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Abstract

Quantized neural networks have drawn a lot of
attention as they reduce the space and computa-
tional complexity during the inference. Moreover,
there has been folklore that quantization acts as
an implicit regularizer and thus can improve the
generalizability of neural networks, yet no exist-
ing work formalizes this interesting folklore. In
this paper, we take the binary weights in a neu-
ral network as random variables under stochastic
rounding, and study the distribution propagation
over different layers in the neural network. We
propose a quasi neural network to approximate
the distribution propagation, which is a neural
network with continuous parameters and smooth
activation function. We derive the neural tangent
kernel (NTK) for this quasi neural network, and
show the eigenvalue of NTK decays at approxi-
mately exponential rate, which is comparable to
that of Gaussian kernel with randomized scale.
We use experiments to verify that the quasi neural
network we proposed can well approximate bi-
nary weight neural network. Lastly, binary weight
neural network gives a lower generalization gap
compared with real value weight neural network.

1. Introduction
It has been found that by quantizing the parameters in a
neural network, the memory footprint and computing cost
can be greatly decreased with little to no loss in accuracy
(Gupta et al., 2015). Furthermore, Hubara et al. (2016);
Courbariaux et al. (2015) argued that quantization serves as
an implicit regularizer and thus should increase the general-
izability of neural network comparing to its full precision
version. However, there is no formal theoretical investiga-
tion of this statement to the best of our knowledge.

Empirical results show that the traditional statistical learn-
ing techniques based on uniform convergence (e.g., VC-
dimension (Blumer et al., 1989)) do not satisfactorily ex-
plain the generalization ability of neural networks. Zhang
et al. (2016) showed that neural networks can perfectly fit

the training data even if the labels are random, yet it gen-
eralized well when the data are not random. This seems to
suggest that the model capacity of a neural network depends
on not only the model, but also the dataset. Recent studies
(He and Tao, 2020) managed to understand the empirical
performance in a number of different aspects, including
modeling stochastic gradient (SGD) with stochastic differ-
ential equation (SDE) (Weinan et al., 2019), studying the
geometric structure of loss surface (He et al., 2020), and
overparameterization – a particular asymptotic behavior
when the number of parameters of the neural network tends
to infinity (Li et al., 2018; Choromanska et al., 2015; Allen-
Zhu et al., 2018; Arora et al., 2019a). Recently, it was
proven that the training process of neural network in the
overparameterized regime corresponds to kernel regression
with Neural Tangent Kernel (NTK) (Jacot et al., 2018). A
line of work (Bach, 2017; Bietti and Mairal, 2019; Geifman
et al., 2020; Chen and Xu, 2020) further studied Mercer’s
decomposition of NTK and proved that it is similar to a
Laplacian kernel in terms of the eigenvalues.

In this paper, we propose modeling a two-layer binary
weight neural network using a model with continuous pa-
rameters. Specifically, we assume the binary weights are
drawn from the Bernoulli distribution where the parameters
of the distribution (or the mean of the weights) are trainable
parameters. We propose a quasi neural network, which has
the same structure as a vanilla neural network but has a
different activation function, and prove one can analytically
approximate the expectation of output of this binary weight
neural network with this quasi neural network. Using this
model, our main contributions are as follows:

• Under the overparameterized regime, we prove that the
gradient computed from BinaryConnect algorithm is
approximately an unbiased estimator of the gradient
of the quasi neural network, hence such a quasi neu-
ral network can model the training dynamic of binary
weight neural network.

• We study the NTK of two-layer binary weight neural
networks by studying the “quasi neural network”, and
show that the eigenvalue of this kernel decays at an
exponential rate, in contrast with the polynomial rate
in a ReLU neural network (Chen and Xu, 2020; Geif-
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man et al., 2020). We reveal the similarity between
the Reproducing kernel Hilbert space (RKHS) of this
kernel with Gaussian kernel, and it is a strict subset of
function as the RKHS of NTK in a ReLU neural net-
work. This indicates that the model capacity of binary
weight neural network is smaller than that with real
weights, and explains higher training error and lower
generalization gap observed empirically.

2. Preliminary
Neural tangent kernel. It has been found that an overpa-
rameterized neural network has many local minima. Using
the connection between feature map and kernel learning,
the optimization problem reduces to kernel optimization
problem. Denote Θ as the collection of all the parame-
ters in a neural network fΘ before an iteration, and Θ+

as the parameters after this iteration. Let in denote fixed
distribution in the input space. Using Taylor expansion,
for any testing data x̃, let the stepsize be η, the first-order
update rule of gradient descent can be written as (note
Θ+ −Θ = ηEx∼in [∇Θloss(fΘ(x))])

fΘ+(x′)− fΘ(x′) := ηEx∼in
[
K(x, x′) loss′(fΘ(x))

]
.

with the limiting kernel (in a.s. sense) to be defined as:

K(x, x′) := lim
width→∞

∇>ΘfΘ(x) · ∇ΘfΘ(x′).

The limiting kernel K is usually referred as the neural tan-
gent kernel (NTK) (Jacot et al., 2018).

Exponential kernel. A common class of kernel functions
used in machine learning is the exponential kernel, which
is a radial basis function kernel with the general form
K(x, x′) = exp(−(c‖x − x′‖)γ), c > 0, γ ≥ 1. When
γ = 1, this kernel is known as the Laplacian kernel, and
when γ = 2, it is called the Gaussian kernel.

Training neural networks with quantized weights.
Among various methods to train a neural network, Bina-
ryConnect (BC) (Courbariaux et al., 2015) introduces a real-
valued buffer θ and use it to accumulate the gradients. The
weights will be quantized just before forward and backward
propagation, which can benefit from the reduced computing
complexity via the update

θ+ ← θ − η ∂f̃w(x)

∂w
, w+ ← Quantize(θ+), (1)

where Quantize(·) : R → {−1, 1} denotes the quantiza-
tion function which will be discussed in Section B.2, w
denotes the binary (or quantized) weights, θ and θ+ denote
the real valued buffer before and after an iteration respec-
tively, η is the learning rate, and fw(·) denotes the neural
network with parameter w. The detailed algorithm can be
founded in Section B.3.

3. Approximation of binary weight neural
network via Quasi neural network

Given a fixed input and real-value model parameters Θ,
under the randomness of stochastic rounding, the output
of this binary weight neural network is a random variable.
Furthermore, as the width of the neural network d1 tends to
infinity, we define a parameter sequence {Θd1} and prove
that with parameters from this sequence, the output of a lin-
ear layer tends to Gaussian distribution according to central
limit theorem (CLT). Specifically, we give a closed form
equation to compute the mean and variance of output of all
the layers µ`, σ`, ν`, ς`, and then marginalize over random
initialization of Θ to further simplify this equation.1 We call
this model quasi neural network, which is given below:

x1,i =
1
√
d

d∑
k=1

w0,kixk + b0,i, ∀i ∈ [d1];

ν1,j =

√
c

d1

d1∑
i=1

θ1,ijx1,j + βb1,i, ∀j ∈ [d2];

µ2,j = ψ̃(ν1,j), ∀j ∈ [d2]; ȳ =
1
√
d2

d2∑
j=1

w2,jµ2,j + βb2.

(2)

We assume the following regularity conditions.

Assumption 1. After training the binary weight neural net-
work as in (1), all the weights θ`,ij stay in [−1, 1].

Because of the lazy training property of the overparame-
terized NN, the model parameters θ`,ij stay close to the
initialization point during the training process, so this as-
sumption can be satisfied by initializing θ`,ij with smaller
absolute value and/or applying weight decay during train-
ing. We also assume ‖x‖2 = 1,∀x ∈ D ⊆ Rd, which is
common for studying NTK (Bach, 2017; Bietti and Mairal,
2019).

Convergence of conditioned variance. In this part, we as-
sume that the model parameters are chosen from “Good Ini-
tialization sequence” (Definition 9), which is almost surely
on the limit d1 →∞ as is proven in Theorem 10, and study
the distribution of ν1,j and ς1,j .

Theorem 1. For any fixed “Good Initialization sequence”
{Θd1} ∈ G, on the limit d1 → ∞, for any finite d2, ν1,j

converges to Gaussian distribution which are independent
of each other, and ς21,j converges a.s. to ς̃21 = c

d (1−Var[θ]).

With this approximation, we can replace the variance ς1,i in
Equation (11) with ς̃1 and leave the mean of output in the
linear layer as the only variable in the quasi neural network.
Formal proof can be found in Appendix E.4. Note the
propagation function in the linear layer (the first equation in
(9)) is also a linear function in x and θ. This motivates us to

1our notation in this section can be found in Appendix B.1.
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compute ȳ using a neural network-like function as is given
in (2), where ψ̃(·) is

ψ̃(ν1,j) = E[ψ(y1,j)|ν1,j ] = ς̃1φ

(
ν1,i

ς̃1

)
+ν1,jΦ

(
ν1,j

ς̃1

)
.

(3)
This equation gives a closed-form connection between the
mean of output of neural network ȳ and the real-valued
model parameter Θ, and allows up to apply existing tools
for analyzing neural networks with real-valued weight to
analysis binary weight neural network. In this part, we can
compute the gradients using binary weights as in BinaryCon-
nect Algorithm.
Theorem 2. The expectation of gradients to output with
respect to weights computed by sampling the quantized
weights equals the gradients of “quasi neural network” de-
fined above in (2) satisfy

lim
d2→∞

lim
d1→∞

√
d2

(
∂ȳ

∂θ1,ij
− E

[
∂y

∂w1,ij

∣∣∣∣Θ(d1,d2)

])
= 0,

lim
d2→∞

lim
d1→∞

√
d2

(
∂ȳ

∂b1,j
− E

[
∂y

∂b1,j

∣∣∣∣Θ(d1,d2)

])
= 0,

lim
d2→∞

lim
d1→∞

√
d1d2

(
∂ȳ

∂w2,j
− E

[
∂y

∂w2,j

∣∣∣∣Θ(d1,d2)

])
= 0.

