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ABSTRACT

Decoding human visual experiences from neural signals is crucial for understand-
ing the relationship between brain activity and perceptual representations, driving
the advancement of brain-computer interface (BCI) applications. Existing visual
decoding methods typically adopt a global alignment paradigm for brain-visual
alignment, which may not account for the intricate functional specialization of
the human visual cortex, where distinct cortical areas are selectively sensitive
to different visual information. In this work, we propose BRENA, a BRain-
inspired hiErarchical Neural Alignment framework by simultaneously aligning
both region-level and global brain representations with visual embeddings for
robust and accurate brain decoding. Unlike prior approaches that rely purely
on global pooled representations, BRENA proposes an Adaptive Local Neural
Alignment Module to explore fine-grained correspondence between brain chan-
nel features and visual semantic units, allowing for better exploitation of brain
signals by modeling region-specific feature selectivity. Additionally, a set of per-
ceptual weights are adaptively generated to guide more target-aware alignment.
We further integrate a global neural alignment module to achieve hierarchical
brain-visual alignment, capturing complementary region-level and global neural
patterns. Experiments demonstrate that BRENA not only outperforms existing
methods across subjects and settings but also reveals region-level brain selectiv-
ity for visual stimuli by establishing meaningful local mappings between neural
channels and diverse visual sub-patterns.

1 INTRODUCTION

Decoding visual content from brain activity aims to infer the content or properties of visual stimuli
from neural recordings (Georgopoulos et al., 1986; Kay et al., 2008; Guo et al., 2025; Wu et al.,
2025), which underpins the design of brain–computer interfaces and driving progress in cognitive
neuroscience (Nicolas-Alonso & Gomez-Gil, 2012; Kriegeskorte & Douglas, 2018). Stimulus-
evoked neural activity is mainly recorded by EEG, MEG, and fMRI. Among these non-invasive
neural recording modalities, EEG has attracted broad attention owing to its portability and millisec-
ond temporal resolution (Schirrmeister et al., 2017; Song et al., 2022; 2023).

Recently, various EEG-based visual decoding methods have been proposed, which aim to use deep
learning models to decode the corresponding visual stimuli perceived during the recording process.
These methods typically align EEG embeddings with image representation space to achieve visual
retrieval or reconstruction (Benchetrit et al., 2023; Scotti et al., 2024; Zhang et al., 2025). However,
existing methods typically use a global alignment paradigm for brain-visual alignment, which may
not account for the human visual cortex’s functional specialization and distributed organization.

Previous studies (Roe et al., 2012; Cant & Goodale, 2007; Coggan et al., 2017) on human perception
mechanisms have revealed that distinct visual cortical regions are selectively sensitive to different
visual patterns. As shown in Figure 1, the two-streams hypothesis in neuroscience divides the vi-
sual system into a ventral “what” pathway and a dorsal “where” pathway (Ungerleider, 1982). The
ventral pathway, driven predominantly by parvocellular input and coursing along the ventral visual
cortex, selectively encodes fine detail for object recognition (Merigan & Maunsell, 1993; Nassi &
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Figure 1: (A) Overview of information flow during Rapid Serial Visual Presentation (RSVP) and
the hierarchical processing mechanism of multi-level visual information along the ventral stream.
(B) Visualization of brain’s region-specific selectivity in visual decoding. The heatmap matrix de-
picts the mapping from EEG channels (cortical regions) to different target visual sub-features, and
larger values indicate greater sensitivity of that channel to the corresponding sub-feature.

Callaway, 2009). Along the ventral stream, low-level features are parsed in specialized early (V1/V2
(Bridge et al., 2005)) and mid-level (V4 (Hamker, 2005)) subregions, and their outputs are progres-
sively integrated across hierarchical stages (Lerner et al., 2001; DiCarlo et al., 2012; Roe et al.,
2012). Despite the brain’s hierarchical visual perceptual process, existing decoding methods com-
press multi-regional neural signals into a single global representation and conduct global alignment
with compressed visual semantics, underrepresenting how different parts of the visual cortex work
together. This loss of region-specific selectivity is particularly problematic for EEG signals that
are notorious for low signal-to-noise ratio, hindering the accurate interpretation of neural patterns.
Therefore, a significant challenge is to develop a robust visual decoding method that could reflect
the brain’s inherent hierarchical and cooperative visual processing.

Motivated by the above insights, we propose a BRain-inspired hiErarchical Neural Alignment
(BRENA) framework by performing brain-visual alignment at both region-level and global-level
for robust brain decoding. Inspired by region-specific feature selectivity of visual cortex, we pro-
pose an Adaptive Local Neural Alignment module, which aligns features of different EEG spatial
channels to visual sub-features with diverse patterns. To accomplish this, we decompose images
into several task-relevant sub-features via a visual resampler, forming semantic subspaces that align
more effectively with brain regions. Additionally, a set of adaptive perceptual weights are generated
to prioritize sub-features that are most predictive of targets, guiding the local alignment process to
focus on discriminative cues. Consequently, BRENA achieves a finer-grained alignment by mim-
icking the visual cortex’s functional specialization. This enables task-specific EEG channels to
be activated with corresponding low- and mid-level visual semantics (such as color, texture, and
foreground–background spatial relation), while reducing interference from irrelevant channels. In
parallel, a global neural alignment module enforces sample-level semantic coherence between im-
ages and brain signals via a global contrastive loss. By integrating both local and global neural
alignment, BRENA achieves a hierarchical brain-visual alignment with both fine-grained regional
neural patterns and global semantics captured, allowing for a richer exploitation of neural data.

Our contributions could be summarized in threefold:

• We propose a brain-inspired hierarchical neural alignment framework by taking inspira-
tion from the brain’s functional specialization, performing brain-visual alignment at both
region-level and global-level for robust visual decoding.

