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ABSTRACT

Anomaly detection (AD) plays an important role in numerous applications. In
this paper, we focus on two understudied aspects of AD that are critical for inte-
gration into real-world applications. First, most AD methods cannot incorporate
labeled data that are often available in practice in small quantities and can be cru-
cial to achieve high accuracy. Second, most AD methods are not interpretable,
a bottleneck that prevents stakeholders from understanding the reason behind the
anomalies. In this paper, we propose a novel AD framework, DIAD, that adapts
a white-box model class, Generalized Additive Models, to detect anomalies using
a partial identification objective which naturally handles noisy or heterogeneous
features. DIAD can incorporate a small amount of labeled data to further boost
AD performances in semi-supervised settings. We demonstrate the superiority of
DIAD compared to previous work in both unsupervised and semi-supervised set-
tings on multiple datasets. We also present explainability capabilities of DIAD,
on its rationale behind predicting certain samples as anomalies.

1 INTRODUCTION

Anomaly detection (AD) has numerous real-world applications, especially for tabular data, including
detection of fraudulent transactions, intrusions related to cybersecurity, and adverse outcomes in
healthcare. When the real-world tabular AD applications are considered, there are various challenges
constituting a fundamental bottleneck for penetration of fully-automated machine learning solutions:

• Noisy and irrelevant features: Tabular data often contain noisy or irrelevant features caused by
measurement noise, outlier features and inconsistent units. Even a change in a small subset of
features may trigger anomaly identification.

• Heterogeneous features: Unlike image or text, tabular data features can have values with signif-
icantly different types (numerical, boolean, categorical, and ordinal), ranges and distributions.

• Small labeled data: In many applications, often a small portion of the labeled data is available.
AD accuracy can be significantly boosted with the information from these labeled samples as they
may contain crucial information on representative anomalies and help ignoring irrelevant ones.

• Interpretability: Without interpretable outputs, humans cannot understand the rationale behind
anomaly predictions, that would enable more trust and actions to improve the model performance.
Verification of model accuracy is particularly challenging for high dimensional tabular data, as
they are not easy to visualize for humans. An interpretable AD model should be able to identify
important features used to predict anomalies. Conventional explainability methods like SHAP
(Lundberg & Lee, 2017) and LIME (Ribeiro et al., 2016) are proposed for supervised learning
and not straightforward to generalize to unsupervised or semi-supervised AD.

Conventional AD methods fail to address the above – their performance often deteriorates with noisy
features (Sec. 6), they cannot incorporate labeled data, and cannot provide interpretability.

In this paper, we aim to address these challenges by proposing a Data-efficient Interpretable AD
framework, DIAD. DIAD’s model architecture is inspired by Generalized Additive Models (GAMs)
and GA2M (see Sec. 3), that have been shown to obtain high accuracy and interpretability for tabular
data (Caruana et al., 2015; Chang et al., 2021b; Liu et al., 2021), and have been used in applications
like finding outlier patterns and auditing fairness (Tan et al., 2018). We propose to employ intuitive
notions of Partial Identification (PID) as an AD objective and learn them with a differentiable GA2M
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Figure 1: Overview of the proposed DIAD framework. During training, first an unsupervised AD
model is fitted employing interpretable GA2M models and PID loss with unlabeled data. Then, the
trained unsupervised model is fined-tuned with a small amount of labeled data using a differentiable
AUC loss. At inference, both the anomaly score and explanations are provided, based on the visual-
izations of top contributing features. The example sample in the figure is shown to have an anomaly
score, explained by the cell size feature having high value.

(NodeGA2M, Chang et al. (2021a)). Our design is based on the principle that PID scales to high-
dimensional features and handles heterogeneous features well, while the differentiable GAM allows
fine-tuning with labeled data and retain interpretability. In addition, PID requires clear-cut thresholds
like trees which are provided by NodeGA2M. While combining PID with NodeGA2M, we introduce
multiple methodological innovations, such as estimating and normalizing a sparsity metric as the
anomaly scores, integrating a regularization for an inductive bias appropriate for AD, and using
deep representation learning via fine-tuning with a differentiable AUC loss. The latter is crucial to
take advantage of a small amount of labeled samples well and constitutes a more ‘data-efficient’
method compared to other AD approaches – e.g. DIAD improves from 87.1% to 89.4% AUC
with 5 labeled anomalies compared to unsupervised AD. Overall, our innovations lead to strong
empirical results – DIAD outperforms other alternatives significantly, both in unsupervised and
semi-supervised settings. DIAD’s outperformance is especially prominent on large-scale datasets
containing heterogeneous features with complex relationships between them. In addition to accuracy
gains, DIAD also provides a rationale on why an example is classified as anomalous using the GA2M
graphs, and insights on the impact of labeled data on the decision boundary, a novel explainability
capability that provides both local and global understanding on the AD tasks.

Table 1: Comparison of AD approaches.

Unlabeled data Noisy features Heterogenous features Labeled data Interpretability
PIDForest X X X 7 7
DAGMM X 7 7 7 X

GOAD X X X 7 7
Deep SAD X X X X 7

SCAD X 7 X 7 X
DevNet 7 X X X 7

DIAD (Ours) X X X X X

2 RELATED WORK

Overview of AD methods: Table 1 summarizes representative AD works and compares to DIAD.
AD methods for training with only normal data have been widely studied (Pang & Aggarwal, 2021b).
Isolation Forest (IF) (Liu et al., 2008) grows decision trees randomly – the shallower the tree depth
for a sample is, the more anomalous it is predicted. However, it shows performance degradation
when feature dimensionality increases. Robust Random Cut Forest (RRCF, (Guha et al., 2016))
further improves IF by choosing features to split based on the range, but is sensitive to scale. PID-
Forest (Gopalan et al., 2019) zooms on the features with large variances, for more robustness to
noisy or irrelevant features. There are also AD methods based on generative approaches, that learn
to reconstruct input features, and use the error of reconstructions or density to identify anomalies.
Bergmann et al. (2019) employs auto-encoders for image data. DAGMM (Zong et al., 2018) first
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learns an auto-encoder and then uses a Gaussian Mixture Model to estimate the density in the low-
dimensional latent space. Since these are based on reconstructing input features, they may not
be directly adapted to high-dimensional tabular data with noisy and heterogeneous features. Re-
cently, methods with pseudo-tasks have been proposed as well. A major one is to predict geometric
transformations (Golan & El-Yaniv, 2018; Bergman & Hoshen, 2019) and using prediction errors
to detect anomalies. Qiu et al. (2021) shows improvements with a set of diverse transformations.
CutPaste (Li et al., 2021) learns to classify images with replaced patches, combined with density
estimation in the latent space. Lastly, several recent works focus on contrastive learning. Tack
et al. (2020) learns to distinguish synthetic images from the original. Sohn et al. (2021) first learns
a distribution-augmented contrastive representation and then uses a one-class classifier to identify
anomalies. Self-Contrastive Anomaly Detection (SCAD) (Shenkar & Wolf, 2022) aims to distin-
guish in-window vs. out-of-window features by a sliding window and utilizes the error to identify
anomalies.