Theorem 3. For MSE loss, loss(y) = 1
2 (y − z)2, where z

is the ground-truth label, the gradient of the loss converges
to

lim
d2→∞

lim
d1→∞

√
d2

(
∂loss(ȳ)

∂θ1,ij
− E

[
∂loss(y)

∂w1,ij

∣∣∣∣Θ(d1,d2)

])
= 0,

lim
d2→∞

lim
d1→∞

√
d2

(
∂loss(ȳ)

∂b1,j
− E

[
∂loss(y)

∂b1,j

∣∣∣∣Θ(d1,d2)

])
= 0,

lim
d2→∞

lim
d1→∞

√
d1d2

(
∂loss(ȳ)

∂w2,j
− E

[
∂loss(y)

∂w2,j

∣∣∣∣Θ(d1,d2)

])
= 0.

In other words, the BinaryConnect algorithm provides an
unbiased estimator to the gradients for the quasi neural
network on this limit of overparameterization. The proof can
be found in Appendix E.6 and Appendix E.7 respectively.
Theorem 1 and Theorem 3 conclude that for an infinite wide
neural network, the BinaryConnect algorithm is equivalent
to training quasi neural network with stochastic gradient
descent (SGD) directly. Furthermore, this points out the
gradient flow of BinaryConnect algorithm and allows us to
study this training process with NTK.

4. Capacity of Binary Weight Neural Network
As has been found in (Jacot et al., 2018), the dynamics of
an overparameterized neural network trained with SGD is
equivalent to kernel gradient descent where the kernel is
NTK. As a result, the effective capacity of a neural network
is equivalent to the RKHS of its NTK.

4.1. NTK of three-layer binary weight neural networks

We consider the NTK binary weight neural network by
studying this “quasi neural network” defined as the limiting
kernel KBWNN (x, x′) :=

lim
d2→∞

lim
d1→∞

d1,d2∑
i=1,j=1

∂ȳ

∂θ1,ij

∂ȳ′

∂θ1,ij
+

d2∑
j=1

∂ȳ

∂b1,j

∂ȳ′

∂b1,j
+

d2∑
j=1

∂ȳ

∂w2,j

∂ȳ′

∂w2,j

(4)

where Θ := {w1,ij , b1,j , b2,j} denotes all the trainable pa-
rameters. To find the basis and eigenvalues to this kernel,
we apply spherical harmonics decomposition to this kernel,
which is common among studying of NTK (Bach, 2017;
Bietti and Mairal, 2019):

KBWNN (x, x′) =

∞∑
k=1

uk

N(d,k)∑
j=1

Yk,j(x)Yk,j(x
′), (5)

where d denotes the dimension of x and x′, Yk,j denotes the
spherical harmonics of order k. This suggests that NTK of
binary weight neural network and exponential kernel can be
spanned by the same set of basis function. The key question
is the decay rate of uk with k.

Theorem 4. The limit of NTK of a binary weight neural
network can be decomposed using (5). If k � c̃2

2 =
var[θ]

2(1−Var[θ]) and k � d, then

Poly1(k)C−k ≤ uk ≤ Poly2(k)C−k. (6)

where Poly1(k) and Poly2(k) denote polynomials of k, and
C is a constant.

Meawhile, Geifman et al. (2020) shows that for NTK in
the continuous space, it holds that C1k

−d ≤ uk ≤ C2k
−d,

with constants C1 and C2. Since its decay rate is slower
than that of the binary weight neural network, its RKHS
covers a strict superset of functions (Geifman et al., 2020).

4.2. Comparison with Gaussian Kernel

Even if the input to a neural network x is constrained on a
unit sphere, the first linear layer (together with the additional
linear layer in front of it) will project it to the entire Rd space
with Gaussian distribution. In order to simulate that, we
define a kernel by randoming the scale of x and x′ beforing
taking them into a Gaussian kernel.

KRGauss(x, x′) = Eκ[KGauss(κx, κx′)],

where KGauss(x, x′) = exp
(
−‖x−x

′‖2
ξ2

)
is a Gaussian

kernel, κ ∼ χd satisfy Chi distribution with d degrees of
freedom. This scaling factor projects a random vector uni-
formly distributed on a unit sphere to Gaussian distributed.
The corresponding eigenvalue satisfy

A1C
−k ≤ uk ≤ A2C

−k, (7)
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where A1, A2, C are constants that depend on ξ. The domi-
nated term in both (6) and (7) have an exponential decay rate
C−k, which suggests the similarity between NTK of binary
weight neural network and Gaussian kernel. In comparison,
Bietti and Mairal (2019); Geifman et al. (2020) showed
that the eigenvalue of NTK decay at rate k−d, which is
slower that binary weight neural network or Gaussian ker-
nel. Furthermore, Aronszajn’s inclusion theorem suggests
HKBWNN

⊂ HKNN , where KNN denotes the NTK of real-
valued weight neural network. In other words, the expres-
sive power of binary weight neural network is weaker than
its real valued counterpart on the limit that the width goes
to infinity. Binary weight neural networks are less venera-
ble to noise thanks to the smaller expressive power at the
expense of failing to learn some “high frequency” compo-
nents in the target function. This explains that binary weight
neural network often achieve lower training accuracy and
smaller generalization gap compared with real weight neural
network.

4.3. Generalization gap

Making use of the decay rate of eigenvalues, in this sec-
tion, we study the difference of generalization gap be-
tween vanilla neural networks and binary weight neural
network. The generalization gap is defined as the difference
between training error and testing error: Eall(f(x)− y)2 −
Ein(f(x)−y)2 where Eall denotes the expectation over the
testing set. The generalization gap can be evaluated using
the effective degree of freedom. Let the training data be
yi = f0(xi) + εi, ε ∼ N (0, σ2), the effective degree of
freedom df(f) is defined as

2σ2df(f) = E[‖y′ − f(y)‖22]− E[‖y − f(y)‖22]

where y′ is an independent copy of y. The effective degree
of freedom of Lasso problem ŵ = argminw ‖Xw − y‖22 +
λ‖w‖22 = (XTX + λI)−1XT y can be calculated as

df(ŵ) =

n∑
k=1

λ2
k

λ2
k + λ

where X ∈ Rn×d, n is the number of datapoints and d
is the dimension of features, λi is the i-th eigenvalue of
XTX . When the number of training samples n is large
enough, the eigenvalues of feature covariance matrix XTX
can be approximated by the eigenvalues of the kernel matrix.
Furthermore, when λ is small enough (which corresponds to
training for enough number of epochs in a neural network),
faster decay rate of λk leads to a smaller effective degree of
freedom, which in turn means smaller generalization gap.
This indicates that for an infinite wide neural network with
enough number of samples, binary weight neural network
has probability lower generalization gap than the vanilla
counterpart (although the training error can be higher).

5. Numerical result for generalization gap
In this section, we provide experiments to validate the effec-
tiveness of generalization for BWNN. We consider the UCI
dataset and MNIST-like dataset.
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Figure 1: Accuracy and generalization gap on selected 90
UCI datasets. The lines show the accuracy metric of a clas-
sifier from the lowest to the highest against their percentiles
of datasets.

5.1. UCI dataset

We compare the performance of the neural network
with/without binary weight and kernel learning using the
same set of 90 small scale UCI datasets with less than 5000
data points as in Geifman et al. (2020); Arora et al. (2019b).
We report the training accuracy and testing accuracy of
both vanilla neural network (NN) and binary weight neu-
ral network (BWNN) in Figure 1. To further illustrate the
difference, we list the paired T-test result of neural network
(NN) against binary weight neural network (BWNN), and
Gaussian kernel (Gaussian) against Laplace kernel (Laplace)
using in Table 2. As can be seen from the results, although
the Laplacian kernel gets higher training accuracy than the
Gaussian kernel, its testing accuracy is almost the same as
the latter one. In other words, the former has smaller gener-
alization gap than the latter which can also be observed in
Table 2. Similarly, a neural network gets higher training ac-
curacy than a binary weight neural network but gets similar
testing accuracy.

5.2. MNIST-like dataset

We compare the performance of neural networks with bi-
nary weights (Binary) with its counterpart with real value
weights (Real). We take the number of training samples as a
parameter by random sampling the training set and use the
original test set for testing. The experiments are repeated
10 times and the mean and standard derivation is shown in
Figure 4. In the MNIST dataset, the performance of neural
networks with or without quantization is similar. This is
because MNIST is simpler and less vulnerable to overfit-
ting. On the other hand, the generalization gap with weight
quantized is much smaller than without it in FashionMNIST
(Xiao et al., 2017) dataset, which matches our prediction.
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A. Related work
Quantized neural networks. There is a large body of work that focuses on training neural networks with quantized
weights (Marchesi et al., 1993; Hubara et al., 2017; Gupta et al., 2015; Liang et al., 2021; Chu et al., 2021), including
considering radically quantizing the weights to binary (Courbariaux et al., 2016; Rastegari et al., 2016) or ternary (Alemdar
et al., 2017) values, which often comes at a mild cost on the model’s predictive accuracy. Despite all these empirical works,
the theoretical analysis of quantized neural networks and their convergence is not well studied. Many researchers believed
that quantization adds noise to the model, which serves as an implicit regularizer and makes neural networks generalize
better (Hubara et al., 2016; Courbariaux et al., 2015), but this statement is instinctive and has never been formally proved
to the best of our knowledge. One may argue that binary weight neural networks have a smaller parameter space than its
real weight counterpart, yet Ding et al. (2018) showed that a quantized ReLU neural network with enough parameters can
approximate any ReLU neural network with arbitrary precision. These seemingly controversy results motivate us to find
another way to explain the stronger generalization ability that is observed empirically.