• An Adaptive Local Neural Alignment Module is proposed to achieve fine-grained brain-
visual alignment between EEG channel embeddings and diverse visual sub-features, allow-
ing for better exploitation of brain signals by modeling region-specific feature selectivity.

• Extensive experiments in both intra-subject and inter-subject settings demonstrate the ef-
fectiveness of BRENA in visual decoding, outperforming state-of-the-art methods by 7.3%
in average top-1 accuracy on image retrieval tasks.
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Figure 2: Overview of BRENA. An Adaptive Local Neural Alignment Module is introduced for
fine-grained alignment between EEG channel embeddings and selected visual sub-features. In ad-
dition, a sub-feature selector is adopted to adaptively select the discriminative sub-features guided
by adaptive perceptual weights. In parallel, the global alignment at the sample-level is achieved via
a global contrastive loss. In the inference stage, the local key sub-features and global features are
aggregated to perform retrieval task.

• We conduct brain functional visualization and discover that BRENA reveals region-level
brain selectivity through meaningful local mappings between brain channels and diverse
visual patterns, grounding the alignment framework in human perceptual mechanisms.

2 METHOD

2.1 OVERVIEW

Inspired by the visual cortex’s region-specific selectivity, we propose a hierarchical neural alignment
framework to mimic its functional specialization, activating task-relevant EEG channels with low-
and mid-level visual semantics (e.g., color, texture, spatial relations) while suppressing irrelevant
signals. As depicted in Figure 2, the framework consists of two primary components: a Neural En-
coder designed to produce robust EEG representations and an Adaptive Local Alignment Module
that aligns these region-level representations with visual sub-features, guided by a set of adaptively
generated perceptual weights.

Overall, given EEG data S ∈ RC×T with C channels and T time points and an image X(i) as
the visual stimuli, a trainable Neural Encoder fθ is utilized to extract the brain semantic represen-
tation V̂ = fθ

(
S
)
= [ v̂1, v̂2, . . . , v̂C ] ∈ RC×m. To obtain the target visual features, we use a

frozen pretrained vision encoder VE(·) to produce decomposed visual sub-features from the image
X as V = VE

(
x
)
= [v1, v2, . . . , vK ] ∈ RK×n. Our goal is to reduce the modality discrep-

ancy between the brain representations and the corresponding visual sub-features, thereby achieving
effective visual decoding.

2.2 NEURAL ENCODER

Unlike prior global alignment approaches (Li et al., 2024a) that apply early global mixture across
EEG channels, we first perform per-channel feature extraction without cross-channel mixing to pre-
serve region-specific information. Subsequently, these channel-wise neural signals are aggregated to
be adaptively mapped to their most relevant sub-visual features. Overall, our EEG encoder consists
of three parts: Channel Embedder, Cross-Channel Fusion Projector, and Domain Adapter.

3
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Channel Embedder. Previous work (Wang et al., 2025; Li et al., 2024b) demonstrates that
frequency-domain features capture both category- and state-dependent information. To leverage
this property, we introduce a dual-branch channel encoder that captures joint time–frequency fea-
tures for enhanced EEG representation. Specifically, for each channel signal segment sj ∈ RT , j ∈
[1, 2, · · · , C], the frequency branch computes a power–spectrum vector pj =

∣∣F{sj}
∣∣2 by the

discrete Fourier transform F , where | · |2 is the element-wise power. Then, we project it to a m-
dimensional embedding efj = φf (pj). In parallel, we further extract EEG’s temporal characteristic
by etj = φt(sj). In practice, we set m equal to T . Then we fuse the two paths by residual addition:

zj = etj + efj + sj . (1)

Cross-Channel Fusion Projector (CCFP). Motivated by the brain’s regional specialization for
processing low-level visual attributes, we adaptively aggregate functionally related channels using
a cross-channel projector. This crucial step enables their precise alignment with subsequent low-
and mid-level visual information. Specifically, we concatenate per-channel embeddings and map
it to K vectors in the feature space of vision yield Ẑ = ψ(f(Z)) ∈ RK×n, which is termed as the
brain semantic embeddings. For simplicity, we utilize a high-capacity linear projection, which could
learn data-driven channel combinations that emphasize brain regions most predictive of each target
feature. As shown in Figure 1, by visualizing the weight matrix of the fusion mapping layer, we can
identify EEG channels that contribute most to specific sub-visual features and compare the relative
strength of channel–feature couplings across brain regions.

Domain Adapter. To reduce the modality gap between neural features and the target space, we
employ a domain adapter on the brain semantic embeddings Ẑ. We apply a shared adapter to trans-
form each brain semantic embedding, bridging the representational gap between the brain embed-
dings and the visual domain: v̂j = ẑj + gθ(ẑj), j ∈ [1, 2, . . . ,K], where the adapter gθ is
implemented as a lightweight MLP layer.

2.3 ADAPTIVE LOCAL ALIGNMENT MODULE

Motivated by the region-specific feature selectivity of the visual cortex, we introduce an Adap-
tive Local Alignment module to align brain semantic embeddings with diverse visual sub-features.
Specifically, we design a sub-feature selector that learns perceptual weights to rank visual sub-
features, and introduce a local alignment loss to achieve fine-grained alignment while emphasizing
discriminative patterns of the perceived target.

Visual Sub-Feature Learning. To mimic the human perception process, we first decompose im-
ages into a set of visual sub-features before aligning them with the EEG channel features. Specif-
ically, for a given input image x(i), we use a pretrained visual encoder (Ye et al., 2023) equipped
with a visual resampler. The resampler employs several learnable queries to fuse patch embeddings
via cross-attention, thereby obtaining a set of visual sub-features {vi}Ni=1.