Explainable AD: A few AD works focus on explainability as overviewed in Pang & Aggarwal
(2021a). Vinh et al. (2016); Liu et al. (2020) explains anomalies using off-the-shelf detectors that
might come with limitations as they are not fully designed for the AD task. Liznerski et al. (2021)
proposes identifying anomalies with a one-class classifier (OCC) with an architecture such that each
output unit corresponds to a receptive field in the input image. Kauffmann et al. (2020) also uses an
OCC network but instead utilizes a saliency method for visualizations. These approaches can show
the parts of images that lead to anomalies, however, their applicability is limited to image data, and
they can not provide meaningful global explanations as GAMs.

Semi-supervised AD: Several works have been proposed for semi-supervised AD. Das et al.
(2017), similar to ours, proposes a two-stage approach that first learns an IF on unlabeled data,
and then updates the leaf weights of IF using labeled data. This approach can not update the tree
structure learned in the first stage, which we show to be crucial for high performance (Sec. 6.4).
Deep SAD (Ruff et al., 2019) extends deep OCC DSVDD (Ruff et al., 2018) to semi-supervised
setting. However, this approach is not interpretable and underperforms unsupervised OCC-SVM on
tabular data in their paper while DIAD outperforms it. DevNet (Pang et al., 2019b) formulates AD
as a regression problem and achieves better sample complexity with limited labeled data. Yoon et al.
(2020b) trains embeddings in self-supervised way (Kenton & Toutanova, 2019) with consistency
loss (Sohn et al., 2020) and achieves state-of-the-art semi-supervised learning accuracy on tabular
data.

3 PRELIMINARIES: GA2M AND NODEGA2M

We first overview the NodeGA2M model that we adopt in our framework, DIAD.

GA2M: GAMs and GA2Ms are designed to be interpretable with their functional forms only fo-
cusing on the 1st or 2nd order feature interactions and foregoing any 3rd-order or higher interactions.
Specifically, given an input x ∈ RD, label y, a link function g (e.g. g is log(p/1− p) in binary clas-
sification), the main effects for j(th) feature fj , and 2-way feature interactions fjj′ , the GA2M
models are expressed as:

GA2M: g(y) = f0 +
∑D

j=1
fj(xj) +

∑D

j=1

∑
j′>j

fjj′(xj , xj′). (1)

Unlike other high capacity models like DNNs that utilize all feature interactions, GA2M are re-
stricted to only lower-order, 2-way, interactions, so the impact of fj or fjj′ can be visualized inde-
pendently as a 1-D line plot and 2-D heatmap, providing a convenient way to gain insights behind
the rationale of the model. On many real-world datasets, they can yield competitive accuracy, while
providing simple explanations for humans to understand the rationale behind the model’s decisions.

NodeGA2M: NodeGA2M (Chang et al., 2021a) is a differentiable extension of GA2M which uses
the neural trees to learn feature functions fj and fjj′ . Specifically, NodeGA2M consists of L layers
where each layer has m differentiable oblivious decision trees (ODT) whose outputs are combined
with weighted superposition, yielding the model’s final output. An ODT functions as a decision tree
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with all nodes at the same depth sharing the same input features and thresholds, enabling parallel
computation and better scaling. Specifically, an ODT of depth C compares chosen C input features
to C thresholds, and returns one of the 2C possible options. F c chooses what features to split,
thresholds bc, and leaf weights W ∈ R2C , and its tree outputs h(x) are given as:

h(x) = W ·
([

I(F 1(x)− b1)
I(b1 − F 1(x))

]
⊗ . . .⊗

[
I(FC(x)− bC)
I(bC − FC(x))

])
, (2)

where I is an indicator (step) function, ⊗ is the outer product and · is the inner product. To make
ODT differentiable and in GA2M form, Chang et al. (2021a) replaces the non-differentiable opera-
tions F c and I with differentiable relaxations via softmax and sigmoid-like functions. Each tree is
allowed to interact with at most two features so there are no third- or higher-order interactions in the
model. We provide more details in Appendix. B.

4 PARTIAL IDENTIFICATION AND SPARSITY AS THE ANOMALY SCORE

We consider the Partial Identification (PID) (Gopalan et al., 2019) as an AD objective given its
benefits in minimizing the adversarial impact of noisy and heterogeneous features (e.g. mixture of
multiple discrete and continuous types), particularly for tree-based models. By way of motivation,
consider the data for all patients admitted to ICU – we might treat patients with blood pressure (BP)
of 300 as anomalous, since very few people have more than 300 and the BP of 300 would be in such
“sparse” feature space.

To formalize this intuition, we first introduce the concept of ‘volume’. We consider the maximum
and minimum value of each feature value and define the volume of a tree leaf as the product of
the proportion of the splits within the minimum and maximum value. For example, assuming the
maximum value of BP is 400 and minimum value is 0, the tree split of ‘BP≥ 300’ has a volume 0.25.
We define the sparsity sl of a tree leaf l as the ratio between the volume of the leaf Vl and the ratio
of data in the leaf Dl as sl = Vl/Dl. Correspondingly, we propose treating higher sparsity as more
anomalous – let’s assume only less than 0.1% patients having values more than 300 and the volume
of ‘BP ≥ 300’ being 0.25, then the anomalous level of such patient is the sparsity 0.25/0.1%. To
learn effectively splitting of regions with high vs. low sparsity i.e. high v.s. low anomalousness,
PIDForest (Gopalan et al., 2019) employs random forest with each tree maximizing the variance
of sparsity across tree leafs to splits the space into a high (anomalous) and a low (normal) sparsity
regions. Note that the expected sparsity weighted by the number of data samples in each leaf by
definition is 1. Given each tree leaf l, the ratio of data in the leaf is Dl, sparsity sl:

E[s] =
∑

l
[Dlsl] =

∑
l
[Dl

Vl
Dl

] =
∑

l
[Vl] = 1. (3)

Therefore, maximizing the variance becomes equivalent to maximizing the second moment, as the
first moment is 1:

maxVar[s] = max
∑

l
Dls

2
l = max

∑
l
V 2
l /Dl. (4)

5 DIAD FRAMEWORK

In DIAD framework, we propose optimizing the tree structures of NodeGA2M by gradients to max-
imize the PID objective – the variance of sparsity – meanwhile setting the leaf weights W in Eq. 2
as the sparsity of each leaf, so the final output is the sum of all sparsity values (anomalous levels)
across trees. We overview the DIAD in Alg. 1. Details of DIAD framework are described below.

Estimating PID The PID objective is based on estimating the ratio of volume Vl and the ratio of
data Dl for each leaf l. However, exact calculation of the volume is not trivial in an efficient way
for an oblivious decision tree as it requires complex rules extractions. Instead, we sample random
points, uniformly in the input space, and count the number of the points that end up at each tree leaf
as the empirical mean. More points in a leaf would indicate a larger volume. To avoid the zero count
in the denominator, we employ Laplacian smoothing, adding a constant δ to each count.1 Similarly,
we estimate Dl by counting the data ratio in each batch. We add δ to both Vl and Dl.

