-ACT, a framework that improves
planning for long-horizon tasks through explicit separa-
tion of planning and execution. As shown in Figure 2,
our architecture consists of a PLANNER that breaks down
user requests into structured plans, and an EXECUTOR
that implements these plans through environment-specific
actions (Section 3).

To train the PLANNER model effectively, we introduce a
synthetic data generation pipeline to generate planner data
with and without access to extra ground truth data. First,
we use an LLM to analyze successful action trajectories
(sequences of actions like clicking, typing, etc.) and gener-
ate the corresponding high-level plans through grounded
plan generation, ensuring these plans are grounded in
actual executable actions (Section 4.2). Second, we syn-
thetically augment our dataset by using these initial plans
as seed data to generate additional diverse planning exam-
ples (Section 4.3). This comprehensive approach enables
us to create high-quality training data despite the scarcity
of real-world planning examples.

* To demonstrate the efficacy of our approach on long-
horizon tasks, we evaluate PLAN-AND-ACT in the
WebArena-Lite (Liu et al., 2024) environment for web
navigation, achieving SOTA result of 53.94% (Table 1).

PLAN-AND-ACT: Improving Planning of Agents for Long-Horizon Tasks

2. Related Work
2.1. Language Agents as Web Agents

As LLM agents become more widespread, they have been
increasingly applied as web agents to traverse and operate
web pages (Gur et al., 2022; Kim et al., 2023a) through GUI
interaction (Pawlowski et al., 2024; Rawles et al., 2024,
Zhang et al., 2023; Xie et al., 2024; Zhang et al., 2024a) or
API interaction (Song et al., 2024), which has spurred new
datasets (Shi et al., 2017; Deng et al., 2024; Rawles et al.,
2024) and benchmarks (Yao et al., 2022a; Zhou et al., 2023;
Koh et al., 2024; Liu et al., 2024).

Several works employ hierarchical planning frameworks
similar to PLAN-AND-ACT, but rely on prompting closed-
source models like GPT-40. AgentOccam (Yang et al.,
2024a) incorporates planning into the action space with
tree-like planning, WebPilot (Zhang et al., 2024b) uses six
different agents, AdaPlanner (Sun et al., 2023) employs In-
Plan and Out-of-Plan Refiners for replanning, and ADaPT
(Prasad et al., 2023) uses recursive decomposition. In con-
trast, PLAN-AND-ACT provides a simpler two-agent frame-
work with a systematic approach to generating high-quality
training data for open-source LLMs.

Training data generation approaches for Web Agents include
DigiRL (Bai et al., 2024), WebRL (Qi et al., 2024), AutoWe-
bGLM (Lai et al., 2024), and NNetNav (Murty et al., 2024),
which focus on collecting diverse trajectories but lack plan-
ning data generation. Unlike these methods that rely on
external simulators, our approach can generate synthetic
planning data without a simulator (Section 4.3).

Some robotics research (Song et al., 2023; Nayak et al.,
2024; Kannan et al., 2024) uses hierarchical LLM Agents
for task decomposition and planning, sharing similarities
with our work. Other approaches include pretraining LLMs
on HTML (Gur et al., 2023), leveraging vision capabilities
of VLMs (Furuta et al., 2023), or adopting RL to improve
performance through interaction (Qi et al., 2024; Bai et al.,
2024; Yang et al., 2024b).

2.2. Synthetic Data Generation

Synthetic generation has gained popularity since pioneering
work like Self-Instruct (Wang et al., 2022) and Alpaca (Taori
et al., 2023), with many recent papers using synthetic data
to enhance LLM performance (Xu et al., 2023; Lee et al.,
2024; Erdogan et al., 2024; Wang et al., 2024a; Gunasekar
et al., 2023; Moon et al., 2024).

For web agents specifically, researchers commonly col-
lect training trajectories in reusable environments (Zhou
et al., 2023; Koh et al., 2024; Liu et al., 2024) through on-
policy methods (Qi et al., 2024; Yang et al., 2024b; Patel
et al., 2024; Ou et al., 2024). These approaches typically

generate trajectories from an LLM and filter for failed in-
stances. Patel et al. (2024) combined real and synthetic
data, while Yang et al. (2024b) supplemented training with
multiple trajectories on failed tasks. Both NNetscape Nav-
igator (Murty et al., 2024) and WebRL (Qi et al., 2024)
employed instruction-generation techniques—the former
retroactively labeled explored website trajectories, while the
latter used Self-Instruct style prompts to generate queries for
trajectory collection, with failed trajectories seeding further
targeted data generation.

3. System Architecture

As discussed in previous work (Sridhar et al., 2023; Yang
et al., 2024a), at the heart of effective agents lies the chal-
lenge of balancing high-level reasoning with low-level exe-
cution. When a single model must simultaneously perform
long horizon planning and then also execute multiple low-
level actions for each part of the plan, it faces a difficult
cognitive load that often leads to suboptimal decisions or
inconsistent behavior. This challenge becomes especially
acute for long-horizon tasks, where the agent must maintain
a coherent strategy across many steps while adapting to
changes in the environment.

To address this fundamental challenge, our framework sepa-
rates these responsibilities into two specialized components:
a PLANNER that focuses on strategic decision-making and
an EXECUTOR that specializes in implementing those de-
cisions (Figure 2). This separation allows each component
to excel at its core task. The PLANNER can reason about
high-level strategy without getting bogged down in imple-
mentation details, while the EXECUTOR can focus on trans-
lating abstract plans into concrete actions (Kim et al., 2023b;
Wang et al., 2023).

While our framework is adaptable to various structured
decision-making environments, we focus on web agents
due to the web’s dynamic and complex nature, which in-
volves diverse actions and long-horizon tasks. For web
tasks, the PLANNER takes a user query (like Follow the
top contributor of this GitHub project”) and breaks it down
into clear, manageable steps (such as “Navigate to the Con-
tributors section” followed by “Identify and follow the top
contributor”). The EXECUTOR then takes these steps and
translates them into precise actions in the web environment,
like clicking specific links or typing in search boxes. The
observation space that we will use for this task is HTML as
the text-representation of the environment.

3.1. PLANNER

The PLANNER takes the user query and breaks it down into
a structured plan that dictates the essential high level steps
required to accomplish the task. This plan is used to as a

PLAN-AND-ACT: Improving Planning of Agents for Long-Horizon Tasks

guide for the EXECUTOR at runtime, providing a clear road-
map while allowing some flexibility for the EXECUTOR. By
handling most of the reasoning and task decomposition, the
PLANNER streamlines decision making and task execution.

Consider the example in Figure 2, which shows an example
of this module in action, in the context of a web task. We
have the original user query Follow the top contributor of
this GitHub project and the goal is for our WebAgent to
execute this task on GitHub. The PLANNER processes this
user query and breaks down the task into a step-by-step plan,
consisting of (i) Navigating to the Contributors section and
(ii) Identifying and Following the top contributor.

3.2. EXECUTOR

The EXECUTOR is an LLM Agent that takes the plan from
the PLANNER (Section 3.1) and runs it in the environment.
It is responsible for calling tools, retrieving data, or making
changes in the environment required by the plan.

For example, in the web task shown in Figure 2, once the
PLANNER generates a plan for the query Follow the top con-
tributor of this GitHub project, the EXECUTOR only needs
to translate the step Navigate to the “Contributors” section
into a click action on the HTML. As we can see, EXECUTOR
takes HTML as an input and outputs a grounded concrete
action in the environment. Importantly, after executing an ac-
tion, the EXECUTOR performs garbage collection, removing
unnecessary data such as redundant HTML before executing
the next action. More explicit examples of the PLANNER-
EXECUTOR trajectories can be found in Appendix A.4.

3.3. Dynamic Replanning

A key limitation of the previous approach is that the initial
plan is static throughout execution, which makes it vul-
nerable to unexpected variations in the environment. For
instance, in the web-navigation example, static plans are
unequipped to handle dynamic content interpretation, such
as analyzing search results or transaction histories. The
EXECUTOR can fail to correctly process content that is un-
known a priori at planning time. Furthermore, static plans
can have issues with unexpected failures, such as searching
a keyword returning nothing. If the plans are static, the
EXECUTOR may blindly follow the steps in the original
plan rather than trying a different approach. As shown in
previous work in task decomposition (Kim et al., 2023b),
static planning can have fundamental drawbacks even in
straightforward tasks.

To address this limitation, we introduce dynamic replanning,
where the PLANNER updates the plan after each EXECUTOR
step rather than relying solely on the initial plan. After each
iteration, the PLANNER takes in the current state as well as
the previous plans and actions and generates a new plan for

how the EXECUTOR can complete the user query.

Conveniently, dynamic replanning allows the planner to re-
tain key information within the evolving plan. For instance,
consider the example in Figure 2. The original plan did not
know who the top contributor was, so it could only contain
the step Identify the top contributor and follow them. After
the contributor was identified upon execution of the action
clicking “Contributors” link, the PLANNER incorporates
this information into the remaining plan. Since the plan car-
ries forward the relevant context, this approach also allows
us to address challenges related to memory for long-horizon
tasks without requiring an explicit memory module (Yang
et al., 2024a; Zhang et al., 2024b). More detailed examples
of dynamic replanning can be found at Appendix A.5.

This approach aligns with our architectural philosophy
where the PLANNER serves as the “control room” for rea-
soning and decision-making, while the EXECUTOR focuses
solely on translating plans into environment-specific actions.

3.4. Chain of Thought Reasoning

Currently, the PLANNER and EXECUTOR generate plans
and actions directly. = However, recent advances in
chain-of-thought (CoT) prompting and inference-time scal-
ing (Kojima et al., 2022; Wei et al., 2022; Guo et al., 2025)
have shown that eliciting intermediate, step-by-step ratio-
nales can substantially improve performance. Thus, before
having the PLANNER and EXECUTOR generate the plan
and action respectively, we also have them generate a CoT
reasoning trace in order to improve performance. You can
find the CoT experiment results in Section A.1

4. Synthetic Data Generation

To motivate the need for creating synthetic data, we first
evaluated the performance of existing off-the-shelf LLMs
on WebArena-Lite which involves challenging user queries
and reported the results in Table 1. We observe a baseline
performance of 9.85%, which increases to 14.21% with
PLAN-AND-ACT. While this is a noticeable improvement,
the result is far from satisfactory.

There are several contributing factors to this low perfor-
mance. Most notably, LLMs are not trained to perform
this form of long horizon planning, especially for web tasks.
This affects both the PLANNER and EXECUTOR. The PLAN-
NER cannot generate accurate plans if the LLM has not seen
these websites in its pretraining and the trajectories that are
needed to accomplish the query. The EXECUTOR has also
most likely not been trained on getting a user query along
with the HTML of a page and output a web action. Overall,
we cannot expect an off-the-shelf LLM to have this capa-
bility if it has not been trained on planning/executing tasks
during pretraining such as in a specialized domain, such as

PLAN-AND-ACT: Improving Planning of Agents for Long-Horizon Tasks

Synthetic User Queries

Find top 3 contributors to

@ the “pytorch” repo

Synthetic Query -
Generator -

Seed Create an issue under the
. “fastapi” repo to report a
Tr;lar;:lang bug about response validation

(" Sseca.l1: Synthetic Usery Query and Action Trajectory Generation N

Synthetic Action Trajectories

1. do(action="Search", argument="pytorch",
element="3")

2. do(action="Select",
argument="Contributors", element="8")

9. do(action="Click", argument="Sort",
element="33")

-

Teacher LLM

1. do(action="Search", argument="fastapi",
element="7")

2. do(action="Click", argument="Issues",
element="12")

6. do(action="Click", argument="Submit new
issue", element="28")

~
Sec 4.2: Grounded Synthetic Plan Generation
Synthetic Action Trajectory
1. do(action="Search", ## Step 1
argument="pytorch", element="3") Step: Navigate to “pytorch” repo
2. do(action="Select", Actions: [1]
argument="Contributors", Teacher LLM
element="8") ## Step 2
e X . Step: Select the Contributors section and
4. do(action="Click", filter for the top 3 contributors
argument="Sort", element="33") Actions: [2,3,4]
. J

— Teacher LLM ————

Seed
Synthetic
Plans

Query: Find the top contributors in terms of
commit number in “linux” repo since last year

Step 1
Step: Navigate to the “linux” repo

Step 2
Step: Open the Contributors section

Step 3
Step: Sort the results based on the commit
number

Step 4
Step: Filter the results to only consider
commits since last year

Figure 3. Synthetic Data Generation Pipeline. In the Action Trajectory Generation stage (Section 4.1), user queries from the training
data are given to a Teacher LLM, which outputs synthetic user queries. From there, a demonstrator actor LLM attempts to execute the
query on the webpage. After the trajectory is finished, an ORM LLM is used to filter for successful trajectories. In the Grounded Plan
Generation stage (Section 4.2), a Teacher LLM takes the trajectory and creates a synthetic high-level plan and grounds each step with
explicit actions in the trajectory. In the Synthetic Plan Expansion stage (Section 4.3), the plans from the training data are sampled and

given to the Teacher LLM, which generates new synthetic plans.

web navigation.

Importantly this issue cannot be solved with prompting
alone. While performing prompt engineering and including
in-context examples can help with simple tasks, the LLM
struggles when given non-trivial queries as evident by the
low baseline accuracy.

Given that prompting alone cannot solve this issue, we
have to perform finetuning of the LLM to improve the per-
formance of the PLANNER and EXECUTOR. However, in
order to finetune the model, we need to ensure that we have
sufficient amount of data for finetuning. In particular, the
PLANNER requires data that has a user query and its corre-

sponding plan breakdown. The EXECUTOR needs data that
includes HTML input for each of the plan steps along with
the desired web action as its output. However, such data is
not available. Manually collecting this data is an option but
is both costly and time-consuming as the human annotator
needs to write down a plan of action followed by execution
corresponding to each of the steps.

Here we propose an alternative approach that allows a scal-
able method to collect and generate high-quality synthetic
training data. Our method leverages an LLM-based anno-
tation pipeline that processes existing action trajectories
to generate the corresponding structured plans, which is
depicted in Figure 3.

PLAN-AND-ACT: Improving Planning of Agents for Long-Horizon Tasks

4.1. Action Trajectory Generation

The simplest way to collect more data for the EXECUTOR
is to collect more trajectories from the environment, a tech-
nique that has been used in previous works (Qi et al., 2024;
Murty et al., 2024).