Subsequently, a sub-feature selector uses perceptual weights to identify the most discriminative
sub-features, guiding the local alignment process to focus on the most critical patterns. The percep-
tual weights could quantify each sub-feature’s contribution to the global representation, generating
from the attention matrix A ∈ RN×N from the last cross-attention layer. For the i-th sub-feature,
we compute its perception weight as the mean attention received across all heads and queries by
wi = 1

H

∑H
h=1

1
N

∑N
j=1A

(h)
j,i , where H is the number of attention heads. We then select top-k

sub-features contributing most to the global representation:

Itop-k = TopK
(
{wi}Ni=1, k

)
. (2)

Local Alignment. Given the brain semantic embeddings {v̂i}Ni=1 from neural encoder, a local
projector M(·) is designed to obtain brain region representations as:

ui = M(v̂i), i = 1, . . . , N. (3)

Then, we design a local alignment loss to ensure robust fine-grained alignment. Specifically, for
the selected top-k indices Itop-k, we extract the predicted brain-decoded sub-features {ui}i∈Itop-k
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and the corresponding ground-truth image sub-features {vi}i∈Itop-k at the same positions. The local
alignment loss Llocal guided by perceptual weights could be formulated as:

Llocal = −1

k

∑
i∈Itop-k

wi ·
ui · vi

∥ui∥2 ∥vi∥2
. (4)

By enforcing local alignment loss Llocal, BRENA could activate task-specific EEG channels with
corresponding low- and mid-level visual semantics while suppressing interference from irrelevant
channels.

2.4 TRAINING OBJECTIVES

To preserve sample-level semantics and complement local alignment, we design a global alignment
loss that aligns the global EEG representations with holistic visual semantics. Given the feature sets
V̂,V ∈ RK×n, we flatten them into global embeddings Ĝ,G. We then apply a CLIP-style sym-
metric contrastive loss on a batch of size B. Let the similarity be sij = ⟨Ĝ, G⟩/τ with temperature
τ > 0. Formally,

Lglobal =
1

2

[
− 1

B

B∑
i=1

log
exp(sii)∑B
j=1 exp(sij)

− 1

B

B∑
i=1

log
exp(sii)∑B
j=1 exp(sji)

]
. (5)

The final training objective Loverall combines the local and global contrastive loss to enforce cross-
modal consistency, yielding discriminative EEG representations: Loverall = Lglobal + λLlocal, where
λ is the trade-off parameter.

3 EXPERIMENT

3.1 IMPLEMENTATION DETAILS

Dataset. We employed the THINGS-EEG dataset (Gifford et al., 2022), a large-scale benchmark
for visual neural decoding. It contains EEG recordings from ten participants who viewed object im-
ages from the THINGS database under a rapid serial visual presentation (RSVP) paradigm, where
each image was displayed for 100 ms followed by a 100 ms blank interval. The training set com-
prises 1,654 concepts with multiple repetitions per subject, while the test set includes 200 novel
concepts with extensive repetitions to ensure high signal-to-noise ratio. We followed the protocol in
NICE (Song et al., 2023) to preprocess EEG data.

Compared Methods. We compare our proposed BRENA with several state-of-the-art baselines,
including BraVL (Du et al., 2023), NICE and its variants (NICE-SA, NICE-GA) (Song et al., 2023),
ATM-S (Li et al., 2024a), VE-SDN (Chen et al., 2024), UBP (Wu et al., 2025). We adopt their
official implementations and follow the same evaluation protocols to ensure a fair comparison.

Visual Encoder. We use the fused sub-features produced by IP-AdapterYe et al. (2023) as the
default alignment targets. It applies a lightweight Perceiver Resampler to fuse the ViT-H/14 patch
tokens into 16 semantically enriched visual sub-features. More implementation details are shown in
Appendix C.

3.2 OVERALL PERFORMANCE

Table 1 shows the overall comparison of Top-1 and Top-5 accuracy (%) for 200-way zero-shot
retrieval on THINGS-EEG across different baselines. The experiments are conducted in both intra-
subject setting where training and testing are performed on the same subject, and inter-subject
setting where models are trained on all but one subject and evaluated on the held-out participant.
Overall, BRENA achieves the best intra-subject performance and robust inter-subject generalization.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 1: Top-1 and Top-5 accuracy (%) for 200-way zero-shot retrieval on THINGS-EEG. Improve-
ments are reported relative to UBP, where positive values are marked in green (+) and negative
values in red (–).

Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 Subject 6 Subject 7 Subject 8 Subject 9 Subject 10 Avg

Method top-1 top-5 top-1 top-5 top-1 top-5 top-1 top-5 top-1 top-5 top-1 top-5 top-1 top-5 top-1 top-5 top-1 top-5 top-1 top-5 top-1 top-5

Intra-subject: train and test on one subject

BraVL 6.1 17.9 4.9 14.9 5.6 17.4 5.0 15.1 4.0 13.4 6.0 18.2 6.5 20.4 8.8 23.7 4.3 14.0 7.0 19.7 5.8 17.5
NICE 13.2 39.5 13.5 40.3 14.5 42.7 20.6 52.7 10.1 31.5 16.5 44.0 17.0 42.1 22.9 56.1 15.4 41.6 17.4 45.8 16.1 43.6
NICE-SA 13.3 40.2 12.1 36.1 15.3 39.6 15.9 49.0 9.8 34.4 14.2 42.4 17.9 43.6 18.2 50.2 14.4 38.7 16.0 42.8 14.7 41.7
NICE-GA 15.2 40.1 13.9 40.1 14.7 42.7 17.6 48.9 9.0 29.7 16.4 44.4 14.9 43.1 20.3 52.1 14.1 39.7 19.6 46.7 15.6 42.8
ATM-S 25.6 60.4 22.0 54.5 25.0 62.4 31.4 60.9 12.9 43.0 21.3 51.1 30.5 61.5 38.8 72.0 34.4 51.5 29.1 63.5 28.5 60.4
VE-SDN 32.6 63.7 34.4 69.9 38.7 73.5 39.8 72.0 29.4 58.6 34.5 68.8 34.5 68.3 49.3 79.8 39.0 69.6 39.8 75.3 37.2 69.9
UBP 41.2 70.5 51.2 80.9 51.2 82.0 51.1 76.9 42.2 72.8 57.5 83.5 49.0 79.9 58.6 85.8 45.1 76.2 61.5 88.2 50.9 79.7