1It is empirically observed to be important to set a large δ, around 50-100, to encourage the models ignoring
the tree leaves with fewer counts.
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Normalizing sparsity The sparsity and thus the trees’ outputs can have very large values up to
100s and can create challenges to gradient optimizations for the downstream layers of trees, and
thus inferior performance in semi-supervised setting (Sec. 6.4). To address this, similar to batch
normalization, we propose linearly scaling the estimated sparsity to be in [-1, 1] to normalize the
tree outputs. We note that the linear scaling still preserves the ranking of the examples as the final
score is a sum operation across all sparsity. Specifically, for each leaf l, the sparsity sl is:

ŝl = Vl/Dl, sl = 2ŝl/(max
l
ŝl −min

l
ŝl)− 1. (5)

Temperature annealing We observe that the soft relaxation approach for tree splits in
NodeGA2M, EntMoid (which replace I in Eq. 2) does not perform well with the PID objective.
We attribute this to Entmoid (similar to Sigmoid) being too smooth, yielding the resulting value
similar across splits. Thus, we propose to make the split gradually from soft to hard operation
during optimization:

Entmoid(x/T )→ I as optimization goes by linearly decresing T → 0 (6)

Algorithm 1 DIAD training

Input: Mini-batch X , tree modelM, smoothing δ,wtl
is an entry of the leaf weights matrix W (Eq. 2) for
each tree t and leaf l

X = MinMaxTransform(X , min=−1, max=1)
XU ∼ U [−1, 1] {Data uniformly from [-1, 1]}
Etl = M(X), EtlU = M(XU ) {Count how many

data in each leaf l of tree t for X,XU . See Alg. 2.}

Etl = Etl + δ, EtlU = EtlU + δ {Smooth the counts}
Vtl =

Etl∑
n′ Etl′ {Volume ratio}

Dtl =
Etl

U∑
n′ Etl′

U

{Data ratio}

Mtl =
V 2
tl

Ptl
{Second moments}

LM = −
∑
t,lMtl {Maximize the second moments}

ŝtl = Vtl/Ptl {Sparsity}
stl = ( 2ŝtl

(max ŝtl−min ŝtl)
− 1) {Scale to [-1, 1] (Eq. 5)}

wtl = (1−γ)wtl+γstl {Update tree weights – Eq. 7}
Optimize LM by Adam optimizer

Updating leafs’ weight When updating
the leaf weights W in Eq. 2 in each step
to be sparsity, to stabilize its noisy estima-
tion due to mini-batch and random sam-
pling, we apply damping to the updates.
Specifically, given the step i, sparsity sil
for each leaf l, and the update rate γ (we
use γ = 0.1):

wil = (1− γ)w(i−1)
l + γsil. (7)

Regularization To encourage diverse
trees, we introduce a novel regularization
approach: per-tree dropout noise on the
estimated momentum. We further restrict
each tree to only split on ρ% of features
randomly to promote diverse trees (see
Appendix. I for details).

Incorporating labeled data At the sec-
ond stage of fine-tuning using labeled
data, we optimize the differentiable AUC
loss (Yan et al., 2003; Das et al., 2017)
which has been shown effective in imbal-
anced data setting. Note that we optimize
both the tree structures and leaf weights of the DIAD. Specifically, given a randomly-sampled mini-
batch of labeled positive/negative samples XP /XN , and the modelM, the objective is:

LPN = 1/|XP ||XN |
∑

xp∈XP ,xn∈XN

max(M(xn)−M(xp), 0). (8)

We show the benefit of this AUC loss compared to Binary Cross Entropy (BCE) in Sec. 6.4.

Training data sampling Similar to Pang et al. (2019a), we upsample the positive samples such
that they have similar count with the negative samples, at each batch. We show the benefit of this
over uniform sampling (see Sec. 6.4).

Theoretical result DIAD prioritizes splitting informative features rather than noise (Appendix C):

Proposition 1 Given uniform noise xn and non-uniform features xd, DIAD prioritizes cutting xd
over xn because the variance of sparsity of xd is larger than xn as sample size goes to infinity.

6 EXPERIMENTS

We evaluate DIAD on various datasets, in both unsupervised and semi-supervised settings. Detailed
settings and additional results are provided in the Appendix. Code will be released upon acceptance.
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6.1 UNSUPERVISED ANOMALY DETECTION

We compare methods on 20 tabular datasets, including 14 datasets from Gopalan et al. (2019) and 6
larger datasets from Pang et al. (2019a).2 We run and average results with 8 different random seeds.
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Figure 2: The Spearman correlation of
methods’ performance rankings. DIAD
is correlated with SCAD as they both
perform better in larger datasets. PID-
Forest underperforms on larger datasets,
and its correlation with DIAD is low,
despite having similar objectives.

Baselines We compare DIAD with SCAD (Shenkar &
Wolf, 2022), a recently-proposed deep learning based
AD method, and other competitive methods including
PIDForest (Gopalan et al., 2019), COPOD (Li et al.,
2020), PCA, k-nearest neighbors (kNN), RRCF (Guha
et al., 2016), LOF (Breunig et al., 2000) and OC-
SVM (Schölkopf et al., 2001). To summarize perfor-
mance across multiple datasets, we consider the averaged
AUC (the higher, the better), as well as the average rank
(the lower, the better) to avoid a few datasets dominating
the results.

Table 2 shows that DIAD’s performance is better or on par
with others on most datasets. Compared to the PIDFor-
est which has similar objectives, DIAD often underper-
forms on smaller datasets such as on Musk and Thyroid,
but outperforms on larger datasets such as on Backdoor,
Celeba, Census and Donors. To analyze the similarity of
performances, Fig. 2 shows the Spearman correlation be-
tween rankings. DIAD is correlated with SCAD as they
both perform better on larger datasets, attributed to better
utilizing deep representation learning. PIDForest under-
performs on larger datasets, and its correlation with DIAD is low despite having similar objectives.

Table 2: Unsupervised AD performance (% of AUC) on 18 datasets for DIAD and 9 baselines. Met-
rics with standard error overlapped with the best number are bolded. Methods without randomness
don’t have standard error. We show the number of samples (N) and the number of features (P),
ordered by N.

