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Abstract

Scaling Large Language Models (LLMs) yields performance gains but incurs substantial
training costs. Depth up-scaling offers training efficiency by adding new layers to pre-trained
models. However, most existing methods copy or average weights from base layers, neglect-
ing neuron permutation differences. This limitation can potentially cause misalignment
that harms performance. Inspired by applying Optimal Transport (OT) for neuron align-
ment, we propose Optimal Transport Depth Up-Scaling (OpT-DeUS). OpT-DeUS aligns
and fuses Transformer modules in adjacent base layers via OT for new layer creation, to
mitigate neuron permutation mismatch between layers. OpT-DeUS achieves better over-
all performance and offers improved training efficiency than existing methods for continual
pre-training and supervised fine-tuning across different model sizes. To further evaluate
the impact of interpolation positions, our extensive analysis shows that inserting new layers
closer to the top results in higher training efficiency due to shorter back-propagation time
while obtaining additional performance gains. We also find a strong correlation between
strong depth up-scaling performance and high transport matrix entropy. Code is provided
in the supplementary material.

1 Introduction

Large Language Models (LLMs) performance is largely attributed to scaling laws, where capabilities often
improve with increased model and data size (Brown et all [2020; [Kaplan et all 2020} [Wei et al) [2022
[Chung et al. 2024). However, scaling poses significant sustainability challenges, stemming from increased
computational and data demands. Computational demands include hardware constraints (Thompson et al.|
[2022), carbon emissions (Luccioni et al., [2023} [Luccioni & Hernandez-Garcial [2023)) and energy consumption
(Wu et al.| 2022 |de Vries| [2023). Data-related demands involve dataset exhaustion (Villalobos et al.| 2024)),
and quality problems (Luccioni & Viviano] 2021; Bender et al. [2021; Birhane et al. [2023)).

To address these challenges, “smart scaling” approaches such as model expansion have been proposed. Model
expansion increases the parameter size of a pre-trained model without changing the original architecture.
This includes increasing the number of layers, i.e. depth up-scaling (Kim et al., 2024; Wu et al.l 2024; Yang|
let al.| {2025} Du et al. 2024), or neurons per layer, i.e. width up-scaling (Samragh et al.; [2024). Furthermore,
approaches that combine depth and width up-scaling have also been proposed (Shen et al., [2022; [Wang et al.|
[2023} [2024} [Yao et al, [2024)).

Unlike earlier methods that focus on updating the entire model (Shen et al., [2022; Kim et al., 2024;
let al. 2024} [Wang et al, [2024)), recent progressive depth up-scaling approaches update only the newly added
layers. This approach enhances training efficiency while mitigating catastrophic forgetting (Kim et al.)
Yang et al., [2025)). Typically, new layers are initialized by copying (Wu et al., [2024; [Kim et al., |2024}
et al, [2024) or averaging (Yano et al. |2025) from base layers. Copying or averaging from base layers for
new layer initialization, while effective, neglects neuron permutation mismatch that can harm downstream
performance (Li et al., [2015; [Yurochkin et al., [2019a3b). An alternative method (Yang et al., |2025) trains
an auxiliary neural network for new layer initialization, but it is sensitive to model layers. These challenges
motivate our main research question: How to effectively initialize new layers to avoid neuron permutation
mismatches in progressive depth up-scaling?
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Inspired by applying Optimal Transport (OT) (Singh & Jaggi, 2020} Imfeld et al. 2024)), we propose Optimal
Transport Depth Up-Scaling (OpT-DeUS) for progressive depth up-scaling. As shown in Figure |1} OpT-
DeUS aligns and fuses adjacent layers module-wise to create neuron-aligned new layers. Newly added layers
are initialized via OT and inserted into the top half of the base model. Certain module weights are set to
zero for better neuron alignment and function preservation. Our contributions are as follows:

¢ We introduce OpT-DeUS, which creates intermediate layer from adjacent layers by neuron alignment
via OT. Experiments show that OpT-DeUS outperforms existing baselines on both continual pre-
training and supervised fine-tuning training stages across various model sizes and diverse tasks.

o OpT-DeUS achieves top overall efficiency among baselines. Our comprehensive study on layer in-
terpolation position shows that inserting new layers at higher positions leads to higher training
efficiency due to decreased back-propagation time while obtaining better performance.

o OpT-DeUS mitigates neuron permutation mismatch, evidenced by the better performance compared
to averaging without neuron alignment. Furthermore, our entropy analysis reveals a correlation
between strong performance and high transport matrix entropy when intializing new layers.
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Figure 1: State-of-the-art depth up-scaling methods and our proposed OpT-DeUS. OpT-DeUS uses optimal
transport to initialize new layers, each derived from two adjacent base layers f; and f;;. It first aligns
each module b to previous module b — 1 in f; (i.e., Alignment within Layer), then aligns it to b in f;11 (i.e.,
Alignment across Layer). Each colour in OpT-DeUS represents a module, and colour intensity indicates the
impact of alignment.

2 Related Work

2.1 Model Expansion

Model expansion accelerates neural network training by expanding a base pre-trained model to reduce
training time and computational overhead (Chen et al., 2016; Wei et al., |2016} |Chang et al. [2018; Rusu|
. Network architecture preservation has proven effective for iterative expansion in encoder-only
LLMs (Gong et all [2019; [Yang et al., 2020; |Chen et all [2022)). More recently, various model expansion
approaches have been explored for decoder-only LLMs. Du et al.| (2024) showed depth up-scaling yields
greater training efficiency and stronger downstream performance compared to width up-scaling. However,

[\
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prior work primarily focuses on expansion during the pre-training stage with a relatively large pre-training
corpus (Shen et al., 2022; Wang et al., 2023; 2024} [Yao et al. 2024} [Yano et all 2025)), resulting in high
overall computational costs. Limited work focuses on post-training expansion (Kim et al.l |2024; [Wu et al.
[2024} [Yang et al. [2025)), using a substantially smaller corpus compared to the original pre-training corpus
for training efficiency.