Ours 61.0 87.0 56.0 81.5 56.5 87.5 57.0 84.5 46.5 74.5 56.5 87.0 58.5 86.0 75.0 91.5 50.0 80.0 65.0 92.0 58.2 85.1
Improve +19.8 +16.5 +4.8 +0.6 +5.3 +5.5 +5.9 +7.6 +4.3 +1.7 −1.0 +3.5 +9.5 +6.1 +16.4 +5.7 +4.9 +3.8 +3.5 +3.8 +7.3 +5.4

Inter-subject: leave one subject out for test

BraVL 2.3 8.0 1.5 6.3 1.4 5.9 1.7 6.7 1.5 5.6 1.8 7.2 2.1 8.1 2.2 7.6 1.6 6.4 2.3 8.5 1.8 7.0
NICE 7.6 22.8 5.9 20.5 6.0 22.3 6.3 20.7 4.4 18.3 5.6 22.2 5.6 19.7 6.3 22.0 5.7 17.6 8.4 28.3 6.2 21.4
NICE-SA 7.0 22.6 6.6 23.2 7.5 23.7 5.4 21.4 6.4 22.2 7.5 22.5 3.8 19.1 8.5 24.4 7.4 22.3 9.8 29.6 7.0 23.1
NICE-GA 5.9 21.4 6.4 22.7 5.5 20.1 6.1 21.0 4.7 19.5 6.2 22.5 5.9 19.1 7.3 25.3 4.8 18.3 6.2 26.3 5.9 21.6
ATM-S 10.5 26.8 7.1 24.8 11.9 33.8 14.7 39.4 7.0 23.9 11.1 35.8 16.1 43.5 15.0 40.3 4.9 22.7 20.5 46.5 11.8 33.7
UBP 11.5 29.7 15.5 40.0 9.8 27.0 13.0 32.3 8.8 33.8 11.7 31.0 10.2 23.8 12.2 32.2 15.5 40.5 16.0 43.5 12.4 33.4

Ours 15.0 37.5 18.5 47.0 11.0 31.5 18.5 39.5 13.5 35.0 9.5 27.5 13.5 36.0 15.0 40.0 18.0 42.0 24.5 50.0 15.7 38.7
Improve +3.5 +7.8 +3.0 +7.0 +1.2 +4.5 +5.5 +7.2 +4.7 +1.2 −2.2 −3.5 +3.3 +12.2 +2.8 +7.8 +2.5 +1.5 +8.5 +6.5 +3.3 +5.3

A B

Figure 3: Comparison of Top-1 and Top-5 retrieval accuracies across different pretrained visual tar-
gets under 200-way zero-shot setting. Dashed lines indicate Top-1 accuracies from baseline models
(UBP, ATM-S, VE-SDN). (A) Intra-subject retrieval accuracy across visual targets. (B) Inter-subject
retrieval accuracy across visual targets.

Intra-subject Performance. Our method achieves the best performance, with Top-1 and Top-5
accuracies of 58.2% and 85.1%, respectively. Compared with UBP (50.9% / 79.7%), this yields
absolute improvements of 7.3 and 5.4 points. Gains are consistent across participants: BRENA
ranks first or ties for first in the majority of cases, reflecting robustness to within-subject variability.
These results suggest that BRENA better captures task-relevant brain-visual correspondences than
global alignment paradigm baselines.

Inter-subject Performance. Cross-subject generalization is highly challenging due to large indi-
vidual variability in EEG responses. Even under this distribution shift, our approach achieves the
best average Top-5 accuracy of 38.7%, an absolute gain of 5.3 points over the strongest prior base-
line (UBP: 33.4%), and Top-1 accuracy reaches 15.7%. These findings indicate that BRENA learns
shared structure across subjects more effectively.

3.3 EFFECT OF VISUAL BACKBONE CHOICE ON EEG-VISION ALIGNMENT

Visual Encoder. Figure 3 compares the performance of using visual targets generated from eight
visual backbones under the 200-way zero-shot retrieval setting, including ViT-B/16, ViT-B/32, ViT-
L/14, DINO ViT-B/16, DINOv2 ViT-B/32, OpenFlamingo, BLIP-Diffusion, and IP-Adapter.

Intra-subject Performance. Visual features from IP-Adapter achieved the highest scores (Top-1:
58.2%, Top-5: 85.1%), substantially surpassing all baselines. Self-supervised representations also
perform strongly: DINO-B/16 (41.5% / 73.4%) and DINOv2-B/32 (41.3% / 70.9%) clearly outper-
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BA C D

Figure 4: Ablation study. We probe the performance impact of using different brain channel groups
(occipital (o), parieto–occipital (po), and parietal (p)) and visual sub-features (foreground (f), back-
ground (b), or other (oth) sub-features) in (A) and (B). We also present the impact of the number of
sub-features and adaptive local alignment module in (C) and (D). Detailed results are in Appendix.

form CLIP ViT-B models of similar scale. By contrast, CLIP ViT-L/14, despite its larger backbone,
underperforms (19.4% / 46.5%), suggesting that excessively subdivided features misalign with the
brain’s region-specific perceptual pattern. DINO and DINOv2, owing to its stronger representa-
tional capacity, performance second only to IP-Adapter and even surpass the second-best baseline.
Overall, most BRENA variants with different visual backbones perform well and exceed ATM-S,
demonstrating the effectiveness of our sub-level alignment design.