DIAD PIDForest GIF IF COPOD PCA SCAD kNN RRCF LOF OC-SVM N P

Vowels 78.3 ± 0.9 74.0 ± 1.0 79.0 ± 1.5 74.9 ± 2.5 49.6 60.6 90.8 ± 2.1 97.5 80.8 ± 0.3 5.7 77.8 1K 12
Siesmic 72.2 ± 0.4 73.0 ± 0.3 53.3 ± 4.4 70.7 ± 0.2 72.7 68.2 65.3 ± 1.6 74.0 69.7 ± 1.0 44.7 60.1 3K 15
Musk 90.8 ± 0.9 100.0 ± 0.0 93.2 ± 2.8 100.0 ± 0.0 94.6 100.0 93.3 ± 0.7 37.3 99.8 ± 0.1 58.4 57.3 3K 166

Satimage 99.7 ± 0.0 98.2 ± 0.3 98.9 ± 0.6 99.3 ± 0.1 97.4 97.7 98.0 ± 1.3 93.6 99.2 ± 0.2 46.0 42.1 6K 36
Thyroid 76.1 ± 2.5 88.2 ± 0.8 57.6 ± 6.0 81.4 ± 0.9 77.6 67.3 75.9 ± 2.2 75.1 74.0 ± 0.5 26.3 54.7 7K 6

A. T. 78.3 ± 0.6 81.4 ± 0.6 56.4 ± 6.8 78.6 ± 0.6 78.0 79.2 79.3 ± 0.7 63.4 69.9 ± 0.4 43.7 67.0 7K 10
NYC 57.3 ± 0.9 57.2 ± 0.6 49.0 ± 3.2 55.3 ± 1.0 56.4 51.1 64.5 ± 0.9 69.7 54.4 ± 0.5 32.9 50.0 10K 10

Mammo. 85.0 ± 0.3 84.8 ± 0.4 82.5 ± 0.3 85.7 ± 0.5 90.5 88.6 69.8 ± 2.7 83.9 83.2 ± 0.2 28.0 87.2 11K 6
CPU 91.9 ± 0.2 93.2 ± 0.1 78.1 ± 0.9 91.6 ± 0.2 93.9 85.8 87.5 ± 0.3 72.4 78.6 ± 0.3 44.0 79.4 18K 10
M. T. 81.2 ± 0.2 81.6 ± 0.3 73.9 ± 12.9 82.7 ± 0.5 80.9 83.4 81.8 ± 0.4 75.9 74.7 ± 0.4 49.9 79.6 23K 10

Campaign 71.0 ± 0.8 78.6 ± 0.8 64.1 ± 3.9 70.4 ± 1.9 78.3 73.4 72.0 ± 0.5 72.0 65.5 ± 0.3 46.3 66.7 41K 62
smtp 86.8 ± 0.5 91.9 ± 0.2 76.7 ± 5.3 90.5 ± 0.7 91.2 82.3 82.2 ± 2.0 89.5 88.9 ± 2.3 9.5 84.1 95K 3

Backdoor 91.1 ± 2.5 74.2 ± 2.6 66.9 ± 8.4 74.8 ± 4.1 78.9 88.7 91.8 ± 0.6 66.8 75.4 ± 0.7 28.6 86.1 95K 196
Celeba 77.2 ± 1.9 67.1 ± 4.8 61.6 ± 6.0 70.3 ± 0.8 75.1 78.6 75.4 ± 2.6 56.7 61.7 ± 0.3 56.3 68.5 203K 39
Fraud 95.7 ± 0.2 94.7 ± 0.3 80.4 ± 0.8 94.8 ± 0.1 94.7 95.2 95.5 ± 0.2 93.4 87.5 ± 0.4 52.5 94.8 285K 29

Census 65.6 ± 2.1 53.4 ± 8.1 58.8 ± 2.5 61.9 ± 1.9 67.4 66.1 58.4 ± 0.9 64.6 55.7 ± 0.1 45.0 53.4 299K 500
http 99.3 ± 0.1 99.2 ± 0.2 91.1 ± 7.0 100.0 ± 0.0 99.2 99.6 99.3 ± 0.1 23.1 98.4 ± 0.2 64.7 99.4 567K 3

Donors 87.7 ± 6.2 61.1 ± 1.3 80.3 ± 18.2 78.3 ± 0.7 81.5 82.9 65.5 ± 11.8 61.2 64.1 ± 0.0 40.2 70.2 619K 10

Average 82.5 80.7 71.2 81.2 81.0 80.5 80.3 70.6 76.8 40.2 71.0 - -
Rank 3.6 4.4 6.3 4.0 4.2 4.2 4.7 6.6 6.7 9.8 6.8 - -

Next, we show the robustness of AD methods with additional noisy features. We follow the
experimental settings from Gopalan et al. (2019) to include 50 additional noisy features which
are randomly sampled from [−1, 1] on Thyroid and Mammography datasets, and their noisy ver-
sions. Table. 3 shows that the performance of DIAD is more robust with additional noisy fea-

2We did not use all 30 datasets in ODDS used in SCAD (Shenkar & Wolf, 2022) because some are small or
overlap with datasets from (Gopalan et al., 2019).
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tures (76.1→71.1, 85.0→83.1), while others show significant performance degradation. On Thyroid
(noise), SCAD decreases from 75.9→49.5, KNN from 75.1→49.5, and COPOD from 77.6→60.5.

Table 3: Unsupervised AD performance (% of AUC) with additional 50 noisy features for DIAD
and 9 baselines. We find both DIAD and OC-SVM deteriorate around 2-3% while other methods
deteriorate 7-17% on average.

DIAD PIDForest GIF IF COPOD PCA SCAD kNN RRCF LOF OC-SVM
Thyroid 76.1 ± 2.5 88.2 ± 0.8 57.6 ± 6.0 81.4 ± 0.9 77.6 67.3 75.9 ± 2.2 75.1 74.0 ± 0.5 26.3 54.7

Thyroid (noise) 71.1 ± 1.2 76.0 ± 2.9 49.4 ± 1.2 64.4 ± 1.6 60.5 61.4 49.5 ± 1.6 49.5 53.6 ± 1.1 50.8 49.4
Mammography 85.0 ± 0.3 84.8 ± 0.4 82.5 ± 0.3 85.7 ± 0.5 90.5 88.6 69.8 ± 2.7 83.9 83.2 ± 0.2 28.0 87.2

Mammography (noise) 83.1 ± 0.4 82.0 ± 2.2 72.7 ± 5.4 71.4 ± 2.0 72.4 76.8 69.4 ± 2.4 81.7 79.1 ± 0.7 37.2 87.2

Average ↓ 3.5 7.5 9.1 15.6 17.6 8.9 13.4 13.9 12.2 -16.8 2.7

6.2 SEMI-SUPERVISED ANOMALY DETECTION

Next, we focus on the semi-supervised setting and show DIAD can take advantage of small amount
of labeled data in a superior way.

Table 4: Performance in semi-supervised AD set-
ting. We show the average % of AUC across 15
datasets with varying number of anomalies.

No. Anomalies 0 5 15 30 60 120
DIAD 87.1 89.4 90.0 90.4 89.4 91.0

DIAD w/o PT - 86.2 87.6 88.3 87.2 88.8
CST - 85.3 86.5 87.1 86.6 88.8

DevNet - 83.0 84.8 85.4 83.9 85.4

We divide the data into 64%-16%-20% train-
val-test splits and within the training set, we
consider that only a small part of data is la-
beled. We assume the existence of labels for a
small subset of the training set (5, 15, 30, 60 or
120 positives and the corresponding negatives
to have the same anomaly ratio).