To achieve this, we use an Alpaca-style (Taori et al., 2023)
data generation pipeline. Motivated by Qi et al. (2024),
we randomly sample user queries from the training data
and use them as seed prompts for an LLM to generate new,
similar queries. For the web-navigation task, these queries
are filtered initially by an LLM to filter out impossible
trajectories for the web-agent. These newly generated user
queries are then given to a demonstrator agent which tries to
complete the task in the environment, which we collect as a
synthetic trajectory. Finally, we then score this trajectory by
using an outcome-supervised reward model (ORM) to filter
for successful and unsuccessful trajectories. This initial
process is depicted in Figure 3 in the first row for the web-
navigation task and the prompts for the query generation are
adapted from (Qi et al., 2024).

4.2. Grounded Plan Generation

While we can use synthetically created user queries and then
collect the resulting trajectories to train the EXECUTOR, this
approach presents challenges when used to create synthetic
data for the PLANNER.

A naive approach would be to provide a teacher LLM with
a user query and prompt it to generate a step-by-step plan to
accomplish the task. However, this runs into a fundamen-
tal limitation: the teacher LLM lacks access to the actual
website or environment and has not been pretrained on such
tasks. Attempting this method results in generated synthetic
plans that are often misaligned with how the tasks need to
be performed on the web.

To address this, we leverage the in-context learning capa-
bilities of LLMs, which allows them to generalize on tasks
outside their pretraining distribution. Specifically, we take
advantage of this capability and provide the teacher LLM
the trajectories that we created in Sec. 4.1 and prompt it to
“reverse-engineer” structured plans from these trajectories.
Given the trajectory, we prompt the LLM to analyze the
sequence of actions and to synthesize a coherent plan that
will be used to guide the EXECUTOR downstream. To make
sure that the plan is grounded to the actual environment, we
further prompt the model to also include which low-level ac-
tions in the trajectory would be assigned to which high-level
actions in the plan, to ensure that the plan matches actual
execution of the trajectory. This ensures that the generated
plans align with the real execution environment, making the
both accurate and executable.

This is depicted in the second row of Figure 3, where the

action trajectories of the webagent is transformed into a set
of high-level actions that we want the PLANNER to output.
This approach is similar to (Murty et al., 2024), although
our method generates high-level plans while their technique
generates synthetic user queries from the trajectories.

4.2.1. SYNTHETIC DATA GENERATION FOR DYNAMIC
REPLANNING

It is important to also create synthetic data that captures
dynamic replanning. This is important because a lot of user
queries require planning based on dynamic observations
that are only known during the plan execution. Examples
queries that require such planning are: “Analyze the search
results and select the most relevant item” or “Find the most
recent pending order”.

We can use a similar algorithm to generate synthetic replan-
ning data. The main difference is that for replanning data
generation, we need to supply the teacher LLM with origi-
nal plan data along with the trajectory that the webagent has
taken to reach the point that requires replanning. You can
find detailed prompts in Appendix A.12.

4.2.2. SYNTHETIC DATA GENERATION FOR
CHAIN-OF-THOUGHT-REASONING

Similarly, we also need to generate synthetic data to elicit
CoT reasoning for both the PLANNER and EXECUTOR,
since not all models have been trained to generate reasoning
traces. We use an algorithm similar to Section 4.2 to gen-
erate reasoning traces for both plan and action generation.
For plan reasoning generation, we have the teacher LLM
generate reasoning before outputting the plan while for ac-
tion reasoning generation, we provide the original plan data
and the trajectory that the webagent has taken, along with
the expected correct action and prompt the teacher LLM to
generate a reasoning trace for that action.

4.3. Synthetic Plan Expansion

The previous approach requires a simulator environment to
collect actions and then create a synthetic plan by reverse-
engineering the actions. Collecting successful trajectories
that passes the ORM in Sec. 4.1 can be time consuming
since the teacher model may generate a lot of unacceptable
trajectories. This will affect the amount of data that we can
generate both for the EXECUTOR as well as the PLANNER.
This issue is noticeably worse for the PLANNER since each
successful trajectory that passes the ORM model entails
on average 8 different steps which provide 8 training data
points for the EXECUTOR, but only 1 plan. However, we
can effectively address this data imbalance, by expanding
the synthetic plans.

Specifically, we expand the PLANNER dataset by generating

PLAN-AND-ACT: Improving Planning of Agents for Long-Horizon Tasks

similar query-plan pairs that resemble the existing data,
similar to the Alpaca style query generation in Section 4.1.

Similar to Section 4.1, we initially randomly sample query-
plan pairs from the synthetic PLANNER training data. These
examples serve as implicit constraints, guiding the language
model to generate structurally consistent and semantically
valid query-plan pairs while maintaining diversity.

Using this pipeline with GPT-40, we expanded the synthetic
plan data to 10,000 additional user query-plan pairs. This
approach demonstrated significant advantages in both ef-
ficiency and scalability, reducing data generation time to
under an hour while simultaneously addressing the overfit-
ting problem through increased data diversity. The resulting
synthetic dataset exhibits a broad spectrum of use cases,
contributing to improved model generalization (Section 5.2).
This process is depicted in the third row of Figure 3 and the
prompts for this are in Appendix A.S8.

Targeted Plan Augmentation: While this large-scale data
generation enhanced diversity and reduced underfitting for
the PLANNER, it is not adaptive, and doesn’t take into ac-
count what kinds of tasks are more difficult for the model in
training. A key advantage of our approach is that we have
explicit control over the data generation by allowing us to
analyze the model failures and selectively refine the dataset.

Motivated by previous works (Lee et al., 2024; Qi et al.,
2024; Yang et al.,, 2024b) around adaptive curriculum-
learning, we ran our model through a held-out validation
set which revealed several failure patterns in model perfor-
mance. From there, our goal was to identify training data
examples that seemed relevant to the failure patterns, in-
stances where, if the model had seen more similar examples
during training, it might improve performance on these tasks.
To this end, we used an LLM to classify training data points
that could be relevant to the failure nodes on each website
and used them as seed data to generate 5,000 more synthetic
plans. The prompts used to do this are in Appendix A.10
for classification and Appendix A.11 for generation. As we
can see in Table 1, this targeted plan augmentation was able
to significantly improve performance.

5. Results

5.1. Experimental Setup

* Environment: We run ablations on PLAN-AND-ACT us-
ing WebArena-Lite (Koh et al., 2024), a benchmark con-
taining 165 test cases across diverse websites including
OpenStreetMap, Reddit, GitLab, a content management
system (CMS), and OneStopShop (OSS). WebArena-Lite
uses a binary success metric (1 for complete task success,
0 for failure) and provides training data while being more
computationally efficient than the full WebArena (Zhou

et al., 2023) benchmark. We also evaluate PLAN-AND-
ACT on the full WebArena dataset as well as the Web-
Voyager (He et al., 2024a) dataset, which is a dynamic,
realworld web dataset. See Section A.2 and Section A.3.

* Models: For our primary PLAN-AND-ACT framework,
we utilize LLaMA-3.3-70B-Instruct model by fine-tuning
separate instances for both the PLANNER and EXECUTOR
components. For our dynamic replanning experiments,
we use a LLaMA-3.3-70B-Instruct model fine-tuned us-
ing LoRA (Hu et al., 2021) (due to computational con-
straints). Each component is trained on our synthesized
datasets as described in previous sections. We use GPT-
4o as the Synthetic Query Generator (Section 4.1), Plan
Generator (Section 4.2) and Synthetic Plan Generator
(Section 4.3). We use WebRL-Llama-3.1-70B (Qi et al.,
2024) as the actor model and ORM-Llama-3.1-8B (Qi
et al., 2024) as the filter model for filtering for successful
trajectories. For generating CoT traces Section 3.4, we
used DeepSeek-R1-Distill-Llama-70B (Guo et al., 2025)
as the teacher model.

* Baselines: We compare PLAN-AND-ACT against sev-
eral strong baselines to evaluate its effectiveness. These
include zero-shot LLaMA-3.3-70B-Instruct without any
fine-tuning, LLaMA-3.3-70B-Instruct fine-tuned specif-
ically on the WebArena-Lite training set (ReAct-style
prompting), and the WebRL-Llama-3.1-70B model,
which is the current SOTA model on WebArena-lite.
On Webarena-lite, we also compared against GPT-4-
Turbo, GPT-40, AWM (Wang et al., 2024b), and WebPilot
(Zhang et al., 2024b). For the full WebArena dataset, we
evaluated against NNetNav (Murty et al., 2024), AutoWe-
bGLM (Lai et al., 2024), WebPilot, and AgentOccam
(Yang et al., 2024a). For the WebVoyager dataset, we
evaluated against NNetNav, OpenWebVoyager (He et al.,
2024b), Wilbur(Lutz et al., 2024), and Agent-E (Abuel-
saad et al., 2024). These models were evaluated with a
success rate metric, which requires complete task comple-
tion for a positive score.

* Hyperparameters: The hyperparameters we used to train
our PLANNER and EXECUTOR modules are found in Ta-
ble 5. For the data generation in Section 4.1 and Sec-
tion 4.3, we use 5 seed data points to generate 10 new
synthetic data points.

5.2. Static PLANNER Results
Table 1 shows the results of our experiments.

The columns represent a different versions of the EXECU-
TOR (LLaMA-3.3-70B). The first column is a base EXECU-
TOR, which is not finetuned. The second column has an
EXECUTOR that was trained only on 1,113 WebArena-lite

PLAN-AND-ACT: Improving Planning of Agents for Long-Horizon Tasks

Table 1. Task success rate (SR) of PLAN-AND-ACT on WebArena-Lite, a human-verified subset of WebArena. The rows represent
incremental improvements to the PLANNER, while the columns show results for different EXECUTOR. For the executor, the first column
is a base prompted EXECUTOR, the second column is for an EXECUTOR finetuned on WebArena-lite data, and the third column shows
results when finetuned on both WebArena-lite training data and the 923 synthetically generated data from Section 4.1. The first row shows
the results without a PLANNER. For the results in this row, the Executors were trained ReAct style, with no plans. The second to sixth row
shows reported results from WebRL (Qi et al., 2024) including the current SOTA on WebArena-lite. The seventh row shows the result
when using a base zero-shot PLANNER. The eigth row adds finetuning with the WebArena-lite data and the ninth row adds finetuning with
the additional data generated in Section 4.1. The tenth and eleventh row are after finetuning with the 10,000 synthetic plans generated in
Section 4.3 and with the additional 5,000 synthetic plans generated by Targeted Augmentation. The 12th row shows the results after we
introduce dynamic replanning into the architecture. The last row shows the results after adding CoT reasoning. Scores are averaged across

all websites in the WebArena environment.

PLANNER Design |

EXECUTOR Design

\ Base + Finetuning + Synthetic Traj.
No Planner | 985 36.36 36.97
GPT-4-Turbo - - 17.6*
GPT-40 - - 13.9*
AWM + GPT-4-0613 (Wang et al., 2024b) - - 35.5%
WebPilot + GPT-40 (Zhang et al., 2024b) - - 37.2%
WebRL-3.1-70B (Qi et al., 2024) - - 49.1*
Base 14.21 17.16 23.63
+ Finetuning 2242 16.36 20.60
+ Synthetic Trajectories (Section 4.1) 24.24 27.28 30.30
+ Plan Expansion (Section 4.3) 27.10 38.18 39.40
+ Targeted Augmentation (Section 4.3) 29.63 42.42 43.63
+ Dynamic Replanning (Section 3.3) 44.24 48.48 53.94
+ CoT (PLAN-AND-ACT) (Section 3.4) = = 57.58

training data points, and the third column being an EXECU-
TOR trained on both the WebArena-lite training data as well
as the 923 synthetically generated action trajectories from
Section 4.1.

No PLANNER. The first row shows the results for each
of these Executors when trained with the baseline ReAct
prompt (Yao et al., 2022b) without a PLANNER. As we can
see, doubling the amount of action trajectory data does not
significantly improve performance, showing a 0.61% im-
provement from just training on the WebArena-lite data. We
cited this as motivation in Section 4.1 to focus on improving
the PLANNER through plan generation.

Base PLANNER. The seventh row shows the results of en-
hancing each EXECUTOR with a base PLANNER (LLaMA-
3.3-70B), which is not finetuned. As we can see, the per-
formance improves for the base EXECUTOR, but fails to
improve over the baseline for the trained Executors. What
this can be attributed to is that since the PLANNER is not
trained on data that is grounded to these specific websites,
these plans are suboptimal and can confuse the EXECUTOR.

Finetuned PLANNER. The eighth row shows the results
of using a PLANNER that has been finetuned only on the
1,113 plans in the WebArena-lite training data. As we can

see, naively finetuning the PLANNER did not improve per-
formance for the finetuned EXECUTOR. Here, we found
that the PLANNER was overfitting to the training data and
did not generalize to general plans for new, unseen tasks.

Finetuned PLANNER with data expansion. The ninth
through eleventh row show the results when iteratively dif-
ferent synthetic data augmentation strategies. The ninth row
shows the results after augmenting the PLANNER with extra
synthetic trajectories from Section 4.1. The tenth row shows
the results after using these grounded trajectories to generate
10,000 synthetic query-plan pairs from Section 4.3, and the
eleventh row shows the performance after also adding in the
5,000 targeted synthetic query-plan pairs.

From these rows, we can see that a properly trained PLAN-
NER consistently improves performance across all of the
different Executors. Even with a base EXECUTOR, adding
a PLANNER increases success rate from 9.85% to 29.63%.
This validates our core hypothesis that explicit planning
helps bridge the gap between high-level user intentions and
low-level actions.

The impact of generated data expansion is particularly no-
table. Each expansion of the training dataset yields per-
formance improvements, with the most substantial gains

PLAN-AND-ACT: Improving Planning of Agents for Long-Horizon Tasks

coming from the addition of the 10,000 directly generated
plans, increasing success rates by approximately 10 percent-
age points. The failure-analysis-guided examples provided
a final boost of 4-5 percentage points, highlighting the value
of targeted data generation. Interestingly, the EXECUTOR’s
performance scales with training data size, but shows dimin-
ishing returns after the initial 1,113 examples, suggesting
that the bottleneck may lie more in plan quality than action
execution.

5.3. Dynamic Replanning Results

Despite these improvements, our detailed error analysis re-
vealed fundamental limitations in the static PLANNER archi-
tecture. While the EXECUTOR performed well on concrete,
deterministic tasks like navigating to specific pages, sorting
tables, or posting comments on Reddit, it struggled with
tasks requiring analysis of dynamic content. This aligns
with our hypothesis in Section 3.3, that a static PLANNER
would push some complex reasoning onto the EXECUTOR
when it should focus solely on grounding abstract plans
into specific actions. More explicit examples of this can be
found in Appendix A.5.