Theory of deep learning and NTK. A notable recent technique in developing the theory of neural networks is the neural
tangent kernel (NTK) (Jacot et al., 2018). It draws the connection between an over-parameterized neural network and the
kernel learning. This makes it possible to study the generalization of overparameterized neural network using more mature
theoretical tools from kernel learning (Bordelon et al., 2020; Simon et al., 2021).

The expressive power of kernel learning is determined by the RKHS of the kernel. Many researches have been done to
identify the RKHS. Bach (2017); Bietti and Mairal (2019) studied the spectral properties of NTK of a two-layer neural
network without bias. Geifman et al. (2020) further studied the NTK with bias and showed that the RKHS of two layer
neural networks contains the same set of functions as RKHS of the Laplacian kernel. Chen and Xu (2020) expanded this
result to arbitrary layer neural networks and showed that RKHS of arbitrary layer neural network is equivalent to Laplacian
kernel. All these works are based on neural networks with real weights, and to the best of our knowledge, we are the first to
study the NTK and generalization of binary weight neural networks.

B. Problem statement
B.1. Notations

In this paper, we use w`,ij to denote the binary weights in the `-th layer, θ`,ij to denote its real-valued counterpart, and b`,i
to denote the (real valued) bias. Θ is the collection of all the real-valued model parameters which will be specified in Section
B.2. The number of neurons in the `-th hidden layer is d`, the input to the `-th linear layer is x` and the output is y`. d
denote the number of input features. Besides, we use x to denote the input to this neural network, y to denote the output and
z to denote the label.

We focus on the mean and variance under the randomness of stochastic rounding. Denote

µ`,i := E[x`,i|x,Θ], σ2
`,i := Var[x`,i|x,Θ],

ν`,i := E[y`,i|x,Θ], ς2i,` := Var[y`,i|x,Θ], ȳ := E[y|Θ].

We use ψ(x) = max(x, 0) to denote ReLU activation function, and in to denote the (discrete) distribution of training
dataset. Ein[·] := E(x,z)∼in[·] denotes the expectation over training dataset, or “sample average”. We use bold symbol to
denote a collection of parameters or variables w2 = [w2,j ], b2 = [b2,j ],ν1 = [ν1,j ],θ1 = [θ1,ij ], i ∈ [d1], j ∈ [d2].

In this work, we target on stochastic quantization (Dong et al., 2017), which often yields higher accuracy empirically
compared with deterministic rounding (Courbariaux et al., 2015). This also creates a smooth connection between the binary
weights in a neural network and its real-valued parameters, which can be expressed as a quasi neural network defined
in the following section. Our formulation of the binary weight neural network with stochastic rounding is deferred to
subsection B.2.
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(a) Binary weight neural network we focus on.
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(b) Quasi neural network.

B.2. Binary weight neural network (BWNN)

We briefly state our formulation of Binary weight neural network (BWNN). Let w`,ij = Quantize(θ`,ij), θ`,ij ∈ [−1, 1] be
the binary weights from stochastic quantization function, which satisfy Bernoulli distribution:

w`,ij =

{
+1, with probability p`,ij =

θ`,ij+1
2 ,

−1, with probability 1− p`,ij .
(8)

This relationship leads to E[w`,ij |θ`,ij ] = θ`,ij .

We focus on a ReLU neural network with one hidden layer and two fully connect layers, which was also studied in Bach
(2017); Bietti and Mairal (2019) except quantization. Besides, we add a linear layer (“additional layer”) in front of this
neural network to project the input to an infinite dimension space. We randomly initialize the weights in this layer and leave
it fixed (not trainable) throughout the training process. Furthermore, we quantize the weights in the first fully connect layer
w1,ij and add a real-valued buffer θ1,ij which determines the distribution of w1,ij as in (8), and leave the second layers
not quantized. It is a common practice to leave the last layer not quantized, because this often leads to better empirical
performance. If the second layer is quantized as well, the main result of this paper will not be changed. This can be checked
in subsection E.8.
Remark 5. In many real applications, e.g. computer vision, the dimension of data are often very large (≈ 103) while they
are laying in the lower dimension linear subspace, so we can take the raw input in these applications as the output of the
additional layer, and the NN in this case is a two-layer NN where the first layer is quantized.

The set of all the real-valued parameters is Θ = {θ`1,ij , w`2,ij , b`,i}. The neural network can be expressed as

x1,i =
1√
d

d∑
k=1

w0,kixk + b0,i,∀i ∈ [d1]; y1,j =

√
c

d1

d1∑
i=1

w1,ijx1,i + b1,j ,∀j ∈ [d2];

x2,j = ψ(y1,j),∀j ∈ [d2]; y =
1√
d2

d2∑
j=1

w2,jx2,j + b2.

We follow the typical setting of NTK papers (Geifman et al., 2020) in initializing the parameters except the quantized
parameters. As for the quantized parameters, we only need to specify the real-valued buffer of the weights in the first layer
θ1,ij .
Assumption 2. We randomly initialize the weights in the “additional layer” and second linear layer independently as
w0,ki, w2,j ∼ N (0, 1), and initialize all the biases to 0. The real-valued buffer of the weights are initialized independently
identical with zero mean, variance Var[θ] and bounded in [−1, 1].
Remark 6. Our theory applies to any initial distribution of θ1,ij as long as it satisfies the constraint above. One simple
example is the uniform distribution in [−1, 1], which has variance Var[θ] = 1/3.

B.3. BinaryConnect Algorithm

In this section, we briefly review the BinaryConnect algorithm (Courbariaux et al., 2015), which is the key algorithm we are
studying in this paper.
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Algorithm 1 Training binary weight neural network with BinaryConnect algorithm and SGD.

Training data {xi, zi}, (Randomly) initialized model parameters θ(0),learning rate η. t in [0 . . . T ] Select a minibatch
{xb, zb} from training data Quantization: w(t) ← Quantize(θ(t)) Forward propagation: compute {yb} using {xb}
and w(t) Backward propagation: compute ∂loss(yb,zb)

∂w(t) using {yb}, {zb} and w(t) accumulate gradients: θ(t+1) ←
θ(t) + η ∂loss(yb,zb)

∂w(t) .

C. Conditioned distribution of the outputs of each layer
First we recognize that as the model parameters are initialized randomly, there are “bad” initialization that will mess up our
analysis. For example, all of θ1,ij are initialized to 1 (or −1) while they are drawn from a uniform distribution. Fortunately,
as the width d1, d2 grows to infinite, the probability of getting into these “bad” initialization goes to 0. We make this
statement formal in the following part.

Definition 7. “Parameter sequence”. Define the parameter sequence, indexed by d1, d2, as

Θ(d1,d2) =
{
W

(d1,d2)
0 ∈ Rd,d1 , b(d1,d2)

0 ∈ Rd1 ,θ(d1,d2)
1 ∈ Rd1,d2 , b(d1,d2)

1 ∈ Rd2 ,

W
(d1,d2)
2 ∈ Rd2 , b(d1,d2)

2 ∈ R
}
,

where W0 = {w0,ki}, b0 = {b0,i},θ1 = θ1,ij , b1 = {b1,j},W2 = {w1,j}, the superscripts are omitted, such that for all
d1 ≤ d′1, d2 ≤ d′2, Θ(d1,d2),Θ(d′1,d

′
2) satisfy

W
(d1,d2)
0 = W

(d′1,d
′
2)

0 [:, 1 : d1], b
(d1,d2)
0 = b

(d′1,d
′
2)

0 [1 : d1], θ
(d1,d2)
1 = θ

(d′1,d
′
2)

1 [1 : d1, 1 : d2],

b
(d1,d2)
1 = b

(d′1,d
′
2)

1 [1 : d2], W
(d1,d2)
2,j = w

(d′1,d
′
2)

2 [1 : d2], b
(d1,d2)
2 = b

(d′1,d
′
2)

2 ,

∀k ∈ [d], i ≤ d1, j ≤ d2.

Remark 8. This definition states that for any two terms (sets of parameters) in the “parameter sequence”, the overlapping
parameters are always equal.

Definition 9. “Good Initialization sequence”. For any finite d2, we call the set of parameters sequence defined in Theorem 7
as a “Good Initialization” {Θ(d1)} ∈ G if it satisfies:

• ∀k, k′ ∈ [d], lim
d1→∞

1

d1

d1∑
i=1

w0,kiw0,k′i = δk,k′ ,

• ∀k, k′, k′′ ∈ [d], lim
d1→∞

1

d1

d1∑
i=1

|w0,kiw0,k′iw0,k′′i| ≤
√

8

π
,

• ∀k, k′ ∈ [d],∀j ∈ [d2], lim
d1→∞

1

d1

d1∑
i=1

w0,kiw0,k′iθ
2
1,ij = Var[θ]δk,k′ , where

δk,k′ =

{
1 k = k′

0 k 6= k′.

Here, we omit the superscript (d1, d2) again in the statement for the parameters w’s. d is the input dimension. d1, d2 are
defined in (2).

The following Proposition 10 guarantees the “Good initialization sequence” in Definition 9 holds true with probability 1.
The proof can be found in subsection E.1.

Proposition 10. Under the assumption that all the parameters are initialized as in 2, for any finite d2, the probability that
the sequence defined in Theorem 7 is a “Good Initialization sequence” is 1:

Pr({Θ(d1,d2), d1 = 1, 2, . . .} ∈ G) = 1.
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Lemma 11. Given any fixed x, and any fixed “Good Initialization sequence” {Θd1} ∈ G denoted as Θ in short, for any
fixed j, define the random sequence y(d1)

1,j = fΘd1
(x). on the limit d1 →∞, the distribution of y(d1)

1,j converge to Gaussian
distribution with mean ν1,j and variance ς21,j which can be computed by:

y1,j |Θ→ N (ν1,j , ς
2
1,j), ν1,j =

√
c

d1

d1∑
i=1

θ1,ijx1,i + b1,j , ς21,j =
c

d1

d1∑
i=1

(1− θ2
1,ij)x

2
1,i (9)

This lemma can be proved by Lyapunov central limit theorem and sum of expectation. See subsection E.2 for the details.