2.2 Depth Up-Scaling

Stacking. Stacking methods insert a successive of new layers, typically on top of the base model by copying
the pre-trained weights of the base model (Du et al., [2024} [Kim et al.| 2024). [Du et al. (2024) proposed
stacking entire base layers for stronger downstream performance during pre-training. Kim et al| (2024)
introduced SOLAR, a partial stacking approach that omits the copying of the bottom and top layers for new
model initialization. SOLAR is effective for continual pre-training. However, stacking requires updating the
entire model, incurring extra computational costs.

Interpolation. Interpolation methods insert new layers inside the base model. Previous work focuses on
creating function preservation layers, where the expanded model performs identically to the base model
prior to further training. Achieving function preservation leads to steadier learning processes and better
performance. This is achieved by setting the LayerNorm weights to zero for new layer initialization
2022)), initializing the entire new layer to zero (Wang et al., 2024), or employing dynamic masking
mechanisms (Yao et al., [2024)). Wu et al| (2024) proposed LLaMA PRO, which initializes the inserted new
layers by copying weights from the base model. For function preservation, the output matrices of attention
and MLP in these new Transformer layers are set to zero, termed zero-initialization. [Yano et al.| (2025)
initialized new layers by averaging weights from adjacent base layers for pre-training. They fully updated
the new layers while applying a parameter-efficient fine-tuning approach to the base layers. LESA
initializes new layers using an auxiliary network given adjacent layers at interpolation positions
as input. However, existing methods largely rely on copying (Kim et al., [2024; Wu et al., |2024) or averaging
(Yano et all, [2025)) to initialize new layers, neglecting neuron permutation differences.

2.3 Progressive Depth Up-Scaling

Progressive depth up-scaling, exemplified by LLaMA PRO and LESA, enables knowledge injection while
mitigating catastrophic forgetting by only updating the inserted new layers. Recent work has used progressive
depth up-scaling for language adaptation (Choudhury et al.| 2025 [Hennara et al. [2025). It preserves the
parametric knowledge of base layers while allowing new knowledge to be learned in the expanded layers.
However, while existing methods use different strategies to expand the layers of the model, little focus has
been placed on the impact of interpolation positions regarding training efficiency.

3 Preliminaries

3.1 Depth Up-scaling

Let M be a base LLM with n Transformer layers {f;}_;, parametrized by 6. The aim is to obtain an
ezpanded model M’ with parameters 6’ by introducing k additional Transformer layers {f/}*_,. M’ retains
the same layer type (i.e. Transformer layers) and hidden dimension of the base model.

Each. Transformer layer fi is composed of a sequence of modules. We denote the parameters of layer f; by
{WI()')}EZI, where ng) represents the weight matrix of module b in layer f;. Accordingly, each new layer f/
is parameterized by {W’ 1(;1)}1?:1'

Stacking. M is expanded by adding a set of new layers on top of the base layers to obtain M’. o denotes
the connection between Transformer layers:

M (x;0") = flo---0 flo fao---0 fi(x).
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Each new layer f/ is typically initialized by duplicating the parameters of a base layer f; (Du et all 2024
[Kim et all,[2024). Concretely, this corresponds to module-wise weight copying:

W' W whe{l,... B}

Interpolation. Figure (1] illustrates different interpolation strategies adopted by existing depth up-scaling
methods. M is expanded by inserting new layers between base layers as follows:

flofi, if a new layer is inserted,

fi, otherwise.

M (2;0") = {

Unlike stacking, interpolation methods initialize each new layer f/ from two adjacent base layers f; and
fix1. At the parameter level, this corresponds to initializing each module weight matrix W’ l(f) using the
corresponding modules in f; and f;1;. Existing approaches initalized f/ by copying (Wu et al.l 2024} [Kim
et al. |2024; Du et al. [2024), averaging (Yano et al. 2025), or prediction via an auxiliary network (Yang
et a1.|, . Formally, for Vb € {1,...,B}:

Wl(f) , copying,
- Avg (Wl(f), Wl(fﬂ)) , averaging,
<_ . .
b NN (W,(f), Wl(fﬂ)) , prediction,

OpT-DeUS (Wl(f),WéiH)) , our method,

3.2 Optimal Transport

Optimal Transport is a mathematical framework determining the most cost-effective way to transform one
probability distribution into another, given a defined transport cost. Formally, let p = 7" | a;0(z())
and v = Z;":l B;6(y)) be two discrete probability measures supported on {z(}7 | and {y 3)};”:1 with
probability distribution &« = (av,...,ay,) and B = (B1,...,Bm), respectively, where d(s) denotes the unit
mass at point s. Given a cost matrix C € R"*™ where C;; is the cost of transporting mass from () to y¥),
the Optimal Transport (OT) problem is defined as:

OT(u,v,C) = min ZTijCij st. Tl,,=«a, T'1l,=25.