The validation set is used for model selection
and we report the averaged performances eval-
uated on 10 disjoint data splits. We compare
to 3 baselines: (1) DIAD w/o PT: optimized with labeled data without the first AD pre-training
stage, (2) CST: VIME with consistency loss (Yoon et al., 2020a) which regularizes the model to
make similar predictions between unlabeled data under dropout noise injection, (3) DevNet (Pang
et al., 2019a): a state-of-the-art semi-supervised AD approach. Further details are provided in Ap-
pendix. I.2.
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Figure 3: Semi-supervised AD performance on 8 tabular datasets (out of 15) with varying number
of anomalies. Our method ‘DIAD’ (blue) outperforms other semi-supervised baselines. Summa-
rized results can be found in Table. 4. Remaining plots with 7 tabular datasets are provided in
Appendix. G.
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Fig. 3 shows the AUC across 8 of 15 datasets (the rest can be found in Appendix. G). The proposed
version of DIAD (blue) outperforms DIAD without the first stage pre-training (orange) consistently
on 14 of 15 datasets (except Census), which demonstrates that learning the PID objective with
unlabeled data improves the performance. Second, neither the VIME with consistency loss (green)
or DevNet (red) always improves the performance compared to the supervised setting. Table 4 shows
the average AUC of all methods in semi-supervised AD. Overall, DIAD outperforms all baselines
and shows improvements over the unlabeled setting. In Appendix. E, we show similar results in
average ranks metric rather than AUC.

6.3 QUALITATIVE ANALYSES ON DIAD EXPLANATIONS

Explaining anomalous data DIAD provides value to the users by providing insights on why a
sample is predicted as anomalous. We demonstrate this by focusing on Mammography dataset
and showing the explanations obtained by DIAD for anomalous samples. The task is to detect
breast cancer from radiological scans, specifically the presence of clusters of microcalcifications that
appear bright on a mammogram. The 11k images are segmented and preprocessed using standard
computer vision pipelines and 6 image-related features are extracted, including the area of the cell,
constrast, and noise. Fig. 4 shows the data samples that are predicted to be the most anomalous,
and the rationale behind DIAD on feature contributes more for the anomaly score. The unusually-
high ‘Contrast’ (Fig. 4(a)) is a major factor in the way image differs from other samples. The
unusually high noise (Fig. 4(b)) and ‘Large area’ (Fig. 4(c)) are other ones. In addition, Fig. 4(d)
shows 2-way interactions and the insights by it on why the sample is anomalous. The sample has
‘middle area’ and ‘middle gray level’, which constitute a rare combination in the dataset. Overall,
these visualizations shed light into which features are the most important ones for a sample being
considered as anomalous, and how the value of the features affect the anomaly likelihood.

(a) Contrast (Sp=0.38) (b) Noise (Sp=0.21) (c) Area (Sp=0.18) (d) Area x Gray Level
(Sp=0.05)
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Figure 4: Explanations of the most anomalous samples on the Mammography dataset. We show
the top 4 contributing features ordered by the sparsity (Sp) value (anomalous levels) of our model,
with 3 features (a-c) and 1 two-way interaction (d). (a-c) x-axis is the feature value, and y-axis is the
model’s predicted sparsity (higher sparsity represents more likelihood of being anomalous). Model’s
predicted sparsity is shown as the blue line. The red backgrounds indicate the data density and the
green line indicates the value of the most anomalous sample with Sp as its sparsity. The model finds
it anomalous as it has high Contrast, Noise and Area, different from values that a majority of other
samples have. (d) x-axis is the Area and y-axis is the Gray Level with color indicating the sparsity
(blue/red indicates anomalous/normal). The green dot is the value of the data that has 0.05 sparsity.

Qualitative analyses on the impact of fine-tuning with labeled data Fig. 5 visualizes how pre-
dictions change before and after fine-tuning with labeled samples on Donors dataset. Donors dataset
consists of 620k educational proposals for K12 level with 10 features. The anomalies are defined as
the top 5% ranked proposals as outstanding. We show visualizations before and after fine-tuning.
Figs. 5 a & b show that both ‘Great Chat’ and ‘Great Messages Proportion’ increase in magnitude
after fine-tuning, indicating that the sparsity (as a signal of anomaly likelihood) of these is consistent
with the labels. Conversely, Figs. 5 c & d show the opposite trend after fine-tuning. The sparsity
definition treats the values with less density as more anomalous – in this case ‘Fully Funded’=0 is
treated as more anomalous. In fact, ‘Fully Funded’ is a well-known indicator of outstanding pro-
posals, so after fine-tuning, the model learns that ‘Fully Funded’=1 in fact contributes to a higher
anomaly score. This underlines the importance of incorporating labeled data to improve AD accu-
racy. Appendix. H shows another visualization in Thyroid dataset.
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Figure 5: AD decision visualizations on the Donors dataset before (orange) and after (blue) fine-
tuning with the labeled samples. Here the darker/lighter red in the background indicates high/low
data density and thus less/more anomalous. In (a, b) we show the two features that after fine-tuning
(blue) the magnitude increases which shows the labels agree with the notion of data sparsity learned
before fine-tuning (orange). In (c, d) the label information disagrees with the notion of sparsity;
thus, the magnitude changes or decreases after the fine-tuning.

6.4 ABLATION AND SENSITIVITY ANALYSIS

Table 5: Ablation study for semi-supervised AD.

No. Anomalies 5 15 30 60 120
DIAD 89.4 90.0 90.4 89.4 91.0

Only AUC 88.9 89.4 90.0 89.1 90.7
Only BCE 88.8 89.3 89.4 88.3 89.2

Unnormalized sparsity 84.1 85.6 85.7 84.2 85.6
No upsampling 88.6 89.1 89.4 88.5 90.1

Only finetune leaf weights 84.8 85.7 86.6 85.7 88.3

Table 6: Semi-supervised AD perfor-
mance with 25% of the validation data.

25% val data (4% of total data)

No. Anomalies 5 15 30 60 120
DIAD 89.0 89.3 89.7 89.1 90.4

DIAD w/o PT 85.4 87.1 86.9 86.4 87.9
CST 83.9 84.9 85.7 85.6 88.2

DevNet 82.0 83.4 84.4 82.0 84.6

To analyze the major constituents of DIAD, we perform ablation analyses, presented in Table 5.
We show that fine-tuning with AUC outperforms BCE. Sparsity normalization plays an important
role in fine-tuning, since sparsity could have values up to 104 which negatively affect fine-tuning.
Upsampling the positive samples also contributesto performance improvements. Finally, to compare
with Das et al. (2017) which updates the leaf weights of a trained IF (Liu et al., 2008) to incorpo-
rate labeled data, we propose a variant that only fine-tunes the leaf weights using labeled data in
the second stage without changing the tree structure learned in the first stage, which substantially
decreases the performance. Using differentiable trees that update both leaf structures and weights is
also shown to be important.

In practice we might not have a large validation dataset, as in Sec. 6.2, thus, it would be valuable to
show strong performance with a small validation dataset. In Table 6, we reduce the validation dataset
size to only 4% of the labeled data and find DIAD still consistently outperforms others. Additional
results can be found in Appendix. D. We also perform sensitivity analysis in Appendix. F that varies
hyperparameters in the unsupervised AD benchmarks. Our method is quite stable with less than 2%
differences across a variety of hyperparameters on many different datasets.