Lemma 12. Assume that the input to a ReLU layer y1,j satisfy Gaussian distribution with mean ν1,j and variance ς21,j

y1,j ∼ N (ν1,j , ς
2
1,j).

Denote

gj = ϕ

(
νj
ςj

)
, sj = Φ

(
νj
ςj

)
, (10)

where ϕ(x) denotes standard Gaussian function and Φ(x) denotes its integration:

ϕ(x) =

√
1

2π
exp

(
−1

2
x2

)
, Φ(x) =

∫ x

−∞
ϕ(y)dy.

Then the output x2,j has mean µ2,i and variance σ2
2,i, with

µ2,j := E[x2,j ] = gjς1,j + sjν1,j ,

σ2
2,j := Var[x2,j ] = (ς21,j + ν2

1,j)sj + ν1,jσ1,jg1,j − ν2
1,j .

(11)

The proof can be found in subsection E.3. From Theorem 11 we know that on the limit d1 →∞, conditioned on Θ and x,
for any j, y1,j converge to Gaussian distribution. From continuous mapping theorem, the distribution of x2,j converge to
that shown in Theorem 12 so its mean µ2,j and variance σ2,j converge to that computed in Theorem 12.

Equations (9) and (11) provide a method to calculate the mean and variance of output conditioned on the input and real-
valued model parameters and allow us to provide a closed-form equation of quasi neural network. We will simplify this
equation in ??.

D. Asymptotics during training
So far we have studied the distribution of output during initialization. To study the dynamic of binary weight neural network
during training, one need to extend these results to any parameter during training Θ(t), t ∈ [0, T ]. Fortunately, motivated by
(Jacot et al., 2018), we can prove that as d1, d2 →∞, the model parameters Θ(t) stays asymptotically close to initialization
for any finite T , so-called “lazy training”, so the above results apply to the entire training process.

Lemma 13. For all T such that
∫ T
t=0
‖ȳ(t)−z‖indt stays stochastically bounded, where ‖·‖in is defined in subsection B.1, as

d2 →∞, d1 →∞, ‖w2(T )−w2(0)‖, ‖b1(T )−b1(0)‖, ‖θ1(T )−θ1(0)‖F are all stochastically bounded, ‖ν1(t)−ν1(0)‖
and

∫ T
t=0

∥∥∂ν1(t)
∂t

∥∥dt is stochastically bounded for all x.

The proof can be found in subsection E.9. Note that ‖w2‖ = O(
√
d2), ‖θ1‖F = O(

√
d1d2), this results indicates that as

d2 →∞, the varying of the parameter is much smaller than the initialization, or so-called “lazy training”. Making use of
this result, we further get the follow result:

Lemma 14. Under the condition of Theorem 13, Lyapunov’s condition holds for all T so y1,j converges to Gaussian
distribution conditioned on the model parameters Θ(T ). Furthermore, ς1,j(T )→ ς1,t(0), which equals ς̃1 almost surely.

The proof can be found in subsection E.10. This result shows that the analysis in section 3 applies to the entire training
process, and allows us to study the dynamics of binary weight neural network using quasi neural network.
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E. Gaussian approximation in quantized neural network
E.1. Proof of Proposition 10

Proof. To prove the first statement in Theorem 9 holds a.s., observe that fixing k, k′ and taking i as the variable, w0,kiw0,k′i

are independent from each other. Furthermore, E[w0,kiw0,k′i] = δk,k′ has identical mean for different i. In addition, since
w is bounded,

∑∞
i=1 Var[w0,kiw0,k′i]/i

2 ≤
∑∞
i=1 C/i

2 <∞. By the strong law of large number (SLLN) Theorem 17, the
first statement is proved. The third statement can be proved similarly, observing that E[w0,kiw0,k′iθ

2
1,ij ] = δk,k′Var[θ] and

that both w and θ are bounded (which guarantees
∑∞
i=1 Var[w0,kiw0,k′iθ

2
1,ij ]/i

2 <∞).

To prove the second statement in Theorem 9 holds a.s., since geometric mean is no larger than cubic mean,

|w0,ki||w0,k′i||w0,k′i| ≤
1

3
(|w0,ki|3 + |w0,k′i|3 + |w0,k′i|3),

Since w0,ki ∼ N (0, 1), the expectation of the right hand side equals
√

8
π . We apply SLLN (Lemma 17) again to finish the

proof.

E.2. Proof of Theorem 11

We first compute the conditioned mean and variance ν1,j and ς1,j . Notice that for any d1, conditioned on any Θ, x1 is
deterministic,

ν1,j = Ew1
[y1,j |Θ]

=

√
c

d1

d1∑
i=1

Ew1
[w1,ij ]x1,i + βb1,j

=

√
c

d1

d1∑
i=1

θ1,ijx1,i + βb1,j

ς1,j = Varw1
[y1,j |Θ]

= Ew1

[
y2

1,j

∣∣Θ]− Ew1
[y1,j |Θ]

2

=
c

d1

d1∑
i=1

d1∑
i′=1

Ew1
[w1,ijw1,i′j |Θ]x1,ix1,i′ + 2βb1,j

√
c

d1

d1∑
i=1

E [w1,ij |Θ]x1,i

− c

d1

d1∑
i=1

d1∑
i′=1

θ1,ijθ1,i′jx1,ix1,i′ − 2βb1,j

√
c

d1

d1∑
i=1

θ1,ijx1,i

=
c

d1

d1∑
i=1

d1∑
i′=1

(E[w1,ijw1,i′j |Θ]− θ1,ijθ1,i′j)x
2
1,i

=
c

d1

d1∑
i=1

(E[w2
1,ij |Θ]− θ2

1,ij)x
2
1,i

=
c

d1

d1∑
i=1

(1− θ2
1,ij)x

2
1,i.

The second line is because Ew1
[w1,ijw1,i′j |Θ] = Ew1

[w1,ij |Θ]E[w1,i′j |Θ] = θ1,ijθ1,i′j when i 6= i′.

Next, we need to prove that for any “good initialization sequence” {Θd1} ∈ G, {y(d1)
1,i } converge to Gaussian distribution

conditioned on Θ ∈ G by verifying Lyapunov’s condition. Note that for any j ∈ [d2],

y1,j =

√
c

d1

d1∑
i=1

w1,ijx1,i + b1,j

Define Xi = w1,ijx1,i. As mentioned above, its mean and variance (conditioned on Θ) is

Ew1
[Xi|Θ] = θ1,ijx1,i, Varw1

[Xi|Θ] = Ew1
[X2

i |Θ]− Ew1
[Xi|Θ]2 = (1− θ2

1,ij)x
2
1,i
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Since Θ ∈ G, ∀j ∈ [d2] for some finite d2,

lim
d1→∞

1

d1

d1∑
i=1

Varw1 [Xi|Θ] = lim
d1→∞

1

d1

d1∑
i=1

(1− θ2
1,ij)x

2
1,i

= lim
d1→∞

1

dd1

d1∑
i=1

(1− θ2
1,ij)

( d∑
k=1

w0,kixk

)2

= lim
d1→∞

1

dd1

d1∑
i=1

d∑
k,k′=1

(1− θ2
1,ij)w0,kiw0,k′ixkxk′

= lim
d1→∞

d∑
k,k′=1

(1−Var[θ])δk,k′xkxk′ = 1−Var[θ]

(12)

The fourth equality comes from the definition of G, and the fifth equality is because ‖x‖2 = 1. The third order absolute
momentum can be bounded by

lim
d1→∞

1

d1

d1∑
i=1

Ew1

[
|Xi − Ew1 [Xi|Θ]|3

∣∣Θ]
= lim
d1→∞

1

d1

d1∑
i=1

Ew1

[
|(w1,ij − θ1,ij)x1,i|3

∣∣Θ]
≤ lim
d1→∞

1

d1

d1∑
i=1

Ew1

[
8|x1,i|3

∣∣Θ]
= lim
d1→∞

8

d1

d1∑
i=1

∣∣∣ d∑
k=1

w0,kixk

∣∣∣3
≤ lim
d1→∞

8

d1

d1∑
i=1

(
d∑
k=1

|w0,kixk|

)3

= lim
d1→∞

8

d1

d1∑
i=1

d∑
k,k′,k′′=1

|w0,kiw0,k′iw0,k′′i||xkxk′xk′′ |

≤ 8

√
8

π
d3

(13)

The last inequality comes from the definition of “Good Initialization”: for all Θ ∈ G,

lim
d1→∞

1

d1

d1∑
i=1

w0,kiw0,k′iw0,k′i ≤
√

8

π
,

and because ‖x‖2 = 1, |xk| ≤ 1 for all k ∈ [d]. Note that using the strong law of large number, one can prove that the
third order absolute momentum converges almost surely to a constant that doesn’t depend on d. On the other hand, we are
proving a upper bound for all Θ ∈ G which is stronger than almost surely converge.
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lim
d1→∞

∑d1
i=1 Ew1 [|Xi − Ew1 [Xi|Θ]|3|Θ]

(
∑d1
i=1 Varw1

[Xi|Θ])3/2

= lim
d1→∞

1
d1

∑d1
i=1 Ew1 [|Xi − Ew1 [Xi|Θ]|3|Θ]

d
1/2
1 ( 1

d1

∑d1
i=1 Varw1

[Xi|Θ])3/2

=
limd1→∞

1
d1

∑d1
i=1 Ew1

[|Xi − Ew1
[Xi|Θ]|3|Θ]

limd1→∞ d
1/2
1 ( 1

d1

∑d1
i=1 Varw1

[Xi|Θ])3/2

≤
8
√

8
πd

3

limd1→∞ d
1/2
1 (1−Var[θ])

= 0

This proves that Lyapunov’s condition for all “Good Initialization”, so conditioned on Θ ∈ G, y1,j converges to Gaussian
distribution.