TeRT*™ <
R+ 4]

The transport matrix T can be obtained via the Earth-Mover’s Distance (EMD) (Rubner et al. [2000) for a
sparse solution, or the Sinkhorn-Knopp algorithm for a dense solution. Unlike EMD, which
typically yields a sparse transport plan corresponding to a near one-to-one (hard) alignment, the Sinkhorn-
Knopp algorithm introduces an entropic regularization that encourages smoother transport plans. As a
result, probability mass can be softly distributed across multiple target points, leading to a dense transport
matrix that can be interpreted as a soft alignment between the two distributions.

4 Optimal Transport Depth Up-Scaling

4.1 Motivation: Neuron Permutation Mismatch

Copying and averaging weights from original layers are commonly used methods for creating new layers
in depth up-scaling (Wu et all [2024; Kim et al. 2024; Du et all [2024; [Yano et al| [2025). However, this
approach neglects the problem of neuron permutation mismatch, which is widely present in deep neural
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networks and Transformers (Li et al., 2015; [Yurochkin et al., [2019alb)). During training, a single neuron may
contribute to multiple functions (Nguyen et al.,[2016)), and same-index neurons in different layers may not be
functionally corresponding (Sajjad et al.,[2022} [Klabunde et all [2025). As shown in Figure[2] averaging from
base layers to initialize f/ can incorrectly merge neurons with different functionalities, while copying from f;
to initialize f] breaks the neuron connectivity between f; and f;. Thus, directly copying or averaging weights
can cause misalignment between f; and f;11, potentially harming performance (Li et al., 2015} [Yurochkin|

2019a4b).
' Average I Duphcate |
P ’ )
Layer i+1

Layer i New Layer Layer i+1 Layer i New Layer

\_ Mismatch of neuron Functlonahtl/ JAN Misahgneol connection from Layer i Y,

Figure 2: Illustration of neuron permutation mismatch caused by average and duplicate. Each column of
neurons represents the order of neurons within layer. Multiple colours of each neuron represent multiple
functions it contributes to. Direct averaging weights for new layer f/ align neurons with mismatched func-
tionality. Duplicating f; for initializing f/ can preserve the neuron connection between f/ and f;11, while
the connection between f; and f/ is misaligned.

Neuron permutation mismatch can be mitigated by aligning neurons between f; and f;11 using OT, which
models functional similarity per neuron across layers. |Singh & Jaggil (2020) and Imfeld et al.| (2024) showed
that aligning neurons layer-wise via OT leads to better-initialized new layers f’ from base layers f for model
merging, a shared operation with depth-up scaling. Recent research further shows that using information
from adjacent layers provides stronger initialization than random initialization in depth up-scaling
[2024} [Yano et all 2025} [Yang et all [2025). This inspires proposing Optimal Transport Depth Up-scaling
(OpT-DeUS), illustrated in Figure [1l OpT-DeUS is a progressive interpolation method that updates only
f! for training efficiency. It aligns and fuses layers f; and f;11 module by module (e.g. the query module
in the attention component) to create f/ via OT. OpT-DeUS inserts new layers f/ in the top half of M,
between base layers f; and f;y1. This layer interpolation strategy provides better performance (Section
and training efficiency (Section .

4.2 Transport Matrix Flow for OpT-DeUS

OpT-DeUS relies on two types of transport matrices: Tj, and Tyy;. Each module weight matrix W,(f) in f]
is assigned a Tj,. Tj, aligns Wl(f) to W,(i)l within the layer. Ty, aligns W,(f) to Wl()“rl) across layers. Ty,

for Wl()i) is initialized by reusing the T, from the previous module Wl(f_) 1+ Tout is computed by solving an
OT problem (Section [4.3).

Normalization Attention MLP

Transport Matrix Pre-Attn Pre-MLP Query Key Value Output Gate Up Down

T.. 1 LTo+) 1 1 I I T To I
Tout I é(To +1I) Tq Tg Tv To Tcate Tup Tpown

Table 1: Transport Matrix Flow. We manually set T, to each module for alignment within layer. Ty
is calculated through OT for alignment across layers (except Normalization component). Notably, modules
highlighted in underline deviate from the vanilla design (Imfeld et al., |2024).

We use Transport Matrix Flow (TMF) to define the assignment of T, for each module in the Attention and
MLP components of a Transformer layer (Table [1). Following Imfeld et al| (2024), at the layer entrance of
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f1, Tiy is initialized as the identity matrix I. For residual connections (i.e., Pre-MLP Normalization), T}, is
set by averaging the T, from both residual paths (i.e. the layer entrance and the attention output).

However, for the following reasons, vanilla TMF is no longer applicable in our setting, and we therefore
introduce the corresponding modifications, theses modifications are further ablated in Section [7.3]

Architectural Advancements Group-Query Attention (Ainslic et all,2023)) and SwiGLU MLP (Shazeer]
2020) introduce dimensional mismatches that makes vanilla TMF inapplicable. As a result, we set T, = 1
for the Attention Output and MLP Down modules.

Non-consecutive Alignment In our setting, alignment are applied only to non-consecutive f/. T;, at
layer entrance does not carry meaningful cross-layer information. Incorporating this will dilute the effective
of alignment. Consequently, for MLP Gate and Up that after the residual connection, we set T;, = To.

4.3 Weight Initialization with OT

Given the parameters of layers f; and f;y; and the pre-defined TMF, Algorithm 1 demonstrates how to
initialize the new layer f! via OT. The overall procedure consists of five steps, described below.

