
Dynamical phases of short-term memory mechanisms in RNNs

Bariscan Kurtkaya* 1 2 Fatih Dinc* 2 3 4 Mert Yuksekgonul 5 Marta Blanco-Pozo 2 6 Ege Cirakman 2

Mark Schnitzer 2 6 7 Yucel Yemez 1 Hidenori Tanaka† 8 9 Peng Yuan† 10 Nina Miolane† 3

Abstract

Short-term memory is essential for cognitive pro-
cessing, yet our understanding of its neural mecha-
nisms remains unclear. Neuroscience has long fo-
cused on how sequential activity patterns, where
neurons fire one after another within large net-
works, can explain how information is maintained.
While recurrent connections were shown to drive
sequential dynamics, a mechanistic understand-
ing of this process still remains unknown. In this
work, we introduce two unique mechanisms that
can support this form of short-term memory: slow-
point manifolds generating direct sequences or
limit cycles providing temporally localized ap-
proximations. Using analytical models, we iden-
tify fundamental properties that govern the se-
lection of each mechanism. Precisely, on short-
term memory tasks (delayed cue-discrimination
tasks), we derive theoretical scaling laws for criti-
cal learning rates as a function of the delay period
length, beyond which no learning is possible. We
empirically verify these results by training and
evaluating approximately 80,000 recurrent neural
networks (RNNs), which are publicly available
for further analysis1. Overall, our work provides
new insights into short-term memory mechanisms
and proposes experimentally testable predictions
for systems neuroscience.

*Equal contribution † Supervision. 1Koc University, Turkey
2CNC Program, Stanford University, Stanford, USA 3Geometric
Intelligence Lab, UC Santa Barbara, Santa Barbara, USA 4Kavli
Institute for Theoretical Physics, UC Santa Barbara, Santa Bar-
bara, USA 5Computer Science, Stanford University, Stanford, USA
6James H. Clark Center for Biomedical Engineering & Sciences,
Stanford University, Stanford, USA 7Howard Hughes Medical
Institute, Stanford University, Stanford, USA 8Phi Lab, NTT Re-
search, Sunnyvale, USA 9Center for Brain Science, Harvard Uni-
versity, Cambridge, USA 10Institute for Translational Brain Re-
search, Fudan University, Shanghai, China. Correspondence to:
Fatih Dinc <fdinc@ucsb.edu>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

1https://github.com/fatihdinc/dynamical-phases-stm

1. Introduction
Learning to respond based on delayed information is a fun-
damental challenge in both neuroscience and machine learn-
ing (Constantinidis & Klingberg, 2016; Bengio et al., 1994).
In machine learning, early studies in the 1990s identified
this difficulty as the problem of learning long-term depen-
dencies, particularly in recurrent neural networks (RNNs)
trained on tasks requiring information retention across time
(Bengio et al., 1994). Despite significant progress in neural
network architectures, this issue remains central to design-
ing systems capable of effective temporal reasoning.

To address long-term dependencies, machine learning re-
searchers developed specialized architectures such as Long
Short-Term Memory (LSTM) networks, Gated Recurrent
Units (GRUs), and, more recently, Transformers (Hochre-
iter, 1997; Chung et al., 2014; Vaswani, 2017). These mod-
els introduced mechanisms that enhance memory retention,
e.g., by learning neuronal timescales. In contrast, biological
neurons communicate through action potentials and are gov-
erned by biophysical parameters, such as membrane time
constants, that determine the decay of activity over time
(Jonas et al., 1993; McCormick et al., 1985; Miles, 1990;
Isokawa, 1997; Geiger et al., 1997). This fundamental dif-
ference raises a key question: how do biologically inspired
neural systems learn to associate events separated in time?

This question has regularly been studied under a central
topic in neuroscience: short-term memory, a fundamental
cognitive function that enables organisms to temporarily
store and manipulate information. This process is essential
for adaptive behavior and is disrupted in several neurologi-
cal and psychiatric conditions such as Alzheimer’s disease
(Bondi et al., 2017), schizophrenia (Lee & Park, 2005) and
post-traumatic stress disorder (Scott et al., 2015) among
others. Yet, while short-term memory is a central cogni-
tive function, the mechanisms that support it remain poorly
understood in systems neuroscience (Serences, 2016).

In the mammalian brain, short-term memory is supported
by a dynamic network spanning cortical and subcortical
regions such as the prefrontal, parietal, and sensory cor-
tices, and the hippocampus (Todd & Marois, 2004; Curtis &
D’Esposito, 2003; Harrison & Tong, 2009; Gnadt & Ander-
sen, 1988; Baeg et al., 2003; Cavanagh et al., 2018; Meyers

1

https://github.com/fatihdinc/dynamical-phases-stm

Dynamical phases of short-term memory mechanisms in RNNs

et al., 2008). Theories explaining this core process can be
broadly grouped into three levels. At the synaptic trans-
mission level, memory may be stored in “activity-silent”
states, maintained by transient synaptic changes induced by
plasticity (Mongillo et al., 2008; Stokes, 2015; Kozachkov
et al., 2022; Masse et al., 2019; Brennan & Proekt, 2023).
At the neuronal activity level, persistent spiking has been
linked to memory maintenance during delay periods (Gnadt
& Andersen, 1988; Barash et al., 1991; Curtis & D’Esposito,
2003; Baddeley & Hitch, 1974) (Fig. 1A). Finally, at the
population level, short-term memory has been associated
with sequential patterns of neural activation (Baeg et al.,
2003; Harvey et al., 2012; Rajan et al., 2016; Wang, 2021)
(Fig. 1B).

In this work, we study mechanisms that can support mem-
ory maintenance at the final population level (Fig. 1B-C).
Increasing evidence suggests that memory stability and ro-
bustness can emerge from a dynamic, distributed neural
population activity and is governed by underlying attractor
states (Cavanagh et al., 2018; Spaak et al., 2017; Meyers
et al., 2008; Stroud et al., 2024; Brennan & Proekt, 2023).
Yet several theoretical, and empirically relevant, questions
remain unresolved: Q1: What mechanisms support mem-
ory maintenance through sequential neural activity? Q2:
What determines which mechanism is favored under differ-

ent memory tasks or training conditions? Q3: And how
do these learned mechanisms vary with the delay duration,
i.e., the time during which the information must be held in
memory?

We set out to answer these questions through a computa-
tional theory perspective, generating predictions for in-vivo
experiments that we then test in-silico. To achieve this,
we trained approximately 80,000 recurrent neural networks
(RNNs) to perform classical system neuroscience experi-
ments designed to assess short-term memory capabilities,
while also studying simple toy models and low-rank RNN
models as they performed a simpler short-term memory
task (Fig. 1D-E). Our contributions can be summarized
as follows: (i) Using interpretable dynamical system mod-
els stripped down to their most essential components for
solving a delayed activation task (Fig. 1D-E), we illus-
trate how RNNs can develop distinct strategies during learn-
ing, depending on the task and optimization parameters
(Figs. 2, 3, and S1). (ii) We show how changing one of
the simplest tasks in a trivial manner, e.g., by adding a
post-reaction period, can qualitatively change the learned
short-term memory mechanisms. This finding is particularly
relevant as a cautionary tale for the systems neuroscience
community modeling animal behaviors by drawing compar-
isons to RNNs (Mante et al., 2013) (Fig. 3). (iii) Utilizing

Persistent activity model Sequential activation

Distinct groups of neurons are
persistently active during the
maintenance of a particular

short-term memory

Memory maintenance happens via the
same group of sequentially active neurons,

readout neurons subserve distinct
memory-guided responses

Memory encoding window
Maintenance window
Response window

Limit cycles

Sequences can become periodic
oscillations in the post-trial period

when limit cycles are used for storing
short-term memory

Memory BMemory A

(i) Cue(ii) Delay (iii) Reaction(iv) Post-
Reaction

In
pu

t a
nd

 o
ut

pu
t

va
lu

es

0

1

Cue 1
Cue 2

Tin

Output 1
Output 2

Tdelay Tresp

Cue signal Target response

Tpost

D

E

A B C Delayed cue discrimination task

Simulation with RNNs

Tin TdelayTrespTpost

Figure 1. Studying short-term memory mechanisms with biologically motivated neural network models. A-C A visualization of
short-term memory maintenance in neural activations. A Earlier models predict that fixed and persistent activities of a subset of neurons
during the delay period could encode the content corresponding to distinct memories (red vs blue populations) (Fuster & Alexander, 1971;
Atkinson & Shiffrin, 1968). B Memory contents can also be stored within a sequentially firing neuron population (Rajan et al., 2016),
where distinct readout neurons decode distinct memories. C In this work, we show that limit cycles, i.e., periodic orbits, can locally
approximate the memory mechanism in panel (B). However, if left undisturbed, limit cycles may result in spurious periodic responses in
the post-reaction window (magenta). D-E An illustration of the delayed cue-discrimination task and its simulation with RNNs. D The task
includes two correct cue-reaction matches (blue-left, red-right) and consists of four periods: (i) Cue period, where one of the two cues
is presented; (ii) Delay period, with no expected reaction; (iii) Reaction period, where the cue class needs to be outputted; and (iv) an
optional post-reaction period at the end of the trial. E We designed an equivalent task for RNNs, in which two input channels are mapped
to the output channels and for a given trial only a single input is provided in the form of a rectangular pulse of duration Tin. RNNs can be
trained to follow the stages (i-iv) similar to the animals in their target responses. When the cue period is omitted, we refer to this task as
delayed activation task.

2

Dynamical phases of short-term memory mechanisms in RNNs

analytical models, we demonstrate theoretical scaling laws
and synthesize a phase diagram of mechanisms for solv-
ing the task, which is a function of the task properties and
optimization parameters (Figs. S2 and 4G). (iv) Through
a large-scale study of RNNs2, we extract the same scaling
laws in RNNs trained to perform delayed cue-discrimination
tasks, which are quantitatively consistent with our theoret-
ical explorations within error bars. We show that RNNs
have little to no trouble learning a modified task with no
delayed output, providing further evidence that training bio-
logically inspired neural networks to delay their outputs is
fundamentally difficult (Figs. 4, S3, S4, S5 and S6).

2. Background
Systems neuroscience often utilizes animal models, e.g.,
mice, rats, birds, and flies, to study cognitive functions
including short-term memory (Serences, 2016). Alterna-
tively, it is often possible to design artificial models such
as RNNs, which can be trained on observed neural activi-
ties or tasks that are traditionally performed by animals in
laboratories (Mante et al., 2013; Sussillo & Barak, 2013;
Yang et al., 2019; Masse et al., 2019; Dubreuil et al., 2022).
Then, once RNNs are trained, their computation can be
reverse-engineered to investigate the nature of the neural
computation performed by biological networks, generat-
ing hypotheses that can later be tested with experimental
procedures (Walker et al., 2019; Finkelstein et al., 2021).
Consequently, RNNs have recently become a key compo-
nent of computational neuroscience studies (Dubreuil et al.,
2022; Valente et al., 2022; Finkelstein et al., 2021; Sussillo
& Barak, 2013).

Here, we consider a family of RNNs that are biologically
relevant and whose parameters can be interpreted as func-
tional connections between neurons (Perich & Rajan, 2020;
Perich et al., 2021). Specifically, we study RNNs defined
by the following equation:

τ ṙ(t) = −r(t) + tanh(Wr(t) +W inu(t) + b+ ϵ), (1)

where r(t) ∈ RN refers to the firing rates of N neu-
rons, u(t) ∈ RNin pre-defined Nin-dimensional inputs,
W ∈ RN×N ,W in ∈ RN×Nin weight parameters with
b ∈ RN corresponding bias terms, and ϵ some noise that
is, in practice, sampled i.i.d. from a Gaussian distribu-
tion. The output is taken as a projection of the neural ac-
tivities as ô(t) = f (W outr(t) + bout), where f(·) is ei-
ther identity or sigmoid function in this work (see below)

2The dataset is publicly available through
https://doi.org/10.5281/zenodo.15529757. To obtain this
dataset, we used several computers with NVIDA RTX 3090
GPUs or equivalent, which roughly amounts to 230 kg CO2
emission, 930 km driven by an ICE car, 115 kg coal burned, 4
tree seedlings sequesting carbon for 10 year as computed via
https://mlco2.github.io/impact/.

and W out ∈ RNout×Nrec and bout ∈ RNout for an Nout-
dimensional output. For notational simplicity, we assume
ϵ = 0 until our empirical discussions in Section 3.4.

RNN models of sequential activity–Recent work has iden-
tified the generation of neural sequences as a potential key
component of short-term memory (Rajan et al., 2016). This
distributed sequence can be used to store the short-term
memory content and explicitly keep track of time, which
contrasts with earlier theories of short-term memory main-
tenance relying on the persistent activities of some neurons
(Fuster & Alexander, 1971; Atkinson & Shiffrin, 1968)
(Fig.1B). Previous work has provided insights into how
these sequences are generated by examining neuronal-level
mechanisms (Rajan et al., 2016; Sommer & Wennekers,
2005; Laje & Buonomano, 2013), often focusing on the
learned connectivity structures (Rajan et al., 2016; Laje &
Buonomano, 2013). However, the population-level causal
mechanisms underlying neural computation, which could
be investigated through latent dynamics, remain largely un-
explored.