E.3. Proof of Theorem 12

To compute Ew1
[x2,j |Θ] and Varw1

[x2,j |Θ], we first compute Ew1
[ψ(y1,j)|Θ] and Ew1

[ψ(y1,j)
2|Θ]. Recall ψ(x) =

x1(x ≥ 0),

Ew1
[ψ(y1,j)|Θ] =

∫ ∞
0

x
1√

2πς1,j
exp

(
−1

2

(x− ν1,j)
2

ς21,j

)
dx

=

∫ ∞
−
ν1,j
ς1,j

(ς1,jy + ν1,j)
1√
2π

exp

(
−1

2
y2

)
dy

= ς1,j

∫ ∞
−
ν1,j
ς1,j

1√
2π
y exp

(
−1

2
y2

)
dy + µ`,i

∫ ∞
−
ν1,j
ς1,j

1√
2π

exp

(
−1

2
y2

)
dy,

Ew1 [ψ(y1,j)
2|Θ] =

∫ ∞
0

x2 1√
2πς1,j

exp

(
−1

2

(x− ν1,j)
2

ς21,j

)
dx

=

∫ ∞
−
ν1,j
ς1,j

(ς1,jy + ν1,j)
2 1√

2π
exp

(
−1

2
y2

)
dy

= ς21,j

∫ ∞
−
ν1,j
ς1,j

y2 1√
2π

exp

(
−1

2
ŷ2

)
dy + 2ς1,jν1,j

∫ ∞
−
ν1,j
ς1,j

y
1√
2π

exp

(
−1

2
y2

)
dy

+ ν2
1,j

∫ ∞
−
ν1,j
ς1,j

1√
2π

exp

(
−1

2
y2

)
dy.

We only need to compute ∫ ∞
−
ν1,j
ς1,j

1√
2π
yα exp

(
−1

2
y2

)
dy.

For α = 0, 1, 2. When α = 0, this is integration to Gaussian function, and it is known that there’s no analytically function to
express that. For sack of simplicity, define it as s1,j

s1,j =

∫ ∞
ν1,j
ς1,j

1√
2π

exp

(
−1

2
y2

)
dy := Φ(

ν1,j

ς1,j
).

When α = 1, this integration can be simply solved by change of the variable and we denote it as g1,j :

g1,j =

∫ ∞
−
ν1,j
ς1,j

y
1√
2π

exp

(
−1

2
y2

)
dy =

√
1

2π
exp

(
−1

2

(
ν1,j

ς1,j

)2
)
.
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When α = 2, we can do integration by parts and express it using s1,j and g1,j :∫ ∞
−
ν1,j
ς1,j

y2 1√
2π

exp

(
−1

2
y2

)
dy

= −
∫ ∞
−
ν1,j
ς1,j

y
1√
2π

exp

(
−1

2
y2

)
d

1

2
y2

=

∫ ∞
−
ν1,j
ς1,j

1√
2π

exp

(
−1

2
y2

)
dy − ν1,j

ς1,j

1√
2π

exp

(
−1

2

(
ν1,j

ς1,j

)2
)

= s1,j −
ν1,j

ς1,j
g1,j .

Using the definition of mean and variance,

µ2,j = Ew1
[ψ(y1,j)|Θ], σ2

2,i = Ew1
[ψ(y1,j)

2|Θ]− Ew1
[ψ(y1,j)|Θ]2,

we can come to the result.

E.4. Proof of Theorem 1

In this part, we take Θ = {w0, θ1, w2, b0, b1, b2} as the random variables and conditioned mean and variance derived above
µ1, σ1, ν1, ς1 as functions to Θ. From Eq. (9), as d1 →∞, v1 tend to iid Gaussian processes, and there covariance converges
almost surely to its expectation. We then focus on computing the expectation of covariance. For any j 6= j′, we take the
expectation over random initialization of Θ:

EΘ[ν1,jν1,j′ ]

= EΘ

[
c

d1

d1∑
i=1

d1∑
i′=1

θ1,ijθ1,i′j′x1,ix1,i′ + β

√
c

d1

d1∑
i=1

(θ1,ijx1,ibj + θ1,ij′x1,ibj′) + β2bjbj′

]

=
c

d1

d1∑
i=1

d1∑
i′=1

EΘ[θ1,ij ]EΘ[θ1,i′j′ ]EΘ[x1,ix1,i′ ] + β2EΘ[bjbj′ ]

+

√
c

d1
β

d1∑
i=1

(EΘ[θ1,ij ]EΘ[x1,i]EΘ[bj ] + EΘ[θ1,ij′ ]EΘ[x1,i]EΘ[bj′ ])

= 0

(14)

which indicates that they are independent.

Computation of ς1,j was already finished implicitly in Section E.2. We write it explicitly here. From (9), on the limit
d1 →∞,

ς21,j =
c

d1

d1∑
i=1

(1− θ2
1,ij)x

2
1,i

=
c

dd1

d1∑
i=1

(1− θ2
1,ij)

d∑
k,k′=1

w0,kiw0,k′ixkxk′

=
c

d

d∑
k,k′=1

xkxk′
1

d1

d1∑
i=1

w0,kiw0,k′i(1− θ2
1,ij)

=
c

d

d∑
k,k′=1

xkxk′δk,k′(1−Var[θ])

=
c

d
(1−Var[θ])‖x‖22

=
c

d
(1−Var[θ])
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The fourth line comes from the definition of G.

E.5. Derivative of activation function in quasi neural network

Let

ψ̃(x) = ς̃1φ

(
x

ς̃

)
+ xΦ

(
x

ς̃

)
,

Its derivative is

ψ̃′(x) = ϕ′
(
x

ς̃

)
+ Φ

(
x

ς̃

)
+
x

ς̃
Φ′
(
x

ς̃

)
= −x

ς̃
ϕ

(
x

ς̃

)
+ Φ

(
x

ς̃

)
+
x

ς̃
ϕ

(
x

ς̃

)
= Φ

(
x

ς̃

)
The second line is because

Φ′(x) = ϕ(x),

ϕ′(x) =
d

dx

√
1

2π
exp

(
−1

2
x2

)
= −x

√
1

2π
exp

(
−1

2
x2

)
= −xϕ(x).

E.6. Proof of Theorem 2

To make the proof more general, we make ς1,j a parameter of the activation function in quasi neural network as ψ̃(·; ς1,j).
To get the derivative with respect to θ1,ij , we first get the derivative with respect to ν1,j .

∂ȳ

∂ν1,j
=

∂ȳ

∂µ2,j

∂µ2,j

∂ν1,j
=

√
1

d2
w2,jψ̃

′(ν1,j ; ς1,j)

then apply chain rule:

∂ȳ

∂w2,j
=

√
c

d2
µ2,j , (15)

∂ȳ

∂b1,j
=

∂ȳ

∂ν1,j

∂ν1,j

∂b1,j
=

√
c

d2
βw2,jψ̃

′(ν1,j ; ς1,j), (16)

∂ȳ

∂θ1,ij
=

∂ȳ

∂ν1,j

∂ν1,j

∂θ1,ij
=

√
c

d1d2
w2,jx1,iψ̃

′(ν1,j ; ς1,j). (17)

On the other hand, let’s first write down the gradient with respect to weights wij in quantized neural network and take their
expectation conditioned on Θ:

Ew1

[
∂y

∂w2,j

∣∣∣∣Θ(d1,d2)

]
=

√
c

d2
Ew1

[
x2,j

∣∣∣Θ(d1,d2)
]
, (18)

Ew1

[
∂y

∂b2,j

∣∣∣∣Θ(d1,d2)

]
= Ew1

[
∂ȳ

∂y1,j

∂y1,j

∂b2,j

∣∣∣∣Θ] =

√
c

d2
βw2,jEw1

[
ψ′(y1,j)

∣∣∣Θ(d1,d2)
]
, (19)

Ew1

[
∂y

∂w1,ij

∣∣∣∣Θ(d1,d2)

]
= Ew1

[
∂y

∂y1,j

∂y1,j

∂w1,ij

∣∣∣∣Θ(d1,d2)

]
=

√
c

d1d2
w2,jx1,iEw1

[
ψ′(y1,j)

∣∣∣Θ(d1,d2)
]
, (20)

By definition, µ2,j = limd1→∞ Ew1
[x2,j |Θ(d1,d2)]. On the other hand, from (3), one can tell using continuous mapping

theorem that

ψ̃′(ν1,j ; ς1,j) = Φ

(
ν1,j

ς1,j

)
= lim
d1→∞

P [y1,j ≥ 0] = lim
d1→∞

Ew1

[
ψ′(y1,j)

∣∣∣Θ(d1,d2)
]
,
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Taking them into (15)-(20) finishes the proof.