Inter-subject Performance. In the inter-subject setting, the ranking remains consistent, with
DINO-B/16 achieving the highest performance (19.1% / 46.5%), followed by IP-Adapter (15.7%
/ 38.7%). Other variants cluster around 8–12% Top-1 and 28–31% Top-5. Notably, the DINO fam-
ily even surpasses the resampler-based IP-Adapter representations. Although IP-Adapter produces
compact, semantically concentrated sub-features by fusing ViT-L/14 tokens, these results suggest
the critical of expressiveness of the underlying visual backbone critical.

3.4 ABLATION STUDY OF MODEL COMPONENTS

Ablation of Adaptive Local Alignment Module. As shown in Figure 4 (D), the utilization of
Adaptive Local Alignment consistently improves Top-1 accuracy across all ten subjects, with the
most notable gains on sub-02, sub-08, and sub-09. The results underscore the importance
of regionally-aware local alignment for brain decoding. This approach establishes a fine-grained
correspondence to better leverage region-specific neural patterns, thereby providing benefits that are
complementary to a global objective.

Impact of the Number of Visual Sub-features. We further conduct sensitivity analysis to the
number of visual sub-features k on sub-01 (Figure 4 (C)). The model performance achieves the
best accuracy at k=7 and then displays a plateau trend. We attribute this to smaller k values having
limited capacity to capture discriminative cues, while overly large k dilutes salient information. The
stability observed around k∈ [3, 7] suggests that the module is robust to the specific choice of k, and
thus we adopt k=7 as a robust default.

Impact of Brain Channel and Visual Sub-feature Combinations. We probe how brain channel
groups and visual sub-features affect EEG decoding by grouping channels into occipital (o), pari-
eto–occipital (po), and parietal (p), and aligning to foreground (f), background (b), or other (oth)
sub-features. As shown in Figure 4 (A), the po channels achieve the best performance (40% / 75%).
Considering group combinations, the o channels contribute the most, and the o+po pairing yields
the strongest results (55% / 84% ). From Figure 4 (B), we can see that aligning foreground fea-
tures yields more discriminative representations that benefit retrieval, whereas aligning background
features has the opposite effect. Performance improves with increased aligned sub-features.

3.5 BRAIN FUNCTIONAL VISUALIZATION

Temporal Analysis of Neural Activity. We visualize the temporal dynamics of brain-visual align-
ment. Specifically, we analyze the mapping matrix learned by CCFP, which relates EEG represen-
tations to brain semantic embeddings corresponding to visual sub-features, over consecutive 100 ms
windows. As shown in Figure 5, we present two types of visualizations. Figure 5(A) displays the
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A

B C D E

Figure 5: (A) EEG scalp topographies at different time steps (0–1000 ms, 100 ms steps) of sub-
01. (B)-(E) Cross-channel fusion projection heatmaps and channel–feature associations, where rows
correspond to EEG channels, columns to visual sub-feature indices with flanking bar plots indicating
row/column marginals. Each row (EEG channel) is row-normalized to highlight selectivity across
sub-features, and rows are re-ordered by their per-row significance.

Figure 6: Cross-channel fusion projection heatmaps of 10 subjects. Panels are ordered from top-left
to bottom-right as sub-(1–10).

average mapping values for each channel. We selectively show the first four matrices in Figure 5 (B)-
(E), where the magnitude of the heatmap represents the correlation between EEG channels (rows)
and visual sub-features (columns). Higher values denote a greater selectivity of the channel signal
for a specific sub-feature.

From Figure 5 (A) we have two observations. (1) Early brain selectivity: the strongest brain
activation selectivity occur within 0–400 ms and then gradually attenuate. Specifically, at 0–100 ms
the per-row mapping weights span approximately 0.40–0.54. The brain activity exhibits a consistent
spatiotemporal progression, shifting from the posterior occipital to the parietal cortex, a pattern that
is consistent with the sequential engagement of early- to mid-level visual areas (Ungerleider, 1982).
(2) Time-varying channel selectivity. The same channel exhibits different sub-feature preferences
across time. For instance, the Oz channel attends more to the 5-th sub-feature (and less to the 8-th in
the earliest window, but by the third window this preference reverses, suggesting that brain channels
process visual signals with time-varying channel selectivity.

Visualization of Brain-Visual Alignment Patterns. As shown in Figure 6, we visualize the fine-
grained channel-to-visual mapping matrices from CCFP of all subjects. The visualizations reveal
several consistent correlation patterns between EEG channels and visual sub-features: (1) Across
the majority of subjects, the Oz channel is strongly associated with the 13-th sub-feature, which
is the background-linked component dominated by low-frequency power (see 3.6). (2) Channels
P7 and P8, located symmetrically over the parietal–occipital cortex, tend to associate with the 0-th
sub-feature (foreground-related; see 3.6), despite generally modest activations across most P-region
channels. This pattern is evident in the heatmaps of subject 1 to subject 4, with stronger
effects at P8 for subject 6 and at P7 for subject 10, potentially reflecting hemispheric differ-
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ences or stimulus spatial configuration. (3) Most subjects show a clear association between channel
O1/O2 and the 2-nd sub-feature, which is foreground-related and predominantly high-frequency. In
addition, PO3/PO4 in most subjects are linked to background-related features. These observations
offer interpretability for BRENA’s improvements, indicating that it captures functional specializa-
tion through meaningful local mappings between brain regions and visual patterns. By incorporating
region-specific selectivity, BRENA grounds its alignment in human perceptual mechanisms, thereby
strengthening its overall effectiveness.