To study the latent mechanisms of sequential neural activ-
ities, we focus on a class of low-rank RNNs (i.e., when
W =

∑K
k=1 m

(k)n(k)T are constrained to be low-rank). In
this class, the computation performed by RNNs can be stud-
ied with the latent dynamical system (Dubreuil et al., 2022;
Valente et al., 2022; Dinc et al., 2025a; 2023):

τ κ̇k(t) =− κk(t) +

N∑
i=1

n
(k)
i ×

× tanh

(
K∑
l=1

m(l)κl(t) +W inu(t) + b

)
,

(2)

where the latent variables are defined as κk(t) = n(k)T r(t)
(Dinc et al., 2025a). Intuitively, by constraining the rank
of the weight matrix, W , one can project the computation
performed by N neurons down to a K-dimensional latent
dynamical system. In this work, we use this paradigm (i.e.,
training low-rank RNNs) to illustrate the distinct mecha-
nisms that support sequence generation, as they emerge dur-
ing training. Then, our large-scale experiments generalize
our findings to full-rank RNNs with no explicit restrictions.

3. Results
3.1. Latent mechanisms underlying neural sequences

As a first step, we set out to answer our first question
(i.e., Q1: What mechanisms support memory maintenance
through sequential neural activity?) using a simple short-
term memory task, stripped of any extraneous components,
that can be solved using neural sequences (Fig. 1D-E).
Specifically, we focused on one of the simplest tasks called
a delayed activation task (Dinc et al., 2025b). In this task,

3

https://doi.org/10.5281/zenodo.15529757
https://mlco2.github.io/impact/

Dynamical phases of short-term memory mechanisms in RNNs

Response startTrial start Trial end

Latent state
(during trial)

Latent state
(after trial)

Decision
boundary

A

N
or

m
al

iz
ed

 v
al

ue
s

Number of training epochs

100

10-2

10-4

10-6

Activity of the first latent variable (a.u.)

A
ct

iv
ity

 o
f t

he
 s

ec
on

d
la

te
nt

 v
ar

ia
bl

e(
a.

u.
)

100 102 104

Loss function
Gradient norm

N
eu

ro
n

ID

Absolute firing rates 10

0 50 0 100 200
Time (ms)

1

100

Tdelay = 75 ms, Tresp = 10 ms, α = 1

B

N
or

m
al

iz
ed

 v
al

ue
s

Number of training epochs

100

10-2

10-4

Activity of the first latent variable (a.u.)

A
ct

iv
ity

 o
f t

he
 s

ec
on

d
la

te
nt

 v
ar

ia
bl

e(
a.

u.
)

100 102 104

Loss function
Gradient norm

N
eu

ro
n

ID

0 50 0 100 200
Time (ms)

1

100

Tdelay = 75 ms, Tresp = 10 ms, α = 10-2

C

N
or

m
al

iz
ed

 v
al

ue
s

Number of training epochs

100

Activity of the first latent variable (a.u.)

A
ct

iv
ity

 o
f t

he
 s

ec
on

d
la

te
nt

 v
ar

ia
bl

e(
a.

u.
)

100 102 104

Loss function
Gradient norm

N
eu

ro
n

ID

0 50 0 100 200

Time (ms)

1

100

Tdelay = 75 ms, Tresp = 10 ms, α = 10-4

106

10-2

Figure 2. Changing optimization parameters may result in RNNs learning distinct attractor mechanisms. We trained a rank-2 RNN
to perform the delayed activation task, in which RNNs initialized at a particular state (Methods) should delay their output by Tdelay for a
Tresp time interval. The task does not constrain the network activity or the output outside of these time windows. A Left. The normalized
gradient norm and the loss function values. Middle. Flow maps of the learned latent dynamical systems demonstrating the (learned)
attractor mechanism. The shaded areas around the decision boundary correspond to network outputs within 0.75 (outer green boundary)
and 0.25 (outer red boundary). Right. Absolute firing rates of the network, whose latent dynamics were illustrated in the middle column.
Dotted line corresponds to the start of the response period. Parameters: N = 100 neurons, τ = 10ms, ∆t = 5ms, Tdelay = 75ms,
Tresp = 10ms, α = 1 for stochastic gradient descent using otherwise the default parameters in Pytorch (Paszke et al., 2017). B-C
Same as in panel (A), but trained with learning rates of 10−2 and 10−4, respectively.

the network is initialized to a particular state, which is ran-
domly selected in the state space (Methods), and has to
withhold its response (ô(t) = 0) for a Tdelay time win-
dow. Afterwards, the network is forced to output a response
(ô(t) = 1) for Tresp time window.

Two distinct mechanisms can subserve neural sequences–
Broadly, we set out to study two latent mechanisms that may
subserve the observed neural sequences. The first mecha-
nism relies on the generation of a set of slow-points, neural
states in which the neural dynamics vary slowly (ṙ(t) ≈ 0).
In this mechanism, neural sequences emerge during the slow
transition of the latent dynamical system through these slow-

points. This transition is often structured, i.e., the same
latent trajectory would be followed as the system passes
through these regions (Sussillo & Barak, 2013), and there-
fore can lead to stable and sequential activations of neurons
(Fig. 1B). The second mechanism relies on the generation
of limit cycles, which are defined as closed trajectories that
represent sustained, periodic oscillations. In this mecha-
nism, when the oscillation periods are much larger than the
trial windows, neural sequences can emerge during the task
execution without repetition (Fig. 1C). But, once the task
concludes, the limit cycles would continue to oscillate and
regenerate the sequential activities, whereas the slow-points
are transitionary and would not repeat (Fig. 1B-C).

4

Dynamical phases of short-term memory mechanisms in RNNs

Since a minimum of two dimensions is required to generate
oscillatory behavior in dynamical systems (Strogatz, 2018),
we start by studying the learned latent representations in an
RNN with rank K = 2 (corresponding to two-dimensional
latent dynamics). The output, ô(t), of the RNN is defined as
a nonlinear projection of the latent variables using a sigmoid
function f(·). For the largest learning rate (Fig. 2A), this
rank-2 RNN was incapable of solving the task despite the
nearly-zero gradient3. As the learning rates decreased, it
was capable of solving the task with limit cycles with a
moderate learning rate (Fig. 2B), but utilized slow-points
(also referred to as “SP manifolds” for generality) for the
lowest learning rate (Fig. 2C). Notably, both mechanisms
produced neural activity sequences during the task window
(Fig. 2, right panels).

Despite leading to equivalent neural activities within the
trial window, the two mechanisms had qualitatively different
behaviors after the trial concluded (Fig. 2). Limit cycles had
led to recurrent generations of the same sequences, whereas
the SP manifolds converged to a persistent activity style
representation after the trial concludes. We will make this
observation rigorous in our large-scale studies below. For
now, we provide insights into another relevant question: Do
RNNs commit to learning one mechanism from the start, or
are they capable of changing their inner mechanisms during
the training?

Learned latent mechanisms can evolve during learning–
We next studied the latent dynamical systems of a rank-
2 RNN as it was training to solve the delayed activation
task (Fig. S1). Interestingly, the loss function showed
characteristic periods of learning, corresponding to changes
in mechanisms (Fig. S1A). Specifically, after the first jump
in the loss function, a SP manifold was formed in the latent
dynamical system (Fig. S1B; left). Here, a line of slow-
points allowed the network output to stall until Tdelay. Then,
the SP manifold had acquired a curved structure (Fig. S1B;
middle), reminiscing an onset to a rotating solution. Finally,
after the oscillations in the loss function values ceased, a
limit cycle had emerged in the latent dynamical system (Fig.
S1B; right). Hence, we confirmed that RNNs could change
their inner mechanisms during learning, i.e., what started as
a SP manifold solution later evolved into a limit cycle.

In reality, since functional connections in the brain can
rapidly reorganize within the start and end of a trial
(Ebrahimi et al., 2022), the two mechanisms can become
practically inseparable in biological neural networks. In
other words, there is an equivalence class of mechanisms
that can generate neural sequences that have the same local

3This phenomenon has been studied in details by a previous
work (Dinc et al., 2025b), in which the learning dynamics can
get stuck in no-learning zones with near-zero gradients when very
large learning rates are used.

behavior within the task window, but can show distinct prop-
erties outside; and the two mechanisms we identified belong
to this class. For the rest of this work, we will formalize this
connection between the learned latent mechanisms and the
task and/or optimization parameters. In doing so, we will
generalize these findings beyond anecdotal observations via
theoretical investigations and large-scale experiments.

3.2. Influence of task design on the learned mechanism

Behavioral experiments in systems neuroscience often con-
tain arbitrary design choices that are deeply embedded in
the experimental paradigm, yet their implications are rarely
scrutinized. Consider the delayed cue discrimination task, a
task commonly studied in neuroscience experiments with
mice (Ebrahimi et al., 2022). In the machine learning con-
text, it consists of four distinct periods (Fig. 1D-E): cue,
delay, reaction, and an optional post-reaction period (i-iv).
Upon observation of a cue, the networks have to wait for
a brief period and output a response in the corresponding
output channel. Typically, there are two possible cues and
hence two output channels. If there is a post-reaction period,
then the networks should learn to output zeros after the re-
sponse window concludes. In experimental context, while
animals typically indicate their response by licking either
a right or left spout, the reward or punishment is often di-
rectly provided at the conclusion of the behavior without the
post-reaction window. The distinction, as we show below,
matters for the final learned solution.

Minor modifications to the task requirements can change the
learned mechanisms–We now set out to answer our second
question (i.e., Q2: What determines which mechanism is
favored under different task or training conditions?). To do
so, we perform a minor change to the delayed activation
task by requiring a short post-reaction waiting period and
illustrate how minor changes in experimental design can
fundamentally alter the mechanisms networks tend to learn
during training. In the modified delayed activation task,
(rank-2) RNNs are required to switch their responses at
the end of the response period and output zero for a brief
duration before the trial concludes (Fig. 1D-E). In networks
trained without this modification (Tpost = 0ms), the latent
dynamical systems can learn both slow-point manifolds
(for shorter delays) and limit-cycles (for longer delays),
similar to Fig. 2. However, when we introduce even a
brief post-reaction period (Tpost = 30ms), the networks
predominantly learn limit cycle solutions, despite achieving
similar task performance (Fig. 3A-B). We quantified and
confirmed these findings with a broader empirical study with
1600 RNNs (Fig. 3C; via Fisher’s exact test with Bonferroni
corrections). Thus, in rank-2 RNNs solving the delayed
activation task, increasing the delay period promoted the
emergence of limit cycle solutions, and this tendency was
dramatically amplified by the addition of a post-reaction

5

Dynamical phases of short-term memory mechanisms in RNNs
N

or
m

al
iz

ed
 lo

ss
fu

nc
tio

n
va

lu
es

100

10-2

Number of training epochs

A

Activity of the first latent variable (a.u.)
A

ct
iv

ity
 o

f t
he

 s
ec

on
d

la
te

nt
 v

ar
ia

bl
e(

a.
u.

)

Training a rank-2 RNN on
two versions of the DA task

Response
start

Trial start

Trial end

Latent state
(during trial)

Latent state
(after trial)

Decision
boundary

B

100 102 104 106

Fully trained network
for Tpost = 0 ms

Tpost = 0 ms
Tpost = 30 ms

Fully trained network
for Tpost = 30 ms

C

Delay period (Tdelay)

Fr
ac

tio
n

of
 n

et
w

or
ks

w
ith

 fu
ll

ro
ta

tio
ns

40 60 80 1000

1 *****

An empirical study with
100 networks per condition

10-1

10-3

Figure 3. Changing trivial task parameters may result in RNNs favoring limit cycle solutions. A We performed experiments similar
to those in Fig. 2, but now with an added post-reaction period (Tpost). B Learned latent dynamics for the fully trained networks in panel
(A). Parameters for A-B: As in Fig. 2A, with Tdelay = 30ms, Tresp = 10ms, Tpost = 0 or 30ms, and α = 10−3. C Fraction of networks
developing rotating solutions (i.e., limit cycles) when solving the two versions of the task as a function of delay Tdelay. Parameters:
α = 0.005, varying levels training epochs corresponding to Tdelay, otherwise the same as in panels A-B. Comparisons: Fisher’s exact test
with Bonferroni corrections, ∗∗∗p < 0.001, and ∗∗p < 0.01.

window. This demonstrated that seemingly minor changes
in the task design can favor learning distinct short-term
memory maintenance mechanisms.

3.3. A theoretical scaling analysis of mechanistic phases

So far, we used simple examples to demonstrate how RNNs
can use different latent mechanisms to generate neural se-
quences, that RNNs can change their inner mechanisms dur-
ing the course of their training, that the choice between these
mechanisms is not random but depends on specifics of the
experimental design. Now, to provide an answer to the third
question (i.e., Q3: How do the learned mechanisms vary
with delay duration?), we turn to a set of low-dimensional
dynamical models and study their learning dynamics.

Why study low-dimensional toy models?–Recent work has
shown that training (full-rank) RNNs often converges to
effectively low-dimensional solutions (Valente et al., 2022),
a property that appears to generalize across many real-world
networks (Thibeault et al., 2024). As discussed in Eq. (2),
these low-dimensional computations can often be inter-
preted as latent dynamical systems. In this view, training the
RNN parameters (W,W in, b) amounts to shaping a latent
flow map of the form:

τ κ̇(t) = G(κ(t), u(t);W,W in, b), (3)

where G governs the evolution of low-dimensional latent
variables κ(t) in response to input u(t). Hence, studying
how toy models, which do not necessarily share the same
architectural assumptions as RNNs but still aim to learn
similar local dynamics, may provide intuition for how these
flow maps may be learned. Thus, we set out to analyze
simple low-dimensional dynamical systems that capture the
two mechanisms (slow-points and limit cycles) we have
observed in trained RNNs.