E.7. Proof of Theorem 3

Observe that conditioned on Θ, y1,j depends only on {w1,ij , i ∈ [d1]}, and that {w1,ij , i ∈ [d1]} ∩ {w1,ij′ , i ∈ [d1]} = ∅
for j 6= j′. Because of that, y1,j are independent of each other. Similarly, x2,j are independent of each other conditioned on
Θ. For MSE loss,

loss(y) =
1

2
(y − z)2,

dl(y)

dy
= y − z,

According to the chain rule
∂loss(ȳ)

∂θ
=
∂loss(ȳ)

∂ȳ

∂ȳ

∂θ
= (ȳ − z)∂ȳ

∂θ
, (21)

for any θ ∈ {θ1,ij , b1,j , w2,j}, which leads to

∂loss(ȳ)

∂w2,j
=

√
c

d2
(ȳ − z)µ2,j , (22)

∂loss(ȳ)

∂b1,j
=

∂ȳ

∂ν1,j

∂ν1,j

∂b1,j
=

√
c

d2
βw2,j(ȳ − z)ψ̃′(ν1,j ; ς1,j), (23)

∂loss(ȳ)

∂θ1,ij
=

∂ȳ

∂ν1,j

∂ν1,j

∂θ1,ij
=

√
c

d1d2
w2,jx1,i(ȳ − z)ψ̃′(ν1,j ; ς1,j). (24)

On the other hand, in the original binary weight neural network, according to the chain rule,

Ew1

[
∂loss(y)

∂w2,j

∣∣∣∣Θ(d1,d2)

]
=

√
c

d2
Ew1

[
(y − z)x2,j

∣∣∣Θ(d1,d2)
]
, (25)

Ew1

[
∂loss(y)

∂b1,j

∣∣∣∣Θ(d1,d2)

]
=

√
c

d2
βw2,jEw1

[
(y − z)ψ′(y1,j)

∣∣∣Θ(d1,d2)
]
, (26)

Ew1

[
∂loss(y)

∂w1,ij

∣∣∣∣Θ(d1,d2)

]
=

√
c

d1d2
w2,jx1,iEw1

[
(y − z)ψ′(y1,j)

∣∣∣Θ(d1,d2)
]
, (27)

Note that y is not independent form x2,j or ψ′(y1,j), which is the main challenge of the proof. To deal with this problem,
we bound the difference between (22)-(24) and (25)-(27), which requires bounding their covariance.

Ew1

[
x2,jy|Θ(d1,d2)

]
=

√
c

d2
Ew1

x2,j

d2∑
j=1

w2,jx2,j

∣∣∣∣∣∣Θ(d1,d2)


=

√
c

d2

Ew1

[
x2

2,jw2,j

∣∣∣Θ(d1,d2)
]

+
∑
j′ 6=j

Ew1

[
x2,jx2,j′w2,j′

∣∣∣Θ(d1,d2)
]

lim
d1→∞

Ew1

[
x2,jy|Θ(d1,d2)

]
=

√
c

d2

(µ2
2,j + σ2

2,j)w2,j +
∑
j′ 6=j

µ2,jµ2,j′w2,j′


=

√
c

d2

σ2
2,jw2,j +

d2∑
j′=1

µ2,jµ2,j′w2,j′



(28)

Notice that by definition √
c

d2

d2∑
j′=1

µ2,jµ2,j′w2,j′ = Ew1

[
x2,j

∣∣∣Θ(d1,d2)
]
Ew1

[
y
∣∣∣Θ(d1,d2)

]

The second term equals Ew1 [x2,j |Θ]Ew1 [y|Θ] and the first term converges to 0 when d2 →∞. Taking it into (22) and (25)
finishes the proof of the first equation.
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Similarly,
Ew1

[
ψ′(y1,j)y

∣∣∣Θ(d1,d2)
]

= Ew1

√ c

d2
ψ′(y1,j)

d2∑
j=1

w2,jψ(y1,j)

∣∣∣∣∣∣Θ(d1,d2)


=

√
c

d2

(
Ew1

[
ψ(y1,j)ψ

′(y1,j)w2,j

∣∣∣Θ(d1,d2)
]

+
∑
j′ 6=j

Ew1

[
ψ(y1,j′)ψ

′(y1,j)w2,j′

∣∣∣Θ(d1,d2)
])

lim
d1→∞

Ew1

[
ψ′(y1,j)y

∣∣∣Θ(d1,d2)
]

=

√
c

d2

Ew1

[
ψ(y1,j)w2,j

∣∣∣Θ(d1,d2)
]
w2,j +

∑
j′ 6=j

Ew1
[ψ′(y1,j)|Θ(d1,d2)]µ2,j′w2,j′

 ,

=

√
c

d2

(1− Ew1
[ψ′(y1,j)|Θ])µ2,jw2,j +

d2∑
j′=1

Ew1
[ψ′(y1,j)|Θ]µ2,j′w2,j′



(29)

Notice that by definition √
c

d2

d2∑
j′=1

µ2,j′w2,j′ = lim
d1→∞

E
[
y
∣∣∣Θ(d1,d2)

]
and the first term converges to 0 when d2 →∞. Taking it into (23)(24)(26)(27) finishes the proof.

E.8. Quantizing the second layer

Assume that the second layer is quantized in the same way as the first layer as in Equation 8. Then Theorem 11 can be
modified as :

ȳ := E[y|Θ] =
1√
d2

d2∑
j=1

E[w2,j |θ2,j ]µ2,j + βb2 =

d2∑
j=1

θ2,jµ2,j + βb2

which is the same form as the second layer in the quasi neural network Equation 2 except that replacing w2,j with θ2,j . As
for the gradients,

Ew1,w2

[
∂y

∂w2,j

∣∣∣∣Θ(d1,d2)

]
=

√
c

d2
Ew1

[
x2,j

∣∣∣Θ(d1,d2)
]

=

√
c

d2
µ2,j ,

Ew1,w2

[
∂y

∂x2,j

∣∣∣∣Θ(d1,d2)

]
=

√
c

d2
Ew2

[
w2,j

∣∣∣Θ(d1,d2)
]

=

√
c

d2
θ2,j ,

By replacing θ2,j with w2,j , the above results are the same as leaving the second layer not quantized.

E.9. Proof of Theorem 13

In this part, we denote ȧ := ∂a
∂t for a ∈ {w`, θ`, b`}, and express each time-depent variable as a function of time t. We

define an inner product under the distribution of training dataset

〈a, b〉in = Ein[a(x)b(x)],

and the corresponding norm
‖a‖in =

√
〈a,a〉in =

√
Ein[a(x)2].

If a(x) is a vector, ‖a‖in :=
√
Ein[‖a(x)‖2]. Note this inner product and norm define a Hilbert space (not to be confused

with the RKHS induced by a kernel), so by Cauchy-Schwarz inequality,

|〈a, b〉in| ≤ ‖a‖in‖b‖in,∀a, b.
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As is shown in ??, on the limit d1,→∞, the dynamics of training this neural network using gradient descent can be written
as:

ẇ2,j(t) =

√
c

d2
Ein[(ȳ(t)− z)µ2,j(t)]

ḃ1,j(t) =

√
c

d2
Ein[βw2,j(t)(ȳ(t)− z)ψ̃′(ν1,j(t), ς1,j(t))],

θ̇1,ij(t) =

√
c

d1d2
Ein[w2,j(t)x1,i(ȳ(t)− z)ψ̃′(ν1,j(t); ς1,j(t))]

where dot denotes the derivative with respect to t. Note the activation function ψ̃(·; ς1,j(t)) depends on ς1,j , which makes it
time dependent. One can further write down the dynamics of ν1,j(t) as

ν̇1,j(t) =

√
1

d1

d1∑
i=1

θ̇1,ij(t)x1,i(t) + ḃ1,j(t)

Rewrite these two differential equations in matrix form:

ẇ2(t) =

√
c

d2
Ein[(ȳ(t)− z)µ2(t)]

ḃ1(t) = β

√
c

d2
Ein[(ȳ(t)− z)(ψ̃′(ν1(t)) ◦w2(t))],

θ̇1(t) =

√
c

d1d2
Ein
[
(ȳ(t)− z)x1 ⊗

(
ψ̃′(ν1(t)) ◦w2(t)

)]
,

ν̇1(t) =

√
1

d1
θ̇1x1 + ḃ1

where ◦ denotes elementwise product and ⊗ denotes outer product. Here we slightly abuse the notation ψ̃(·), which
represents elementwise operation when applied to a vector. Their norm are bounded by

∂

∂t
‖w2(t)−w2(0)‖ ≤

√
c

d2
Ein[(ȳ(t)− z)‖µ2(t)‖] =

√
c

d2
〈ȳ(t)− z,µ2(t)〉in

≤
√

c

d2
‖ȳ(t)− z‖in‖µ2(t)‖in ≤

√
c

d2
‖ȳ(t)− z‖in‖ν1(t)‖in

(30)

∂

∂t
‖b1(t)− b1(0)‖ ≤ β

√
c

d2
Ein[(ȳ(t)− z)‖ψ̃′(ν1(t)) ◦w2(t)‖]

≤ β
√

c

d2
Ein[(ȳ(t)− z)‖w2(t)‖] = β

√
c

d2
‖ȳ(t)− z‖in‖w2(t)‖,

(31)

∂

∂t
‖θ1(t)− θ1(0)‖F ≤

√
c

d1d2
Ein
[
(ȳ(t)− z)‖x1 ⊗

(
ψ̃′(ν1(t)) ◦w2(t)

)
‖F
]

≤
√

c

d1d2
Ein
[
(ȳ(t)− z)‖x1‖‖w2(t)‖

]
≤
√

c

d1d2
‖ȳ(t)− z‖in‖x1‖in‖w2(t)‖

=

√
c

d2
‖ȳ(t)− z‖in‖w2(t)‖,

(32)
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∀x1,
∂

∂t
‖ν1(t)− ν1(0)‖ ≤

∫ T

t=0

∥∥∥∂ν1(t)

∂t

∥∥∥dt
≤
√

1

d1

∂

∂t
‖θ1(t)− θ1(0)‖op‖x1‖+

∂

∂t
‖b1(t)− b1(0)‖

≤
√

c

d2
1d2
‖ȳ(t)− z‖in‖w2(t)‖‖x1‖in‖x1‖

+ β

√
c

d2
‖ȳ(t)− z‖in‖w2(t)‖

= (1 + β)

√
c

d2
‖ȳ(t)− z‖in‖w2(t)‖,

∂

∂t
‖ν1(t)− ν1(0)‖in ≤ (1 + β)

√
c

d2
‖ȳ(t)− z‖in‖w2(t)‖.