Algorithm 1 Optimal Transport Depth Up-Scaling

Input: Weight matrices for adjacent base layers ngi), ng+l); Pre-defined TMF = {Tgﬁ)}le (Table
Output: Weight matrices for new layers W’é”
1: for base layer f; (5 <i<n) do

2: for each module b do

3: Define p and v over Wl(f) and W;Hl), with uniformly distributed o« and B > Instantiate OT problem
4: Calculate cost Cy; = [|6(z*)) — 6(y)]|2 > Instantiate OT problem
5: Tin «— TMFb] > Retrieve Ty, from TMF
6: ng) — W? -Tin > Alignment within layer
7 Touwt = OT(p, v, C) > Solve instantiated OT via Sinkhorn—-Knopp algorithm
8: W,()i) ~ Tl - Wz()i) > Align across layer
9: W/z(;i) — %(ng) + Wl(fﬂ)) > Compute W'gi)
10: end for
1 WO wO o b Zero-initialization
12: end for

Step-1: OT problem instantiation. Based on the definition of OT, we first instantiate u and v over Wgn

and ngﬂ), respectively. We initialize their associated probability distribution a and 8 uniformly, treating
each neuron equally (cf. line 3). For measuring the difference between neurons, we adopt the weight-based
support function ¢ (Singh & Jaggi, 2020), where each neuron is represented directly by its weight value,
avoiding auxiliary constraints. The transport cost Cy; is then defined as the Euclidean distance between

the weight value of the k-th neuron in Wl()i) and the j-th neuron in Wé”l) (cf. line 4).

Step-2: Alignment within layer The permutation change caused by aligning ngi21 to ngjll) disrupts
the original neuron correspondence between Wz()i—)1 and Wz(;i)~ Such permutation change information is stored
in T, for W,(f). To restore this, ng) needs to align with Wl(f_)l using T,. Ty, is defined by T MF for each
module, shown in Table[l] After retrieving T}, (cf. line 5), the alignment within the layer is performed via

Wéi) — ng) - Tip (cf. line 6).

Step-3: Alignment across layer We then solve OT(u,v, C) to compute the transport matrix. [Imfeld
(2024) found that the Sinkhorn-Knopp algorithm (2008) is optimal for solving OT(u,v, C) in

Transformer fusion. We employ this approach to obtain Ty for Wl(f) (cf. line 7). Wl(f) is then aligned with
Wl(fﬂ) using the computed Tyy; via Wb(l) VI, I sz) (cf. line 8).

out

Step-4: Compute new-layer weights. W’l()i) is the average of aligned Wl(f) and Wl(fﬂ) (cf. line 9).
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Step-5: Zero-Initialization. We set T, = I for W and W, in TMF due to architectural advance-

ments (Section [£.2), which may cause misalignment problem. Inspired by zero-initialization (Wu et al., [2024)),
we set Wo = 0 and Wy = 0 (cf. line 11), which naturally resolves this issue while ensuring function

preservation, a property crucial for retaining model performance (Wang et all [2024} [Wu et al.| 2024).

5 Experimental Setup

5.1 Base Model

Following prior work (Wu et al., [2024; [Kim et al 2024} [Yang et all 2025]), we use the off-the-shelf 32-layer
Llama-3.1-8B (Grattafiori et al., |2024) as our base model. We further conducted a smaller-scale experiment
using the off-the-shelf 16-layer Llama-3.2-1B.

5.2 Baselines

We experiment with state-of-the-art depth up-scaling methods, as shown in Figure[I} Following
, we insert a number of new layers equal to 50% of the base layers. The ezpanded model sizes are
fixed at 11.5B parameters with 48 layers (adding 16 layers) and 1.72B with 24 layers (adding 8 layers) for
all depth up-scaling methods.

Base. We continue pre-training the base model without expansion. All layers are trained.

SOLAR. This method copies the bottom and top m layers from M to form M’. We choose m = 24 and
m = 12 for 11.5B and 1.72B ezpanded models. All layers are trained in line with |[Kim et al, (2024).

LLaMA PRO. It divides M into g groups of m layers. p new layers are created by copying the top-p base
layers and inserted on top of each group. These new layers are initialized with Wo = Wy = 0. We use
g = 16 for the 11.5B expanded models and g = 8 for the 1.72B expanded models; m = 2 and p = 1 are used

throughout. Only f’ are trained following (2024).

LESA. This approach uses an auxiliary network to initialize f/ given f; and f;y1. LESA inserts f/ in the
top half of M. We insert new layers between f145 and f3o for the 11.5B expanded models, and between fs to
f16 for the 1.72B exzpanded models. Only f’ are trained as in|Yang et al. (2025).

5.3 Training Data

For Continual Pre-Training (CPT), we opt using data of same size as in [Yang et al.| (2025)), published after
the base model’s knowledge cut-off. We sample 1.5B tokens from the CC-MAIN-2024-51 subset of FineWeb-
Edu (Penedo et all, [2024). For supervised fine-tuning (SFT), we choose Alpaca GPT4 (Peng et al. [2023)
and update the whole model following |Yang et al.| (2025).

5.4 Evaluation

Following previous studies (Wu et all,[2024} [Yang et all [2025]), we conduct experiments focusing on general
knowledge-related tasks. We further conduct extensive experiments on specialized domains: biomedical
(Lee et all [2019; |Gu et all, 2021} [Luo et al. 2022} Singhal et all, 2022} 2023) and legal (Chalkidis et al.
[2019; |Zheng et al., 2021; Henderson et al., 2022; T.y.s.s et al., 2024; Niklaus et al., [2024)) as they are widely
explored within LLMs.