3.6 QUALITATIVE VISUALIZATION

A B

Figure 7: Visualization of retrieval performance and target visual sub-feature visualization. (A) Top-
5 retrieval examples on sub-01. (B) Target visual sub-feature visualization of foreground (orange
box) and background (blue box). The target sub-feature indices are labeled at the top of the Figure.

Visualization of Retrieval Results. As shown in Figure 7 (A), our method produces features that
precisely match the target image while also retrieving visually similar images using cues such as
color, contour, and texture. Our approach also demonstrates strong intra-class consistency across
broad categories (e.g., animals, insects, foods, clothing). Notably, the top-similarity retrievals con-
sistently remain within the query’s coarse category (e.g., a “gorilla” query retrieves other animals).
The semantic consistency also extends beyond category, with retrievals also reflecting structural ge-
ometry (a “crab” retrieves a similar insect), material and orientation (a “balance beam” retrieves
slingshots and hammers), and color (a “black orangutan” retrieves a black crow and a black pan-
ther). These observations indicate that our approach maintains semantic consistency across multiple
levels, from category membership to fine-grained attributes.

Visualization of Visual Sub-features. To probe the semantics of different target sub-features, we
visualize the 0th, 2nd, 4th, 3rd, and 13th sub-features across various images in Figure 7 (B). These
sub-features broadly fall into two categories: foreground-related (0, 2, 4) and background-related
(3, 13). Some sub-features consistently express high-frequency texture (dense stripes/ridges, fine
repetitive patterns, sharp micro-edges), some capture low-frequency background (dark fields, de-
focus, broad color washes). Crucially, these preferences persist across different images, indicating
that each sub-feature functions as a low-level semantic detector. The results show why using visual
sub-features outperforms a single global embedding: sub-features provide decomposed, comple-
mentary evidence that the alignment can exploit, avoiding over-pooled semantics.

4 CONCLUSION

We present BRENA, a hierarchical brain–vision alignment framework that integrates an adaptive
local module with a global alignment module. The local alignment module aligns EEG channel
embeddings to semantically resampled visual sub-features guided by adaptive generated perceptual
weights, enabling more effective use of EEG for visual decoding. Extensive experiments demon-
strate the effectiveness of our method, boosting Top-1 accuracy by 7.3% over SOTA on the 200-way
retrieval task in intra-subject setting.
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APPENDIX

A RELATED WORK

A.1 BRAIN DECODING

Early progress in visual decoding was largely driven by fMRI-based approaches (Smith, 2004), ben-
efiting from their high spatial fidelity and relative robustness in capturing neural responses. Mind-
Eye (Scotti et al., 2023) introduced a two-branch paradigm with diffusion priors that became a foun-
dation for later work. Subsequent work (Chen et al., 2023a) advanced this line by adopting masked
brain modeling to enhance fMRI representations. Building on this foundation, later studies improved
data efficiency and transferability (Scotti et al., 2024), optimized system latency (Benchetrit et al.,
2023), and extended decoding from static images to dynamic video (Chen et al., 2023b; Gong et al.,
2024; Lu et al., 2025). The release of the THINGS-EEG dataset (Gifford et al., 2022; Song et al.,
2023) presents experimental evidence for the feasibility of EEG-based visual decoding. ATM (Li
et al., 2024a) designs an encoder with channel attention and spatiotemporal convolutions, achieving
promising performance on retrieval and reconstruction. Building on this line, early efforts con-
centrated on alignment procedures and on strengthening brain encoders (Wei et al., 2024; Li et al.,
2024b). More recent works have shifted toward the target side by redefining the alignment objective,
broadening it beyond the original image. (Zhang et al., 2025) augments supervision with auxiliary
depth and text representations, while (Liu et al., 2025) injects segmentation-style structural cues.
UBP (Wu et al., 2025) reveals discrepancies between visual models and human perception, address-
ing them with an uncertainty-aware blur prior that boosts retrieval performance. However, most prior
works rely on global alignment for EEG–visual bridging, overlooking the functional specialization
of perception.

A.2 CROSS-MODAL ALIGNMENT

Cross-modal alignment is typically achieved by constructing a shared embedding space where paired
modalities are mapped to nearby representations. A seminal example is CLIP (Radford et al., 2021),
which employs a ViT image encoder and a transformer text encoder to project image patches and
text into a joint embedding space. Trained with an InfoNCE-style contrastive loss (Oord et al.,
2018), CLIP demonstrates strong zero-shot classification, image–text retrieval, and even serves as a
conditioning backbone for diffusion models. This paradigm has since become a standard foundation
for multimodal learning, inspiring extensions across diverse domains beyond vision–language tasks.
In brain decoding, such contrastive alignment approach has been widely adopted (Li et al., 2024a;
Scotti et al., 2024). However, the substantial heterogeneity between brain signals and visual data
poses a central challenge on how to design a reasonable alignment mechanism that effectively cap-
ture the cognitive patterns of neural activity. To this end, BRENA introduces a hierarchical neural
alignment framework with multi-level semantics explored.

B PREPROCESSING DETAILS

We used the publicly available dataset introduced by Gifford et al. (2022), which contains EEG
recordings from ten participants under a rapid serial visual presentation (RSVP) paradigm. Each
stimulus was displayed for 100 ms, followed by a 100 ms blank interval. Raw EEG signals were
recorded from 63 channels at a sampling rate of 1000 Hz and filtered within the [0.1, 100] Hz band.