(33)

Here we make use of the fact that φ̃′(x) ≤ 1, φ̃(x) ≤ x regardless of the value of ς1,j(t), that limd1→∞ ‖x1‖in/
√
d1 = 1 as

long as Θ ∈ G, and thatw0 is not updated during training. In the last equation, we make use of θ̇1 = ∂
∂t (θ1(t)−θ1(0)), ḃ1 =

∂
∂t (b1(t)− b1(0)).

Define A(t) =
√

c
d2

√
1 + β(‖w2(t)−w2(0)‖+ ‖w2(0)‖) +

√
c
d2

(‖ν1(t)− ν1(0)‖in + ‖ν1(0)‖in), then

Ȧ(t) ≤
√

1 + β

√
c

d2
‖ȳ(t)− z‖in‖ν1(t)‖in + (1 + β)

√
c

d2
‖ȳ(t)− z‖in‖w2(t)‖

≤
√

1 + βA(t)

Observe that A(0) is stochastically bounded. Using Grönwall’s Lemma, for any finite T :

A(T ) ≤ A(0) exp
(∫ T

t=0

√
1 + βdt

)
= A(0) exp(

√
1 + βT )

so A(T ) is stochastically bounded for all finite T as d2 →∞. Furthermore,

√
c

d2
‖w2(T )‖ ≤

√
c

d2
(‖w2(T )−w2(0)‖+ ‖w2(0)‖)

which is also stochastically bounded. Integrating (30)-(33) from 0 to T finishes the proof.
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E.10. Proof of Theorem 14

From (9), it’s easy to get the dynamics of ς1:

∂ς21,j(t)

∂t
= −2c

d1

d1∑
i=1

θ1,ij(t)θ̇1,ij(t)x
2
1,i

|ς21,j(T )− ς21,j(0)| ≤ 2c

d1

d1∑
i=1

x2
1,i

∫ T

t=0

|θ1,ij(t)||θ̇1,ij(t)|dt

≤ 2c

d1

d1∑
i=1

x2
1,i

∫ T

t=0

|θ̇1,ij(t)|dt

≤ 2c

d1

√
c

d1d2

d1∑
i=1

x2
1,i

∫ T

t=0

Ein
∣∣w2,j(t)x1,i(ȳ(t)− z)ψ̃′(ν1,j(t); ς1,j(t))

∣∣dt
≤ 2c

d1

√
c

d1d2

d1∑
i=1

x2
1,i

∫ T

t=0

|w2,j(t)|Ein
∣∣x1,i(ȳ(t)− z)

∣∣dt
≤ 2c

d1

√
c

d1d2

d1∑
i=1

x2
1,i

∫ T

t=0

|w2,j(t)|‖x1,i‖in‖ȳ(t)− z‖indt

≤ 2c

d
3/2
1

d1∑
i=1

x2
1,i‖x1,i‖in

∫ T

t=0

C(t)‖ȳ(t)− z‖indt

≤ 2c

d
3/2
1

d1∑
i=1

x2
1,i‖x1,i‖in max

t∈[0,T ]
C(t)

∫ T

t=0

‖ȳ(t)− z‖indt a.s.

Here we assume that
√

c
d2
‖w2(t)‖ is stochastically bounded by C(t). Since C(t) is finite for all t ∈ [0, T ], it’s easy to

check the term after max operator is stochastically bounded. The remaining task is to bound term before max operator.
From standard Gaussian process analysis, x1,i satisfy Gaussian distribution. From the law of large number (LLN), as
d1 →∞,

1

d1

d1∑
i=1

x2
1,i‖x1,i‖in = E[x2

1,i‖x1,i‖in]

almost surely, where the expectation is taken over w1, and this limit is also bounded. Because of that, as d1, d2 →∞, the
difference |ς21,j(T )− ς21,j(0)| converges to 0 at rate 1√

d2
.

Notice that the proof of Lyapunov’s condition (13) doesn’t depend on time T from the third line. Since ς1,j(T ) stochastically
converges to ς1,j(0) for all finite T , Lyapunov’s condition holds for all T thus x2,j always converges to Gaussian distribution
conditioned on model parameter.

F. NTK of neural networks with quantized weights
F.1. Spherical harmonics

This subsection briefly reviews the relevant concepts and properties of spherical harmonics. Most part of this subsection
comes from Bach (2017, appendix Section D.1.) and Bietti and Mairal (2019, appendix Section C.1.)

According to Mercer’s theorem, any positive definite kernel can be decomposed as

K(x, x′) =
∑
i

λiΦ(x)Φ(x′),

where Φ(·) is called the feature map. Furthermore, any zonal kernel on the unit sphere, i.e., K(x, x′) = K(xTx′) for any
x, x′ ∈ Rd, ‖x‖2 = ‖x′‖2 = 1, including exponential kernels and NTK, can be decomposed using spherical harmonics



1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154

Why Quantization Improves Generalization: NTK of Binary Weight Neural Network

(equation (5)):

K(x, x′) =

∞∑
k=1

λk

N(d,k)∑
j=1

Yk,j(x)Yk,j(x
′).

Legendre polynomial. We have the additional formula

N(d,k)∑
j=1

Yk,j(x)Yk,j(x
′) = N(d, k)Pk(xTx′),

where

N(d, k) =
(2k + d− 2)(k + d− 3)!

k!(d− 2)!
.

The polynomial Pk is the k-th Legendre polynomial in d dimension, also known as Gegenbauer polynomials:

Pk(t) =

(
−1

2

)k Γ
(
d−1

2

)
Γ
(
k + d−1

2

) (1− t2)(3−d)/2

(
d

dt

)k
(1− t2)k+(d−3)/2.

It is even (resp. odd) when k is odd (reps. even). Furthermore, they have the orthogonal property

∫ 1

−1

Pk(t)Pj(t)(1− t2)(d−3)/2dt = δij
wd−1

wd−2

1

N(d, k)
,

where

wd−1 =
2πd−2

Γ(d/2)

denotes the surface of sphere Sd−1 in d dimension, and this leads to the integration property∫
Pj(〈w, x〉)Pk(〈w, x〉)dτ(w) =

δjk
N(p, k)

Pk(〈x, y〉)

for any x, y ∈ Sd−1. τ(w) is the uniform measure on the sphere.

F.2. NTK of quasi neural network

We start the proof of the Theorem 4 by the following lemmas:

Lemma 15. The NTK of a binary weight neural network can be simplified as

K(x, x′) =
( c
d
〈x, x′〉+ β2

)
Σ(0) + Σ(1),

Σ(0) = E
[
ψ̃′ (µ) ψ̃′ (µ′)

]
, Σ(1) = E

[
ψ̃ (µ) ψ̃ (µ′)

]
,

(34)

where [µ, µ′] ∼ N (0,Σ),

Σ = E[x1,ix
′
1,i] =

c

d
Var[θ]

[
1 xTx′

xTx′ 1

]
are the pre-activation of the second layer.
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Proof.

K(x, x′) =

d1,d2∑
i=1,j=1

∂ȳ

∂θ1,ij

∂ȳ′

∂θ1,ij
+

d2∑
j=1

∂ȳ

∂b1,j

∂ȳ′

∂b1,j
+

d2∑
j=1

∂ȳ

∂w2,j

∂ȳ′

∂w2,j

=
c

d1d2

d1,d2∑
i=1,j=1

x1,ix
′
1,iw

2
2,jψ̃

′(ν1,j)ψ̃
′
2(ν′1,j)

+
β2

d2

d2∑
j=1

ψ̃′(ν1,j)ψ̃
′(ν′1,j) +

1

d2

d2∑
j=1

ψ̃(ν1,j)ψ̃(ν′1,j)

=
c

d1d2

d1∑
i=1

x1,ix
′
1,i

d2∑
j=1

w2
2,jψ̃

′(ν1,j)ψ̃
′(ν′1,j)

+
β2

d2

d2∑
j=1

w2
2,jψ̃

′(ν1,j)ψ̃
′(ν′1,j) +

1

d2

d2∑
j=1

ψ̃(ν1,j)ψ̃(ν′1,j)

= (
c

d
〈x, x′〉+ β2)E[ψ̃′(ν)ψ̃′(ν′)] + E[ψ̃(ν)ψ̃(ν′)] a.s.

where (ν, ν′) has the same distribution as (ν2,j , ν
′
2,j) for any j. We make use of the fact E[w2

2,j ] = 1, and from central limit
theorem, x1,i, x

′
1,i and µ1,i, µ

′
1,i converge to joint Gaussian distribution for any fixed x, x′ as d1 →∞

E[x1,ix
′
1,i] =

1

d
E[

d∑
k=1

wkixk

d∑
k′=1

wk′ix
′
k′ ]

=
1

d
E[

d∑
k=1

w2
kixkx

′
k]

=
1

d
〈x, x′〉

Similarly,

E[µ2
1,i] =

c

d1

d1∑
i=1

E[θ2
1,ij ]E[x2

1,j ] =
c

d
Var[θ]

E[µ1,iµ
′
1,i] =

c

d1

d1∑
i=1

E[θ2
1,ij ]E[x1,jx

′
1,j ] =

c

d
Var[θ]〈x, x′〉

F.3. Proof of Theorem ??