Earlier work has considered a one-dimensional toy system,
the normal form of a saddle-node bifurcation, ẋ = x2 + r
(Strogatz, 2018), to study the learning dynamics of slow-
point formation (Dinc et al., 2025b). This system approx-
imates the local behavior of one-dimensional flow maps
G(κ, u) near their minima, where slow-points (also ob-
served in Fig. 2) arise. To perform a similar analysis with
the oscillatory dynamics observed in Figs. 2 and 3, we will
consider a second toy model in this work: a two-dimensional
system exhibiting a limit cycle, one of the simplest settings
in which periodic orbits, and hence oscillations, can emerge
(Strogatz, 2018). Both toy models are meant to qualita-
tively mirror the behavior of the respective latent flow maps
G(κ, u) that may be learned by an RNN (Fig. 2). While
these toy systems are not exhaustive, they capture key fea-
tures of the latent mechanisms that RNNs may converge
to, and allow us to dissect their learning dynamics in a
controlled and analytical setting, which we discuss next.

Extracting scaling laws from toy models–To start with, in
Appendix S2.1, we reproduce the findings of the earlier work
on slow-point manifolds for a more general version of the de-
layed activation task with Tdelay ̸= Tresp. This analysis re-
veals a maximum learning rate, also reported in (Dinc et al.,
2025b), beyond which the learning dynamics destabilize
and even an approximation of the desirable solution cannot
be reached. Our analysis reveals that this maximum learn-
ing rate follows a power law such that αSP ∼ O(T−βSP

delay),
where βSP ∈ [4, 5]. The exact value βSP achieves within
this interval depends whether Tdelay and Tresp are compara-
ble, with larger delays leading to more substantial decreases
(approaching βSP → 5 in the limit Tdelay ≫ Tresp). Such a
steep decrease with the desirable learning rate can explain
our anecdotal observations in Figs. 2 and 3C that slow-
points become rarer for large Tdelay or high learning rates,
which will be substantiated in the next section.

6

Dynamical phases of short-term memory mechanisms in RNNs

Now, we focus on the limit cycle model. For simplicity,
we fix the radius to an attractive fixed-point, and allow a
periodic oscillation in the frequency such that the equations
of the motion for the toy model become (See Appendix
S2.2 for derivations) x(t) = sin(2πrt), where r ∈ R is
a learnable parameter. The network output is defined as
ô(x) = Θ(x < 0), where Θ(·) is defined as the Heaviside
function. By inspection, the rotations have a half-period
of Thalf = 1

2r , and the model outputs zero for the first
Thalf while outputting one for the second half. An example
flow map is shown in Fig. S2A; changing the parameter, r,
modulates the frequency/period of the cycle.

In Appendix S2.2, we compute an analytical loss function
for the limit cycle model in the limits Tresp = Tdelay and
Tresp ≪ Tdelay. We illustrate the latter case in Fig. S2B,
note the exact correspondence between the analytical curve
and the numerical simulations. For both cases, the loss
function has a global optimum at r = 1

2Tdelay
. However, it

has a kink around the global minimum and quickly flattens
to a constant value for r ≤ 1

2(Tdelay+Tresp)
. Hence, if the

learning rate is larger than some critical value, the oscilla-
tions around the global minimum can throw the parameter
r to a value r < 1

2(Tdelay+Tresp)
, terminating the training

process due to the zero gradient despite the fact that the
model cannot solve the task. Our analysis reveals that this
maximum learning rate scales following α∗

LC ∼ T−βLC

delay

where βLC ∈ [2, 3]. Notably, given that βLC ≤ βSP, the
limit cycle solution has a better scaling than the slow-point
one, providing a theoretical explanation for our observation
in Fig. 2. Specifically, since the RNN in Fig. 2 was trained
using a learning rate right at the transition (compare to Fig.
S1), it is not surprising that a slow point mechanism even-
tually evolved into a limit cycle. Moreover, this theoretical
prediction is also consistent with the experiments in Fig. 3C,
where increasing the delay period for a fixed learning rate
resulted in more RNNs finding limit cycle based solutions.
Hence, both learning rate and the duration of the delay can
influence the learned latent mechanism during training.

Further insights from toy models– The distinct scaling of
βLC and βSP also highlights the existence of an interest-
ing phenomenon: a phase space of mechanisms that can be
learned by RNNs. This phase space (which will be discussed
in Fig. 4G) depends on the delay time (a task parameter)
and the learning rate (an optimization parameter). On the
other hand, it is important to not over-interpret the toy model
results. Specifically, increasing the dimensionality of the
latent dynamical system can allow more efficient solutions
to the task, and it may be possible for RNNs to utilize other
(diverse) mechanisms for storing memories (e.g., those us-
ing inherent transient dynamics in high-dimensional neural
networks (Jaeger, 2002; Liu et al., 2025; Maass et al., 2002;
Ichikawa & Kaneko, 2021)). Fortunately, the toy models we
discussed utilize mechanisms that are observed in practice

(Figs. 1, 2, and S1), and therefore can offer further insights
into learning dynamics in more complicated architectures.
Below, we provide one example case, and show empirically
that similar phase spaces emerge in full-rank RNNs trained
on delayed cue discrimination tasks.

3.4. Empirical scaling analyses of latent mechanisms

As a final step, we tested the theoretical predictions of the
toy models, including the proposed scaling laws and the
phase space of latent mechanisms, by training full-rank
RNNs on delayed cue-discrimination tasks (Figs. 4, S3, S4,
and S5). Similar to low-rank RNNs, full-rank RNNs also
learned to solve the task using two distinct mechanisms (Fig.
4A; Fig. S3A,B). Solutions involving sustained oscillations
exhibited minimal power at low frequencies, as the dynam-
ics were dominated by high-frequency components (Fig.
S3C). Based on this observation, we developed a mecha-
nism discrimination index that automatically classified the
learned RNNs into three groups: (i) networks relying on
slow-point manifolds, (ii) networks employing limit cycles,
and (iii) networks that failed to perform the task (see Fig.
S4 for representative examples).

Large-scale RNN experiments reproduced the toy model
predictions–We then applied this classification to examine
whether different mechanisms consistently emerged across
varying delay durations. In line with theoretical predictions,
increasing the length of the delay period preferentially led to
the emergence of limit cycles (Fig. 4B). These oscillatory so-
lutions disappeared beyond a critical learning rate for a given
delay, with the transition scaling as βLC = 2.72±0.07 (Fig.
4C), in close agreement with predictions (see Fig. S3D-
E for the procedure used to compute critical delays). For
shorter delays, RNNs predominantly developed slow-point
manifolds, with the transition scaling as βSP = 4.05± 0.10,
also matching the theoretical range (Fig. S3). However,
when we trained RNNs on a modified task variant that in-
cluded a post-reaction window, slow-point solutions were
no longer observed, and only oscillatory dynamics emerged
(Fig. 4D-F). To summarize these transitions, we plotted
phase diagrams (Fig. 4G-I) derived from both the theoret-
ical model and the full-rank RNN experiments, capturing
the conditions under which each mechanism emerged and
their associated scaling laws.

Control experiments–Finally, we performed two additional
control experiments. In Fig. S5, we repeated the analysis
using RNNs with slower intrinsic dynamics (i.e., larger τ),
and in Fig. S6, we tested a version of the task that no
longer required memory maintenance. In the latter case,
the dependence on task duration nearly vanished, and the
scaling observed in Fig. 4 was substantially weakened (β =
0.38 ± 0.02). These findings reinforce the idea that the
computational mechanisms adopted by RNNs are not fixed

7

Dynamical phases of short-term memory mechanisms in RNNs

B

Delay (ms)
4000 100 200 300

0

1

Fr
ac

tio
n

of
 R

N
N

s

SP manifold

Memory
mechanism

Limit cycle
Not learned

Number of epochs
0 1000

0.1

0Lo
ss

 fu
nc

tio
n

va
lu

es
A

Le
ar

ni
ng

 ra
te

s

Delay (ms)
30 100 300

10-1

10-2

10-3

C

β = 2.72 ± 0.07,
R2 = 0.98, p<10-3

Scaling of the
no-solution boundary

D

Number of epochs
0 1000

0.1

0Lo
ss

 fu
nc

tio
n

va
lu

es

E

Delay (ms)
4000 100 200 300

0

1
Fr

ac
tio

n
of

 R
N

N
s

F

Le
ar

ni
ng

 ra
te

s

Delay (ms)
30 100 300

10-1

10-2

10-3

β = 2.65 ± 0.23,
R2 = 0.93, p<10-3

Scaling of the
no-solution boundary

Scaling analysis in delayed cue discrimination tasks with a post-reaction period (Tpost = 50ms)

Phases of learned short-term memory mechanisms

Scaling analysis in delayed cue discrimination tasks with no post-reaction period (Tpost = 0ms)

G Tpost = 0 ms Tpost = 50 ms

Delay (ms)
4000 200Le

ar
ni

ng
 ra

te
 (l

og
sc

al
e)

10-1

10-2

4000 200
10-3

H
10-1

10-2

10-3

10-3

10-5

10-7

10-9

0 200 400

Le
ar

ni
ng

 ra
te

Slow point
Limit cycle

Scaling curves
(phase boundaries)Phase 3

no learning

Phase 2
Only limit cycles

Phase 1
both

IToy models

Le
ar

ni
ng

 ra
te

 (l
og

sc
al

e)

Figure 4. Emergent phases of attractor mechanisms in RNNs performing delayed cue-discrimination. A Loss curves corresponding
to different memory mechanisms observed during training. B Distributions of learning rates and resulting memory mechanisms as a
function of the delay period. Each line represents a distinct learning rate; each run is initialized with a different random seed. C Power-law
fits shown on a log-log scale, where the y-axis indicates the maximum learnable delay and the x-axis the corresponding critical learning
rate. Each dot denotes the cutoff delay value beyond which learning fails (see Methods for how these values are estimated). D-F Same as
in panels A-C, but for tasks with post-reaction windows. G The phase diagram of mechanisms predicted by the toy model. H-I Phase
diagrams corresponding to panels B-E, where color intensity reflects the proportion of trials converging to each of the three dynamical
phases. As predicted by the theoretical analysis in G, the original task (H) reveals three distinct regimes, whereas the inclusion of a
post-reaction window (I) biases the model toward limit cycle dynamics. To generate these phase diagrams, we trained over 65,000 RNNs
across varying learning rates, delay intervals (Tdelay), and random seeds (see Table S1). For full parameter details, refer to Section S4.

but shaped by the task’s demands. In particular, memory
duration, learning rate, and structural constraints (refer to
Q3 above) jointly determine the preferred mechanism.

4. Discussion
In this work, we set out to answer three fundamental ques-
tions about the population-level mechanisms that can sup-
port short-term memory in neural networks.

What mechanisms support memory maintenance through
sequential neural activity? In the memory tasks studied
here, neural activation sequences consistently emerged as

core components of the solutions. These sequences arose
through two distinct mechanisms: slow-point manifolds and
limit cycles. While the use of slow-points to approximate
sequences is well aligned with prior intuitions (Khona &
Fiete, 2022), the emergence of limit cycles in this context
represents a novel prediction of our framework. Although
limit cycles have previously been observed in memory tasks
(Pals et al., 2024), they typically appear when periodicity is
embedded in the task design. In contrast, the delayed activa-
tion and delayed cue-discrimination tasks used here had no
explicit periodic components. Thus, the appearance of limit
cycles in these tasks suggests an alternative, previously un-

8

Dynamical phases of short-term memory mechanisms in RNNs

derappreciated, mechanism for generating sustained neural
sequences in the absence of external rhythmic input or an
oscillatory output.

What determines which mechanism is favored under dif-
ferent memory tasks or training conditions? Our analyti-
cal results revealed that the selection between slow-point
manifolds and limit cycles depended on both the structure
of the task and the learning rate used in the optimization.
We later confirmed these predictions in large-scale simu-
lations using full-rank RNNs (Table S1). This finding is
particularly striking in light of recent interest in dynamical
systems approaches in neuroscience, where considerable
effort has gone into identifying and manipulating attractors
and manifolds that underlie neural activity (Liu et al., 2024;
Vinograd et al., 2024). The sharp divergence in dynam-
ical solutions (slow-points versus limit cycles) emerging
from minor changes in task design underscores a critical
point: the structure of the task can strongly shape the neural
dynamics that emerge.

This raises important questions about how we interpret dy-
namical structures observed in neural recordings. Can we
conclude that one type of solution is more fundamental than
another simply because it appears in a specific task variant?
Our findings highlight the need for caution. They suggest
that conclusions about the nature of neural computations
must be grounded not only in observed dynamics but also
in a careful analysis of how task parameters may constrain
or bias the underlying solutions. What may appear to be a
core computational motif could, in fact, reflect a contingent
outcome of the task design itself.

How do the learned mechanisms vary with the delay dura-
tion? A key insight into this question comes from exam-
ining how critical learning rates (beyond which learning
ceases to be effective) scale with delay length. In simple
delayed-response tasks, we found that the critical learning
rate allowing successful training decreases as a power-law
function of the delay. As the delay increases, smaller and
smaller updates are required, ultimately making training
impractically slow for long durations. This constraint may
underlie the historical difficulty of capturing long-term de-
pendencies in RNNs, as highlighted in early work (Bengio
et al., 1994).

The introduction of gated architectures such as LSTMs and
GRUs partially addressed this issue by enabling networks
to learn adaptive timescales (Hochreiter, 1997). These ar-
chitectures could perhaps bypass the power-law constraint
by dynamically modulating their internal time-scales, and
thereby extend their memory retention periods. However,
even if successful, this flexibility would lead to trade-offs.
Extending timescales indefinitely slows down network re-
sponses, limiting their utility for rapid decision-making.
In addition, expanding the parameter space to accommo-

date longer memory spans can complicate optimization and
destabilize learning (Dinc et al., 2025b). Unlike biological
systems, which operate under biophysical constraints such
as membrane time constants and action potentials, artifi-
cial networks must learn timescales through training, which
is not always possible even if the underlying network is
theoretically capable of solving a particular task.