5.3.1. REPLANNING RESULTS

To address the previous limitation we finetuned the PLAN-
NER with additional replanning data (as discussed in Sec-
tion 3.3). The results are shown in the 12th row of Ta-
ble 1. As we can see, the addition of this capability signifi-
cantly increases the performance of the model by 10.31%
over the static PLANNER, achieving 53.94% accuracy on
WebArena-Lite. Notably, this result surpasses the previ-
ous SOTA WebRL-3.1-70B on the second row by 4.84%.
You can see some explicit examples where the PLANNER
with dynamic planning is able to refine and improve the
plan in Section A.5, and a comprehensive breakdown of the
performance by website can be found in Figure 4.

Importantly, even with a Base EXECUTOR (which has not
been finetuned at all), we were able to significantly improve
the performance of the model by 34.39%, achieving 44.24%
accuracy, just by providing a high-quality and dynamic plan.
This result highlights the importance of explicit planning
and justifies our framework with separate PLANNER and
EXECUTOR, demonstrating that a well-formed plan can
substantially enhance performance even with an untrained
EXECUTOR. WebArena and WebVoyager results can be
found in Section A.2 and Section A.3.

6. Conclusion

It has been shown that separating high-level reasoning
(PLANNER) from low-level execution (EXECUTOR), im-
proves alignment between user queries and executable ac-

tions, enhancing task consistency and adaptability to dy-
namic environments. However, a major challenge is that
out-of-the-box LLMs are not efficient at generating accurate
plans for environments outside their pretraining distribu-
tion. In this work, we introduced PLAN-AND-ACT, a novel
framework that enhances LLM agents’ ability to tackle com-
plex, long-horizon tasks through scalable synthetic data
generation.

A key advantage of our method is its efficiency in data gen-
eration. Our pipeline generated 15,000 synthetic training
examples in under an hour using GPT-40, whereas environ-
ment interaction would take days or weeks. This scalability
allowed us to match state-of-the-art performance with sim-
ple supervised fine-tuning.

Our results demonstrate that PLAN-AND-ACT significantly
outperforms existing methods in web-based navigation tasks.
Through synthetic data generation, plan expansion, and tar-
geted refinement, our framework consistently improves suc-
cess rates. Dynamic replanning further enhances model
robustness by adapting strategies based on real-time obser-
vations.

By focusing on improving the planning component while
keeping a standard EXECUTOR, we demonstrate our ap-
proach’s potential. This modularity suggests future work
could enhance performance by improving the EXECUTOR
while maintaining our efficient planning framework. Be-
yond web navigation, our framework holds promise for
broader applications in various digital environments requir-
ing long-horizon decision making.

Limitations

One main drawback is that Action Trajectory Generation
Section 4.1 does depend on having a baseline model that
can successfully complete the web tasks. The synthetic
data generation pipeline introduced in Section 4.3 is able to
mitigate some of these concerns with a sufficient amount
of training data. However, for datasets that do not have any
training data, such as WebVoyager, the pipeline will depend
on having a base model to collect trajectories.

Furthermore, our current framework does dynamic replan-
ning (3.3) after every action, which can be inefficient and
slow down performance. Future work can address these
concerns by having the EXECUTOR decide when it needs to
replan, or by having the PLANNER delegate tasks to separate
subagents.

Acknowledgments

We thank Chris Joseph John and Anshul Verma for their
help with the running of some of the benchmarks. We ac-
knowledge gracious support from Apple team, as well as
Nvidia for providing GPU hardware. We also appreciate the

PLAN-AND-ACT: Improving Planning of Agents for Long-Horizon Tasks

support from Microsoft through their Accelerating Founda-
tion Model Research. Furthermore, we appreciate support
from Google Cloud, the Google TRC team, and specifically
Jonathan Caton, Divvy Thakkar, and Prof. David Patterson.
Prof. Keutzer’s lab is sponsored by the Intel corporation,
Intel One-API, Intel VLAB team, the Intel One-API center
of excellence, as well as funding through BDD, BAIR, and
Furiosa. We appreciate great feedback and support from
Ellick Chan, Saurabh Tangri, Andres Rodriguez, and Kit-
tur Ganesh. Sehoon Kim and Suhong Moon would like to
acknowledge the support from the Korea Foundation for Ad-
vanced Studies (KFAS). Hiroki Furuta is supported by JSPS
KAKENHI Grant Number JP22J21582. Our conclusions
do not necessarily reflect the position or the policy of our
sponsors, and no official endorsement should be inferred.

Impact Statement

This work aims to improve the capabilities of large language
model-based agents in performing complex, multi-step tasks
by enhancing their planning abilities. Our framework could
positively impact productivity and accessibility by enabling
more effective Al assistants for web-based tasks. However,
improved autonomous web agents could also raise privacy
concerns and potentially automate certain jobs, particularly
those involving routine online workflows. We believe these
advances should be developed alongside appropriate safe-
guards and with consideration for economic transitions. Our
synthetic data generation methods may also help reduce
the data collection and annotation burden for training spe-
cialized agents, supporting more efficient Al development
practices. Future research should explore the fairness and
robustness of these planning systems across different user
contexts and application domains.

References

Abuelsaad, T., Akkil, D., Dey, P., Jagmohan, A., Vempaty,
A., and Kokku, R. Agent-e: From autonomous web
navigation to foundational design principles in agentic
systems. arXiv preprint arXiv:2407.13032, 2024.

Bai, H., Zhou, Y., Cemri, M., Pan, J., Suhr, A., Levine,
S., and Kumar, A. Digirl: Training in-the-wild device-
control agents with autonomous reinforcement learning.
arXiv preprint arXiv:2406.11896, 2024.

Deng, X., Gu, Y., Zheng, B., Chen, S., Stevens, S., Wang,
B., Sun, H., and Su, Y. Mind2web: Towards a general-
ist agent for the web. Advances in Neural Information
Processing Systems, 36, 2024.

Erdogan, L. E., Lee, N., Jha, S., Kim, S., Tabrizi, R., Moon,
S., Hooper, C., Anumanchipalli, G., Keutzer, K., and

10

Gholami, A. Tinyagent: Function calling at the edge.
arXiv preprint arXiv:2409.00608, 2024.

Furuta, H., Lee, K.-H., Nachum, O., Matsuo, Y., Faust, A.,
Gu, S. S., and Gur, I. Multimodal web navigation with
instruction-finetuned foundation models. arXiv preprint
arXiv:2305.11854, 2023.

Furuta, H., Lee, K.-H., Gu, S. S., Matsuo, Y., Faust, A.,
Zen, H., and Gur, I. Geometric-averaged preference
optimization for soft preference labels. arXiv preprint
arXiv:2409.06691, 2024.

Gunasekar, S., Zhang, Y., Aneja, J., Mendes, C. C. T,
Del Giorno, A., Gopi, S., Javaheripi, M., Kauffmann,
P, de Rosa, G., Saarikivi, O., et al. Textbooks are all you
need. arXiv preprint arXiv:2306.11644, 2023.

Guo, D., Yang, D., Zhang, H., Song, J., Zhang, R., Xu, R.,
Zhu, Q., Ma, S., Wang, P, Bi, X, et al. Deepseek-r1: In-
centivizing reasoning capability in llms via reinforcement
learning. arXiv preprint arXiv:2501.12948, 2025.

Gur, 1., Nachum, O., Miao, Y., Safdari, M., Huang, A.,
Chowdhery, A., Narang, S., Fiedel, N., and Faust, A.
Understanding html with large language models. arXiv
preprint arXiv:2210.03945, 2022.

Gur, L., Furuta, H., Huang, A., Safdari, M., Matsuo, Y., Eck,
D., and Faust, A. A real-world webagent with planning,
long context understanding, and program synthesis. arXiv
preprint arXiv:2307.12856, 2023.

He, H., Yao, W., Ma, K., Yu, W., Dai, Y., Zhang, H., Lan,
Z., and Yu, D. Webvoyager: Building an end-to-end
web agent with large multimodal models. arXiv preprint
arXiv:2401.13919, 2024a.

He, H., Yao, W., Ma, K., Yu, W., Zhang, H., Fang, T., Lan,
Z., and Yu, D. Openwebvoyager: Building multimodal
web agents via iterative real-world exploration, feed-
back and optimization. arXiv preprint arXiv:2410.19609,
2024b.

Hu, E. J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang,
S., Wang, L., and Chen, W. Lora: Low-rank adaptation of
large language models. arXiv preprint arXiv:2106.09685,
2021.

Kannan, S. S., Venkatesh, V. L., and Min, B.-C. Smart-
Ilm: Smart multi-agent robot task planning using large
language models. In 2024 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS), pp.
12140-12147. IEEE, 2024.

Kim, G., Baldi, P, and McAleer, S. Language models can
solve computer tasks. arXiv preprint arxiv:2303.17491,
2023a.

PLAN-AND-ACT: Improving Planning of Agents for Long-Horizon Tasks

Kim, S., Moon, S., Tabrizi, R., Lee, N., Mahoney, M. W.,
Keutzer, K., and Gholami, A. An llm compiler for par-
allel function calling. arXiv preprint arXiv:2312.04511,
2023b.

Koh, J. Y,, Lo, R., Jang, L., Duvvur, V., Lim, M. C., Huang,
P-Y., Neubig, G., Zhou, S., Salakhutdinov, R., and Fried,
D. Visualwebarena: Evaluating multimodal agents on re-
alistic visual web tasks. arXiv preprint arXiv:2401.13649,
2024.

Kojima, T., Gu, S. S., Reid, M., Matsuo, Y., and Iwasawa,
Y. Large language models are zero-shot reasoners. Ad-

vances in neural information processing systems, 35:
22199-22213, 2022.

Lai, H., Liu, X., Iong, I. L., Yao, S., Chen, Y., Shen, P, Yu,
H., Zhang, H., Zhang, X., Dong, Y., et al. Autowebglm:
A large language model-based web navigating agent. In
Proceedings of the 30th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, pp. 5295-5306,
2024.

Lee, N., Wattanawong, T., Kim, S., Mangalam, K., Shen, S.,
Anumanchipalli, G., Mahoney, M. W., Keutzer, K., and
Gholami, A. LIm2llm: Boosting llms with novel iterative
data enhancement. arXiv preprint arXiv:2403.15042,
2024.

Liu, X., Zhang, T., Gu, Y., Iong, L. L., Xu, Y., Song, X.,
Zhang, S., Lai, H., Liu, X., Zhao, H., et al. Visualagent-
bench: Towards large multimodal models as visual foun-
dation agents. arXiv preprint arXiv:2408.06327, 2024.

Lutz, M., Bohra, A., Saroyan, M., Harutyunyan, A., and
Campagna, G. Wilbur: Adaptive in-context learning
for robust and accurate web agents. arXiv preprint
arXiv:2404.05902, 2024.

Moon, S., Jha, S., Erdogan, L. E., Kim, S., Lim, W., Keutzer,
K., and Gholami, A. Efficient and scalable estimation
of tool representations in vector space. arXiv preprint
arXiv:2409.02141, 2024.

Murty, S., Bahdanau, D., and Manning, C. D. Nnetscape
navigator: Complex demonstrations for web agents with-
out a demonstrator. arXiv preprint arXiv:2410.02907,
2024.

Nayak, S., Morrison Orozco, A., Have, M., Zhang, J., Thiru-
malai, V., Chen, D., Kapoor, A., Robinson, E., Gopalakr-
ishnan, K., Harrison, J., et al. Long-horizon planning for
multi-agent robots in partially observable environments.

Advances in Neural Information Processing Systems, 37:
67929-67967, 2024.

11

Ou, T., Xu, F. F,, Madaan, A., Liu, J., Lo, R., Sridhar, A.,
Sengupta, S., Roth, D., Neubig, G., and Zhou, S. Synatra:
Turning indirect knowledge into direct demonstrations for
digital agents at scale. arXiv preprint arXiv:2409.15637,
2024.

Patel, A., Hofmarcher, M., Leoveanu-Condrei, C., Dinu,
M.-C., Callison-Burch, C., and Hochreiter, S. Large
language models can self-improve at web agent tasks.
arXiv preprint arXiv:2405.20309, 2024.

Pawlowski, P., Zawistowski, K., Lapacz, W., Skorupa, M.,
Wiacek, A., Postansque, S., and Hoscilowicz, J. Tinyclick:
Single-turn agent for empowering gui automation. arXiv
preprint arXiv:2410.11871, 2024.

Prasad, A., Koller, A., Hartmann, M., Clark, P., Sabharwal,
A., Bansal, M., and Khot, T. Adapt: As-needed decompo-
sition and planning with language models. arXiv preprint
arXiv:2311.05772, 2023.

Qi, Z., Liu, X,, ITong, I. L., Lai, H., Sun, X., Yang, X., Sun,
J., Yang, Y., Yao, S., Zhang, T., et al. Webrl: Training
Ilm web agents via self-evolving online curriculum re-
inforcement learning. arXiv preprint arXiv:2411.02337,
2024.

Rafailov, R., Sharma, A., Mitchell, E., Manning, C. D., Er-
mon, S., and Finn, C. Direct preference optimization:
Your language model is secretly a reward model. Ad-

vances in Neural Information Processing Systems, 36,
2024.

Rawles, C., Li, A., Rodriguez, D., Riva, O., and Lillicrap, T.
Androidinthewild: A large-scale dataset for android de-

vice control. Advances in Neural Information Processing
Systems, 36, 2024.

Shi, T., Karpathy, A., Fan, L., Hernandez, J., and Liang,
P. World of bits: An open-domain platform for web-
based agents. In International Conference on Machine
Learning, pp. 3135-3144. PMLR, 2017.

Song, C. H., Wu, J., Washington, C., Sadler, B. M., Chao,
W.-L., and Su, Y. Llm-planner: Few-shot grounded plan-
ning for embodied agents with large language models. In
Proceedings of the IEEE/CVF international conference
on computer vision, pp. 2998-3009, 2023.

Song, Y., Xu, F. F,, Zhou, S., and Neubig, G. Beyond
browsing: Api-based web agents. 2024.

Sridhar, A., Lo, R., Xu, F. F., Zhu, H., and Zhou, S. Hier-
archical prompting assists large language model on web
navigation. arXiv preprint arXiv:2305.14257, 2023.

Sun, H., Zhuang, Y., Kong, L., Dai, B., and Zhang, C. Ada-
planner: Adaptive planning from feedback with language

PLAN-AND-ACT: Improving Planning of Agents for Long-Horizon Tasks

models. Advances in neural information processing sys-
tems, 36:58202-58245, 2023.

Sutton, R. S. Reinforcement learning: An introduction. A
Bradford Book, 2018.