General. We include ARC-Easy (Clark et all) 2018), LogiQA (Liu et all 2020), Winogrande (Sakaguchi
2021) for Reasoning; CSQA (Talmor et al.,[2019), BoolQ (Clark et al.,2019), PIQA (Bisk et al., 2020)

for Commonsense and Knowledge; MMLU (Hendrycks et al., [2021)) for Examination; and WikiText
(Merity et all [2017)) for Language Modeling.

Biomedical. Following previous work (Williams et al., [2025), we include the MultiMedQA benchmark

(Singhal et all [2022), specifically the PubMedQA (Jin et al., 2019), MedQA (Jin et al. [2021)), MedM-
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Perplexity | Zero-shot Performance 1
Methods Wiki-PPL ARC LogiQA Wino CSQA BoolQ PIQA MMLU Average
Base-8B 8.35 79.97 26.88 72.06 65.19 81.83 7884  58.61 66.20
SOLAR-11.5B 9.90 79.88  26.88 71.59 57.41 80.70 7856  54.37 64.20
H|LLaMA PRO-11.5B 7.81 81.61 29.49 73.72 7093 81.65 79.98  62.56 68.56
% LESA-11.5B 7.73 82.07 2796 74.11 72.40 8193 80.30 62.63 68.77
OpT-DeUS-11.5B (Ours) 7.73 82.07 27.34 74.74 7191 82.26 80.79 62.96 68.87
Base-8B 8.32 81.10 2458 7214 68.30 82.14 79.71 59.17 66.73
SOLAR-11.5B 9.68 80.68 25.19 71.19 61.18 81.19 79.16  55.03 64.80
H|LLaMA PRO-11.5B 7.81 83.33 27.19 7411 7207 82.26 80.79  62.32 68.87
% LESA-11.5B 7.72 83.84 26.57 75.53 73.05 83.00 80.69 63.57 69.47
OpT-DeUS-11.5B (Ours) 7.73 83.80 26.73 76.09 73.05 83.36 80.85 63.84 69.67
Base-1B 13.68 68.64 21.35 5848 2457 6232 7497  28.85 48.46
= SOLAR-1.72B 13.87 68.90 21.20 59.67 21.21 61.07 74.76  28.58 47.91
o | LLaMA PRO-1.72B 12.43 67.26 21.04 61.96 3448 6291 75.52 31.85 50.72
O|LESA-1.72B 12.28 66.71  21.20 59.75 41.03 63.64 74.76 33.47 51.51
OpT-DeUS-1.72B (Ours) 12.19 67.00 22.58 60.77 43.00 62.72 75.03 33.02 52.02
Base-1B 13.57 69.87 22.43 5943 26.29 6281 7557 2991 49.47
= SOLAR-1.72B 13.68 70.41 22.27 59.27 2490 60.83 75.84  29.40 48.99
& | LLaMA PRO-1.72B 12.36 68.14 21.35 60.30 38.08 64.07 76.12 30.73 51.26
N LESA-1.72B 12.54 67.76  20.89 59.98 43.73 64.86 75.84 34.47 52.51
OpT-DeUS-1.72B (Ours) 12.46 68.31 21.51 60.46 44.47 65.84 7584 33.16 52.80

Table 2: CPT on 1.5B tokens and SFT (after CPT) performance of 11.5B and 1.72B ezpanded models.

CQA (Pal et al., [2022) tasks, and relevant subsets from MMLU (Hendrycks et al. 2021) (anatomy, clinical
knowledge, college medicine, medical genetics, professional medicine, college biology).

Legal. We follow Williams et al.| (2025)) in using CaseHOLD (Zheng et al., |2021)) and ECtHR (Task A)
(Chalkidis et al.| [2019) datasets from the LexGLUE benchmark (Chalkidis et al., [2022) and Legal-MMLU,
covering jurisprudence, professional law, and international law specialties (Hendrycks et al., [2021)).

5.5 Hyper-parameter Details

We set the regularization parameter of Sinkhorn-Knopp algorithm to 0.06, as in [Imfeld et al.| (2024). We
set the global batch size and sequence length to 64 and 2048. For CPT, we use a maximum learning rate of
le-4 for 1.72B expanded models and 5e-5 for 11.5B expanded models. For SFT, the maximum learning rate
is set to le-5 and 5e-6, respectively.

5.6 Implementation Details

We employ Flash-Attention 2 (Dao, |2024)) and mixed-precision bf16 for accelerated training. We use Lan-
guage Model Evaluation Harness (Gao et al., 2024]) for evaluation. 11.5B expanded models are trained on
four NVIDIA GH200 (96GB) GPUs while 1.72B expanded models are trained on a single NVIDIA A100
(80GB). We create all expanded models using AMD EPYC 7413 CPU and a single NVIDIA A100 (80GB).

6 Experimental Results

6.1 General Performance

Table |2| (Top) presents the CPT and SFT results of our 11.5B ezpanded models. For CPT, we observe
that OpT-DeUS achieves top performance on six out of eight benchmarks, specifically Wiki-PPL (7.73),
ARC (82.07) ,Winogrande (74.74), BoolQ (82.26), PIQA (80.79), MMLU (62.96). Furthermore, OpT-DeUS
ranks second on CSQA. This strong performance across various downstream tasks, resulting in the highest
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average score (68.87), highlights the effectiveness of our approach. We further note that OpT-DeUS’s strong
performance continues in SFT. It achieves top performance on Winogrande, CSQA, BoolQ, PIQA, MMLU
and second performance on Wiki-PPL, ARC and LogiQA, yielding the highest average score (69.67).