Overall, by framing the challenge through dynamical sys-
tems theory, our work highlights a core trade-off between
memory duration, learning speed, and network stability. Un-
derstanding this trade-off offers a principled explanation for
the persistent difficulty of learning long-term dependencies
and opens the door to new strategies that balance biological
plausibility, computational efficiency, and learning perfor-
mance.

Concluding remarks—Our findings carry important impli-
cations for experimental neuroscience. We have shown
that both slow-points and limit cycles can serve as effec-
tive mechanisms for generating sequential neural activity.
However, in the context of a dynamic brain, where synap-
tic plasticity continually reshapes functional connectivity
(Ebrahimi et al., 2022), it remains unclear how to determine
whether observed sequences are supported by slow-points
or limit cycles. More broadly, how can we distinguish be-
tween dynamical solutions that produce equivalent activity
patterns during a trial, but diverge in their behavior once
the trial ends? To our knowledge, this question (concerning
equivalence of distinct latent mechanisms subserving task
execution, but later diverging after the task conclusion) has
not been explicitly addressed in experimental designs within
systems neuroscience. Tackling it would require a shift in
how experiments are conceptualized and conducted. As a
starting point, our work illustrates how (even minor) ma-
nipulations of task structure can lead to distinct underlying
mechanisms.

Beyond neuroscience, the phenomenon of staged learning
dynamics and algorithmic phase transitions has been widely
documented in artificial neural networks, including Trans-
formers trained on modular arithmetic (Liu et al., 2022;
Nanda et al., 2023), language modeling (Wei et al., 2022;
Lubana et al., 2024), and in-context learning (Raventós et al.,
2024). Within this growing literature, our study of RNNs
provides a complementary perspective, grounded in dynam-
ical systems theory, that connects computational behavior
to interpretable latent mechanisms. Recent efforts aim to
formalize learning progress in feedforward networks using
quantities analogous to order parameters in physics (Park
et al., 2024). Our results go a step further by identifying
literal phase transitions between qualitatively distinct com-
putational strategies in dynamical systems. Future work
may explore how these mechanisms can be implemented or
approximated by feedforward architectures.

9

Dynamical phases of short-term memory mechanisms in RNNs

Acknowledgements
We would like to thank members of the Geometric Intelli-
gence Lab for their helpful feedback on an earlier version
of the project and Dr. Boris Shraiman for fruitful discus-
sions on the final manuscript. EC and BK’s internships were
supported in part by a grant from the Feldman-McClelland
Open-a-Door fund of the Pittsburgh Foundation. BK thanks
the Impact Scholarship and Research Scholarship for Crit-
ical Thinkers programs from the Bridge to Turkiye Funds
for supporting his visit to Stanford University. FD expresses
gratitude for the valuable mentorship he received at PHI Lab
during his internship at NTT Research and acknowledges
funding from Stanford University’s Mind, Brain, Compu-
tation and Technology program, which is supported by the
Stanford Wu Tsai Neuroscience Institute.. MJS gratefully
acknowledges funding from the Simons Collaboration on
the Global Brain and the Vannevar Bush Faculty Fellow-
ship Program of the U.S. Department of Defense. NM ac-
knowledges funding from the National Science Foundation,
award 2313150. PY was additionally supported by the Foun-
dation of the Shanghai Municipal Education Commission
(No. 24RGZNA01). This research was supported in part by
grant NSF PHY-2309135 and the Gordon and Betty Moore
Foundation Grant No. 2919.02 to the Kavli Institute for
Theoretical Physics (KITP). Some of the computing for this
project was performed on the Sherlock cluster. We would
like to thank Stanford University and the Stanford Research
Computing Center for providing computational resources
and support that contributed to these research results.

Impact Statement
This paper contributes to machine learning and computa-
tional neuroscience by making an unprecedented number
of trained RNNs publicly available—models that required
several weeks of compute time to generate.

References
Atkinson, R. C. and Shiffrin, R. M. Human memory: A

proposed system and its control processes. Psychology of
Learning and Motivation, 1968.

Baddeley, A. D. and Hitch, G. Working memory. vol-
ume 8 of Psychology of Learning and Motivation, pp.
47–89. Academic Press, 1974. doi: https://doi.org/10.
1016/S0079-7421(08)60452-1.

Baeg, E., Kim, Y., Huh, K., Mook-Jung, I., Kim, H., and
Jung, M. Dynamics of population code for working mem-
ory in the prefrontal cortex. Neuron, 40(1):177–188,
2003.

Barash, S., Bracewell, R. M., Fogassi, L., Gnadt, J. W., and
Andersen, R. A. Saccade-related activity in the lateral

intraparietal area. i. temporal properties; comparison with
area 7a. Journal of neurophysiology, 66(3):1095–1108,
1991.

Bengio, Y., Simard, P., and Frasconi, P. Learning long-term
dependencies with gradient descent is difficult. IEEE
transactions on neural networks, 5(2):157–166, 1994.

Bondi, M. W., Edmonds, E. C., and Salmon, D. P.
Alzheimer’s disease: past, present, and future. Journal of
the International Neuropsychological Society, 23(9-10):
818–831, 2017.

Brennan, C. and Proekt, A. Attractor dynamics with activity-
dependent plasticity capture human working memory
across time scales. Communications psychology, 1(1):28,
2023.

Cavanagh, S. E., Towers, J. P., Wallis, J. D., Hunt, L. T., and
Kennerley, S. W. Reconciling persistent and dynamic hy-
potheses of working memory coding in prefrontal cortex.
Nature communications, 9(1):3498, 2018.

Chung, J., Gulcehre, C., Cho, K., and Bengio, Y. Empirical
evaluation of gated recurrent neural networks on sequence
modeling. arXiv preprint arXiv:1412.3555, 2014.

Constantinidis, C. and Klingberg, T. The neuroscience of
working memory capacity and training. Nature Reviews
Neuroscience, 17(7):438–449, 2016.

Curtis, C. E. and D’Esposito, M. Persistent activity in the
prefrontal cortex during working memory. Trends in
cognitive sciences, 7(9):415–423, 2003.

Dinc, F., Shai, A., Schnitzer, M., and Tanaka, H. CORNN:
Convex optimization of recurrent neural networks for
rapid inference of neural dynamics. In Thirty-seventh
Conference on Neural Information Processing Systems,
2023. URL https://openreview.net/forum?
id=GGIA1p9fDT.

Dinc, F., Blanco-Pozo, M., Klindt, D., Acosta, F., Jiang, Y.,
Ebrahimi, S., Shai, A., Tanaka, H., Yuan, P., Schnitzer,
M. J., et al. Latent computing by biological neural net-
works: A dynamical systems framework. arXiv preprint
arXiv:2502.14337, 2025a.

Dinc, F., Cirakman, E., Jiang, Y., Yuksekgonul, M.,
Schnitzer, M. J., and Tanaka, H. A ghost mechanism:
An analytical model of abrupt learning. arXiv preprint
arXiv:2501.02378, 2025b.

Dubreuil, A., Valente, A., Beiran, M., Mastrogiuseppe, F.,
and Ostojic, S. The role of population structure in com-
putations through neural dynamics. Nature Neuroscience,
pp. 1–12, 2022.

10

https://openreview.net/forum?id=GGIA1p9fDT
https://openreview.net/forum?id=GGIA1p9fDT

Dynamical phases of short-term memory mechanisms in RNNs

Ebrahimi, S., Lecoq, J., Rumyantsev, O., Tasci, T., Zhang,
Y., Irimia, C., Li, J., Ganguli, S., and Schnitzer, M. J.
Emergent reliability in sensory cortical coding and inter-
area communication. Nature, 605(7911):713–721, 2022.

Finkelstein, A., Fontolan, L., Economo, M. N., Li, N., Ro-
mani, S., and Svoboda, K. Attractor dynamics gate cor-
tical information flow during decision-making. Nature
Neuroscience, 24(6):843–850, 2021.

Fuster, J. M. and Alexander, G. E. Neuron activity related to
short-term memory. Science, 173(3997):652–654, 1971.

Geiger, J. R., Lübke, J., Roth, A., Frotscher, M., and Jonas,
P. Submillisecond ampa receptor-mediated signaling at
a principal neuron–interneuron synapse. Neuron, 18(6):
1009–1023, 1997.

Gnadt, J. W. and Andersen, R. A. Memory related motor
planning activity in posterior parietal cortex of macaque.
Experimental brain research, 70:216–220, 1988.

Harrison, S. A. and Tong, F. Decoding reveals the contents
of visual working memory in early visual areas. Nature,
458(7238):632–635, 2009.

Harvey, C. D., Coen, P., and Tank, D. W. Choice-specific
sequences in parietal cortex during a virtual-navigation
decision task. Nature, 484(7392):62–68, 2012.

Hochreiter, S. Long short-term memory. Neural Computa-
tion MIT-Press, 1997.

Ichikawa, K. and Kaneko, K. Short-term memory by tran-
sient oscillatory dynamics in recurrent neural networks.
Physical Review Research, 3(3):033193, 2021.

Isokawa, M. Membrane time constant as a tool to assess cell
degeneration. Brain Research Protocols, 1(2):114–116,
1997.

Jaeger, H. Adaptive nonlinear system identification with
echo state networks. Advances in neural information
processing systems, 15, 2002.

Jonas, P., Major, G., and Sakmann, B. Quantal components
of unitary epscs at the mossy fibre synapse on ca3 pyrami-
dal cells of rat hippocampus. The Journal of physiology,
472(1):615–663, 1993.

Khona, M. and Fiete, I. R. Attractor and integrator networks
in the brain. Nature Reviews Neuroscience, 23(12):744–
766, 2022.

Kozachkov, L., Tauber, J., Lundqvist, M., Brincat, S. L.,
Slotine, J.-J., and Miller, E. K. Robust and brain-like
working memory through short-term synaptic plasticity.
PLoS computational biology, 18(12):e1010776, 2022.

Laje, R. and Buonomano, D. V. Robust timing and motor
patterns by taming chaos in recurrent neural networks.
Nature neuroscience, 16(7):925–933, 2013.

Lee, J. and Park, S. Working memory impairments in
schizophrenia: a meta-analysis. Journal of abnormal
psychology, 114(4):599, 2005.

Liu, C., Jia, S., Liu, H., Zhao, X., Li, C. T., Xu, B., and
Zhang, T. Recurrent neural networks with transient tra-
jectory explain working memory encoding mechanisms.
Communications Biology, 8(1):137, 2025.

Liu, M., Nair, A., Coria, N., Linderman, S. W., and An-
derson, D. J. Encoding of female mating dynamics by a
hypothalamic line attractor. Nature, pp. 1–3, 2024.

Liu, Z., Michaud, E. J., and Tegmark, M. Omnigrok:
Grokking beyond algorithmic data. In The Eleventh Inter-
national Conference on Learning Representations, 2022.

Lubana, E. S., Kawaguchi, K., Dick, R. P., and Tanaka,
H. A percolation model of emergence: Analyzing trans-
formers trained on a formal language. arXiv preprint
arXiv:2408.12578, 2024.

Maass, W., Natschläger, T., and Markram, H. Real-time
computing without stable states: A new framework for
neural computation based on perturbations. Neural com-
putation, 14(11):2531–2560, 2002.

Mante, V., Sussillo, D., Shenoy, K. V., and Newsome, W. T.
Context-dependent computation by recurrent dynamics
in prefrontal cortex. nature, 503(7474):78–84, 2013.

Masse, N. Y., Yang, G. R., Song, H. F., Wang, X.-J., and
Freedman, D. J. Circuit mechanisms for the maintenance
and manipulation of information in working memory.
Nature neuroscience, 22(7):1159–1167, 2019.

McCormick, D. A., Connors, B. W., Lighthall, J. W., and
Prince, D. A. Comparative electrophysiology of pyrami-
dal and sparsely spiny stellate neurons of the neocortex.
Journal of neurophysiology, 54(4):782–806, 1985.

Meyers, E. M., Freedman, D. J., Kreiman, G., Miller, E. K.,
and Poggio, T. Dynamic population coding of category
information in inferior temporal and prefrontal cortex.
Journal of neurophysiology, 100(3):1407–1419, 2008.

Miles, R. Synaptic excitation of inhibitory cells by single
ca3 hippocampal pyramidal cells of the guinea-pig in
vitro. The Journal of physiology, 428(1):61–77, 1990.

Mongillo, G., Barak, O., and Tsodyks, M. Synaptic theory
of working memory. Science, 319(5869):1543–1546,
2008.

11

Dynamical phases of short-term memory mechanisms in RNNs

Nanda, N., Chan, L., Lieberum, T., Smith, J., and Stein-
hardt, J. Progress measures for grokking via mechanistic
interpretability. arXiv preprint arXiv:2301.05217, 2023.

Pals, M., Macke, J. H., and Barak, O. Trained recurrent
neural networks develop phase-locked limit cycles in a
working memory task. PLOS Computational Biology, 20
(2):e1011852, 2024.

Park, C. F., Lubana, E. S., Pres, I., and Tanaka, H. Compe-
tition dynamics shape algorithmic phases of in-context
learning. arXiv preprint arXiv:2412.01003, 2024.

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E.,
DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., and Lerer,
A. Automatic differentiation in pytorch. In 31st Confer-
ence on Neural Information Processing Systems, 2017.

Perich, M. G. and Rajan, K. Rethinking brain-wide interac-
tions through multi-region ‘network of networks’ models.
Current opinion in neurobiology, 65:146–151, 2020.

Perich, M. G., Arlt, C., Soares, S., Young, M. E., Mosher,
C. P., Minxha, J., Carter, E., Rutishauser, U., Rudebeck,
P. H., Harvey, C. D., et al. Inferring brain-wide inter-
actions using data-constrained recurrent neural network
models. bioRxiv, pp. 2020–12, 2021.

Rajan, K., Harvey, C. D., and Tank, D. W. Recurrent net-
work models of sequence generation and memory. Neu-
ron, 90(1):128–142, 2016.