Taori, R., Gulrajani, 1., Zhang, T., Dubois, Y., Li, X,,
Guestrin, C., Liang, P., and Hashimoto, T. B. Stanford
alpaca: An instruction-following llama model, 2023.

Wang, K., Zhu, J., Ren, M., Liu, Z., Li, S., Zhang, Z., Zhang,
C., Wu, X., Zhan, Q., Liu, Q., et al. A survey on data
synthesis and augmentation for large language models.
arXiv preprint arXiv:2410.12896, 2024a.

Wang, L., Xu, W., Lan, Y., Hu, Z., Lan, Y., Lee, R. K.-W,,
and Lim, E.-P. Plan-and-solve prompting: Improving
zero-shot chain-of-thought reasoning by large language
models. arXiv preprint arXiv:2305.04091, 2023.

Wang, Y., Kordi, Y., Mishra, S., Liu, A., Smith, N. A.,
Khashabi, D., and Hajishirzi, H. Self-instruct: Aligning
language models with self-generated instructions. arXiv
preprint arXiv:2212.10560, 2022.

Wang, Z. Z., Mao, J., Fried, D., and Neubig, G. Agent
workflow memory. arXiv preprint arXiv:2409.07429,
2024b.

Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi,
E. Le, Q. V., Zhou, D., et al. Chain-of-thought prompting
elicits reasoning in large language models. Advances in

neural information processing systems, 35:24824-24837,
2022.

Xie, T., Zhang, D., Chen, J., Li, X., Zhao, S., Cao, R.,
Hua, T. J., Cheng, Z., Shin, D., Lei, F, et al. Os-
world: Benchmarking multimodal agents for open-ended
tasks in real computer environments. arXiv preprint
arXiv:2404.07972, 2024.

Xu, C., Sun, Q., Zheng, K., Geng, X., Zhao, P., Feng, J., Tao,
C., and Jiang, D. Wizardlm: Empowering large language
models to follow complex instructions. arXiv preprint
arXiv:2304.12244, 2023.

Yang, K., Liu, Y., Chaudhary, S., Fakoor, R., Chaudhari,
P, Karypis, G., and Rangwala, H. Agentoccam: A sim-
ple yet strong baseline for llm-based web agents. arXiv
preprint arXiv:2410.13825, 2024a.

Yang, Z., Li, P., Yan, M., Zhang, J., Huang, F., and Liu,
Y. React meets actre: Autonomous annotations of agent
trajectories for contrastive self-training. arXiv preprint
arXiv:2403.14589, 2024b.

Yao, S., Chen, H., Yang, J.,, and Narasimhan, K.
Webshop: Towards scalable real-world web interac-

tion with grounded language agents. arXiv preprint
arxiv:2207.01206, 2022a.

12

Yao, S., Zhao, J., Yu, D., Du, N., Shafran, 1., Narasimhan,
K., and Cao, Y. React: Synergizing reasoning and acting
in language models. arXiv preprint arXiv:2210.03629,
2022b.

Zhang, C., Yang, Z., Liu, J., Han, Y., Chen, X., Huang,
Z., Fu, B., and Yu, G. Appagent: Multimodal agents
as smartphone users. arXiv preprint arXiv:2312.13771,
2023.

Zhang, C., He, S., Qian, J., Li, B., Li, L., Qin, S., Kang,
Y., Ma, M., Lin, Q., Rajmohan, S., et al. Large lan-
guage model-brained gui agents: A survey. arXiv preprint
arXiv:2411.18279, 2024a.

Zhang, Y., Ma, Z., Ma, Y., Han, Z., Wu, Y., and Tresp,
V. Webpilot: A versatile and autonomous multi-agent
system for web task execution with strategic exploration.
arXiv preprint arXiv:2408.15978, 2024b.

Zhou, S., Xu, F. E., Zhu, H., Zhou, X., Lo, R., Sridhar, A.,
Cheng, X., Ou, T., Bisk, Y., Fried, D., et al. Webarena:
A realistic web environment for building autonomous
agents. arXiv preprint arXiv:2307.13854, 2023.

PLAN-AND-ACT: Improving Planning of Agents for Long-Horizon Tasks

A. Appendix
A.1. Chain of Thought Results

Base Model CoT Performance (%)
Llama-3.3-70B X 53.94
Llama-3.1-8B v 53.33
QWQ-32B v 54.88
Llama-3.3-70B v 57.58

Table 2. Comparison of PLAN-AND-ACT models with/without Chain-of-Thought. The first row shows the performance using a 70B
model without the CoT data while the other rows show the performance using the CoT data.

In the 13th row of Table 1, it shows the result of adding CoT reasoning to the PLANNER and EXECUTOR. As we can see, it
improves performance by 4.36% and sets a new SOTA of 57.58% on WebArena-lite.

In order to quantify the improvement from using CoT reasoning, we also finetuned a Llama-3.1-8B-instruct model and a
QWQ-32B on the exact same data as the model in the 13th row in Table 2. As we can see, the 8B model on the second row
performs on par with the non-CoT 70B model on the third row, which shows just how important CoT is.

A.2. WebArena Results

Method Base Model Acc. (%)
NNetNav (Murty et al., 2024) Llama-3.1-8b 16.3
AutoWebGLM (Lai et al., 2024) ChatGLM3-6B 18.2
WebPilot (Zhang et al., 2024b) GPT-40 37.2
AgentOccam (Yang et al., 2024a) GPT-4-Turbo 43.1
AgentOccam-Judge (Yang et al., 2024a) GPT-4-Turbo 45.7
PLAN-AND-ACT Llama-70B 45.7
PLAN-AND-ACT QWQ-32B 48.15

Table 3. Comparison of methods on the WebArena benchmark. As you can see, PLAN-AND-ACT performs on-par with other prior work.

We also evaluated our approach on the full WebArena dataset in Table 3. As we can see, PLAN-AND-ACT performs better or
on-par with most other prior work.

A.3. WebVoyager Results

Technique Base Model Acc. (%)
NNetNav (Murty et al., 2024) Llama-3.1-8b 34.2
OpenWebVoyager (He et al., 2024b) Idefics2-8b-inst. 274
WebVoyager (He et al., 2024a) (text) GPT-4-Turbo 44.3
Wilbur (Lutz et al., 2024) GPT-4-Turbo 52.6
WebVoyager (He et al., 2024a) GPT-4-Turbo 57.1
PLAN-AND-ACT Llama-3.1-8b 58.08
Agent-E (Abuelsaad et al., 2024) GPT-4-Turbo 73.1
PLAN-AND-ACT QWQ-32B 81.36

Table 4. Comparison of techniques on the WebVoyager benchmark. PLAN-AND-ACT outperforms all open-source prior work and sets a
new text-only SOTA on WebVoyager.

Furthermore, we evalauted PLAN-AND-ACT on the WebVoyager benchmark by finetuning a llama-3.1-8B model as well
as a QWQ-32B model, which you can see in Table 4. Our goal was to evaluate our approach on real-world webtasks, as
opposed to the simulator based tasks in WebArena.

13

PLAN-AND-ACT: Improving Planning of Agents for Long-Horizon Tasks

Since WebVoyager does not have any training data, we used the text-only WebVoyager model with GPT-40 to collect 1500
synthetic trajectories (Section 4.1) and used QWQ-32B to annotate the plans (Section 4.2), CoT reasoning (Section 3.4) and
to generate 10k synthetic plans (Section 4.3).

Our 8B model out performs all previous open source models and our 32B model out performs all prior work and sets a new
SOTA for text-only WebVoyager.

A 4. Planner and Executor Qutput Examples
 Task: "From my stay at Homewood Suites Southpointe, what’s the estimated driving time to reach PPG Paints Arena?”

— Planner Output

Step 1

Reasoning: From the initial HTML state, I observe that I am on the
OpenStreetMap website. The page includes a search input field and a
direction sign icon that likely allows users to find directions
between two points. The first step is to initiate the process of
finding directions.

Step: Initiate the process of finding directions.

Step 2

Reasoning: After initiating the direction-finding process, the next
step is to input the starting location, which is ’Homewood Suites
Southpointe’. This will set the starting point for the directions.

Step: Input ’Homewood Suites Southpointe’ as the starting location.

Step 3

Reasoning: With the starting location set, the next step is to input
the destination, which is ’'PPG Paints Arena’. This will set the
endpoint for the directions.

Step: Input ’'PPG Paints Arena’ as the destination.

Step 4

Reasoning: After setting both the starting location and the
destination, the next step is to initiate the search for
directions. This will generate the directions between the two
points.

Step: Initiate the search for directions.

Step 5

Reasoning: Once the directions are generated, the final step is to
analyze the results to determine the estimated driving time from
Homewood Suites Southpointe to PPG Paints Arena. The exact time
will be displayed on the results page.

Step: Analyze the results to determine the estimated driving time from
Homewood Suites Southpointe to PPG Paints Arena.

— Executor Output
Output 1:

Element: the direction sign on the right side of the Go icon
do (action="Click", element="15")}

x Output 2:

Element: The field at the beginning, located in the upper left
corner
do (action="Type", argument="Homewood Suites Southpointe",

14

PLAN-AND-ACT: Improving Planning of Agents for Long-Horizon Tasks

element="13")}

x Output 3:

Element: The field labeled ’'To’ at the top left
do (action="Type", argument="PPG Paints Arena", element="14")}

* Output 4:

Element: The Go button
do (action="Click", element="16")}

x Output 5:

Note: Distance: 29%m. Time: 0:34.
exit (message="The estimated driving time from Homewood Suites
Southpointe to PPG Paints Arena is 0:34.")

* Task: ”Create a shipping report from 08/05/2022 to 03/01/2023”

— Planner Output

Step 1

Reasoning: From the initial HTML state, I observe that I am on the
Magento Admin Panel homepage. The page has a left sidebar
navigation menu with several sections including ’Dashboard’,
’Sales’, ’'Catalog’, ’'Customers’, ’'Marketing’, ’'Content’, ’'Reports’,
’"Stores’, and ’'System’. Each section appears to be clickable, and
some have nested subsections visible through expandable lists. The
main content area shows a dashboard with various widgets including
revenue statistics, tax information, shipping details, and quantity
metrics. To create a shipping report, we need to navigate to the
"Reports’ section in the left sidebar and then access the
"Shipping’ report option.

Step: Navigate to the ’"Reports’ section and access the ’Shipping’
report option.

Step 2

Reasoning: To generate the shipping report for the specified date
range, we need to input the ’'From’ and ’'To’ dates. The ’'From’ date
should be set to 08/05/2022 and the 'To’ date should be set to
03/01/2023. This will ensure that the report covers the desired
period.

Step: Input the date range for the shipping report from 08/05/2022 to
03/01/2023.

Step 3

Reasoning: After setting the date range, we need to generate the report
by clicking the ’Show Report’ button. This will display the
shipping report for the specified period.

Step: Generate the shipping report by clicking the ’Show Report’ button.

Step 4

Reasoning: Once the report is generated, we need to ensure that all
relevant information is visible. This step ensures that the
complete report details are accessible.

Step: Ensure that the complete shipping report details are visible.

15

PLAN-AND-ACT: Improving Planning of Agents for Long-Horizon Tasks

Step 5

Reasoning: Finally, we need to exit the task by providing a message
that the shipping report for the specified date range has been
created. This step concludes the task and informs the user of the
successful completion.

Step: Exit with a message indicating that the shipping report for the
specified date range has been created.

— Executor Output
% Output 1:

Element: the ’'Reports’ tab in the left sidebar menu
do (action="Click", element="7")}

* Output 2:

Element: the ’Shipping’ link under the ’Sales’ section
do (action="Click", element="18")}

x Output 3:
Element: the ’'From’ input field in the ’'Filter’ section
do (action="Type", argument="08/05/2022", element="24")}
Output 4:
Element: the ’'To’ date input field in the ’'Filter’ section
do (action="Type", argument="03/01/2023", element="27")}
* QOutput 5:
Element: the ’Show Report’ button located at the top right area of
the ’Shipping Report’ section
do (action="Click", element="16")}
% Output 6:
do (action="Scroll Down")
x Output 7:

exit (message="The shipping report from 08/05/2022 to 03/01/2023 has
been created.")

A.5. Replanner Examples
A.5.1. QUERY REFINEMENT

This section presents an example of how a replanner refines an initial plan when an execution failure occurs.

16

PLAN-AND-ACT: Improving Planning of Agents for Long-Horizon Tasks

Task: "How long does it take to walk from Carnegie Museum of Art to a library at CMU?”

¢ Initial Plan

Step 1

Reasoning: From the initial HTML state, I observe that I am on the
OpenStreetMap website. The page includes a search input field. The
first step is to search for libraries at CMU to identify which one
we’ll get directions to.

Step: Search for libraries at CMU.

Step 2

Reasoning: After finding the libraries at CMU, we need to analyze the
search results to identify the available libraries and select one for
getting directions.

Step: Review the search results and select a library at CMU.

Step 3

Reasoning: Now that we have identified a specific library, we can initiate
the process of finding directions between the two points.

Step: Initiate the process of finding directions.

Step 4

Reasoning: After initiating the direction-finding process, we need to input
the starting location, which is ’‘Carnegie Museum of Art’.

Step: Input ’Carnegie Museum of Art’ as the starting location.

Step 5

Reasoning: With the starting location set, we need to input the selected
library as the destination.

Step: Input the selected CMU library as the destination.

Step 6

Reasoning: To ensure that the directions provided are for walking, we need
to select the appropriate option for walking directions.

Step: Select the option for walking directions.

Step 7

Reasoning: After all parameters are set, we can analyze the results to
determine the walking time between the two locations.

Step: Analyze the results to determine the walking time from Carnegie
Museum of Art to the selected CMU library.

» Executor’s Actions: The executor attempts to search for libraries at CMU by performing the following actions:

Element: the search bar
do (action="Search", argument="Library at CMU", element="13")

Element: the search button
do (action="Click", element="13")

However, upon executing this step, the system receives the following **HTML response**, which indicates that no
search results were found:

<html>
<li id="17" data-text="No results found"> No results found </1i>
</html>

17

PLAN-AND-ACT: Improving Planning of Agents for Long-Horizon Tasks

This failure necessitates a refinement of the plan.

* Replanning - Refining the Search Query: Since the initial search query ("Library at CMU”) returned no results, the
replanner modified the query to a more general term: ’Library near CMU” to improve the likelihood of retrieving
relevant results.