To further analyze performance during training, we save five checkpoints while training the 11.5B exzpanded
models (20%, 40%, 60%, 80% and 100% of training steps), shown in Appendix [A| We observe that OpT-
DeUS consistently achieves top performance on at least five out of eight benchmarks across all checkpoints
regardless the size of the CPT data.

6.2 Domain Specific Performance

Biomedical Legal
Methods MedMCQA MedQA Bio-MMLU PubMedQA Legal-MMLU CaseHOLD ECtHR
Base 48.77 53.26 68.45 76.20 64.49 47.42 56.19
SOLAR 45.09 47.29 57.54 76.20 62.60 41.17 39.11
LLaMA PRO 54.72 59.47 70.88 77.80 68.41 48.50 60.27
LESA 56.51 59.86 71.73 76.00 67.02 51.08 60.89
OpT-DeUS 56.63 60.25 71.03 76.20 67.93 51.83 61.26

Table 3: Domain-specific CPT Performance of 11.5B expanded models.

Table [3] presents the CPT results of 11.5B ezpanded models on biomedical and legal domains. We observe
OpT-DeuS achieves the best overall performance. In biomedical tasks, OpT-DeuS wins two out of four tasks
(i.e. MedMCQA and MedQA), while offering the second best performance on the remaining two. Strong
performance is also observed in the legal domain, where OpT-DeUS wins two out three legal tasks and
achieves second-best on the remaining one.

6.3 Performance at Smaller Scales

Table [2[ (Bottom) presents the CPT and SFT results of 1.72B exzpanded models. For CPT, OpT-DeUS
achieves the best overall performance (52.02) and ranks first on Wiki-PPL (12.19), LogiQA (22.58), and
CSQA (43.00), while ranking second on Winogrande, PIQA, and MMLU. Compared to LESA, the second-
best method, OpT-DeUS obtains the highest average score (52.02 vs. 51.51) and achieves top-2 performance
on most downstream tasks (6 vs. 4). For SFT, strong performance can still be observed with the highest
average score. OpT-DeUS wins on Winogrande, CSQA, and BoolQ, while being second on Wiki-PPL, PIQA
and MMLU. Similar to the results of the 11.5B ezpanded models, OpT-DeUS is the best-performing method
using a smaller base model. This consistency demonstrate OpT-DeUS’s robustness to model sizes.

Interestingly, we find SOLAR obtains poor performance on both sizes. For example, it performs worse than
the base model (Avg: 64.20 vs 66.20; 47.91 vs 48.46). We hypothesize that SOLAR’s poor performance is
caused by catastrophic forgetting. Fully updating the expanded model substantially degrades the pre-trained
parametric knowledge.

6.4 Up-scaling Stability at Larger Scales

We follow previous work (Yano et al., 2025 [Yang et al., |2025) by reporting perplexity without any model
training to evaluate up-scaling stability on larger models. Appendix [B] presents the perplexity at different
model scales. We observe that both LLaMA-Pro and OpT-DeUS match the base model’s perplexity regardless
of model parameters due to zero-initialization, demonstrating maximum expansion stability compared to
other baselines. Surprisingly, we find that LESA’s perplexity sharply increases when applied to Llama-3.2-
1B (871.50). We hypothesize this is because smaller models have fewer layers. This leads to less training
data for the auxiliary network, consequently causing it to underfit.
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7 Experimental Analysis

7.1 Interpolation Positions

We conduct an ablation study on OpT-DeUS to determine the best interpolation approach. We evaluate the
following strategies: inserting in the bottom half (Btm), in the middle portion (Mid), in the top half (Top),
and at the top and bottom quarters (T&B). The layer index ranges are defined as follows:

flofi, i< 2 5 if Btm
/ .on ;< 3n i ;
M0y = 4 1100 T =5 i
fiofi, 3<i<n if Top
flofi, i<Zor 3 <i<n if T&B

Table [] illustrates the performance of different interpolation strategies. We observe that OpT-DeUS-Top
is the best performing strategy, overall. OpT-DeUS-Top yields the highest average performance (68.87),
winning in six out of eight benchmarks (i.e. ARC, Winogrande, CSQA, BoolQ, PIQA, MMLU). The per-
formance difference between interpolation strategies is consistent with previous work, where inserting new
layers into the top part offers additional performance gains (Yang et all [2025). This phenomenon further
supports previous findings showing that bottom layers in Transformers are more critical (Jawahar et al.
2019), while top layers are less sensitive to modification (Men et al., [2025)).

Perplexity | Zero-shot Performance 1
Methods Wiki-PPL ARC LogiQA Wino CSQA BoolQ PIQA MMLU Average
OpT-DeUS-Btm 7.83 81.69 28.26 74.35 70.02 81.74 79.92  62.28 68.32
OpT-DeUS-Mid 7.70 82.07 27.65 7435 70.11 81.07 80.25 62.56 68.29
OpT-DeUS-Top 7.73 82.07 2734 74.74 71.91 82.26 80.79 62.96 68.87
OpT-DeUS-T&B 7.87 81.40 28.57 74.51 70.02 82.11 79.87 62.46 68.42

Table 4: Performance of 11.5B OpT-DeUS trained on 1.5B tokens using different interpolation strategies.

7.2 Training Efficiency

Previous work ignores the impact of interpolation strategy re-
garding training efficiency (Wu et all 2024} [Yang et all [2025). Table 5: Training time for 11.5B models.