Raventós, A., Paul, M., Chen, F., and Ganguli, S. Pretrain-
ing task diversity and the emergence of non-bayesian
in-context learning for regression. Advances in Neural
Information Processing Systems, 36, 2024.

Schäfer, A. M. and Zimmermann, H. G. Recurrent neural
networks are universal approximators. In Artificial Neural
Networks–ICANN 2006: 16th International Conference,
Athens, Greece, September 10-14, 2006. Proceedings,
Part I 16, pp. 632–640. Springer, 2006.

Scott, J. C., Matt, G. E., Wrocklage, K. M., Crnich, C., Jor-
dan, J., Southwick, S. M., Krystal, J. H., and Schweins-
burg, B. C. A quantitative meta-analysis of neurocogni-
tive functioning in posttraumatic stress disorder. Psycho-
logical bulletin, 141(1):105, 2015.

Serences, J. T. Neural mechanisms of information storage
in visual short-term memory. Vision research, 128:53–67,
2016.

Sommer, F. T. and Wennekers, T. Synfire chains with
conductance-based neurons: internal timing and coordina-
tion with timed input. Neurocomputing, 65-66:449–454,
2005. ISSN 0925-2312. doi: https://doi.org/10.1016/
j.neucom.2004.10.015. Computational Neuroscience:
Trends in Research 2005.

Spaak, E., Watanabe, K., Funahashi, S., and Stokes, M. G.
Stable and dynamic coding for working memory in pri-
mate prefrontal cortex. Journal of neuroscience, 37(27):
6503–6516, 2017.

Stokes, M. G. ‘activity-silent’working memory in prefrontal
cortex: a dynamic coding framework. Trends in cognitive
sciences, 19(7):394–405, 2015.

Strogatz, S. H. Nonlinear dynamics and chaos: with appli-
cations to physics, biology, chemistry, and engineering.
CRC press, 2018.

Stroud, J. P., Duncan, J., and Lengyel, M. The computa-
tional foundations of dynamic coding in working memory.
Trends in Cognitive Sciences, 2024.

Sussillo, D. and Barak, O. Opening the black box: low-
dimensional dynamics in high-dimensional recurrent neu-
ral networks. Neural computation, 25(3):626–649, 2013.

Thibeault, V., Allard, A., and Desrosiers, P. The low-rank
hypothesis of complex systems. Nature Physics, pp. 1–9,
2024.

Todd, J. J. and Marois, R. Capacity limit of visual short-
term memory in human posterior parietal cortex. Nature,
428(6984):751–754, 2004.

Valente, A., Pillow, J. W., and Ostojic, S. Extracting com-
putational mechanisms from neural data using low-rank
rnns. Advances in Neural Information Processing Sys-
tems, 35:24072–24086, 2022.

Vaswani, A. Attention is all you need. Advances in Neural
Information Processing Systems, 2017.

Vinograd, A., Nair, A., Kim, J., Linderman, S. W., and An-
derson, D. J. Causal evidence of a line attractor encoding
an affective state. Nature, pp. 1–3, 2024.

Walker, E. Y., Sinz, F. H., Cobos, E., Muhammad, T.,
Froudarakis, E., Fahey, P. G., Ecker, A. S., Reimer, J.,
Pitkow, X., and Tolias, A. S. Inception loops discover
what excites neurons most using deep predictive models.
Nature neuroscience, 22(12):2060–2065, 2019.

Wang, X.-J. 50 years of mnemonic persistent activity: quo
vadis? Trends in Neurosciences, 44(11):888–902, 2021.

Wei, J., Tay, Y., Bommasani, R., Raffel, C., Zoph, B.,
Borgeaud, S., Yogatama, D., Bosma, M., Zhou, D., Met-
zler, D., et al. Emergent abilities of large language models.
arXiv preprint arXiv:2206.07682, 2022.

Yang, G. R., Joglekar, M. R., Song, H. F., Newsome, W. T.,
and Wang, X.-J. Task representations in neural networks
trained to perform many cognitive tasks. Nature neuro-
science, 22(2):297–306, 2019.

12

Dynamical phases of short-term memory mechanisms in RNNs

Methods
S1. Theoretical details on attractor mechanisms subserving short-term memory
S1.1. A short background on dynamical system theory

A dynamical system describes how the state of a system evolves over time. Formally, it can be represented by a differential
equation of the form:

ẋ(t) = f(x(t)), x(t0) = x0,

where x0 denotes the initial state, and ẋ represents the time derivative of the state variable x ∈ Rn.

In neuroscience, researchers often examine neural firing rates r ∈ Rn through the lens of dynamical systems. This approach
helps uncover how temporal dynamics unfold within lower-dimensional neural state spaces, as characterized by dynamical
systems theory.

Since firing rates are themselves components of the system’s state, in this study we simulate such systems using leaky
firing-rate RNNs—biologically interpretable neural networks. One might argue that RNNs may not be expressive enough to
learn such complex dynamics and that more sophisticated architectures like Long Short-Term Memory networks (LSTMs)
or Transformers might perform better. However, this concern is addressed by the universal approximation property of RNNs,
which states that, given a sufficient number of neurons, even vanilla RNNs can approximate any dynamical system (Schäfer
& Zimmermann, 2006). Additionally, compared to more complex models, RNNs offer greater interpretability due to their
simpler and shallower architecture.

As previously mentioned, neuroscientists often study neural activity through the lens of attractor dynamics. In this framework,
researchers analyze how systems evolve over time by characterizing their underlying attractor structures. As we focus on
several commonly studied attractors from dynamical systems theory (Strogatz, 2018), we describe the fixed-point attractors,
slow-point manifolds, and limit cycles below.

Fixed-Point Attractors: In a fixed-point attractor, the system evolves toward a specific state where it remains indefinitely.
Once the state is reached, the time derivative becomes zero, i.e., ẋ = 0.

Slow-Point Manifolds: Slow-point manifolds are particularly relevant to memory-related mechanisms in neuroscience.
These manifolds describe regions of the state space where the system changes very slowly, satisfying ẋ ≈ 0. Unlike fixed
points, which trap the system, slow points allow it to persist along a trajectory over time. This property enables the system
to maintain information temporarily, as illustrated in Fig. S4D.

Limit Cycle Attractors: Limit cycle attractors describe systems that exhibit sustained oscillatory behavior. These
trajectories form closed loops in state space and are often associated with rhythmic or repeated tasks. In such cases, ẋ ̸= 0,
as shown in Fig. S4C. However, as demonstrated in our experiments, limit cycles can closely approximate slow-point
manifolds during the trial period.

Importantly, a single dynamical system may contain multiple attractor types, and the specific trajectory it follows can depend
on the initial condition x0. Nonetheless, identifying and understanding these fundamental attractor structures is essential for
uncovering the mechanisms underlying neural population dynamics.

S2. Theoretical studies of scaling relationships via toy models
In this section, we provide the additional details and calculations regarding the toy models we introduced in the main text.

S2.1. The ghost model

The first model we considered is the ghost model, which effectively forms a slow point that can be used to store the duration
of the delay before the network takes an action. This model was introduced in a prior work (Dinc et al., 2025b), whose
results we briefly summarize below. Then, we generalize the methodology introduced in the earlier work, which we will
eventually use to study the additional toy models we introduced in this work.

13

Dynamical phases of short-term memory mechanisms in RNNs

S2.1.1. SUMMARY OF THE PREVIOUS WORK

The toy model starts with a one-dimensional dynamical system:

τ ẋ(t) = x2(t) + r, (S1)

where x ∈ R is the state variable and r ∈ R is a learnable parameter. Here, τ is a fixed time scale, which we effectively set
to one such that time is computed in dimensionless units (in units of τ). This system is very well known in the traditional
dynamical system theory literature as the standard form for the saddle-node bifurcation (Strogatz, 2018). Specifically, for
r < 0, the dynamical system has two fixed points x∗ = ±

√
−r, the one on the left being attractive and the other repulsive.

However, for r > 0, the system has no fixed-points. Hence, a “saddle-node bifurcation” is said to take place as r is varied
between positive and negative values (Strogatz, 2018). Since local minima of most functions can be approximated by a
quadratic term, this is considered the standard form for the saddle-node bifurcation and can be used to approximate the
emergence/collusion of two fixed-points.

Though traditional work often focuses on changes as r is varied by hand, (Dinc et al., 2025b) has taken an alternative
approach and considered learning this parameter through a task. Specifically, the output of the network is defined as
ô(x) = Θ(x − x∗), where Θ(·) is the Heaviside function and x∗ is some fixed-parameter (which is later taken to ∞ in
analytical calculations). The model is initialized at x(t = 0) = 0. Then, the goal of the model is to output 0 until some time
T and then 1 for another T times. In mathematical terms, o(t) = Θ(t − T). Unlike the prior work (Dinc et al., 2025b),
since our goal is to understand the scaling of the effective learning rates with respect to the delay period lengths, we define a
normalized loss function as:

L(r) = 1

T

∫ 2T

0

(ô(x(t))− o(t))2 dt. (S2)

It is possible to compute this loss function exactly in the limit x∗ → ∞, which is as follows (Dinc et al., 2025b):

L(r) =

{∣∣∣1− π
2T

√
r

∣∣∣ for r ≥ r∗

4 ,

1 otherwise.
(S3)

This loss function achieves the global minimum at r∗ = π2

4T 2 such that L(r∗) = 0. One can compute the analytical gradient
as:

∇L(r) =

− π

4Tr3/2
for π2

16T 2 < r < π2

4T 2 ,
π

4Tr3/2
for r > π2

4T 2 ,

0 for r < π2

16T 2 .

(S4)

Here, the zero gradient for r < π2

16T 2 is practically undesirable, since the loss function is still quite high. This flat region,
also observed in other toy models of our interest, is referred to as a “no learning zone.” Once a model is caught in this region,
there is no returning back.

Moreover, in this toy model, an interesting phenomenon emerges around the global minimum. Specifically, the derivative at
r = r∗ = π2

4T 2 becomes:

At r =
π2

4T 2
: ∇L(r) =

{
− 2T 2

π2 from the left,
2T 2

π2 from the right.
(S5)

These expressions differ from (Dinc et al., 2025b) only in the sense that the normalization of the loss function introduces a
(T)−1 coefficient to the gradient computation. Notably, this loss function has a kink at its global optimum. Thanks to this
kink, (Dinc et al., 2025b) has defined a maximum (effective) learning rate α∗, for any α > α∗, the model would be thrown
from the global minimum to the zero gradient regime, after which the learning would come to an halt despite a non-desirable
loss value of 1. This learning rate can be computed as:

α∗
ghost |∇L(r)|r→r∗+

=
3π2

16T 2
=⇒ α∗

ghost =
3π4

32
T−4. (S6)

Thus, for a normalized loss function, the effective learning rate for the ghost point toy model scales following O(T−4).
Below, we extend this toy model with asymmetric response (Tresp) and delay (Tdelay) times.

14

Dynamical phases of short-term memory mechanisms in RNNs

S2.1.2. GHOST MODEL WITH ASYMMETRIC RESPONSE TIME

For the problem of our interest, we simply replace the loss function with:

L(r) = 1

Tdelay

∫ Tdelay

0

(ô(x(t))− 0)2 dt+
1

Tresp

∫ Tdelay+Tresp

Tdelay

(ô(x(t))− 1)2 dt,

=
1

Tdelay

∫ Tdelay

0

ô(x(t)) dt+
1

Tresp

∫ Tdelay+Tresp

Tdelay

[1− ô(x(t))] dt,

(S7)

As shown by previous work (Dinc et al., 2025b) (by integrating the dynamical system equations), in the limit x∗ → ∞,
the network output can be written as ô(t) = Θ(t− t∗), where t∗ = π

2
√
r

. This creates three distinct regimes of analytical
calculation: i) t∗ ≤ Tdelay, ii) Tdelay ≤ t∗ ≤ Tdelay + Tresp, and iii) Tdelay + Tresp ≤ t∗.

Let us start with the first case, t∗ ≤ Tdelay (i.e., r ≥ π2

4T 2
delay

):

L(r) = 1

Tdelay

∫ t∗

0

ô(x(t)) dt︸ ︷︷ ︸
=0

+
1

Tdelay

∫ Tdelay

t∗
ô(x(t)) dt+

1

Tresp

∫ Tdelay+Tresp

Tdelay

[1− ô(x(t))] dt︸ ︷︷ ︸
=0

,

=
1

Tdelay

∫ Tdelay

t∗
dt = 1− t∗

Tdelay
= 1− π

2Tdelay
√
r
.

(S8)

Next, we consider the second case, Tdelay ≤ t∗ ≤ Tdelay + Tresp (i.e., π2

4(Tdelay+Tresp)2
≤ r ≤ π2

4T 2
delay

):

L(r) = 1

Tdelay

∫ Tdelay

0

ô(x(t)) dt︸ ︷︷ ︸
=0

+
1

Tresp

∫ t∗

Tdelay

[1− ô(x(t))] dt+
1

Tresp

∫ Tdelay+Tresp

t∗
[1− ô(x(t))] dt︸ ︷︷ ︸

=0

,

=
1

Tresp

∫ t∗

Tdelay

dt =
t∗

Tresp
− Tdelay

Tresp
=

π

2Tresp
√
r
− Tdelay

Tresp
.

(S9)

Finally, we consider the third case, Tdelay + Tresp ≤ t∗ (i.e., r ≤ π2

4(Tdelay+Tresp)2
):

L(r) = 1

Tdelay

∫ Tdelay

0

ô(x(t)) dt︸ ︷︷ ︸
=0

+
1

Tresp

∫ Tdelay+Tresp

Tdelay

[1− ô(x(t))] dt

=
1

Tresp

∫ Tdelay+Tresp

Tdelay

dt = 1.