For preprocessing, EEG data were segmented into trials spanning 0–1000 ms relative to stimulus
onset. To reduce computational load while retaining temporal information, the signals were down-
sampled to 250 Hz. Only visual-related channels were preserved in our experiment. Multivariate
noise normalization was applied using training data, following the approach of Guggenmos et al.
(2018), to mitigate channel-wise variability and improve generalization. To enhance the signal-to-
noise ratio, we averaged repeated EEG trials corresponding to the same image stimulus.
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C IMPLEMENTATION DETAILS

Our method was implemented in Python 3.10.14 with PyTorch 2.8.0+cu128 and cuDNN 9.1.2. All
experiments were conducted on a server equipped with an AMD EPYC 7542 CPU (128 cores), a
single NVIDIA A800 GPU, and 503 GB of RAM. Models were trained for 50 epochs with a batch
size of 1024. We used the AdamW optimizer with weight decay. The learning rate was set to
1 × 10−4 for the intra-subject setting and 1 × 10−5 for the inter-subject setting. We applied early
stopping based on validation performance to prevent overfitting.

D ADDITIONAL QUANTITATIVE RESULTS

In this section, we provide more detailed quantitative results to complement the main text. While
Sections 3.2, 3.3, and 3.4 report the overall comparisons and key ablations, here we present the de-
tailed per-subject retrieval accuracies, results across different sub-feature and channel combinations.

Table 2: Top-1 and Top-5 accuracy (%) for 200-way zero-shot retrieval with different models.

Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 Subject 6 Subject 7 Subject 8 Subject 9 Subject 10 Avg

Method Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

Intra-subject

vit b 16 30.0 54.5 20.0 53.0 23.5 54.5 31.5 58.0 21.5 41.5 32.5 58.0 32.0 64.0 32.0 65.5 25.5 46.5 34.0 56.5 28.25 55.25

vit b 32 35.5 67.0 24.5 58.0 33.5 63.5 33.5 64.0 25.5 52.0 35.0 67.0 37.5 67.5 35.0 76.5 27.0 53.5 35.5 73.5 32.6 64.25

vit l 14 20.5 48.0 14.0 35.5 19.5 44.5 25.5 55.5 14.5 32.5 17.5 48.0 20.5 50.5 22.0 56.5 15.5 35.0 20.5 58.5 19.0 46.45

dino 45.0 85.0 27.5 63.5 48.0 76.5 48.0 78.5 28.0 56.5 51.5 78.5 42.5 74.5 57.0 84.5 28.0 61.0 42.0 81.0 41.45 73.45

dinov2 37.0 72.5 31.5 64.5 42.0 76.5 44.5 72.0 32.0 57.0 39.5 67.5 47.0 78.5 54.0 78.5 33.5 63.5 52.0 79.0 40.4 70.0

blip 32.0 58.5 30.0 54.0 35.5 68.0 37.0 69.0 30.0 57.5 35.5 65.5 32.0 60.5 44.5 73.5 34.5 60.0 42.0 69.5 34.3 63.85

open-flamingo 33.0 62.0 29.5 62.0 31.0 62.0 33.0 68.0 24.0 51.5 28.5 60.0 33.5 67.0 45.5 74.0 31.5 58.5 38.5 69.0 32.6 63.4

Inter-subject

vit b 16 10.5 27.0 11.0 29.5 8.0 25.5 11.5 33.5 12.0 25.0 11.0 22.0 13.5 32.0 10.0 25.5 12.0 38.5 15.5 37.5 11.5 29.8

vit b 32 13.0 34.5 11.5 33.5 9.5 27.5 15.0 34.5 10.0 31.5 10.5 29.5 13.0 30.5 7.5 30.5 11.0 34.0 14.0 33.5 11.6 32.6

vit l 14 9.5 27.0 7.5 17.0 7.5 24.0 10.0 28.0 8.5 16.0 8.5 24.5 9.5 30.5 5.0 25.5 9.0 17.0 8.5 29.0 8.35 23.85

dino 27.0 47.0 17.5 42.0 15.0 38.5 19.0 46.5 19.0 39.5 14.5 35.5 14.0 50.0 17.0 55.5 24.5 46.5 29.0 57.5 19.6 45.15

dinov2 18.5 47.0 19.0 42.5 15.0 42.5 18.5 41.5 8.5 36.5 14.5 29.0 15.0 42.0 16.0 40.5 21.0 47.5 18.0 53.5 16.4 42.8

blip 8.0 27.0 8.5 29.5 6.5 23.5 8.5 24.5 9.0 20.5 8.0 20.5 9.0 25.0 7.5 30.0 9.5 32.5 9.5 31.5 8.4 26.35

open-flamingo 11.0 30.0 11.5 36.5 10.0 19.5 13.5 34.0 7.5 26.5 12.0 18.0 12.5 20.5 16.0 26.5 14.0 34.5 20.0 34.5 12.9 28.7

Table 3: Top-1 and Top-5 accuracy (%) for 200-way zero-shot retrieval using different token com-
binations.

Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 Subject 6 Subject 7 Subject 8 Subject 9 Subject 10 Avg

Method Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

Intra-subject

f 52 82.5 43.5 75 50.5 77 43.0 75.5 33.0 62 51.0 74.5 52.5 81.5 55.5 83.0 36.0 71.5 57.0 85.5 47.4 76.8

b 35.5 66 31.0 57.5 28.5 61.5 29.5 59 21.0 50.5 33.5 60.5 27.5 56.0 34.5 65.5 24.0 52.5 33.5 70.5 29.9 59.9

oth 33.5 64.5 29.0 59 32.0 63 30.0 60.5 25.0 49.5 31.5 65.5 31.0 61.5 35.5 63 30.5 61 41.0 70.5 31.9 61.3

f+b 56.5 84.5 51.0 82.5 55.0 86 45.5 77 40.5 67.5 57.5 79.5 54.5 85.5 60.0 84.5 45.5 80.5 60.0 86 52.6 81.4

f+oth 56.5 84.0 50.0 78.0 54.0 81.0 46.5 79.5 37.5 68.0 53.0 82.5 57.5 83.0 58.5 84.5 43.5 80.5 60.5 85.0 51.8 80.3

b+oth 42.0 75.5 37.5 64.5 34.5 65.5 35.5 67 27.0 54.5 33.0 68 35.0 62.5 43.0 76.5 31.0 61 44.5 78.5 36.3 67.4

all 61.0 87.0 56.0 81.5 56.5 87.5 57.0 84.5 46.5 74.5 56.5 87.0 58.5 86.0 75.0 91.5 50.0 80.0 65.0 92.0 58.2 85.1