— Refined Plan
Step 1
Reasoning: From the current HTML state, I observe that the page shows
search results with "No results found’ (element with id=’17’). The

page contains a search bar (id="12’) and a Go button (id="13") for
initiating new searches. There’s also a direction sign icon
(id="14") that likely allows for finding directions between two
points. The main content area provides information about
OpenStreetMap and its contributors. Looking at the previous
actions, I can see that the user attempted to search for ’'Library
at CMU’ and clicked the Go button, but this broad search query
including ’Library at CMU’ returned no results. This indicates that
we need to modify our approach by simplifying the search terms.
Given these observations and the failed previous search attempt, we
need to refine our search query by removing the ’Library at CMU’
specification and focusing more specifically on libraries near CMU
to get more relevant results.

Step: Refine the search query by focusing on libraries near CMU.

Step 2

Reasoning: After refining the search query, we need to analyze the
search results to identify potential libraries that are near CMU.
This will help in determining the closest library based on the
search results.

Step: Analyze the search results to identify potential libraries near
CMU.

Step 3

Reasoning: With the list of potential libraries identified, the next
step is to get directions to each library from Carnegie Museum of
Art. This will help in determining the distance and time required
to reach each library, allowing us to identify the closest one.

Step: Get walking directions to each identified library from Carnegie
Museum of Art.

#4# Step 4

Reasoning: After obtaining the distances and times for each library,
the final step is to identify the closest library based on the
recorded distances and provide the result to the user.

Step: Identify the closest library based on the recorded distances and
provide the result to the user.

— Executor’s Next Action According to the Refined Plan: To reflect the updated strategy, the executor modifies its
search action:

do (action="Search", argument="Library near CMU", element="12")

18

PLAN-AND-ACT: Improving Planning of Agents for Long-Horizon Tasks

A.5.2. ANALYZING SEARCH RESULTS AND MEMORY (AGGREGATING RESULTS ACROSS MULTIPLE PAGES)

This section presents an example of how a replanner refines an initial plan when a broad high-level step, such as “analyze
the search results,” needs to be refined into concrete actions.

Task: “Present the monthly count of successful orders from Jan to December 2022 in MM:COUNT format”

¢ Initial Plan

Step 1

Reasoning: From the initial HTML state, I observe that I am on the Magento
Admin Panel homepage. The page has a left sidebar navigation menu with
several sections including ’'Dashboard’, ’Sales’, ’'Catalog’,
"Customers’, ’"Marketing’, ’Content’, ’Reports’, ’Stores’, and ’System’.
Each section appears to be clickable and some have nested subsections
visible through expandable lists. The main content area shows a
dashboard with various widgets including revenue statistics, tax
information, shipping details, and quantity metrics. To access the
order reports, we need to navigate through the ’'Reports’ section in the
left sidebar, where we can then find and select the ’Orders’ report
option under the ’Sales’ section.

Step: Navigate to the ’Orders’ report section under the ’'Reports’ section.

Step 2

Reasoning: To generate the report for the specified period, we need to set
the date range from January 1, 2022, to December 31, 2022. This
involves entering the start and end dates in the respective date picker
input fields.

Step: Set the date range from January 1, 2022, to December 31, 2022.

Step 3

Reasoning: To ensure the report is generated for the correct period, we
need to select the ’"Month’ option from the ’'Period’ dropdown. This will
aggregate the data on a monthly basis.

Step: Select the ’"Month’ option from the ’'Period’ dropdown.

Step 4

Reasoning: After setting the date range and period, we need to generate the
report by clicking the ’Show Report’ button. This will display the
order report for the specified period.

Step: Generate the report by clicking the ’Show Report’ button.

Step 5

Reasoning: Once the report is generated, we need to analyze the results to
identify the monthly count of successful orders from January to
December 2022. This involves viewing the report and noting the counts
for each month.

Step: Analyze the report results to identify the monthly count of
successful orders from January to December 2022.

Step 6

Reasoning: After identifying the monthly counts, we need to provide the
results in the "MM:COUNT’ format. This involves exiting with a message
containing the monthly counts for each month from January to December
2022.

Step: Exit with a message containing the monthly counts of successful
orders from January to December 2022 in the ’'MM:COUNT’ format.

* Executor’s Actions: The executor follows the plan up until the broad “analyze the report results” step:

Element: the 'REPORTS’ sectiondo (action="Click", element="7")

19

PLAN-AND-ACT: Improving Planning of Agents for Long-Horizon Tasks

Element: the ’Orders’ report optiondo(action="Click", element="15")

Element the ’'From’ datedo(action="Type", argument="01/01/2022",
element="24")

Element the ’'To’ datedo (action="Type", argument="12/31/2022",
element="27")

Element: ’'Month’ in the dropdown
do (action="Select Dropdown Option", argument="Month", element="22")

Element: ’Show Report’
do (action="Click", element="16")

The executor reaches the analysis step, but the broad instruction to ’analyze the report” needs refinement.

* Replanning - Refining the Analysis Task: The replanner observes that the executor requires step-by-step guidance to
extract the relevant order counts. It refines the broad analysis step into structured data extraction.

* First Replan

— First step of the replan:

Step 1

Reasoning: The report results are now visible, and I need to analyze
the order counts for each month. The report is structured as a
list, where each row contains a month and the corresponding order
count. The first step is to start extracting data from the
initially visible rows. The extracted counts so far are:

01:11, 02:16, 03:14, 04:8

Step: Extract the order counts from the initially visible rows.

— Next executor action:

do (action="Scroll Down")

» Second Replan

— First step of the replan:

Step 1

Reasoning: After capturing the first set of order counts, I need to
scroll down to reveal more entries. As new rows become visible, I
will extract and record their data. The additional extracted counts
are:

05:8, 06:13, 07:9, 08:8, 09:10, 10:4

Step: Scroll down and extract the next set of order counts.

— Next executor action:

do (action="Scroll Down")

* Third Replan

— First step of the replan:

20

PLAN-AND-ACT: Improving Planning of Agents for Long-Horizon Tasks

Step 1

Reasoning: The final set of order counts needs to be retrieved. I will
scroll down again, ensuring I capture all remaining visible data.
The final extracted counts are:

11:11, 12:10

Step: Perform a final scroll to capture any remaining order counts.

— Next executor action:

exit (message="The monthly count of successful orders from Jan to
December 2022 is: 01:11, 02:16, 03:14, 04:8, 05:8, 06:13, 07:9,
08:8, 09:10, 10:4, 11:5, 12:10")

A.6. Planner Prompt

Planner has a system prompt where its high-level goals are listed; in the user message, it sees the current user query and the
initial HTML state.

A.6.1. PLANNER SYSTEM PROMPT

Goal

You are the Global Planner agent, an expert plan generator for web navigation
tasks. You will be proivded with the following information:

— **User Queryxx: The web task that you are required to generate a global plan
for.

— *x*xInitial HTML Statex**: The initial HTML state of the web page.

You are responsible for analyzing the usery query and the initial HTML state
to generate a structured, step-by-step global plan that outlines the
high-level steps to complete the user query. The global plan that you
generate shouldn’t directly describe low-level web actions such as clicks
or types (unless necessary for clarity) but outline the high-level steps
that encapsulate one or more actions in the action trajectory, meaning each
step in your plan will potentially require multiple actions to be
completed. Your global plan will then be handed to an Executor agent which
will perform low-level web actions on the webpage (click, type, hover, and
more) to convert your global plan into a sequence of actions and complete
the user query.

Expected Output Format

The global plan you generate should be structured in a numbered list format,
starting with ’'## Step 1’ and incrementing the step number for each
subsequent step. Each step in the plan should be in this exact format:

Step N

Reasoning: [Your reasoning here]

Step: [Your step here]

AU

Here is a breakdown of the components you need to include in each step of your
global plan as well as their specific instructions:

- **Reasoning*+*: In this section, you should explain your reasoning and
thought process behind the step you are proposing. It should provide a
high-level justification for why the actions in this step are grouped
together and how they contribute to achieving the overall goal. Your
reasoning should be based on the information available in the user query
(and potentially on the initial HTML state) and should guide the Executor
agent in understanding the strategic decision-making process behind your
global plan.

21

PLAN-AND-ACT: Improving Planning of Agents for Long-Horizon Tasks

— xxStep**: In this section, you should provide a concise description of the
global step being undertaken. Your step should summarize one or more
actions as a logical unit. It should be as specific and concentrated as
possible. Your step should focus on the logical progression of the task
instead of the actual low-level interactions, such as clicks or types.

Guidelines:

- Ensure every action and reasoning aligns with the user query, the webpage at
hand, and the global plan, maintaining the strict order of actions.

— Minimize the number of steps by clustering related actions into high-level,
logical units. Each step should drive task completion and avoid unnecessary
granularity or redundancy. Focus on logical progression instead of
detailing low-level interactions, such as clicks or Ul-specific elements.

- Provide clear, specific instructions for each step, ensuring the executor
has all the information needed without relying on assumed knowledge. For
example, explicitly state, ’'Input ’'New York’ as the arrival city for the
flights,’ instead of vague phrases like ’Input the arrival city.’

- You can potentially output steps that include conditional statements in
natural language, such as ’'If the search results exceed 100, refine the
filters to narrow down the options.’ However, avoid overly complex or
ambiguous instructions that could lead to misinterpretation.

High-level Goals Guidelines:

- Focus on high-level goals rather than fine-grained web actions, while
maintaining specificity about what needs to be accomplished. Each step
should represent a meaningful unit of work that may encompass multiple
low-level actions (clicks, types, etc.) that serve a common purpose, but
should still be precise about the intended outcome. For example, instead of
having separate steps for clicking a search box, typing a query, and
clicking search, combine these into a single high-level but specific step
like "Search for X product in the search box".

- Group related actions together that achieve a common sub-goal. Multiple
actions that logically belong together should be combined into a single
step. For example, multiple filter-related actions can be grouped into a
single step like "Apply price range filters between $100-$200 and select
5-star rating". The key is to identify actions that work together to
accomplish a specific objective while being explicit about the criteria and
parameters involved.

- Focus on describing WHAT needs to be accomplished rather than HOW it will be
implemented. Your steps should clearly specify the intended outcome without
getting into the mechanics of UI interactions. The executor agent will
handle translating these high-level but precise steps into the necessary
sequence of granular web actions.

Initial HTML State Guidelines:

— Use the initial HTML of the webpage as a reference to provide context for
your plan. Since this is just the initial HTML, possibly only a few of the
initial actions are going to be taken on this state and the subsequent ones
are going to be taken on later states of the webpage; however, this initial
HTML should help you ground the plan you are going to generate (both the
reasoning behind individual steps and the overall plan) in the context of
the webpage at hand. This initial HTML should also help you ground the task
description and the trajectory of actions in the context of the webpage,
making it easier to understand the task.

— You MUST provide an observation of the initial HTML state in your reasoning
for the first step of your global plan, including the elements, their
properties, and their possible interactions. Your observation should be
detailed and provide a clear understanding of the current state of the HTML

page.
Formatting Guidelines:

- Start your response with the ’## Step 1’ header and follow the format
provided in the examples.

22

PLAN-AND-ACT: Improving Planning of Agents for Long-Horizon Tasks

- Ensure that each step is clearly separated and labeled with the ’## Step N’
header, where N is the step number.
— Include the 'Reasoning’ and ’Step’ sections in each step.

A.6.2. PLANNER USER MESSAGE

User Query
{user_query}

Initial HTML State
{initial_html_ state}

You MUST start with the ’## Step 1’ header and follow the format provided in
the examples.

A.7. Executor Prompt

Executor follows the WebArena-Lite defined executor prompt where each user-assistant message pair represents an HTML-
action round. The only addition we have is to the system prompt which describes what a plan is.

A.7.1. EXECUTOR SYSTEM PROMPT

Goal

You are the Executor Agent, a powerful assistant can complete complex web
navigation tasks by issuing web actions such as clicking, typing,
selecting, and more. You will be provided with the following information:

— **Task Instruction**: The web task that you are required to complete.

— xxGlobal Planxx: A high-level plan that guides you to complete the web tasks.

- *x*xPrevious action trajectory**: A sequence of previous actions that you have
taken in the past rounds.

— xxCurrent HTMLxx: The current HTML of the web page.

Your goal is to use the Global Plan, the previous action trajectory, and the
current observation to output the next immediate action to take in order to
progress toward completing the given task.

Task Instruction: {intent}

Global Plan

The Global Plan is a structured, step-by-step plan that provides you with a
roadmap to complete the web task. Each step in the Global Plan (denoted as
"## Step X’ where X is the step number) contains a reasoning and a
high-level action that you need to take. Since this Global Plan
encapsulates the entire task flow, you should identify where you are in the
plan by referring to the previous action trajectory and the current
observation, and then decide on the next action to take. Here is the Global
Plan for the your task:

{global_plan}

A.8. Plan Data Annotator Prompt

Similar to the planner prompt, there is a system prompt that defines the goals of the plan annotator; and the user message
provides the user query, the initial HTML state, and the action trajectory for which the plan annotator needs to generate a
plan.

23

PLAN-AND-ACT: Improving Planning of Agents for Long-Horizon Tasks

A.8.1.

PLAN DATA ANNOTATOR SYSTEM PROMPT

Goal

You are the Global Planner agent, an expert plan generator for web navigation
tasks. You will be proivded with the following information:

— xxUser Queryxx: The web task that you are required to generate a global plan
for.

— xxInitial HTML Statex**: The initial HTML state of the web page.

- x*xTrajectory**: A sequence of actions that represent a trajectory of a web
navigation task. It is formatted as series of actions where each action
first has a comment (’#’) that describes the element to be interacted with
or a note what provides some context about the action and the current task
state. The action 1is then described with the do function, which takes two
arguments: the action to be performed, the element to be interacted with,
and sometimes an argument. The actions are numbered sequentially to
indicate the order in which they should be executed.

You are responsible for analyzing initial HTML state and the trajectory
provided below and producing a structured, step-by-step global plan that
clusters multiple actions into the fewest number of logical steps possible.
The global plan that you generate shouldn’t describe fine-grained web
interactions such as clicks or types but outline the high-level steps that
encapsulate one or more actions in the trajectory, meaning each step in
your plan will potentially require multiple actions to be completed. You
will also be tasked to classify each action in the trajectory with one of
the steps in your global plan. Each of your steps will be handed to another
executor agent that will convert your step into fine-grained web
interactions; hence, your steps should include every specific information
needed for completing the task without assuming the executor agent has
access to the whole task or trajectory.

Expected Output Format

The global plan you generate should be structured in a numbered list format,
starting with ’'## Step 1’ and incrementing the step number for each
subsequent step. Each step in the plan should be in this exact format:

Step N

Reasoning: [Your reasoning here]

Description: [Description of the actions this step covers]

Step: [Your step here]

Actions: [list of action indexes associated with this step]

AU

Here is a breakdown of the components you need to include in each step of your
global plan as well as their specific instructions:

- **Reasoning**: In this section, you should explain your reasoning and
thought process behind the step you are proposing. It should provide a
high-level justification for why the actions in this step are grouped
thogether and how they contribute to achieving the overall goal. Your
reasoning should be based on the information available in the trajectory
(and potentially on the initial HTML state) and should guide the executor
agent in understanding the strategic decision-making process behind your
global plan.