(S10)

Bringing all these cases together, the loss function becomes:

L(r) =

1 for r ≤ π2

4(Tdelay+Tresp)2
,

π
2Tresp

√
r
− Tdelay

Tresp
for π2

4(Tdelay+Tresp)2
≤ r ≤ π2

4T 2
delay

,

1− π
2Tdelay

√
r

for r ≥ π2

4T 2
delay

.

(S11)

Firstly, we note that this loss function is continuous and achieves its global minimum at r∗ = π2

4T 2
delay

such that L(r∗) = 0.
We can once again compute the derivative near the global minimum:

At r =
π2

4T 2
delay

: ∇L(r) =

− 2T 3
delay

Trespπ2 from the left,
2T 2

delay

π2 from the right.
(S12)

15

Dynamical phases of short-term memory mechanisms in RNNs

Similar to before, one can compute the critical learning rate due to the kink at the global optimum. First, noting rb =
π2

4(Tdelay+Tresp)2
, we arrive at:

r∗ − rb =
π2

4T 2
delay

− π2

4(Tdelay + Tresp)2
=

π2(2Tdelay + Tresp)Tresp

4T 2
delay(Tdelay + Tresp)2

Tdelay≫Tresp−−−−−−−−→ π2Tresp

2T 3
delay

. (S13)

Then, the critical learning rate can be found as:

α∗
ghost−as =

r − rb
|∇L(r∗+)|

≈ π2Tresp

2T 3
delay

π2

2T 2
delay

=
π4Tresp

4
T−5
delay. (S14)

In words, if the delay period is significantly longer than the response period, the critical learning rate scales as ∼ O(T−5
delay).

S2.2. Limit cycle model

Similar to a ghost model, another potential strategy for a delayed response involves creating limit cycle attractors. Though
there are multiple dynamical system forms one can use to model these attractors, we focus on a simple toy model as follows:

τ ρ̇(t) = (1− ρ2(t))ρ(t), τ θ̇(t) = 2πr, (S15)

where ρ and θ are polar coordinates and r is the trainable parameter as before. Here, τ is a fixed time scale, which we
effectively set to one such that time is computed in dimensionless units (in units of τ). We assume that the system is
initialized at ρ = 1 and θ = −π/2, and primarily focus on x(t) = ρ(t) cos(θ(t)). Below, we discuss how we train this
model to solve the delayed response task.

S2.2.1. TOY MODEL SETUP

Since ρ = 1 is a fixed point of the limit cycle system with ρ̇(t)|ρ=1 = 0 and θ(t) = 2πrt − π
2 , the time evolution of the

x-coordinate follows:
x(t) = sin(2πrt), (S16)

where r is a learnable parameter. Next, define the output of this system as ô(x(t)) = Θ(x(t) < 0). For the delayed response
task, we make a slight modification and assume that the delay is longer than the reaction time such that o(t) = Θ(T −Tdelay)
and the total task time is Ttotal = Tdelay + Tresp. Then, the loss function becomes:

L(r) = 1

Tdelay

∫ Tdelay

0

(Θ(x(t) < 0)− 0)2 dt+
1

Tresp

∫ Tdelay+Tresp

Tdelay

(Θ(x(t) < 0)− 1)2 dt,

=
1

Tdelay

∫ Tdelay

0

1(sin(2πrt) < 0) dt+
1

Tresp

∫ Tdelay+Tresp

Tdelay

1(sin(2πrt) > 0) dt

(S17)

When Tresp ≤ Tdelay, a simple inspection reveals that the global optimum of this problem is achieved when Tdelay

corresponds to the half the period, i.e., r∗ = 1
2Tdelay

. At this value, the network outputs 0 until Tdelay, and 1 for another
Tdelay ≥ Tresp, leading to L(r∗) = 0. In Fig. 3B, we show an example plot for the loss function. Notably, locally, this plot
shows a kink at the global minimum and a no-learning zone for r < rb, similar to the ghost model above. However, in
reality, the global loss landscape is far more complicated and no global no-learning zone exists.

As we discuss below, it is also possible to show that a local no-learning zone exists at r < rb =
1

2(Tdelay+Tresp)
, as for any

smaller r satisfying r > −rb, the system will only output 0 throughout the whole trial, hence a flat loss region exists with
the value of 1 for all r ∈ [−rb, rb]. Moreover, using geometrical reasoning, we can analytically compute the loss function
for − 1

2(Tdelay+Tresp)
≤ r ≤ 1

Tdelay+Tresp
under the condition that Tdelay ≫ Tresp, and for r > − 1

4T and r < 3
4T when

Tdelay = Tresp = T . First, we start with the limit that Tdelay = Tresp = T , and then later consider the long delay limit.

S2.2.2. ANALYTICAL CALCULATIONS WITH EQUAL DELAY AND RESPONSE TIMES

Noting that Thalf =
1

2|r| is the half period of the oscillations, we start by considering the regime − 1
4T ≤ r ≤ 1

4T , in which
Thalf ≥ 2T . In this case, x(t) = 1 or 0 for the full 2T duration, depending on whether r is positive or negative. In both
cases, the loss function is L(− 1

4T ≤ r ≤ 1
4T) = 1, i.e., flat.

16

Dynamical phases of short-term memory mechanisms in RNNs

Next, we consider the interval for which T ≤ Thalf ≤ 2T , i.e., 1
4T ≤ r ≤ 1

2T . Then, for the times T ≤ t ≤ Thalf , the model
outputs zero, whereas it should have outputted one. For this interval, the loss function then becomes:

L(r) = Thalf

T
− 1 =

1

2Tr
− 1 for

1

4T
≤ r ≤ 1

2T
. (S18)

Finally, we consider the interval 2T
3 ≤ Thalf ≤ T , which corresponds to 1

2T ≤ r ≤ 3
4T . In this case, the network outputs

zero for Thalf times (making an error in T − Thalf out of these), and one for another Thalf , only to come back to zero for
another 2T − 2Thalf times. Thus, in total, the network makes mistakes in 3(T − Thalf) out of the 2T total times. This leads
to the loss function:

L(r) = 3− 3Thalf

T
= 3− 3

2Tr
for

1

2T
≤ r ≤ 3

4T
. (S19)

Bringing all these together, we arrive at the loss function for − 1
4T ≤ r ≤ 3

4T as:

L(r) =

1 for − 1

4T ≤ r ≤ 1
4T ,

1
2Tr − 1 for 1

4T ≤ r ≤ 1
2T ,

3− 3
2Tr for 1

2T ≤ r ≤ 3
4T .

(S20)

Here, it is clear that for r∗ = 1
2T , the global minimum is achieved such that L(r∗) = 0. We can also compute the gradient at

this point as:

At r =
1

2T
: ∇L(r) =

{
−2T from the left,
6T from the right.

(S21)

Next, given that rb = 1
4T , we can compute an effective learning rate using the kink at the global optimum as:

α∗
LC =

r∗ − rb
|∇L(r∗+)|

=
1

4T

1

6T
=

1

24
T−2. (S22)

Interestingly, creating a limit cycle to solve the delayed response task leads to a better scaling with the trial time. Notably,
α∗
ghost in Eq. (S6) has a much higher pre-factor than α∗

LC in Eq. (S22). This means that for small T , it may be favorable to
learn ghost points, whereas for large T , limit cycles can be preferable.

S2.2.3. ANALYTICAL CALCULATIONS WITH LONG DELAYS

Now, we consider the limit Tdelay ≫ Tresp, and compute the analytical loss function for − 1
2(Tdelay+Tresp)

≤ r ≤ 1
Tdelay+Tresp

.

Firstly, similar to before, the loss function is flat for the region − 1
2(Tdelay+Tresp)

≤ r ≤ 1
2(Tdelay+Tresp)

, since Thalf ≥
Tdelay + Tresp. In other words, the model outputs either zeros (for r > 0) or ones (for r < 0) throughout the full window,
leading to L(r) = 1.

Next, we consider the case where Tdelay ≤ Thalf ≤ Tdelay + Tresp, i.e., 1
2(Tdelay+Tresp)

≤ r ≤ 1
2Tdelay

. In this case, the
network outputs zero for Thalf , which is longer than Tdelay and thus leading to an error contribution for times Thalf − Tdelay.
Since Thalf ≤ Tdelay + Tresp and 2Thalf ≥ 2Tdelay ≥ Tdelay + Tresp, the network correctly outputs one for the rest of the
trial. Hence, the loss function becomes:

L(r) = Thalf

Tresp
− Tdelay

Tresp
=

1

2Trespr
− Tdelay

Tresp
for

1

2(Tdelay + Tresp)
≤ r ≤ 1

2Tdelay
. (S23)

Thirdly, we consider the case Tdelay+Tresp

2 ≤ Thalf ≤ Tdelay, i.e., 1
2Tdelay

≤ r ≤ 1
Tdelay+Tresp

. Since Tdelay ≥ Thalf , the
model starts outputting ones even before Tdelay is reached. Hence, there is a contribution to the loss function for the time
duration Tdelay − Thalf . However, since 2Thalf ≥ Tdelay + Tresp, the model correctly outputs the ones during the response
window. Hence, the loss function becomes:

L(r) = 1− Thalf

Tdelay
= 1− 1

2Tdelayr
for

1

2Tdelay
≤ r ≤ 1

Tdelay + Tresp
. (S24)

17

Dynamical phases of short-term memory mechanisms in RNNs

Finally, we can consider the case Tdelay

2 ≤ Thalf ≤ Tdelay+Tresp

2 , i.e., 1
Tdelay+Tresp

≤ r ≤ 1
Tdelay

. Then, since 2Thalf ≥ Tdelay,
the network will incorrectly output one for the duration Tdelay − Thalf . Moreover, since 2Thalf ≤ Tdelay + Tresp and
by assumption Tresp ≤ Tdelay

2 (and thereby Tresp ≤ Thalf), the network will output zero incorrectly for the time interval
Tdelay + Tresp − 2Thalf . Then, the loss function here becomes:

L(r) = 1− Thalf

Tdelay
+

Tdelay + Tresp − 2Thalf

Tresp
= 2 +

Tdelay

Tresp
− 1

2rTdelay
− 1

rTresp
for

1

Tdelay + Tresp
≤ r ≤ 1

Tdelay
.

(S25)

Bringing all these together, we arrive at the (local values of the) loss function as:

L(r) =

1 for − 1

2(Tdelay+Tresp)
≤ r ≤ 1

2(Tdelay+Tresp)
,

1
2rTresp

− Tdelay

Tresp
for 1

2(Tdelay+Tresp)
≤ r ≤ 1

2Tdelay
,

1− 1
2rTdelay

for 1
2Tdelay

≤ r ≤ 1
Tdelay+Tresp

,

2 +
Tdelay

Tresp
− 1

2rTdelay
− 1

rTresp
for 1

Tdelay+Tresp
≤ r ≤ 1

Tdelay
.

(S26)

Here, it is clear that for r∗ = 1
2Tdelay

, the global minimum is achieved such that L(r∗) = 0. We can also compute the
gradient at this point as:

At r =
1

2Tdelay
: ∇L(r) =

{
−2

T 2
delay

Tresp
from the left,

2Tdelay from the right.
(S27)

Next, given that rb = 1
2(Tdelay+Tresp)

, we can compute the distance between the minimum and the no-learning zone as:

r∗ − rb =
1

2Tdelay
− 1

2(Tdelay + Tresp)
=

Tresp

2Tdelay(Tdelay + Tresp)

Tresp≪Tdelay−−−−−−−−→ Tresp

2T 2
delay

. (S28)

Then, we can compute the critical learning rate as

α∗
LC−as =

r∗ − rb
|∇L(r∗+)|

≈ Tresp

2T 2
delay

1

2Tdelay
=

Tresp

4
T−3
delay. (S29)

In words, if the delay period is significantly longer than the response period, the critical learning rate scales as ∼ O(T−3
delay).

It is worth noting that another candidate for the critical learning rate can be computed from the kink at r′ = 1
Tresp+Tdelay

,
which provides the same scaling.

S3. Experimental details on empirical evaluations
S3.1. Simulating RNN models

In this section, we describe how we implemented the update rule for the leaky firing-rate RNN defined in Equation (1).
Since the experiments are conducted in discrete time, we use the forward Euler method to update the firing rates:

r(t+ 1) = r(t) + αf(r(t), u(t)) (S30)

Here, r denotes the firing rate, f(·) corresponds to the update function defined in Equation (1), and α is the step size,
computed as α = ∆t/τ . The update function can be written more explicitly as:

r(t+ 1) = (1− α) r(t) + α tanh(Wr(t) +W inu(t) + b+ ϵ) (S31)

With this update rule, we can compute the firing rate at the next time step. The only remaining component is computing the
gradients from the predicted output ô(t) to the target output o∗(t), as described in Sections S3.2 and S3.3.

18

Dynamical phases of short-term memory mechanisms in RNNs

S3.2. Task details

Short-term memory is a fundamental cognitive process essential for mammalian survival. Several well-established studies
have proposed theories on memory maintenance that have deepened our understanding of short-term memory, as illustrated
in Fig. 1. However, while these theories focus solely on memory maintenance and response processes, they do not fully
explain the underlying mechanisms. This knowledge gap raises a critical question: Which mechanisms govern short-term
memory in the brain? To address this question, we investigate short-term memory through two key properties: memory
maintenance and information processing. Accordingly, we conduct experiments on two well-established neuroscience tasks:
the delayed activation and delayed cue-discrimination tasks. We determined these tasks because the first task exclusively
examines memory maintenance, while the second incorporates both information processing and the retention of input stimuli
to generate the relevant response. Furthermore, to enhance transparency and ensure the reproducibility of our experiments,
we provide a detailed outline of all task properties in this section.