Inter-subject

f 13.0 35.5 12.5 33.5 9.0 21.0 8.0 24.0 8.0 26.5 4.5 17.5 9.0 28.5 10.5 26.5 12.0 29.5 14.0 32.0 10.1 27.5

b 8.5 26.5 10.5 29.5 4.5 19.0 4.5 13.5 5.0 18.5 7.0 18.5 6.0 20.0 7.0 20.0 8.5 27.5 11.0 30.5 7.2 22.4

oth 7.5 26.0 8.0 29.0 3.5 17.5 7.5 19.0 11.5 24.5 4.5 16.5 8.0 31.0 7.5 20.0 10.5 32.0 11.0 31.5 7.9 24.0

f+b 12.5 31.0 13.0 32.5 12.0 29.0 9.5 29.0 6.0 24.5 9.5 23.0 10.0 32.0 10.0 26.5 13.0 33.5 13.0 37.0 10.6 29.8

f+oth 14.5 35.5 11.0 32.0 6.5 29.0 10.0 33.5 9.5 23.5 6.5 29.5 9.5 31.5 10.0 30.0 11.5 32.0 16.0 34.0 10.3 29.8

b+oth 8.0 20.0 8.5 28.5 4.0 21.0 9.0 22.5 6.0 22.0 5.5 22.0 7.0 24.5 9.0 26.0 12.0 32.0 9.5 26.0 7.7 23.5

all 15.0 37.5 18.5 47.0 11.0 31.5 18.5 39.5 13.5 35.0 9.5 27.5 13.5 36.0 15.0 40.0 18.0 42.0 24.5 50.0 15.7 38.7
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Table 4: Top-1 and Top-5 accuracy (%) for 200-way zero-shot retrieval with different channel com-
binations.

Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 Subject 6 Subject 7 Subject 8 Subject 9 Subject 10 Avg

Method Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

Intra-subject

o 32.0 66.5 26.5 56.5 32.5 65.0 28.5 60.0 21.5 48.5 29.0 61.5 31.0 63.0 38.5 69.0 34.5 60.5 36.5 71.0 31.1 62.2

p 15.0 39.0 23.5 50.5 24.0 50.0 28.0 56.5 18.0 46.5 24.0 52.5 20.5 43.0 46.0 80.0 18.5 40.5 29.0 61.0 24.7 52.0

po 45.0 73.0 44.0 71.5 45.0 76.5 38.5 71.5 31.0 60.5 40.5 69.5 37.0 65.5 49.0 80.5 29.0 59.0 44.0 73.0 40.3 70.1

o+p 48.5 76.5 41.0 73.5 46.0 79.0 48.0 73.5 33.5 63.5 51.0 83.0 45.5 71.5 67.5 91.0 41.5 71.5 50.0 82.5 47.3 76.6

p+po 45.0 78.5 40.5 71.5 48.0 78.5 43.0 78.0 37.0 65.5 41.0 73.0 38.0 70.5 63.0 88.0 29.0 61.5 51.0 79.0 43.6 74.4

o+po 58.0 90.0 53.0 81.5 54.0 84.0 53.5 85.0 41.0 71.5 58.5 86.5 57.0 86.0 63.0 87.5 51.0 80.5 63.5 88.5 55.3 84.1

o+p+po 61.0 87.0 56.0 81.5 56.5 87.5 57.0 84.5 46.5 74.5 56.5 87.0 58.5 86.0 75.0 91.5 50.0 80.0 65.0 92.0 58.2 85.1

Inter-subject

o 11.5 33.0 7.5 22.0 5.0 15.5 7.0 22.5 4.5 22.0 3.0 13.5 5.5 16.0 9.0 18.5 8.0 23.0 5.0 22.0 6.6 20.8

p 2.0 13.5 6.5 22.0 7.5 20.5 7.0 22.5 5.0 19.0 5.5 17.0 7.0 15.5 6.0 23.0 3.5 18.0 3.0 21.5 5.4 19.3

po 7.0 29.0 9.5 22.5 5.0 20.5 8.5 21.0 4.5 14.5 4.5 14.5 7.0 19.0 6.0 22.5 3.5 19.5 9.5 25.0 6.5 20.8

o+p 9.0 32.5 15.0 36.0 11.5 25.0 15.0 33.5 8.0 26.5 10.0 27.5 10.0 25.5 13.0 32.5 16.0 30.5 15.0 31.5 12.3 31.2

p+po 9.0 25.0 8.5 24.0 9.5 27.5 11.5 28.0 7.5 22.5 4.5 18.5 7.0 27.0 11.0 30.5 7.5 25.5 12.5 29.5 9.2 25.8

o+po 13.5 35.5 12.5 35.0 11.0 26.0 10.5 28.0 9.5 28.5 9.0 23.0 9.0 33.5 12.5 36.5 13.0 30.5 13.0 34.5 11.4 31.1

o+p+po 15.0 37.5 18.5 47.0 11.0 31.5 18.5 39.5 13.5 35.0 9.5 27.5 13.5 36.0 15.0 40.0 18.0 42.0 24.5 50.0 15.7 38.7

E THE USE OF LARGE LANGUAGE MODELS

Large language models (LLMs) were used to aid the writing of this work. LLMs helped improve
clarity and grammar of the manuscript. LLMs were not used for literature retrieval, related work
discovery, or research ideation.
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