Table |5 shows that progressive depth up-scaling methods con- Methods ~ Trainable Total Training Time
siderably outperform SOLAR (22:54:11) in training efficiency. SOLAR 11B 11.5B 22:54:11 (+78.0%)
We observe a strong correlation between interpolation positions LaMA PRO 4B 11.5B 14:58:34 (+16.4%)
. ) . ) LESA 4B 11.5B 12:54:07 (4-0.3%)
and efficiency: top-half insertions, exemplified by OpT-DeUS- R— o 5B 115600 (116.1%
Top (12:52:04) and LESA (12:54:07), are notably faster. Con- o)1 pousaid 48 1158 135314 EL g%;’)

versely, strategies inserting layers in the bottom half, such as OpT-DeUS-Top 4B 11.5B 12:52:04
OpT-DeUS-Btm (14:56:00) and LLaMA PRO (14:58:34), require OPT-DeUSTEB 4B 1158 14:45:38 (+14.7%)
longer training time. This pattern persists regardless of the weight initialization method. The observed effi-
ciency differences are primarily due to increased back-propagation costs when updating new layers inserted
at lower model positions.

Both LESA and OpT-DeUS require additional com-
putation. LESA necessitates extracting latent pat- Table 6: Instantiation time for LESA and OpT-DeUS.

terns using Singular Value Decomposition (SVD) to Expanded Model Training Time Creating Time
train an auxiliary fixed-size neural network, while

. . LESA 1.72B 31:08:17 00:26:15

OPT—DeUS requires solving t}.le oT pr(?blem module- OpT-DeUS 1.72B 30:58:56 00:02:34
wise. Table [6] presents the time required for LESA

and OpT-DeUS to create and train the expanded LESA 11.5B 12:54:07 04:52:13

OpT-DeUS 11.5B 12:52:04 00:37:16

model. Note that the training time difference between
the 1.72B ezpanded and 11.5B expanded models is due

10



Under review as submission to TMLR

to the different hardware used (i.e. one A100 vs. four GH200) for training. We observe that LESA requires
more time compared to OpT-DeUS (00:26:15 vs. 00:02:34). This time scales massively with larger models
(04:52:13 vs. 00:37:16). We hypothesize that this increased time for LESA is mainly caused by the extra
computation required for SVD when scaling up base models. Combining training and creation times across
different scales of base models, our OpT-DeUS achieves the best time efficiency among the baselines.

7.3 Ablation Studies

Perplexity | Zero-shot Performance 1
Methods Wiki-PPL ARC LogiQA Wino CSQA BoolQ PIQA MMLU Average

E Attention Output Tin, = To 12.05 67.13 23.35 60.30 42.67 62.87 7541 @ 32.10 51.98
& |MLP Gate and Up Ty = 3(To + 1)) 12.09 66.84 22.80 60.38 4259 62.23 75.46 32.24  51.80
§ Average 12.62 67.72 2212  59.19 39.23 6251 74.65  30.72 50.88
g‘ Copy 12.62 68.01 22.73 59.67 34.81 62.97 74.43 28.25 50.12
; Random 16.40 66.62 22.27 59.67 40.79  62.72 74.97 32.19 51.32
O | Element-wise Shuffle after OT 12.05 67.34 21.51 59.35 43.00 64.16 74.59  33.23 51.88
‘E Average + Zero-Init 12.62 67.72 2212 59.19 39.23 62,51 74.65  30.72 50.88
Hc', Copy + Zero-Init 12.23 67.13  22.43  59.51 40.87 64.28 75.03  32.42 51.67
b
g Random + Zero-Init 12.20 66.92 21.51 59.43 4292 62.17 74.81 33.32 51.58

‘ OpT-DeUS (Ours) 12.19 67.00 22.58 60.77 43.00 62.72 75.03 33.02 52.02

Table 7: Ablation study on 1.72B expanded models. Notably, Copy-+Zero-Init corresponds to initialize new
layers using LLaMA PRO but interpolate at different positions.

Ablation on TMF design. In Section we modify the vanilla TMF because architectural advance-
ments (i.e., Attention Output and MLP Down T;, = I) and non-consecutive alignment (i.e, MLP Gate and
Up Tin, = To). We further compare this choices with other applicable variants for architectural advance-
ments (i.e., Output T, = Tg) and non-consecutive alignment (i.e, Gate and Up T, = 1(To +1I)).

Table m (Top) present the performance when using different TMF choices, we observe that our OpT-DeUS
yield the best overall performance (Avg: 52.02). This indicates that our TMF modification on both archi-
tectural advancements and non-consecutive alignment is valid and provide extra improvements.

Ablation on OT alignment. OpT-DeUS introduce OT-alignment for aligning mismatched neurons. To
validate that OT alignment do mitigate neuron permutation mismatch (Section , we compare it with
standard copy,average and random initialization. We further compare against a variant that randomly
shuffles weights element-wise after OpT-DeUS initialization (i.e., Element-wise Shuffle after OT), which
disrupts the permutation structure and neuron-level correspondences established by OT alignment.

Table [7| (Middle) present the corresponding performance. We observe that OpT-DeUS achieves the top per-
formance. Interestingly, Element-wise Shuffle after OT yields better performance than non-OT variants(i.e.,
Average, Copy and Random), as OT alignment captures neuron-level functional similarity, leading to more
informative construction of new neurons. Comparing OpT-DeUS with average, and Element-wise Shuffle
after OT that explicitly introduce neuron permutation mismatch, the better performance of OpT-DeUS
validates that OT-alignment provide meaningful initialization that mitigate neuron permutation mismatch.