S3.2.1. DELAYED ACTIVATION TASK

The delayed activation task allows us to isolate the memory component by assuming that cue processing has already occurred.
In this setup, the task consists of three distinct periods: the delay period (Tdelay), the reaction period (Tresp), and the
optional post-reaction period (Tpost). Since the cue period is omitted, the input remains zero throughout the trial, making
the task entirely dependent on the intrinsic dynamics of the recurrent model rather than external stimuli.

The expected ground truth responses, denoted as O∗ = {o∗1, o∗2, o∗3, ..., o∗T }, are defined over the total duration T =
Tdelay + Tresp + Tpost as follows:

o∗t =

{
1, if t ∈ Tresp

0, otherwise
(S32)

This task is inherently simpler than the delayed cue-discrimination task, as it isolates the challenge of maintaining information
in memory without requiring cue processing. By setting the input u to zero at all times, the model must rely solely on its
internal state dynamics to correctly generate the expected response during the reaction period. The optional post-reaction
period allows for additional investigation into how the network dynamics stabilize after completing the required response.

S3.2.2. DELAYED CUE-DISCRIMINATION TASK

In contrast to the delayed activation task, the delayed cue-discrimination task involves two input channels and two output
channels. It consists of four distinct periods: the cue period (Tin), delay period (Tdelay), reaction period (Tresp), and an
optional post-reaction period (Tpost). This task allows us to investigate both stimulus processing and memory components
simultaneously.

The input cue for the delayed cue-discrimination task, denoted as

U = {(u1
1, u

2
1), (u

1
2, u

2
2), (u

1
3, u

2
3), ..., (u

1
T , u

2
T)}

is defined over the total duration T = Tin + Tdelay + Tresp + Tpost as follows:

ut =

{
(0, 1) or (1, 0), if t ∈ Tin

(0, 0), otherwise
(S33)

The expected ground truth outputs, denoted as

O∗ = {(o∗11 , o∗21), (o∗12 , o∗22), (o∗13 , o∗23), ..., (o∗1T , o∗2T)}

are defined as:

19

Dynamical phases of short-term memory mechanisms in RNNs

o∗t =

{
uTin

, if t ∈ Tresp

(0, 0), otherwise
(S34)

This task requires the model to process the cue presented during the cue period, maintain it through the delay period, and
then generate the appropriate response during the reaction period. The optional post-reaction period allows for additional
investigation into how the network dynamics stabilize after completing the required response.

S3.3. Training details

To ensure the reproducibility of our experiments, we provide a comprehensive description of the training configurations
used in this study. All recurrent neural network (RNN) architectures were implemented using the PyTorch framework.
Unless stated otherwise, models were trained using the stochastic gradient descent (SGD) with the momentum value of
0.9 and weight decay value of 10−7. Most of the experiments were conducted on computing systems equipped with an
Intel i9-10900X CPU and an Apple M2 CPU. To further enhance transparency and support future research, we will publicly
release our complete training pipeline on GitHub.

Training with long delay intervals, i.e., Tdelay ≫ Tresp, presents challenges when compared to shorter delay times due to
the model’s tendency to learn to always output 0. This issue arises from an inherent imbalance in the loss function: since the
model is expected to output 0 for the majority of the trial and only 1 during the response period, a naive mean-squared error
(MSE) loss would favor minimizing errors in the dominant interval, leading to trivial solutions where the model outputs 0 at
all times. This imbalance is aggravated when the total trial duration Tin + Tdelay + Tpost is significantly greater than Tresp.

To mitigate this issue, we trained all RNNs using a weighted MSE loss, where different time intervals were assigned
corresponding weights. The weight function was defined as follows:

wMSE =

{
1− 10

Ttotal
, if t ∈ Tresp

10
Ttotal

, otherwise
(S35)

This weighting scheme ensures that the loss function does not disproportionately favor the dominant 0 responses and
appropriately emphasizes the importance of correct responses during the reaction period.

S3.4. Details on large-scale experiments

In this study, we conducted several short-term memory experiments to investigate underlying memory mechanisms.
Specifically, we examined rank-2 RNNs trained on the delayed activation task, both with and without a post-reaction period
(Fig. 2, 3, and S1). To extend our observations to full-rank RNNs, we increased task complexity by training models on the
delayed cue-discrimination task, again with and without a post-reaction period (Fig. 4, S3, and S4). Additionally, to explore
the role of the time constant τ and memory-related components, we evaluated full-rank RNNs under various configurations
(Fig. S5 and S6). Further implementation and training details are provided in Sections S4 and S3.3. As a summary, the
configurations and number of total runs for each experiment are presented below:

Table S1. Large-scale experiment configurations and the number of total runs.

RNN TASK LEARNING RATE Tdelay # SEEDS # EXPERIMENTS

RANK-2 DELAYED ACT. W/WO Tpost 5× 10−3 30ms 100 1600

FULL CUE-DISC. WO/ Tdelay log[10−3, 1] (20) Tresp = lin[20, 400]ms (20) 20 8000

FULL CUE-DISC. W/ LONGER τ log[10−3, 10−1] (10) lin[0, 800]ms (21) 20 4200

FULL CUE-DISC. WO/ Tpost log[10−3, 10−1] (15) lin[0, 400]ms (21) 100 31500

FULL CUE-DISC. WO/ Tpost log[10−1.6, 10−0.5] (15) lin[0, 400]ms (21) 100 31500

FULL CUE-DISC. W/ Tpost log[10−3, 10−1] (15) lin[0, 400]ms (21) 20 6300

20

Dynamical phases of short-term memory mechanisms in RNNs

S3.4.1. DETECTING LEARNED MECHANISMS SUBSERVING SHORT-TERM MEMORY IN RNNS

We designed two metrics—Reaction Accuracy (RA) and Reaction Reliability (RR)—to evaluate the performance of our
recurrent neural network (RNN) models. Reaction Accuracy quantifies the model’s ability to discriminate the input cue by
identifying the class corresponding to the maximum output channel at each time step, while Reaction Reliability assesses
the degree of signal distinction between the classes.

More formally, let O ∈ RN×2 represent the model’s output vector over the reaction interval, and G ∈ RN×1 denote the
ground truth labels over the same interval, where N is the total number of time steps.

Reaction Accuracy (RA): This metric assesses how accurately the model produces the correct response during the
response period (Tresp). It is computed as follows:

RA = 1− 1

N

N∑
t=1

∣∣∣argmax
c

(Oc
t)−Gt

∣∣∣ (S36)

Here, argmaxc(O
c
t) returns the index of the output channel with the highest activation at time step t, and Gt denotes the

ground truth class label at that time.

Reaction Reliability (RR): This metric complements Reaction Accuracy by not only evaluating whether the model selects
the correct response during the response period Tresp, but also by measuring how confidently it does so. It is computed as
follows:

RR =
1

N

N∑
t=1

Ot,Gt∑2
c=1 O

c
t

(S37)

Here, Ot,Gt
denotes the model’s output corresponding to the ground truth class Gt at time step t, and the denominator

normalizes this value by the total output across both output channels at that time step.

Mechanism Discrimination Index (MDI): The two metrics, RA and RR, allow us to determine whether the model has
successfully learned the task. If a model fails to learn, we categorize its behavior as either ‘Unstable Training’ or ‘Final
Model Failure’, as illustrated in Fig. S3A-B and Fig. S4A. However, these metrics alone do not clearly distinguish between
limit cycles and slow-point manifolds (see Fig. S3A-B and Fig. S4C-D). Therefore, to reliably differentiate these two
mechanisms, we further analyze the frequency distributions of correlation coefficient matrices computed from the first two
principal components of the models’ firing rates, as shown in Fig. S3C.

Since limit cycles closely approximate slow-point manifolds during the trial period, it is challenging to distinguish them
based solely on firing rates observed within that interval. To overcome this limitation, we extend the analysis window by
concatenating the post-reaction period during inference, thereby revealing the underlying dynamical structure of the firing
rates, as illustrated in Fig. S4C-D. Next, we apply principal component analysis (PCA) to the firing rates and extract their
first two principal components (Fig. S4). We then compute the Pearson product-moment correlation coefficient matrix from
these principal components.

Due to the repetitive structure of limit cycles, their correlation coefficient matrices exhibit predominantly high-frequency
components. In contrast, slow-point manifolds produce correlation matrices characterized by consistently high correlations,
corresponding predominantly to low-frequency components. After calculating the frequency components, we define a
hyperparameter to establish a threshold for discrimination between low-frequency and high-frequency, and compute the
Mechanism Discrimination Index (MDI) as follows:

MDI =
PSDlf

PSDtotal
(S38)

where PSDlf is the power spectral density of low-frequency components, and PSDtotal is the total power spectral density.
Using this approach, we reliably discriminate between limit cycles and slow-point manifolds, as demonstrated in Fig. S3C.

21

Dynamical phases of short-term memory mechanisms in RNNs

As a summary, we defined four categories to classify the outcomes of RNN training:

• Final Model Failure: An RNN is considered to have failed to converge if its mean accuracy and reliability have never
previously reached or exceeded 0.8 (Fig. S4A).

• Unstable Training: Training is classified as unstable if, after initially achieving accuracy and reliability values above
0.8, the performance subsequently falls below 0.6 for more than 10% of the epochs following the initial success
(Fig. S4B).

• Limit Cycle: An RNN is classified as exhibiting a limit cycle if its mean accuracy and reliability during the final 10%
of epochs are ≥ 0.8, and the Mechanism Discrimination Index (MDI) is less than 0.5 (Fig. S4C).

• Ghost Point: An RNN is classified as exhibiting a ghost point if its mean accuracy and reliability during the final 10%
of epochs are ≥ 0.8, and the Mechanism Discrimination Index (MDI) is greater than or equal to 0.5 (Fig. S4D).

The first two categories collectively constitute the “Not Learned” classification.

S3.4.2. PLOTTING THE SCALING LAWS

To investigate the scaling relationship between the learnable delay interval and the learning rate, we performed the following
analysis.

First, for each learning rate, we extracted the model’s performance across different delay intervals from the large-scale
experiments (Fig. 4B, E). We then fit a saturating function—either an exponential saturation or a sigmoid—to the performance
curves over delay (Fig. S3D, E). This yielded a cutoff delay value a∗, representing the point at which performance saturates
or exhibits a sharp transition. Specifically, the exponential saturation fit was defined as:

f(x;x0, α) =

{
0 if x < x0

1− exp(−α(x− x0)) otherwise
(S39)

The fits were applied to performance metrics (e.g., reaction accuracy or reliability) over delay intervals x, using
scipy.optimize.curve fit.

Next, we analyzed how the cutoff delay values a∗ scale with learning rate α. We performed a log-log linear regression of
the form:

log(α) = β log(a∗) + log(A) (S40)

The critical exponent β was estimated using scipy.stats.linregress and validated by an additional log-log fit via
curve fit. To estimate confidence intervals, we performed Monte Carlo sampling using the parameter covariance matrix.
The resulting fit and its 95% confidence interval were visualized on log-log axes, as shown in Fig. 4C, F and Fig. S3F.

This analysis enabled us to extract empirical scaling laws for slow-point manifolds and limit-cycles, which were then
compared to theoretical predictions.

S3.4.3. PLOTTING FIRING RATES

To visualize firing rates, we collect the hidden states of the leaky firing-rate RNN during inference. To reveal the underlying
dynamical structure, we extend the trial by appending a post-reaction interval (Tpost) that is nine times longer than the
original duration, defined as T = Tin + Tdelay + Tresp.

After collecting the full firing rate trajectory, we sort neurons based on the timing of the peak activation in their absolute
firing rates. Specifically, each neuron’s activity is scanned to identify the time step at which its firing rate reaches its
maximum value. Neurons that do not exceed a predefined activation threshold are pushed to the end of the ordering. This
procedure ensures that neurons are visualized in the order in which they become active, highlighting sequential structure in
the network’s dynamics.

22

Dynamical phases of short-term memory mechanisms in RNNs

S4. Reproduction details
Figure 2: To investigate the emergent mechanisms—specifically, slow-point manifolds and limit cycles—we conducted
experiments using low-rank recurrent neural networks (RNNs) (Background). Given that a minimum of two dimensions is
required for the formation of limit cycles, we set the low-rank dimensionality to K = 2. The delayed activation task was
chosen as the training paradigm. The learning rate was initialized at α = 10−2. Additionally, we set the time decay constant
to τ = 10 ms, the time step to ∆t = 5 ms, the delay interval to Tdelay = 150 ms, and the response interval to Tresp = 50
ms. The architecture was trained for 150, 000 epochs with a total of N = 100 neurons. All weights and biases, as described
in Eq. (2), were optimized throughout training. For this experiment, noise was set to ϵ = 0, and firing rates were initialized
from a multivariate Gaussian distribution with mean µr = 0 and standard deviation σr = 0.1. Training was performed using
stochastic gradient descent (SGD) with PyTorch’s default hyperparameters.

Figure 3: This figure highlights the impact of even slight changes in task configuration on network dynamics. To
demonstrate this, we trained identical RNNs with N = 100 neurons and a rank of K = 2, by increasing the post-reaction
period interval from Tpost = 0 ms to Tpost = 30 ms. We applied a similar configuration to Fig. 2A, except for setting
Tdelay = 30 ms, Tresp = 10 ms, and α = 10−3 for the experiments in Fig. S1A-B, training the networks for 106 epochs.
For the experiments in Fig. S1C, we set α = 5× 10−3 and trained the networks for 500, 000 epochs while varying the delay
interval as Tdelay ∈ {30, 40, 50, 60, 70} ms. Moreover, SGD is used with the default hyperparameters of PyTorch.