— **xDescriptionxx: This section should include a brief description of the
actions that are grouped together in this step. You should exactly copy the
action descriptions from the trajectory without any modifications or
additional information. This is to ensure that the executor agent can
accurately map the actions to the global plan steps. Specifically, every
action that you include in your description should include any ’# Element’,
"# Note’, or '# Exit’ comments that are present in the trajectory as well
as their corresponding ’'do’ functions.

24

PLAN-AND-ACT: Improving Planning of Agents for Long-Horizon Tasks

— xxStep**: In this section, you should provide a concise description of the
global step being undertaken. Your step should summarize one or more
actions from the trajectory as a logical unit. It should be as specific and
concentrated as possible, without referring to any HTML or UI elements.
Your step should focus on the logical progression of the task instead of
the actual fine-grained interactions, such as clicks or types.

— *x*Actions**: This section should list the indexes of the actions associated
with this step. One or more actions should be grouped under one broader
logical step. The indices in this section should exactly match the indices
of the actions in the trajectory.

Examples

Here are some examples of the expected output format for the global plan where
the input is the task description and the trajectory of actions taken to
complete the task and the output is the structured global plan that
clusters multiple actions into the fewest number of logical steps possible
without sacrificing specificity:

{in_context_examples}

Planning Guidelines:

- Ensure every action and thought aligns with the trajectory and global plan,
maintaining the strict order of actions. Actions should be sequential, with
no skipping or misalignment (e.g., avoid assigning non-consecutive actions
like Step 1: [0,3,4], Step 2: [1,2]). Deviation from the trajectory’s order
will be PENALIZED!

- Minimize the number of steps by clustering related actions into high-level,
logical units. Each step should drive task completion and avoid unnecessary
granularity or redundancy. Focus on logical progression instead of
detailing fine-grained interactions, such as clicks or UI-specific elements.

- Provide clear, specific instructions for each step, ensuring the executor
has all the information needed without relying on assumed knowledge. For
example, explicitly state, ’Input ’'New York’ as the arrival city for the
flights,’ instead of vague phrases like ’Input the arrival city.’

- You can potentially output steps that include conditional statements in
natural language, such as ’'If the search results exceed 100, refine the
filters to narrow down the options.’ However, avoid overly complex or
ambiguous instructions that could lead to misinterpretation.

High-level Goals Guidelines:

— Focus on high-level goals rather than fine-grained web actions, while
maintaining specificity about what needs to be accomplished. Each step
should represent a meaningful unit of work that may encompass multiple
low—-level actions (clicks, types, etc.) that serve a common purpose, but
should still be precise about the intended outcome. For example, instead of
having separate steps for clicking a search box, typing a query, and
clicking search, combine these into a single high-level but specific step
like "Search for X product".

- Group related actions together that achieve a common sub-goal. Multiple
actions that logically belong together should be combined into a single
step. For example, multiple filter-related actions can be grouped into a
single step like "Apply price range filters between $100-$200 and select
5-star rating". The key is to identify actions that work together to
accomplish a specific objective while being explicit about the criteria and
parameters involved.

— Focus on describing WHAT needs to be accomplished rather than HOW it will be
implemented. Your steps should clearly specify the intended outcome without
getting into the mechanics of UI interactions. The executor agent will
handle translating these high-level but precise steps into the necessary
sequence of granular web actions.

- Provide clear, specific instructions for each step, ensuring the executor
has all the information needed without relying on assumed knowledge. For
example, explicitly state, ’Input ’'New York’ as the arrival city for the

25

PLAN-AND-ACT: Improving Planning of Agents for Long-Horizon Tasks

flights,’ instead of vague phrases like ’Input the arrival city.’

- The action trajectory might include several "scroll down" actions necessary
to locate or find an element, but you should not explicitly say "scroll
down to find X" in your step description. Instead, you can use phrases like
"locate X", "find Y", "look for Z", or similar phrases to represent the
scroll actions in your step description. The act of scrolling is not part
of the high-level goal but just implementation details, so you should not
explicitly mention it in your step description.

- Example:

BAD plan (mentions scrolling):
Step 1: Scroll down to find the ’Contact Us’ button and click it
Step 2: Scroll through the list to find the order numbered ID12345

AURNRY

GOOD plan (avoids mentioning scrolling):
Step 1: Locate the ’'Contact Us’ button and click it
Step 2: Find the order numbered ID12345

AN

Initial HTML State Guidelines:

— Use the initial HTML of the webpage as a reference to provide context for
your plan. Since this is just the initial HTML, possibly only a few of the
initial actions are going to be taken on this state and the subsequent ones
are going to be taken on later states of the webpage; however, this initial
HTML should help you ground the plan you are going to generate (both the
reasoning behind individual steps and the overall plan) in the context of
the webpage at hand. This initial HTML should also help you ground the task
description and the trajectory of actions in the context of the webpage,
making it easier to understand the task.

- You MUST provide an observation of the initial HTML state in your reasoning
for the first step of your global plan, including the elements, their
properties, and their possible interactions. Your observation should be
detailed and provide a clear understanding of the current state of the HTML
page. Please refer to the examples for more information on how to do this.

Formatting Guidelines:

- Start your response with the ’## Step 1’ header and follow the format
provided in the examples.

- Ensure that each step is clearly separated and labeled with the ’## Step N’
header, where N is the step number.

— Include the "Reasoning’, ’Actions that this step covers’, ’'Indices of
actions’, and ’'Step’ sections in each step.

A.8.2.

PLAN DATA ANNOTATOR USER MESSAGE

User Query
{goal_description}

Initial HTML State
{initial_html_state}

Trajectory

The following is a sequence of actions that represent a trajectory of a web
navigation task. It is formatted as series of actions where each action
first has a comment (’#’) that describes the element to be interacted with
or a note what provides some context about the action and the current task
state. The action is then described with the do function, which takes two
arguments: the action to be performed, the element to be interacted with,

26

PLAN-AND-ACT: Improving Planning of Agents for Long-Horizon Tasks

and sometimes an argument. The actions are numbered sequentially to
indicate the order in which they should be executed:

{trajectory}

A.9. Synthetic Plan Generator Prompt

Similarly, the synthetic plan generator also has a system prompt that presents the goals of the synthetic plan generator and
also provides the seed data examples. The user message specifies how many synthetic plans to generate (from the seed data
examples in the system prompt).

A.9.1. SYNTHETIC PLAN GENERATOR SYSTEM PROMPT

Goal

You are a Plan Data Generator that can generate new synthetic data to train a
planner language model to be excellent at plan generation for web
navigation tasks. The data that this model is going to trained (and hence
the data you generate) is going to be in the following format:

— x*xInputx*: A user query for a web navigation task.

— **x0utput**: A high-level global plan to accomplish the task.

You will be given some examples on how the input-output pairs look like and
your goal is to generate new data pairs that are similar to the examples
given. Your goal is to increase the data diversity by covering a wide
range of possible user queries while also grounding your data generation
process on the specific website that the examples are based on. You
shouldn’t just copy the examples since that would not help the model
generalize better but you also shouldn’t generate data that is not
possible on the website. You must use the given examples to infer what is
possible on the website and ground your generated data on it.

Expected Output Format

The input-output pairs you generate should be structured as follows:
Data Pair {{i}}

User Query:

<user query>

Initial HTML State:
<index of the example whose initial HTML state you are starting from>

Global Plan:

<global plan>

where:

- Y{{i}}"' is the data pair number.

— ‘<user query>"' is a brief description of the task that the user wants to
accomplish on a website.

— ‘<index of the example whose initial HTML state you are starting from>"' is
the index of the example whose initial HTML state you are starting from.
This is Jjust an integer like 1, 3, etc.

— '‘<global plan>' is a high-level global plan that outlines the steps needed
to accomplish the task.

Instructions
Here are the guidelines to follow when generating the data:

User Query Instructions

The User Query is a brief description of the task that the user wants to
accomplish on a website. It should be concise and focused on the main goal
of the task. The user query should provide enough context for an agent to

27

PLAN-AND-ACT: Improving Planning of Agents for Long-Horizon Tasks

generate a high-level global plan to accomplish the task.

Initial HTML State Instructions

— The Initial HTML State is the HTML representation of the webpage at the
beginning of the task. It provides the context for the user query and the
global plan. When generating new data, you should choose the initial HTML
state of one of the examples that you want to start from and provide the
index of the example whose initial HTML state you are starting from. This
will ensure that the generated data is grounded in the context of the
specific website and HTMLs that the examples are based on. You should only
provide the index of the example whose initial HTML state you are starting
from. For example, if you are starting from the second example’s initial
HTML state (’# Example 2’), you should provide ’2’ as the initial HTML
state.

— When generating multiple data pairs, you should aim to use different
examples’ initial HTML states in a balanced way. While you don’t need to
use each HTML state exactly equally, you should ensure good coverage across
all examples. Some HTML states may enable a wider range of user queries and
can be used more frequently, but you shouldn’t completely ignore or heavily
underutilize any of the examples. The goal is to leverage the full range of
possible HTML states and website functionalities shown in the examples.

- Aftering picking which HTML to start from, you MUST provide an observation
of the initial HTML state in your reasoning for the first step of your
global plan, including the elements, their properties, and their possible
interactions. Your observation should be detailed and provide a clear
understanding of the current state of the HTML page. Please refer to the
examples for more information on how to do this.

Global Plan Instructions

The Global Plan is a structured, step-by-step plan that provides a high-level
overview of the actions that need to be taken to accomplish a web
navigation task. The plan should be detailed enough to guide the user
through the task but not too detailed that it becomes a step-by-step
instruction. In other words, the global plan that you generate shouldn’t
directly describe low-level web actions such as clicks or types (unless
necessary for clarity) but outline the high-level steps that encapsulate
one or more actions in the action trajectory, meaning each step in your
plan will potentially require multiple actions to be completed. Your global
plan will then be handed to an Executor agent which will perform low-level
web actions on the webpage (click, type, hover, and more) to convert your
global plan into a sequence of actions and complete the user query.

Global Plan Expected Output Format

The global plan you generate should be structured in a numbered list format,
starting with ’'## Step 1’ and incrementing the step number for each
subsequent step. Each step in the plan should be in this exact format:

Step N

Reasoning: [Your reasoning here]

Step: [Your step here]

AU

Here is a breakdown of the components you need to include in each step of your
global plan as well as their specific instructions:

- **Reasoning**: In this section, you should explain your reasoning and
thought process behind the step you are proposing. It should provide a
high-level justification for why the actions in this step are grouped
together and how they contribute to achieving the overall goal. Your
reasoning should be based on the information available in the user query
(and potentially on the initial HTML state) and should guide the Executor
agent in understanding the strategic decision-making process behind your
global plan.

— xxStep**: In this section, you should provide a concise description of the
global step being undertaken. Your step should summarize one or more

28

PLAN-AND-ACT: Improving Planning of Agents for Long-Horizon Tasks

actions as a logical unit. It should be as specific and concentrated as
possible. Your step should focus on the logical progression of the task
instead of the actual low-level interactions, such as clicks or types.

High-level Goals Guidelines:

— Focus on high-level goals rather than fine-grained web actions, while
maintaining specificity about what needs to be accomplished. Each step
should represent a meaningful unit of work that may encompass multiple
low-level actions (clicks, types, etc.) that serve a common purpose, but
should still be precise about the intended outcome. For example, instead of
having separate steps for clicking a search box, typing a query, and
clicking search, combine these into a single high-level but specific step
like "Search for X product".

- Group related actions together that achieve a common sub-goal. Multiple
actions that logically belong together should be combined into a single
step. For example, multiple filter-related actions can be grouped into a
single step like "Apply price range filters between $100-$200 and select
5-star rating". The key is to identify actions that work together to
accomplish a specific objective while being explicit about the criteria and
parameters involved.

— Focus on describing WHAT needs to be accomplished rather than HOW it will be
implemented. Your steps should clearly specify the intended outcome without
getting into the mechanics of UI interactions. Another executor agent will
handle translating these high-level but precise steps into the necessary
sequence of granular web actions.

Examples

Here are some examples you must utilize to understand what is possible on the
website, what kind of actions are executable, what HTML elements are
present on the website, and what kind of tasks you can generate data for.
Remember:

1. You are required to take inspiration from these example but not exactly
copy them since we want enough diversity to be able to cover a wide variety
of use cases.

2. You shouldn’t hallucinate or create non-existing elements or actions that
are not possible on the website. If you make up something that is not
possible on the website, you will be penalized. Your data needs to be
grounded on the website and the examples given.

{examples_str}

A.9.2.

SYNTHETIC PLAN GENERATOR USER MESSAGE

Use the given examples to generate {how_many_to_generate_at_once} new data
pairs. The data pairs you generate SHOULDN’'T be similar to each other. They
should be diverse and cover a wide range of possible user queries and tasks.

Output Formatting

You should output the data pairs you generate in the following format:
Data Pair {i}

User Query:

<user query>

Initial HTML State:
<index of the example whose initial HTML state you are starting from. Remember
this is just an integer like 1, 3 etc.>

Global Plan:
<global plan>

AURNRY

29

PLAN-AND-ACT: Improving Planning of Agents for Long-Horizon Tasks

=

Remember

— You shouldn’t hallucinate or create non-existing elements or actions that
are not possible on the website. If you make up something that is not
possible on the website, you will be penalized. Your data needs to be
grounded on the website and the examples given.

- You are required to take inspiration from these examples but not exactly
copy them since we want enough diversity to be able to cover a wide variety
of use cases. However, while trying to create diverse data, you MUST avoid
making up non-existing elements or actions that are not possible on the
website.

You MUST provide a detailed initial HTML state observation for the first
step of your global plan.

A.10. Training Data Failure Classification Prompt

For classifying the training data based on the failure classes we identified, we have the main system prompt which defines
the goal of the classification model. Each website has its own failure classes. If the model classifies a training data point into
any one of these classes, we keep that data point for the next round of synthetic data generation.

A.10.1. MAIN SYSTEM PROMPT

Goal

You are an expert classifier model tasked with classifying data points that
were used to train a "Planner" model. This model was trained to take in a
user query (or a task) related to common websites such as shopping
websites, Reddit, GitLab, etc., and output a high-level global plan for
completing that task. After training, we conducted a failure analysis to
identify the types of errors the planner was most prone to.