7 DISCUSSIONS AND CONCLUSIONS

As unsupervised AD methods rely on approximate objectives to discover anomalies such as recon-
struction loss, predicting geometric transformations, or contrastive learning, the objectives inevitably
would not align with labels on some datasets, as inferred from the performance ranking fluctuations
across datasets. This motivates for incorporating labeled data to boost performance and interpretabil-
ity to find out whether the model could be trusted and whether the approximate objective aligns with
the human-defined anomalies. In this paper, we consider the general PNU setting, with both pos-
itive (P) and negative (N) samples available and we propose a novel interpretable AD framework,
DIAD. Our framework consists multiple novel contributions that are key for highly accurate and
interpretable AD: we introduce a novel way to estimate and normalize sparsity, modify the archi-
tecture by temperature annealing, propose a novel regularization for improved generalization, and
introduce semi-supervised AD via supervised fine-tuning of the unsupervised learnt representations.
These play a crucial role in pushing the state-of-the-art in both unsupervised and semi-supervised
AD benchmarks. Furthermore, DIAD provides unique interpretability capabilities, crucial in high-
stakes applications such as in finance or healthcare.
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REPRODUCIBILITY STATEMENT

We provide our hyperparameters in Appendix I. We will provide code upon paper acceptance.
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A PSEUDO CODE FOR SOFT DIFFERENTIABLE OBLIVIOUS TREES - ALG. 2

Here, we show the pseudo code of differentiable trees.

Algorithm 2 Soft decision tree training

Input: Mini-batch X ∈ RB×D, Temperature T1, T2 (T1, T2 −→ 0)
Symbols: Tree Depth C, Entmoid σ
Trainable Parameters: Feature selection logits G1,G2 ∈ RD, split Thresholds b ∈ RC , split
slope S ∈ RC ,

G = [G1,G2,G1, ...]T ∈ RD×C {Alternating G1, G2 so only 2 chosen features per tree}
G = X ·EntMax(F /T1, dim=0) ∈ RB×C {Weighted sum to soft-select features with temperature
T1}
for c = 1 to C do
Hc = σ( (G

c−bc)
Sc·T2

) {Soft binary split of the feature value with temperature T2}
end for
e =

([
H1

(1−H1)

]
⊗ · · · ⊗

[
(HC)

(1−HC)

])
∈ RB×2C {Soft counts between [0, 1] per leaf}

E = sum(e, dim=0) ∈ R2C {Sum across batch to get total counts per leaf}
Return: E count

B DETAILS OF MAKING TREE OPERATIONS DIFFERENTIABLE

Both F c(x) and I would prevent differentiability. To address this, F c(x) is replaced with a weighted
sum of features with temperature annealing that makes it gradually sharper:

F c(x) =
∑D

j=1
xjentmaxα(Gc/T )j , T → 0, (9)

where Gc ∈ RD is a trainable vector per layer c per tree, and entmaxα (Peters et al., 2019) is the ent-
max normalization, as the sparse version of softmax whose output sum equals to 1. As T → 0, the
output of entmax gradually becomes one-hot and F c(x) picks only one feature. Similarly, the step
function I is replaced with entmoid, which is a sparse sigmoid with outputs between 0 and 1. Dif-
ferentiability of all operations (entmax, entmoid, outer/inner products), render ODT differentiable
to optimize parameters W , bc and Gc (Chang et al., 2021a).

C PROOF OF PROPOSITION 1

Proposition 1 Given uniform noise xn and non-uniform features xd, DIAD prioritizes cutting xd
over xn because the variance of sparsity of xd is larger than xn as sample size goes to infinity.

Here, we show that the variance of sparsity of uniform features would go to 0 under large sample
sizes. Without loss of generality, we assume that the decision tree has a single cut in l ∈ (0, 1) in
a uniform feature xn ∈ [0, 1], and we denote the sparsity of the left segment as s1 and the right as
s2. The sparsity s1 is defined as V1

Dl
where the V1 = l is the volume, and the Dl is the data ratio i.e.

D1 = c1
n where c1 is the counts of samples in segment 1 between 0 and l, and n is the total samples.

Since xn is a uniform feature, the counts c1 become a Binomial distribution with n samples and
probability l:

c1 ∼ Bern(n, l), c2 ∼ Bern(n, 1− l).

As n → ∞, D1 → l because E[Dl] =
E[cl]
n = l and V ar[D1] =

V ar[cl]
n2 = l(1−l)

n → 0. Therefore,
as number of examples grow, the sparsity s1 = Vl

Dl
→ l

l = 1. Similarly, s2 → 1. For any uniform
noise, since both sparsity s1, s2 converges to 1 as n → ∞ no matter where the cut is, the variance
of sparsity converges to 0. Thus, the objective of DIAD which maximizes the variance of sparsity
would prefer splitting other non-uniform features since there is no gain in variance of sparsity when
splitting on the uniform noise.
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D SEMI-SUPERVISED AD RESULTS WITH SMALLER VALIDATION SET

When we have a small set of labeled data, how should we split it between the train and validation
datasets when optimizing semi-supervised methods? In Sec. 6.2 we use 64%-16%-20% for train-
val-test splits, and 16% of validation set could be too large for some real-world settings. Does our
method still outperform others under a smaller validation set?

To answer this, we experiment with a much smaller validation set with only 50% and 25% of original
validation set (i.e. 8% and 4% of total datasets). In Table 7, we show the average AD performance
across 15 datasets with varying size of validation data. With decreasing validation size all methods
decrease the performance slightly, our method still consistently outperforms others.

Table 7: Summary of Semi-supervised AD performances with varying size of validation set (4%,
8% and 16% of total datasets). We show the average % of AUC across 15 datasets with varying
number of anomalies. Our method DIAD still outperforms others consistently.

25% val data (4% of total data) 50% val data (8% of total data)

No. Anomalies 5 15 30 60 120 5 15 30 60 120
DIAD w/o PT 85.4 87.1 86.9 86.4 87.9 85.7 86.9 88.0 86.9 87.5

DIAD 89.0 89.3 89.7 89.1 90.4 89.2 89.7 90.0 89.2 90.6
CST 83.9 84.9 85.7 85.6 88.2 84.2 85.7 85.8 86.2 87.9

DevNet 82.0 83.4 84.4 82.0 84.6 83.0 85.0 85.5 83.6 85.5

100% val data (16% of total data) -

No. Anomalies 5 15 30 60 120 -

DIAD w/o PT 86.2 87.6 88.3 87.2 88.8 -
DIAD 89.4 90.0 90.4 89.4 91.0 -
CST 85.3 86.5 87.1 86.6 88.8 -

DevNet 83.0 84.8 85.4 83.9 85.4 -

E THE AVERAGE RANK PERFORMANCE OF SEMI-SUPERVISED AD RESULTS

The average AUC for semi-supervised AD results (Table 4) might not represent the entire picture,
so we provide the average ranks as well in Table 8. Our method still consistently outperforms other
methods.

Table 8: Average ranks of AUC across 15 datasets in the Semi-supervised AD result.