Figure 4: In large-scale RNN experiments, we developed a primary training pipeline to systematically investigate the
effects of learning rate, delay interval length, and post-reaction interval. Apart from these variations, all other training
configurations in Fig. 4 were set as follows: number of neurons N = 100, noise initialization drawn from a Gaussian
distribution with mean µϵ = 0 and standard deviation σϵ = 10−3, and firing rate initialization drawn from a Gaussian
distribution with mean µr = 0 and standard deviation σr = 10−1. Additionally, task-related parameters were fixed, with
the cue interval set to Tin = 30 ms, the reaction interval to Tresp = 50 ms, the time decay constant to τ = 10 ms, and the
time step to ∆t = 5 ms. Since lower learning rates require longer training durations, we implemented an adaptive schedule
for the number of training epochs based on the learning rate. The number of epochs was determined using the following
equation:

num epochs = max(103,
30

α
) (S41)

The delay interval was gradually increased in increments of 20 ms, covering the range Tdelay ∈ [0, 420] ms. In our initial
experiments, learning rates were sampled from a logarithmic scale with equal spacing in the range α ∈ [10−3, 10−1]. To
further investigate the effects of intermediate learning rates, we additionally sampled more values logarithmically within the
range α ∈ [10−1.6, 10−0.5] (see Table S1 for details). Besides, Fig. 4C,F presents the estimated cutoff delay values, which
are described in detail in Section 2.5. Moreover, in Fig. H, I, we constructed a phase diagram of emergent mechanistic
phases derived from the results shown in Fig. 4C-D.

Figure S2: We analyze the emergence of the limit cycle model in the delayed activation task through analytical methods
(Supplementary 1.2). Figure S2A illustrates the vector field of the dynamical system, which is derived from Eq. (S15)
with r = 0.1. Additionally, Figure 4G presents two loss curves: the analytical curve is obtained from Eq. (S17), while
the numerical curve is computed using Eq. (S20), with parameters set to Tdelay = 60 ms, Tresp = 10 ms, and dt = 10−2.
Finally, Figure S2B is constructed by plotting analytically derived scaling laws, with the response interval set to Tresp = 10
ms.

Figure S3: This figure builds on the results presented in Fig. 4 to illustrate the RA and MDI metrics. Additionally, it
highlights the scaling laws associated with slow-point manifolds observed in the large-scale RNN experiments.

Figure S4: We randomly sampled the example classes of dynamical systems from the large-scale RNN experiments.

Figure S5: In this experiment, we use the same training configuration as in Fig. 4, except for the delay intervals and the
value of τ . We set τ = 20 ms and sampled Tdelay from the range [0, 840] ms in increments of 40 ms. (See Table S1 for
more details.)

23

Dynamical phases of short-term memory mechanisms in RNNs

Figure S6: In this figure, the only differences from the large-scale experiments are that the number of training epochs is
set to 3000, Tdelay = 0 ms, and the response interval Tresp is varied instead. This setup allows us to examine the importance
of the memory component. (See Table S1 for more details.)

The code to reproduce these figures is publicly available at https://github.com/fatihdinc/dynamical-phases-stm, the data
jointly with the code at https://doi.org/10.5281/zenodo.15529757.

24

https://github.com/fatihdinc/dynamical-phases-stm
https://doi.org/10.5281/zenodo.15529757

Dynamical phases of short-term memory mechanisms in RNNs

Figures and captions

25

Dynamical phases of short-term memory mechanisms in RNNs
N

or
m

al
iz

ed
 lo

ss
fu

nc
tio

n
va

lu
es

100

10-1

10-2

10-3

Number of training epochs
0 100,000

A

Activity of the first latent variable (a.u.)A
ct

iv
ity

 o
f t

he
 s

ec
on

d
la

te
nt

 v
ar

ia
bl

e(
a.

u.
)

Epoch 40,000
(SP manifold)

Epoch 67,000
(Transition)

Epoch 130,000
(Limit cycle)

Training a rank-2 RNN
on a delayed-activation task

Response start

Trial start

Trial end

Latent state
(during trial)

Latent state
(after trial)

Decision
boundary

B

O
ut

pu
ts Tdelay

Tresp

Target Network

Figure S1. RNNs can switch between distinct short-term memory mechanisms during training. A To illustrate that different
mechanisms can be employed by dynamical systems to delay their responses, we trained a rank-2 RNN to perform the delayed activation
task. In this task, networks initialized at a given state (Methods) should delay their output by Tdelay. Parameters: N = 100 neurons,
τ = 10ms, ∆t = 5ms, Tdelay = 150ms, Tresp = 50ms, α = 10−2 for stochastic gradient descent using otherwise the default parameters
in PyTorch (Paszke et al., 2017). The dotted lines correspond to epochs, for which the latent dynamical systems are illustrated in Panel
(B). B During the training, two distinct mechanisms emerge in the RNN, which we probe by plotting the two-dimensional latent dynamical
systems. Left. Early in the training, the network lowers the loss values by designing a line of slow-points (referred to as SP manifold),
towards which other stats are attracted. The latent states after the trial concludes end up in a final attractive fixed-point. Middle. As
training progresses, the SP manifold slowly dissolves into a circular pattern, which we deem as a transient mechanism before the network
settles into the final solution. Right. After further training, a limit cycle emerges in the latent dynamical system. In this structure, even
after the trial concludes, latent states continue to evolve in a periodic manner. The shaded areas around the decision boundary correspond
to network outputs within 0.75 (outer green boundary) and 0.25 (outer red boundary).

26

Dynamical phases of short-term memory mechanisms in RNNs

N
or

m
al

iz
ed

 lo
ss

fu
nc

tio
n

va
lu

es

1

0

Parameter values (r)

A Tdelay = 60 and Tresp = 10

0 0.01

B

Analytical curve
Numerical data

First model variable (x)

S
ec

on
d

m
od

el
 v

ar
ia

bl
e

(y
)

0 1-1

-1

0

1

output = 0output = 1

Figure S2. A theoretical scaling analysis of short-term memory mechanisms via toy models. A The illustration of the flow map
corresponding to the toy limit cycle model for r = 0.1. The red circle denotes the attractive limit cycle, the purple line corresponds to the
decision boundary of the output, and the green circle denotes the starting point of the state. B An example loss curve for the limit cycle
toy model, with analytical curve and empirical data points. Note the kink at the global minimum. C The different dependencies of the
effective learning rate for two types of mechanisms create a phase space as a function of delay and learning rate values. In general, there
are three main phases of short-term memory mechanisms for large Tdelay ≫ Tresp. For this figure, we picked Tresp = 10ms.

27

Dynamical phases of short-term memory mechanisms in RNNs

SP manifold

Memory
mechanism

Limit cycle

Final model fails

Number of epochs

0 1000

0.1

0Lo
ss

 fu
nc

tio
n

va
lu

es

A

Unstable learning

B

0 1000

1

0.5

R
ea

ct
io

n
ac

cu
ra

cy

C

D

0 1
Mechanism discrimination index

SP manifold
Limit cycle

Fr
eq

ue
nc

y
(n

or
m

al
iz

ed
)

0

40

E

Delay (ms)
0 400200

Fr
ac

tio
n

of
 R

N
N

s
fa

ili
ng

 to
 s

ol
ve

 th
e

ta
sk

0

1 Learning rates
0.316
0.019
0.001

0 400200

Fr
ac

tio
n

of
 R

N
N

s
de

ve
lo

pi
ng

 S
P

m
an

ifo
ld

s

0

1 Learning rates
0.316
0.019
0.001

F

Le
ar

ni
ng

 ra
te

s

30 100 300

10-1

10-2

10-3

β = 4.05 ± 0.10,
R2 = 0.99, p<10-3

Scaling of the
SP manifolds

Figure S3. Details of the large-scale RNN experiment. A Different memory mechanisms exhibit distinct loss curves during training.
While limit cycles and slow-point manifolds successfully converge to local minima, the “Final Model Failure” and “Unstable Learning”
classes do not achieve stable convergence due to high learning rates. B As further illustrated, only the limit cycle and slow-point
manifold mechanisms achieve consistently high reaction accuracies. C The Mechanism Discrimination Index (MDI) (see Methods)
allows reliable differentiation between limit cycles and slow-point manifolds, even though their dynamics appear similar during the trial
period. D Lowering the learning rate enhances the model’s ability to learn tasks with longer delay intervals. The solid curve represents the
corresponding exponential saturation fit (see Methods). E Additionally, decreasing the learning rate increases the likelihood of models
adopting slow-point manifolds. F As predicted by analytical models, results from the large-scale RNN experiments exhibit a similar
power-law relationship (T−4

delay ≥ T β
delay ≥ T−5

delay) for learning slow-point manifolds for large learning rates. However, for larger delays
(Tdelay > 100ms), these solutions preferentially suppressed, presumably in favor of the limit cycle based solutions.

28

Dynamical phases of short-term memory mechanisms in RNNs

A

1

0

Reaction metrics

0 1000 0 2

Network outputs

Accuracy
Reliability Output 1

Output 2
Target

Time (s)Training epochs
1

Absolute firing rates

10

0 2
Time (s)

1
0

1

PC 1 (a.u.)

Trial start
Response

start
Trial end

Latent state
in trial

Latent state
after trial

P
C

 2
 (a

.u
.)

N
eu

ro
n

ID

0

100

C
la

ss
: F

in
al

m
od

el
 fa

liu
re

B

C
la

ss
: U

ns
ta

bl
e

le
ar

ni
ng

1

0
0 1500 0 2

Accuracy
Reliability

Output 1
Output 2
Target

Time (s)Training epochs
1 0 2

Time (s)
1

0

1

PC 1 (a.u.)

P
C

 2
 (a

.u
.)

N
eu

ro
n

ID

0

100

C

C
la

ss
: L

im
it

cy
cl

e

1

0
0 1000 0 2

Accuracy
Reliability

Time (s)Training epochs
1 0 2

Time (s)
1

0

1

PC 1 (a.u.)

P
C

 2
 (a

.u
.)

N
eu

ro
n

ID

0

100

D

C
la

ss
: S

lo
w

-p
oi

nt
m

an
ifo

ld

1

0
0 3000 0 2

Accuracy
Reliability

Output 1
Output 2
Target

Time (s)Training epochs
1 0 2

Time (s)
1

0

1

PC 1 (a.u.)

P
C

 2
 (a

.u
.)

N
eu

ro
n

ID

0

100

Figure S4. The four main classes identified in the large-scale RNN experiment. This figure illustrates representative examples from
each of the four primary classes: A Final model failure, B Unstable learning, C Limit cycle, and D Slow-point manifold. We focused on
trained models from experiments with a delay interval of 180 ms, which was specifically selected because it exhibits all four classes, as
illustrated in Fig. 4B. The first column presents the reaction metrics, i.e., Reaction Accuracy and Reaction Reliability (see Methods). The
second column shows the network’s outputs alongside the corresponding ground truth signals. The third column displays the firing rates
of individual neurons. The final column illustrates the first two principal components derived from these firing rates. Training parameters
used for each representative example are as follows: A α = 0.1, seed = 93; B α ≈ 0.01931, seed = 41; C α = 0.1, seed = 82; and D
α = 0.01, seed = 85. Additional parameters shared across all models are Tin = 30 ms, Tdelay = 180 ms, Tresp = 50 ms, ∆t = 5 ms,
τ = 10 ms, σnoise = 0.001, σr = 0.1, and batch size per channel = 64 (see Methods).

29

Dynamical phases of short-term memory mechanisms in RNNs

SP manifold

Memory
mechanism

Limit cycle

Final model fails

Number of epochs
0 1000

0.1

0

Lo
ss

 fu
nc

tio
n

va
lu

es

A

Unstable learning

B

Delay (ms)
8000 200 400 600

0

1

Fr
ac

tio
n

of
 R

N
N

s

Delay (ms)
8000 400

Le
ar

ni
ng

 ra
te

 (l
og

sc
al

e) 10-1

10-2

10-3

SP manifoldLimit cycleNo learning
C

Figure S5. RNN experiments with increased τ . In this figure, we examine the effect of increasing the time constant to τ = 20 ms while
keeping all other hyperparameters identical to those used in the large-scale delayed cue-discrimination task experiments (Fig. 4). These
experiments reveal that increasing τ does not alter the observed scaling laws. A As in Fig. S3, we observe similar loss curve patterns
across all classes under the larger τ setting. B Consistent with previous results, the distribution of dynamical classes across different
random seeds remains largely unchanged with the increased τ . C The phase diagram for τ = 20 ms shows scaling laws consistent with
those observed in the smaller τ regime.

30

Dynamical phases of short-term memory mechanisms in RNNs

B
Network

performance

Correct
Not learned

Number of epochs
0 3000

101

Lo
ss

 fu
nc

tio
n

va
lu

es

A

Le
ar

ni
ng

 ra
te

s
40 100 400

10-1

10-2

10-3

C

β = 0.38 ± 0.02,
R2 = 0.97, p<10-3

Scaling of the
no-solution boundary

20001000
Response window (ms)

4000 200

Le
ar

ni
ng

 ra
te

 (l
og

sc
al

e) 100

10-3

10-1

Figure S6. Scaling laws disappear in fixed-response task experiments with RNNs. In this experiment, we remove the delay period
from the delayed cue-discrimination task to isolate the effect of memory and assess its role in scaling laws. As shown in the figure, the
removal of the delay component eliminates the previously observed scaling behavior, highlighting memory as a critical factor underlying
these laws. A As in previous tasks, we observe qualitatively similar loss curves between not learned and correct networks. B Phase
diagram showing the classification of not learned and correct networks in the fixed-response task. The x-axis represents the length of the
response interval, during which the model is required to generate a consistent output over time. Notably, removing the delay period (and
thus the memory requirement) leads to a substantial loss of scaling structure. C We compute the scaling law using the same methodology
as in Fig. 4C,F and Fig. S3F.

31