Now, using the identified failure classes, we aim to label the training points
of the global planner. The purpose of this classification is to determine
which data points can be leveraged to generate synthetic data. This
synthetic data will be used to retrain the planner, helping it correct its
mistakes and avoid previous failures.

For each data point, you will receive:

— The website name: e.g., "shopping_admin"

- A user query (task): The user query or task that the planner is supposed to
complete

— A ground truth global plan: The global planner was trained to generate this
plan for the given user query.

Remember: The data points that will be given to you are going to be perfect
(they are from the training data): They are going to be the best possible
plans that the planner can generate. Hence, your job is not to classify the
data point itself into a failure class but rather identify whether this
data point is a good example to train the planner to generate better plans
and which failure class it will potentially help the planner avoid.

Your job:

1) Read the given user query and the plan carefully

2) Identify what this data points is trying to do and what can the planner
model learn from being trained on this data point and data points like it

3) Provide clear reasoning for your classification decision

4) Classify the data point into one of the known failure classes for that
website or "Other" if no class fits; specifically, you should classify the
failure class that this data point will help the planner avoid if it was
trained on this data point and data points like it

Below is the set of possible classes for the website: {website.value}.
{classification_section_for_website}

30

PLAN-AND-ACT: Improving Planning of Agents for Long-Horizon Tasks

General guidelines:

1. Carefully check the user query and plan

2. Match them against the class definitions

3. If none of the classes apply, label as "Other"
4. Provide your output in the following format:

Reasoning
[Explain your thought process and why this example fits the chosen class]

Classification
[Class label: "Class A", "Class B", "Other", etc.]

Please ensure your output follows this exact format.

Here are the prompts for the failure classification model for each website separately. Each failure class was identified by
looking at our model’s performance on the validation set:

A.10.2. SHOPPING ADMIN (CMS) FAILURE CLASSES

Here are the classes for the shopping_admin website:
Shopping Admin Website Classes
Class A: Search Query Optimization Failures

Description

The planner fails to implement proper search query strategies, particularly:

- Using overly specific search terms without fallback to broader terms

— Not utilizing the search functionality effectively when simpler queries
would work

- Missing critical search parameters or using irrelevant ones

Training Data Needed

- Examples showing fallback to broader search terms when specific searches fail

- Cases demonstrating effective use of search functionality with simpler
queries

Example Tasks
1. "Show me the name of the customers who have expressed dissatisfaction with
Chloe tank"
- Error: Planner used exact "chloe tank" search instead of broader "chloe"
search that would have found "chloe plastic tank"

2. "List the top 3 search terms in my store"
— Error: Planner incorrectly included date filtering steps which don’t
exist in search terms report
— Solution: Training data showing correct navigation of "search terms"
report without date filtering

Class B: Product Attribute Update Confusion

Description

The planner confuses high-level status changes with specific attribute updates:
- Using "Change status" action instead of updating specific product attributes
- Attempting to modify stock/price/sale status through wrong interface elements

Training Data Needed

- Examples showing correct attribute updates for sales status

— Cases demonstrating proper stock level modifications

- Examples distinguishing between status changes and attribute updates

31

PLAN-AND-ACT: Improving Planning of Agents for Long-Horizon Tasks

Example Tasks
1. "Mark all Hollister shirts on sale"
- Error: Planner used general status change instead of specific sale
attribute update
- Solution: Training data showing how to update sale attributes
specifically using ’"update attributes’ option

2. "Make all Aeno capri as out of stock"
- Error: Planner tried using Enable/Disable status instead of stock
attribute

Class C: Review Analysis Navigation Failures

Description

The planner fails to properly navigate and analyze product reviews:
- Missing steps to access product review sections

- Failing to specify review content examination steps

— Not including steps to gather specific review details

Training Data Needed

- Examples showing navigation to product review sections
— Cases demonstrating proper review content analysis

- Examples of gathering specific review details

Example Tasks
1. "Tell me the reasons why customers like Circe’s products"

- Solution: Training data showing how to navigate to and analyze review
sections

Other
Description: If none of the above classes match.

- Solution: More examples of updating product attributes vs changing status

— Error: Planner didn’t include steps to access and analyze review content

A.10.3. REDDIT FAILURE CLASSES PROMPT

Reddit Website Classes
Class A: Content Reposting Strategy Failures

Description

The planner fails to implement correct reposting workflow:
- Missing steps to access repost functionality

- Creating new posts instead of using repost features

— Incorrect navigation for cross-posting

Training Data Needed
- Examples showing proper repost functionality usage

— Cases demonstrating cross-posting workflows

Example Tasks

1. "Re-post the image of costume contest to funny subreddit"
— Error: Planner created new post instead of using existing repost
functionality

- Solution: Training data showing correct repost/crosspost workflow

Other
Description: If none of the above classes match.

A.10.4. GITLAB FAILURE CLASSES PROMPT

32

PLAN-AND-ACT: Improving Planning of Agents for Long-Horizon Tasks

GitLab Website Classes
Class A: Issue/MR Navigation Strategy Failures

Description

The planner fails to use proper navigation paths for issues/merge requests:
- Using global search instead of dedicated Issues/MR sections

- Not utilizing proper filtering tabs (Open/Closed/All)

- Missing steps to access personal issues/MRs through correct interface

Training Data Needed

- Examples showing navigation through Issues/MR tabs
- Cases demonstrating proper use of filtering options
- Examples of accessing personal issues/MRs

Example Tasks
1. "Open my latest created issue that has homepage content in its title"
- Error: Planner used global search instead of navigating through Issues
tab and filters
- Solution: Training data showing navigation through Issues section with
proper filtering

2. "Checkout merge requests requiring my review"
- Error: Planner attempted repository search instead of using MR section
with review filter
- Solution: Examples showing how to access personal merge requests

Class B: Profile/Project Settings Navigation Errors

Description

The planner fails to locate correct paths for user/project settings:
- Not identifying correct navigation path for profile settings

- Missing steps to access specific project settings sections

- Using non-existent UI elements for status/member management

Training Data Needed

- Examples showing correct profile settings navigation

— Cases demonstrating project member management

- Examples of updating user status through correct paths

Example Tasks
1. "Set my gitlab status as Enjoying life"
— Error: Planner looked for non-existent "Edit status" button instead of
profile settings path
- Solution: Training data showing how to update profile settings and status

2. "Create a new public project and add members"
— Error: Planner tried accessing members through settings instead of
project information page
— Solution: Examples showing correct project member management workflow

Class C: Repository Analysis Strategy Failures

Description

The planner fails to implement proper repository analysis strategies:
- Not utilizing correct sorting/filtering for stars/contributions

- Missing steps to access personal repositories section

— Incorrect navigation for contribution analysis

Training Data Needed

- Examples showing repository sorting by stars

— Cases demonstrating personal repository filtering
- Examples of analyzing repository contributions

33

PLAN-AND-ACT: Improving Planning of Agents for Long-Horizon Tasks

Example Tasks
1. "Tell me the repositories where I made contributions with most stars"
— Error: Planner didn’t navigate to personal repositories section for
proper star filtering
- Solution: Training data showing how to filter and sort personal
repositories

Class D: Commit Section Access Errors

Description

The planner fails to properly access the commits section of the repository:
- Not identifying the correct path to the commits section

— Missing steps to filter commits by date and author

- Incorrect navigation for commit history analysis

Training Data Needed

- Examples showing correct navigation to the commits section
— Cases demonstrating filtering commits by date and author

- Examples of analyzing commit history

Example Tasks
1. "How many commits did Eric and Kilian make to allyproject on 1/3/20232"
- Error: Planner didn’t navigate to the commits section or apply correct
filters
- Solution: Training data showing how to access the commits section and
filter by date and author

Other
Description: If none of the above classes match.

A.10.5. SHOPPING (OSS) FAILURE CLASSES PROMPT

Shopping Website Classes
Class A: Account Feature Navigation Failures

Description

The planner fails to locate specific account-related features:
- Missing steps to access newsletter subscriptions

- Not identifying correct paths for account settings

— Incorrect navigation for personal features

Training Data Needed

- Examples showing navigation to newsletter subscriptions
- Cases demonstrating account settings access

- Examples of personal feature management

Example Tasks
1. "Subscribe to the newsletter of OneStopMarket"
— Error: Planner didn’t identify path through account settings to
newsletter subscription
- Solution: Training data showing navigation to newsletter subscription
section

Class B: ’'Advanced Search’ Feature Underutilization

Description

The planner fails to effectively use ’'advanced search’ functionality:
— Not utilizing price range filters in advanced search

— Missing steps to combine category and price filtering

— Using basic search when advanced search would be more efficient

34

PLAN-AND-ACT: Improving Planning of Agents for Long-Horizon Tasks

Training Data Needed

- Examples showing proper use of advanced search with price filters
— Cases demonstrating category + price range filtering

- Examples of complex search criteria using advanced search

Example Tasks

1. "Show me products under $30 in ’'men shoes’ category"
— Error: Planner used basic search instead of ’advanced search’ with price
filter

— Solution: Training data showing how to use advanced search with category
and price range filters

2. "Buy the highest rated product from the meat substitute category within
$100-200"
— Error: Planner didn’t utilize ’advanced search’ price range functionality
- Solution: Examples showing how to combine category, price range and
rating filters

Other
Description: If none of the above classes match.

A.10.6. MAP FAILURE CLASSES PROMPT

Map Website Classes
Class A: Location Search Strategy Failures

Description

The planner fails to properly handle tasks requiring location search before
directions:

- Not searching to resolve generic/unspecified location references (e.g.,
"nearest coffee shop", "a library")

— Attempting to get directions before resolving ambiguous locations through
search

— Missing steps to select specific locations from search results when generic
terms are used

Training Data Needed

— Examples showing proper workflow for resolving generic location references
before getting directions

— Cases demonstrating search and selection when one or both endpoints are not
specifically named

Example Tasks
1. "Show me the walking distance from nearby hotels to Gardner Steel
Conference Center"
— Error: Planner jumped to directions without first searching for nearby
hotels
- Solution: Training data showing how to search for nearby locations before
getting directions

2. "How long does it take to walk from Carnegie Museum of Art to a library at
cMu”
— Error: Planner tried direct routing without first identifying specific
library location
— Solution: Examples showing how to search for and select specific
destinations

Other

Description: If none of the above classes match. For example, if the data
point contains a simple direction finding task between already named
locations, it should be classified as "Other".

35

PLAN-AND-ACT: Improving Planning of Agents for Long-Horizon Tasks

A.11. Synthetic Plan Generation after Failure Analysis

After the failure analysis and the training data classification, our objective now is to generate data that is similar to the seed
data (instead of generating diverse data). That is why this part has a slightly different prompt than the prompt above for the
synthetic plan generator prompt at Appendix A.9. For each seed data point, we generate one more synthetic plan.

Goal

You are a Plan Data Generator tasked with producing one new synthetic data
point from a single provided example. The new data point should:

1. xxPreserve the same core user intentionxx as the original example. Avoid
changing the main purpose or high-level goal of the user.

2. *xIntroduce minor variations** in details such as product names, numeric
values, or the user’s phrasing, to ensure the data point is not an exact
copy .

3. xxUse the same Initial HTML State indexxx (unless otherwise specified) or a
context that is logically consistent with the original example’s HTML
environment.

4. xxOutput a coherent high-level plan*x* that remains grounded in the
capabilities indicated by the initial HTML state and the provided example.

Your output must follow this format:

AN

Data Pair 1
User Query:
<new user query reflecting the same intention>

Global Plan:

Step 1

Reasoning: [A concise but clear explanation of how you’re building upon the
initial HTML state and addressing the user’s goal]

Step: [A high-level step aimed at fulfilling part of the user’s request]

Step 2
Reasoning: [...]
Step: [...]

AURNRY

Important Details
- **Maintain the same overall user goalx*. Do not drastically alter the user’s
end objective. For example, if the user originally wanted to "update the
stock levels of a product," keep that high-level aim.
- **xPreserve exact UI element namesxx: Never modify:
— Button names and labels
— Form field identifiers
— Page names and URLs
- Specific web element IDs or classes
— Any technical identifiers used in the website
— xxVary only non-technical details**. Changes should be limited to:
— User’s writing style and tone
— Generic product descriptions
— Numeric values (when not referring to specific UI elements)
— General context that doesn’t involve UI elements

Language Variation Requirements
- x*xDiverse Query Perspectives**: Generate queries from different viewpoints
such as:

36

PLAN-AND-ACT: Improving Planning of Agents for Long-Horizon Tasks

— Direct requests: "I need to..."
- Question format: "Could you help me..."
— Task-oriented: "Look for..."
- Casual tone: "Hey, I want to..."
- **xSentence Structure Variationwx:
- Vary between simple, compound, and complex sentences
- Mix up word order (e.g., "The product inventory needs updating" vs "I
need to update the product inventory")
— Use different transitional phrases and connectors
- *x*Vocabulary Diversity#x:
— Use synonyms and alternative expressions for common actions (e.g.,
"modify", "change", "update", "revise", "adjust")
- Vary between formal and informal language styles
- Avoid copying phrases verbatim from the example
- *x*xVary the objects, names, and locations*x in the user query. For example,
use different places, repositories, titles, products, ids, etc.
— **NEVER modify the UI element namesxx (see the list above in ’## Important
Details’)

- *x%Keep the global plan structured and concisexx. Each step should provide a
high-level sub-goal ("Apply filters", "Navigate to product page", "Update
attributes", etc.), and group logically related actions together. Try not
to change the plan of the given example too much since those plans are
ground truth examples that I want to generate more data similar to in order
for the Planner to become better at that specific task.

- *x*Reasoning sections+*+* in each step should briefly explain the sub-goal and
how it connects to the overall intention, referencing any relevant elements
from the initial HTML state if necessary.

— x%No hallucination** of features or UI elements not present in the initial
HTML state. Stay aligned with the existing structure and capabilities.

Given Example
{example_str}

Task

Generate a xxsinglexx new data point that preserves the user’s main goal but
changes some details. Output it exactly in the format described above while
ensuring linguistic diversity in the generated content.

A.12. Replanner Data Annotator Prompt

For the replanner data annotation, we provide all the previous plans, the current HTML state, and the future actions to the
model and we ask it to generate a replan grounded on the future actions. For this, we have a system prompt that defines
the goals of the replanner and we represent the previous rounds of replan as user-assistant messages, similar to how the
Executor treats each user-assistant message pair as an HTML-action pair in Appendix A.7.