No. Anomalies 5 15 30 60 120
DIAD 1.3 1.3 1.3 1.3 1.2

DIAD w/o PT 2.3 2.6 2.6 2.5 2.9
CST 3.2 3.1 3.1 3.0 2.7

DevNet 3.1 3.0 3.1 3.2 3.2

F SENSITIVITY ANALYSIS

We perform sensitivity analyses from our default hyperparameter in the unsupervised AD bench-
marks. We exclude Census, NYC taxi, SMTP, and HTTP datasets since some hyperparameters can
not be run, resulting in total 14 datasets each with 4 different random seeds. In Fig. 6, besides show-
ing the average of all datasets (blue), we also group datasets by their sample sizes into 3 groups:
(1) N > 105 (Orange, 3 datasets), (2) 105 > N > 104 (green, 5 datasets), and (4) N < 104 (red,
6 datasets). Overall, DIAD shows quite stable performance between 82-84 except when (c) No.
trees= 50 and (h) smoothing ≤ 10. We also find that 3 hyperparameters: (a) batch size, (b) No.
Layers, and (d) Tree depth that the large group (orange) has an opposite trend than the small group
(red). Large datasets yield better results with smaller batch sizes, larger layers, and shallower tree
depths.
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(a) Batch Size (b) No. Layers (c) No. Trees (d) Tree depth
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Figure 6: Sensitivity analysis. Y-axis shows the average AUC across 14 datasets, and X-axis shows
the varying hyperparameters. The dashed line is the default hyperparameter. We show 4 groups: (1)
All datasets (Blue), (2) N > 105 (Orange), (3) 105 > N > 104 (green), and (4) N < 104 (red).

G SEMI-SUPERVISED AD FIGURES

We experiment with 15 datasets and measure the performanceunder a different number of anomalies.
We split the dataset into 64-16-20 train-val-test splits and run 10 times to report the mean and
standard error. We show the performance in Fig. 7.

H MORE VISUAL EXPLANATIONS

We show another example of DIAD explanations on the ”Celeba” dataset. Celeba consists of 200K
pictures of celebrities and annotated with 40 attributes including ”Bald”, ”Hair”, ”Mastache”, ”At-
tractive” etc. We train the DIAD on these 40 sets of attributes and treat the ”Bald” attribute as
outliers since it accounts for only 3% of all celebrities. Here we show the most anomalous example
deemed by the DIAD in Fig. 8. The top 4 contributing factors are shown in (a-d), showing Gray
Hair, Mustache, Receding Hairline, and Rosy Cheeks are very anomalous in the data. We also show
the top 4 interactions in (e-h), indicating the combination of Rosy Cheeks with Mustache, Goatee,
Necktie and Side Burns are even more anomalous deemed by DIAD.

We also show the least anomalous example deemed by DIAD in the Celeba dataset in Fig. 9. The
lack of ”Receding Hairline”, ”Rosy Cheeks”, ”Pale Skin”, and ”Gray Hair” are pretty common and
thus DIAD outputs a negative normalized sparsity value.

We show another example of DIAD explanations on the ”Backdoor” dataset. It consists of 95K sam-
ples and 196 features that record the backdoor network attacks with the attacks as anomalies against
the ‘normal’ class, which is extracted from the UNSW-NB 15 data set. In Fig. 10, we show two
most anomalous examples deemd by DIAD. The Fig. 10(a-c) shows the top 3 contributing factors
for one example and the ”protocol=HMP” solely determines its high abnormity since the rest of the
two features have only little sparsity. A user can thus decide if he wants to trust such explanation
and finds out if such protocol is indeed anomalous. The Fig. 10(d-f) shows the top 3 contributing
factors for the other example and both the ”protocol=ICMP” and ”state=ECO” contributes to its high
sparsity (1.5, and 1.2 respectively). And other features are relatively quite normal.

We further show another case study of DIAD explanations on ”Thyroid” datasets before and after
fine-tuning to further demonstrate the discrepancy between unsupervised AD objective and labeled
anomalies. Thyroid datasets contains 7200 samples with 6 features and 500 of labels are labeled as
”hyperfunctioning”. In Fig. 11, we visualize 4 attributes: (a) T3, (b) T4U, (c) TBG, and (d) TT4.
And the dark red in the backgrounds indicates the high data density by bucketizing the x-axis into
64 bins and counts the number of examples for each bin. First, in T3 feature, before fine-tuning
(orange) the model predicts a higher anomaly for values above 0 since they have little density and
have mostly white region. After fine-tuning on the labeled data (blue), the model further strengthens
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(a) Vowels (b) Siesmic (c) Satimage (d) Thyroid
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Figure 7: Semi-supervised AD performance on 8 tabular datasets (out of 15) with varying number
of anomalies. Our method ‘DIAD’ (blue) outperforms other semi-supervised baselines. Table. 4
summarizes the comparisons.
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Figure 8: DIAD decision making visualizations of the most anomalous image of the CelebA dataset.
The top 4 contributing mains are shown in (a-d) where the green dots are the image’s attributes and
the blue line is the model’s prediction. This celebrity has gray hair, Mustache, receding hairline,
and rosy cheeks which make DIAD predict him as very anomalous in the dataset. The top 4 2-
way interactions are shown in (e-h) where the combination of the Rosy Cheeks with Mustache (e),
Goatee (f), Necktie (g), and Side Burns (h) make him even more anomalous.
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Figure 9: DIAD decision making visualizations of the least anomalous celebrity in the CelebA
dataset, showing its least 4 anomalous features. The lack of ”receding hariline”, ”rosy cheeks”,
”pale skin”, and ”gray hair” make DIAD deem him as the most normal subject indicated by the
negative sparsity.

its belief that values bigger than 0 are anomalous. However, in T4U, TBG and TT4 features, before
fine-tuning (orange) the model indicates higher values are more anomalous because it has larger
volume and relatively small data density (white). But after fine-tuning (blue) on the labels the model
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Figure 10: DIAD decision making visualizations of 2 most anomalous examples in the Backdoor
dataset. (a-c) shows the top 3 contributing factors of one example and the ”protocol=HMP” is solely
responsible for its abnormity prediction. (d-f) shows another example that both ”protocol=ICMP”
and ”State=ECO” are both contributing to large abnormity value.

moves to an opposite direction that the smaller feature value is more anomalous. This shows that the
used unsupervised anomaly objective, PID, is in conflict with the human-defined anomalies in these
features.
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Figure 11: AD decision making visualizations on the Thyroid dataset before (orange) and after
(blue) fine-tuning on the labeled samples. Here the darker/lighter red in the background indicates
high/low data density and thus less/more anomalous. In (a) T3, the labeled information agrees with
the anomaly specified in PID, so after fine-tuning the magnitude increases. In (b, c, d) the label
information disagrees with the anomalous levels specified in PID especially when the value are
small; thus, the magnitude changes or decreases after the fine-tuning.

We show more experimental results to see how methods perform under noise injection in Table 9,
following the procedures described in Sec. 6 and Table 3. In additional to Thyroid and Mammo-
graph, we further compare with Siesmic, Campaign, and Fraud. We find that overall DIAD and
OC-SVM only deterioriates around 1-2% while others can deterioriate up to 3-11% on average,
showing DIAD’s superiority of noise resistance.