Ablation on Zero-Initialization. OpT-DeUS adopts zero-initialization to mitigate potential alignment
issues (Section . We construct non-OT variants with zero-initialization, as shown in Table El (Bottom).
OpT-DeUS consistently outperforms the corresponding baselines. Moreover, comparing Average, Copy, and
Random initialization with their zero-initialized variants shows that zero-initialization improves performance.
Together with the observed up-scaling stability (Section , these results further validate the effectiveness
of zero-initialization in OpT-DeUS.
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7.4 Analysis of Neuron Functionality

To investigate the neuron functionality mapping between base layers and new layers, we analyse the transport
matrix for each module between each new layer and its two adjacent base layers. Following Algorithm 1 (Sec-
tion, we first instantiate the OT problem and using Sinkhorn—Knopp algorithm (same hyper-parameters)
to solve it. We then compute the Shannon entropy (Shannon, [1948) for each transport matrix.

We report the layer-averaged entropy of transport matrix for each module (detailed in Table [1)) within the
Transformer layer in Table [§] Transport matrix indicates the neuron-level functionality correspondence
between layers, while the entropy evaluates how widely the mapping is distributed. A higher entropy of
the transport matrix indicates a more diffuse and smoother mapping (Cuturi, [2013). Notably, SOLAR and
LESA are excluded because they are inapplicable: SOLAR adds a continuum of new layers, and LESA does
not directly use neurons from base layers.

Attention MLP

Methods Query Key Value Output Gate Up Down Average

LLaMA PRO 12.23 (12.25) 9.99 (10.00) 10.29 (10.39) 16.64 (16.63) 14.17 (14.18) 14.20 (14.27) 16.63 (16.63) 13.45 (13.48)
Average  11.69 (11.76) 7.32(7.33) 10.90 (11.03) 15.60 (15.73) 17.06 (17.58) 18.71 (18.88) 8.56 (8.83) 12.84 (13.02)
OpT-DeUS  13.25 (13.28) 10.32 (10.32) 11.57 (11.66) 16.64 (16.64) 16.78 (17.29) 18.36 (18.67) 16.64 (16.63) 14.79 (14.93)

Table 8: Layer-averaged Shannon Entropy of the transport matrix between base layers and new layers for
11.5B ezpanded models. Values outside parentheses indicate entropy before training, while values inside
parentheses represent entropy after training. Note that normalization components are excluded, as they
only apply element-wise scaling without cross-neuron information mixing.

The marginal change in entropy before and after training is expected, as entropy reflects the neuron-level
functionality mapping established at new-layer instantiation rather than being learned during training. We
observe a clear correlation between high transport matrix entropy and strong performance. OpT-DeUS
achieves the highest entropy (14.79) and the strongest performance (68.87), followed by LLaMA PRO
(13.45/68.56) and Average (12.84/68.39). From the perspective of information theory, high entropy indi-
cates that the information from each old neuron is distributed across multiple neurons in next layer. This
suggests that f/ layer forms representations through a richer mixture of input features, integrating informa-
tion to construct a more diverse representational space (Tax et al., [2017}; [Yu et al.l [2021). Such distributed
representations improve expressive capacity, aligning with the observed performance gains.

Interestingly, we found the entropy of the Key Projection (7.32 vs 9.99/10.32) and Down Projection (8.56
vs 16.63/16.64) is low when using direct average for initialization. This finding suggests averaging the
Key Projection and Down Projection are more sensitive thus leading to greater performance degradation.
This low entropy suggests that the functionality from each old neuron is concentrated on fewer neurons
in the new lyaer. As a result, this small subset of neurons implements a large fraction of the module’s
functionality, thereby dominating the module output. This is further consistent recent work showing the
low-rank bottleneck in Query and Key Projection (Bhojanapalli et al.l [2020) and the parameter redundancy
in Down Projection (Pires et al. 2023; [Wei et al.l [2024).

8 Conclusion

We introduced OpT-DeUS, a progressive depth up-scaling approach using OT. Our approach conducts
neuron alignment within and across layers to mitigate the neuron permutation mismatch. Empirical results
demonstrate that OpT-DeUS offers better downstream performance with improved training efficiency than
other depth up-scaling approaches. Our extensive experiments verify the effectiveness of OpT-DeUS on
both continual pre-training and supervised fine-tuning across different model scales and diverse downstream
tasks. Our analysis of interpolation positions reveals their impact on training efficiency, demonstrating that
inserting new layers closer to the top leads to higher training efficiency due to shorter back-propagation
paths through the trainable new layers. Our entropy analysis further reveals the correlation between strong
performance and high transport matrix entropy when initializing new layers.
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A Performance across checkpoints
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Figure 3: Number of benchmarks that achieve top performance during the training process of 11.5B expanded

models. Sums may exceed 8 due to ties.

B Scaling Stability

Model Base SOLAR LLaMA PRO LESA OpT-DeUS
Llama-3.2-1B 11.57 16.64 11.57 871.50 11.57
Llama-3.1-8B 7.33  9.01 7.33 9.35 7.33
Mistral-24B  4.43* 6.51" 4.43 5.17" 4.43
Qwen-2.5-32B 3.78* INF* 3.78 5.67" 3.78
Llama-3-70B 1.98* 4.21* 1.98 2.62" 1.98

Table 9: PPL after 1.5x layer expansion initialization for different base models, along with PPL of base

models. * denotes results from [Yang et al.| (2025)), Results for LLaMA PRO and OPT-DeUS in bottom-half

are obtained via reasonable extrapolation from top-half.
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