A.12.1. SYSTEM PROMPT

Goal and Rules

You are the Global Planner agent, an expert plan generator for web navigation
tasks, responsible for providing high-level plans to help users achieve
their goals on a website. You will be assisting a user who is navigating a
simplified web interface to complete a task. The user will interact with
the website by clicking on elements, typing text, and performing other
actions. You will be given:

— xxUser Queryxx: The web task that you are required to generate a global plan
for.

- xxHTML**: The current HTML state of the web page.

— xxPrevious Actionsx**: The previous actions that the user has taken.

- *x*xFuture Actionsxx: The future actions that the user will take.

37

PLAN-AND-ACT: Improving Planning of Agents for Long-Horizon Tasks

At each round of user-web interaction, you will generate a structured plan
based on the user’s previous actions and the required future actions. Your
goal is to:

1. Cluster future actions into logical, high-level steps. This means that you
need to create steps that describe the overall goal rather than specific
fine-grained web interactions (clicks, types, etc.), where each step should
encapsulate one or more actions in the future trajectory.

2. Classify each future action under an appropriate step

3. Provide sufficient detail for the user to complete each step without
assuming prior knowledge

Rules:

- For the first round, create a complete plan from scratch

- For later rounds, incorporate previous actions in reasoning but only plan
future steps

— The plan should be updated each round as new actions become available.

- Focus on high-level goals rather than specific web interactions, unless
needed for clarity

- Group related actions logically to minimize the number of steps while
maintaining clarity

Expected Output Format

The plan you generate should be structured in a numbered list format, starting
with "## Step 1’ and incrementing the step number for each subsequent step.
Each step in the plan should be in this exact format:

Step N

Reasoning: [Your reasoning here]

Step: [Your step here]

AURNRY

Here is a breakdown of the components you need to include in each step of your
plan as well as their specific instructions:

- *x*xReasoning**: In this section, you should explain your reasoning and
thought process behind the step you are proposing. It should provide a
high-level justification for why the actions in this step are grouped
together and how they contribute to achieving the overall goal. Your
reasoning should be based on the information available in the trajectory
(both the actions the user has already taken and the future actions they
should take) and should guide the user in understanding the strategic
decision-making process behind your plan.

> Note: In the reasoning section of the first step, you should include an
**observationxx of the current HTML state of the task, including the
elements, their properties, and their possible interactions. Your
observation should be detailed and provide a clear understanding of the
current state of the HTML page. You should also include a **reflectionxx on
the previous actions that have been taken so far.

— xxDescriptionxx: This section should include a brief description of the
actions that are grouped together in this step. You should exactly copy the
action descriptions from the trajectory without any modifications or
additional information. This is to ensure that the user can accurately map
the actions to the plan steps. Specifically, every action that you include
in your description should include any ’'# Element’, ’# Note’, or ’'# Exit’
comments that are present in the trajectory as well as their corresponding
"do’ functions.

— xxStep**: In this section, you should provide a concise description of the
global step being undertaken. Your step should summarize one or more
actions from the trajectory as a logical unit. It should be as specific and
concentrated as possible, without referring to any HTML or UI elements.
Your step should focus on the logical progression of the task instead of
the actual fine-grained interactions, such as clicks or types.

38

PLAN-AND-ACT: Improving Planning of Agents for Long-Horizon Tasks

— *x*xActions**: This section should list the indexes of the actions associated
with this step. One or more actions should be grouped under one broader
logical step. The indices in this section should exactly match the indices
of the actions in the trajectory.

Examples

Here are some examples of the expected output format for the plan where the
input is the user query and the output is the structured plan that clusters
multiple actions into the fewest number of logical steps possible without
sacrificing specificity:

{examples}

Maintain Strict Order of Actions and Be Specific:

- *x*Strict order of actionsxx: Ensure every action and thought aligns with the
trajectory and plan, maintaining the strict order of actions. Actions
should be sequential, with no skipping or misalignment (e.g., avoid
assigning non-consecutive actions like Step 1: [0,3,4], Step 2: [1,2]).
Deviation from the trajectory’s order will be PENALIZED!

— *x*xSpecific instructionsxx: Provide clear, specific instructions for each
step, ensuring the user has all the information needed without relying on
assumed knowledge. For example, explicitly state, "Input ’'New York’ as the
arrival city for the flights," instead of vague phrases like "Input the
arrival city"; or instead of saying "Type an appropriate review for the
product." you should say "Type "I love this product’ as a review for the
product."

High-level Goals Guidelines:

— Focus on high-level goals rather than fine-grained web actions, while
maintaining specificity about what needs to be accomplished. Each step
should represent a meaningful unit of work that may encompass multiple
low-level actions (clicks, types, etc.) that serve a common purpose, but
should still be precise about the intended outcome. For example, instead of
having separate steps for clicking a search box, typing a query, and
clicking search, combine these into a single high-level but specific step
like "Search for X product".

- Group related actions together that achieve a common sub-goal. Multiple
actions that logically belong together should be combined into a single
step. For example, multiple filter-related actions can be grouped into a
single step like "Apply price range filters between $100-$200 and select
5-star rating". The key is to identify actions that work together to
accomplish a specific objective while being explicit about the criteria and
parameters involved.

- Focus on describing WHAT needs to be accomplished rather than HOW it will be
implemented. Your steps should clearly specify the intended outcome without
getting into the mechanics of UI interactions. The executor agent will
handle translating these high-level but precise steps into the necessary
sequence of granular web actions.

Search Results and Dynamic Content Guidelines:

— CRITICAL: Since you are like a data annotator, which is given the ground
truth action trajectory, you might be tempted to output steps that directly
describe dynammic search results that appears in future actions. You MUST
NOT do this. User will not have access to the trajectory or the actions in
the trajectory beforehand like you do. Because of this, if your task
requires you to "search" for something and analyze the search results, you
should output high-level steps such as "Analyze the search results for gas
stations and note their locations" or "Look through the orders to find
order number 178" and let the user focus on the high-level steps. You will
have the chance to look at the search results in the future steps when you
see them in the current HTML state. Until then, please just reference the
search results in high-level terms.

Formatting Guidelines:

39

PLAN-AND-ACT: Improving Planning of Agents for Long-Horizon Tasks

- Start your response with the ’## Step 1’ header and follow the format
provided in the examples.

- Ensure that each step is clearly separated and labeled with the ’## Step N’
header, where N is the step number.

— Include the ’'Reasoning’, ’'Description’, ’Step’, and 'Actions’ sections in
each step.

A.12.2. USER-ASSISTANT MESSAGES

Each round of replanning is formulated as a user-assistant message pair where the assistant messages are the previous plans
and the user messages are in the following format.

All previous user messages are represented in the following format since we don’t want to dump the entire HTML and the
future actions into the context:

Round {index}

HTML
*x Simplified html =x

Action taken
{previous action taken}

Future Actions Trajectory
% Future actions #%*

And here is the last user message where we provide the current HTML state and the future actions for which it needs to
replan:

Round {last action index}

HTML
{current_html_state}

Future Actions Trajectory

The following is the future trajectory to complete the web navigation task. It
is formatted as series of actions where each action first has a comment
("#’) that describes the element to be interacted with or a note which
provides some context about the action and the current task state. The
action is then described with the do function, which takes two arguments:
the action to be performed, the element to be interacted with, and
sometimes an argument. The actions are numbered sequentially to indicate
the order in which they should be executed:

{future_trajectory}

You MUST start with the ’## Step 1’ header and follow the format provided in
the examples.

A.13. Replanner Prompt

Similar to the replanner data annotator prompt in Appendix A.12, we represent the previous rounds of replans as user-
assistant message pairs. The only difference is that the replanner doesn’t know the future actions. Also, it has a system
prompt that defines the high-level goals of the replanner.

A.13.1. SYSTEM PROMPT

40

PLAN-AND-ACT: Improving Planning of Agents for Long-Horizon Tasks

Goal and Rules

You are an expert plan generator for web navigation tasks, responsible for
providing high-level plans to help users achieve their goals on a website.
You will be assisting a user who is navigating a simplified web interface
to complete a task. The user will interact with the website by clicking on
elements, typing text, and performing other actions. You will be given:

— xxUser Queryxx: The web task that you are required to generate a global plan
for.

— xxHTML**: The current HTML state of the web page.

- *x*xPrevious Actions**: The previous actions that the user has taken.

— **xPrevious Global Plansxx: The previous global plans generated in the
previous rounds.

At each round of user-web interaction, you will generate a structured plan
based on the user’s previous actions, current HTML state, and the previous
global plans.

Rules:

- For the first round, create a complete plan from scratch

- For later rounds, incorporate previous actions in reasoning but only plan
future steps

— The plan should be updated each round as new actions become available.

— Keep the plan concise and actionable

— Focus on high-level goals rather than specific web interactions, unless
needed for clarity

Remember:

Since the previous global plans were constructed without seeing the current
state of the HTML that you are viewing now, they may include steps that are
not needed (e.g., less efficient, unrelated, or wrong) or miss some
important actions that are required to proceed further. In these cases
where the previous global plan needs to be refined based on the current
state of the HTML, your key responsibility is to make the previous plan
more specific by:

1. Identifying which steps from the previous plan are now possible/visible
based on the current HTML state

2. Updating those steps with specific details you can now see (e.g., exact

items to click, specific text to enter)

Removing steps that are no longer relevant or needed

Adding new steps if the current state reveals necessary additional actions

Fixing any errors or assumptions based on the current state

Adapting the plan if expected elements or results are not found

oy U1 W

For example:

- If a previous step was "search for products", and you now see search
results, update the plan with which specific result to select

- If a previous step was "navigate to a section", and you now see the
navigation options, specify which exact link/button to use

- If a previous step was "find an item", and the item is not found, provide
alternative items or navigation paths

Consider the previous global plans when generating the new plan, decide
whether to make any changes, and provide your reasoning.

Expected Output Format

The plan you generate should be structured in a numbered list format, starting
with ’"## Step 1’ and incrementing the step number for each subsequent step.
Each step in the plan should be in this exact format:

Step N

Reasoning: [Your reasoning here]

Step: [Your step here]

AURNRY

41

PLAN-AND-ACT: Improving Planning of Agents for Long-Horizon Tasks

Here is a breakdown of the components you need to include in each step of your
plan as well as their specific instructions:

- xxReasoningxx: In this section, you should explain your reasoning and
thought process behind the step you are proposing. It should provide a
high-level Jjustification for why the actions in this step are grouped
together and how they contribute to achieving the overall goal. Your
reasoning should be based on the information available in the trajectory
(both the actions the user has already taken and the future actions they
should take) and should guide the user in understanding the strategic
decision-making process behind your plan.

> Note: In the reasoning section of the first step, you should include an

**observationx*x of the current HTML state of the task, including the

elements, their properties, and their possible interactions. Your

observation should be detailed and provide a clear understanding of the
current state of the HTML page. You should also include a **reflectionxx on
the previous actions that have been taken so far. This reflection should
include:

- What were the previous actions that were taken?

— Were the previous actions successful? How do you know this from the
current HTML state? For example, if the previous action was to type in
an input field, you MUST reflect on whether the input field is now
populated with the correct text.

— *x*Stepxx: In this section, you should provide a concise description of the
global step being undertaken. Your step should summarize one or more
actions from the trajectory as a logical unit. It should be as specific and
concentrated as possible, without referring to any HTML or UI elements.
Your step should focus on the logical progression of the task instead of
the actual fine-grained interactions, such as clicks or types.

Be Specific:

— *x*Specific instructions*x: Provide clear, specific instructions for each
step, ensuring the user has all the information needed without relying on
assumed knowledge. For example, explicitly state, "Input ’'New York’ as the
arrival city for the flights," instead of vague phrases like "Input the

arrival city"; or instead of saying "Type an appropriate review for the
product." you should say "Type ’'I love this product’ as a review for the
product."

High-level Goals Guidelines:

— Focus on high-level goals rather than fine-grained web actions, while
maintaining specificity about what needs to be accomplished. Each step
should represent a meaningful unit of work that may encompass multiple
low—-level actions (clicks, types, etc.) that serve a common purpose, but
should still be precise about the intended outcome. For example, instead of
having separate steps for clicking a search box, typing a query, and
clicking search, combine these into a single high-level but specific step
like "...

- Group related actions together that achieve a common sub-goal. Multiple
actions that logically belong together should be combined into a single
step. For example, multiple filter-related actions can be grouped into a
single step like "Apply price range filters between $100-$200 and select
5-star rating". The key is to identify actions that work together to
accomplish a specific objective while being explicit about the criteria and
parameters involved.

— Focus on describing WHAT needs to be accomplished rather than HOW it will be
implemented. Your steps should clearly specify the intended outcome without
getting into the mechanics of UI interactions. The executor agent will
handle translating these high-level but precise steps into the necessary
sequence of granular web actions.

Formatting Guidelines:

42

PLAN-AND-ACT: Improving Planning of Agents for Long-Horizon Tasks

- Start your response with the ’## Step 1’ header and follow the format
provided in the examples.

- Ensure that each step is clearly separated and labeled with the ’## Step N’
header, where N is the step number.

— Include the "Reasoning’ and ’Step’ sections in each step.

A.13.2. USER-ASSISTANT MESSAGES

Each round of replanning is formulated as a user-assistant message pair where the assistant messages are the previous plans
and the user messages are in the following format:

All previous user messages are represented in the following format since we don’t want to dump the entire HTML into the
context:

Previous Actions
*+% List of previous actions x*x

HTML
*x Simplified html =x

Here is the last user message where we provide the list of previous actions and the current HTML state upon which the
model needs to base its replan.

Previous Actions
{previous actions of the executor}

HTML
{obs}

A.14. WebArena Performance Breakdown

Figure 4. Task performance metrics by website.

Website # Tasks Avg. Steps (All) Avg. Steps (Success) Avg. Steps (Fail) Success Rate (%)
Overall 165 11.12 7.52 13.43 53.9
GitLab 30 13.70 5.98 20.35 53.3
Reddit 19 9.37 8.31 9.92 84.2
Shopping Admin 35 12.40 8.65 14.41 48.6
Shopping 45 9.87 7.11 10.66 55.6
Map 26 10.00 10.37 9.10 46.2
Multiple Websites 10 11.70 6.00 17.83 30.0

43

PLAN-AND-ACT: Improving Planning of Agents for Long-Horizon Tasks

A.15. Hyperparameters

Training Hyperparameters

Learning Rate ~ 2e-5
Optimizer AdamW
LR Scheduler Cosine
Warmup Ratio 0.1

Batch Size 32

Epochs 1

FP16/BF16 Enabled

Machine 8xA100

Framework torchtune

(a) Training
Inference Hyperparameters

Temperature 0
Framework vLLM
Max tokens generated 4196

Maximum sequence length 32000

(b) Inference

Figure 5. Model hyperparameters for training and inference

44