I HYPERPARAMETERS

Here we list the hyperparameters we use for both unsupervised and semi-supervised experiments.
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Table 9: Unsupervised AD performance (% of AUC) with additional 50 noisy features for DIAD
and 9 baselines. We find both DIAD and OC-SVM deteriorate on average 1-2% while other methods
deteriorate 3-11% on average. We ignore the average of LOF since most of the ROC are below 50%.

DIAD PIDForest GIF IF COPOD PCA SCAD kNN RRCF LOF OC-SVM
Thyroid 76.1 ± 2.5 88.2 ± 0.8 57.6 ± 6.0 81.4 ± 0.9 77.6 67.3 75.9 ± 2.2 75.1 74.0 ± 0.5 26.3 54.7

Thyroid (noise) 71.1 ± 1.2 76.0 ± 2.9 49.4 ± 1.2 64.4 ± 1.6 60.5 61.4 49.5 ± 1.6 49.5 53.6 ± 1.1 50.8 49.4
Mammography 85.0 ± 0.3 84.8 ± 0.4 82.5 ± 0.3 85.7 ± 0.5 90.5 88.6 69.8 ± 2.7 83.9 83.2 ± 0.2 28.0 87.2

Mammography (noise) 83.1 ± 0.4 82.0 ± 2.2 72.7 ± 5.4 71.4 ± 2.0 72.4 76.8 69.4 ± 2.4 81.7 79.1 ± 0.7 37.2 87.2
Siesmic 72.2 ± 0.4 73.0 ± 0.3 53.3 ± 4.4 70.7 ± 0.2 72.7 68.2 65.3 ± 1.6 74.0 69.7 ± 1.0 44.7 58.9

Siesmic (noise) 71.8 ± 0.1 72.1 ± 0.7 56.9 ± 2.2 66.0 ± 1.2 68.3 65.5 58.0 ± 1.8 74.0 69.7 ± 0.3 44.7 60.1
Campaign 71.0 ± 0.8 78.6 ± 0.8 64.1 ± 3.9 70.4 ± 1.9 78.3 73.4 72.0 ± 0.5 72.0 65.5 ± 0.3 46.3 66.7

Campaign (noise) 70.6 ± 0.5 72.1 ± 1.3 63.7 ± 0.3 67.6 ± 0.8 71.1 72.5 71.6 ± 0.5 67.6 59.3 ± 0.0 40.3 64.5
Fraud 95.7 ± 0.2 94.7 ± 0.3 80.4 ± 0.8 94.8 ± 0.1 94.7 95.2 95.5 ± 0.2 93.4 87.5 ± 0.4 52.5 94.8

Fraud (noise) 95.6 ± 0.0 94.6 ± 0.1 51.1 ± 0.6 93.4 ± 0.4 93.8 95.1 92.7 ± 0.7 78.6 61.6 ± 0.4 21.3 92.9

Average ↓ 1.6 3.3 9.5 8.0 9.5 4.3 7.5 9.4 11.3 - 1.9

I.1 UNSUPERVISED AD

Since it’s hard to tune hyperparameters in unsupervised setting, for fair comparisons, we use all
baselines with default hyperparameters. Here we list the default hyperparameter for DIAD in Ta-
ble 10. Here we explain each specific hyperparameter:

• Batch size: the sample size of mini-batch.

• LR: learning rate.

• γ: the hyperparameter used to update the sparsity in each leaf (Eq. 7).

• Steps: the total number of training steps. We find 2000 works well across our datasets.

• LR warmup steps: we do the learning rate warmup (Goyal et al., 2017) that linearly in-
creases the learning rate from 0 to 1e-3 in the first 1000 steps.

• Smoothing δ: the smoothing count for our volume and data ratio estimation.

• Per tree dropout: the dropout noise we use for the update of each tree.

• Arch: we adopt the GAMAtt architecture form the NodeGAM (Chang et al., 2021a).

• No. layer: the number of layers of trees.

• No. trees: the number of trees per layer.

• Additional tree dimension: the dimension of the tree’s output. If more than 0, it appends
an additional dimension in the output of each tree.

• Tree depth: the depth of tree.

• Dim Attention: since we use the GAMAtt architecture, this determines the size of the
attention embedding. We find tuning more than 32 will lead to insufficient memory in our
GPU, and in general 8-16 works well.

• Column subsample (ρ): this controls how many proportion of features a tree can operate
on.

• Temp annealing steps (K), Min Temp: these control how fast the temperature linearly de-
cays from 1 to the minimum temperature (0.1) in K steps. After K training steps, the entmax
or entmoid become max or step functions in the model.

I.2 SEMI-SUPERVISED AD

We adopt 2-stage training. In the 1st stage, we optimize the AD objective and select a best model
by the validation set performance under the random search. Then in the 2nd stage, we search the
following hyperparameters with No. anomalies=120 to choose the best hyperparamter, and later run
through the rest of 5, 15, 30, and 60 anomalies to report the performances.

• Learning Rate: [5e-3, 2e-3, 1e-3, 5e-4]
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Table 10: Default hyperparameter used in the unsupervised AD benchmarks.

Batch Size LR γ Steps LR warmup
steps Smoothing Per tree

Dropout Arch

2048 0.001 0.1 2000 1000 50 0.75 GAMAtt

No.
layers

No.
trees

Addi.
tree dim

Tree
depth Dim Attention Column

Subsample (ρ)

Temp
annealing
steps (K)

Min Temp

3 300 1 4 12 0.4 1000 0.1

• Loss: [’AUC’, ’BCE’].

Then, for each baseline we use the same architecture but tune the hyperparameters:

• CST: the overall loss is calcualted as follows (Eq. 7, 8, 9 in (Yoon et al., 2020a)):

Lfinal = Ls + βLu

The supervised loss Ls is:

Ls = E(x,y)∼PXY
[lBCE(y, f(x))]

The consistency loss Lu is:

Lu = Ex∼PX ,m∼pm,x̂∼gm(x,m)[(fe(x̂)−fex)2]

where the gm(x,m) is to use dropout mask m to remove features and impute it with the
marginal feature distribution, and the masks are sampled K times. Since the accuracy is
quite stable across different β, and when K ≥ 20 (Fig. 10, (Yoon et al., 2020a)), we select
β = 1 and K = 20, and search the dropout rate pm from [0.05, 0.1, 0.2, 0.35, 0.5, 0.7] and
the learning rate [2e-3, 1e-3].
• DevNet: they first randomly sample 5000 Gaussian samples with 0 mean and 1 standard

deviation and calculate the mean uR and standard deviation σR:

uR =
1

l

∑l

i=1
ri where ri ∼ N(0, 1),

σR = standard deviation of {r1, r2..., r5000}.
Then they calculate the loss (Eq. 6, 7 in (Pang et al., 2019a)):

L = (1− y)|dev(x)|+ ymax(0, a− dev(x)) where dev(x) =
φ(x)− uR

σR
.

The φ is the deep neural network and the a is set to 5. In short, they try to increase the
output of anomalies (y = 1) to be bigger than a and let the output of normal data (y = 0)
to be close to 0. We tune learning rates from [2e-3, 1e-3, 5e-4] for DevNet.
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