Remind that as is proved in Theorem 14, ς1,j(T )→ ς1,t(0) for any T satisfying a mild condition, and ς1,t(0) is nonzero
almost surely. Making use the fact that ψ̃(·; ς) is continuous with respect to ς , and its first and second order derivative is
stochastically bounded, the change of kernel K induced by ς1,j converges to 0 as d1, d2 →∞. This reduces to this quasi
neural network to a standard neural network with activation function ψ̃(·), which is twice differentiable and has bounded
second order derivative. From Theorem 2 in (Jacot et al., 2018), the kernel during training converges to the one during
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initialization. For the ease of the readers, we restate the proof below. On the limit d2 →∞, d1 →∞,

K(x, x′)(t)−K(x, x′)(0)

=
c〈x, x′〉+ β2

d2

d2∑
j=1

(
w2

2,j(t)ψ̃
′(ν1,j(t))ψ̃

′(ν′1,j(t))− w2
2,j(0)ψ̃′(ν1,j(0))ψ̃′(ν′1,j(0))

)
+

1

d2

d2∑
j=1

(
ψ̃(ν1,j(t))ψ̃(ν′1,j(t))− ψ̃(ν1,j(0))ψ̃(ν′1,j(0))

)
=
c〈x, x′〉+ β2

d2

(
d2∑
j=1

(
w2

2,j(t)− w2
2,j(0)

)
ψ̃′(ν1,j(t))ψ̃

′(ν′1,j(t))

+

d2∑
j=1

w2
2,j(0)

(
ψ̃′(ν1,j(t))− ψ̃′(ν1,j(0))

)
ψ̃′(ν′1,j(t))

+

d2∑
j=1

w2
2,j(0)ψ̃′(ν1,j(0))

(
ψ̃′(ν′1,j(t))− ψ̃′(ν′1,j(0))

))

+
1

d2

d2∑
j=1

ψ̃(ν1,j(t))
(
ψ̃(ν′1,j(t))ψ̃(ν′1,j(0))

)
+

1

d2

d2∑
j=1

ψ̃(ν′1,j(0))
(
ψ̃(ν1,j(t))− ψ̃(ν1,j(0))

)
|K(x, x′)(t)−K(x, x′)(0)|

≤

∣∣∣∣∣c〈x, x′〉+ β2

d2

∣∣∣∣∣
(

d2∑
j=1

w2
2,j(0)ψ̃′(ν′1,j(t))

∣∣ψ̃′(ν1,j(t))− ψ̃′(ν1,j(0))
∣∣

+

d2∑
j=1

w2
2,j(0)ψ̃′(ν1,j(0))

∣∣ψ̃′(ν′1,j(t))− ψ̃′(ν′1,j(0))
∣∣

+

d2∑
j=1

|w2,j(t)− w2,j(0)||w2,j(t) + w2,j(0)||ψ̃′(ν1,j(t))ψ̃
′(ν′1,j(t))|

)

+
1

d2

d2∑
j=1

ψ̃(ν1,j(t))
∣∣ψ̃(ν′1,j(t))ψ̃(ν′1,j(0))

∣∣
+

1

d2

d2∑
j=1

ψ̃(ν′1,j(0))
∣∣ψ̃(ν1,j(t))− ψ̃(ν1,j(0))

∣∣
From Theorem 14, and observing that ψ̃′(x), ψ̃′′(x) are bounded by constants, one can verify that each summation term is

stochastically bounded by
√
d2, so as d2 →∞, K(t)−K(0) converges to 0 at rate

√
d2.

F.4. Spherical harmonics decomposition to activation function

Following Bach (2017), we start by studying the decomposition of action in quasi neural network (3) and its gradients (??):
for arbitrary fixed c > 0, −1 ≤ t ≤ 1, we can decompose equation (3) and (??) as

σ̃(ct) =

∞∑
k=0

λkN(d, k)Pk(t), (35)

σ̃′(ct) =

∞∑
k=0

λ′kN(d, k)Pk(t), (36)
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where Pk is the k-th Legendre polynomial in dimension d.

Lemma 16. The decomposition of activation function in the quasi neural network (35) satisfies

1. λk = 0 if k is odd,

2. λk > 0 if k is even,

3. λk � Poly(k)(C/
√
k)−k as k →∞ when k is even, where Poly(k) denotes a polynomial of k, and C is a constant.

Its gradient (36) satisfies

1. λ′k = 0 if k is even,

2. λ′k > 0 if k is odd,

3. λ′k � Poly(k)(C/
√
k)−k as k →∞ when k is odd, where Poly(k) denotes a polynomial of k, and C is a constant.

Proof. Let’s start with the derivative of activation function in quasi neural network:

σ̃′(t) = Φ(ĉt),−1 ≤ t ≤ 1,

where ĉ is a constant. We introduce the auxiliary parameters x,w ∈ Rd s.t. ‖x‖2 = ‖w‖2 = 1 and let t = wTx By
Cauchy-Schwarz inequality, −1 ≤ wTx ≤ 1. Following (Bach, 2017), we have the following decomposition to σ̃′(wTx):

σ̃′(wTx) =

∞∑
k=1

λ′kN(d, k)Pk(wTx),

where N(d, k) and Pk(·) are defined in section F.1, λ′k can be computed by

λ′k =
wd−1

wd

∫ 1

−1

σ̃′(t)Pk(t)(1− t2)(d−2)/2dt

=

(
−1

2

)k
Γ((d− 1)/2)

Γ(k + (d− 1)/2)

wd−1

wd

∫ 1

−1

σ̃′(t)

(
d

dt

)k
(1− t2)k+(d−3)/2dt.

To solve this itegration, we can apply Taylor decomposition to σ̃′(·):

σ̃′(ĉt) =
1

2
+

1√
2π

∞∑
n=0

(−1)nĉ2n+1

2nn!(2n+ 1)
t2n+1. (37)

We will study the following polynomial integration first∫ 1

−1

tα
(
d

dt

)k
(1− t2)k+(d−3)/2dt.

When α < k, this integration equals 0 as Pk is orthogonal to all polynomials of degree less than k. If (α− k) mod 2 6= 0,
this integration is 0 because the function to be integrated is an odd function. For α ≥ k and k ≡ α mod 2 (k is odd), using
successive integration by parts,∫ 1

−1

tα
(
d

dt

)k
(1− t2)k+(d−3)/2dt = (−1)k

α!

(α− k)!

∫ 1

−1

tα−k(1− t2)k+(d−3)/2dt

= (−1)k
α!

(α− k)!

∫ π/2

−π/2
sinα−k(x) cos2k+(d−2)(x)dx

= (−1)kCd
α!(2k + d− 3)!!

(α− k)!!(α+ k + d− 2)!!
,

(38)
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where Cd is a constant that depends only on d mod 2.

Combining (37) and (38), we have λk = 0 when k is even and k 6= 0. When k is odd,

λ′k =

(
−1

2

)k
Γ((d− 1)/2)

Γ(k + (d− 1)/2)

wd−1

wd

Cd√
2π

∞∑
α=k:2

ĉα(−1)(α−1)/2 (α− 2)!!(2k + d− 3)!!

(α− k)!!(α+ k + d− 2)!!
.

Following (Bach, 2017; Geifman et al., 2020) we take d as a constant and take k to infinity. Let β = (α− k)/2 ≥ 0 we have

λ′k = (−1)(k+1)/2

(
1

2

)k
Γ((d− 1)/2)

Γ(k + (d− 1)/2)

wd−1

wd

Cd√
2π

∞∑
β=0

(−1)β ĉ2β+k(2β + k − 2)!!(2k + d− 3)!!

(2β)!!(2β + 2k + d− 2)!!

� (−1)(k+1)/2

(
1

2

)k
Γ((d− 1)/2)

Γ(k + (d− 1)/2)

wd−1

wd

Cd√
2π

∞∑
β=0

(−1)β ĉ2β+kΓ(β + k/2)Γ(k + (d− 1)/2)

β!Γ(β + k + d/2)2β−k/2

:= (−1)(k+1)/2

(
1

2

)k
Γ((d− 1)/2)

Γ(k + (d− 1)/2)

wd−1

wd

Cd√
2π

∞∑
β=0

g(β, k).

where � means the radio converge to a constant which doesn’t depend on k or β as k → ∞. Here we introduced the
function g(β, k) for simplification, and it satisfies

g(β, k)

g(β − 1, k)
= − ĉ2(2β + k − 3)

2β(2β + 2k + d− 2)
,

which indicates that g(β, k) decays at factorial rate when β > ĉ2/2. If k � ĉ2/2, β � k regime dominates the summation.

Using Stirling’s approximation, one can easily prove

Γ(k + x) � Γ(k)kx

When k � d,

g(β, k) =
(−1)β ĉ2β+kΓ(β + k/2)Γ(k + (d− 1)/2)

β!Γ(β + k + d/2)2β−k/2

�
(
−1

4

)β
ĉ2β+kΓ(k + (d− 1)/2)

2k/2Γ(k/2)

Γ(k)kd/2β!

= ĉkΓ(k + (d− 1)/2)
2k/2Γ(k/2)

Γ(k)kd/2

(
− ĉ

2

4

)β
1

β!

This splits g(β, k) into two parts: the first part depends only on k and the rest part only depends on β. The summation of the
second part over β yields

∞∑
β=0

(
− ĉ

2

4

)β
1

β!
= exp(− ĉ

2

4
),

Using Stirling’s approximation
γ(x+ 1) �

√
2πx(x/e)x,

this leads to the expression for λk:

λ′k � (−1)(k+1)/2

(
1

2

)k
Γ((d− 1)/2)

Γ(k + (d− 1)/2)
ĉkΓ(k + (d− 1)/2)

2k/2Γ(k/2)

Γ(k)kd/2
exp(− ĉ

2

4
)

� (−1)(k+1)/2

(
ĉ

2

)k
2k/2Γ(k/2)

Γ(k)kd/2
exp(− ĉ

2

4
)

� (−1)(k+1)/2

(
ĉ

2

√
e

k

)k
k−d/2 exp(− ĉ

2

4
)
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Similarly, the activation function of quasi neural network has the Tayler expansion

σ̃(x) = ς`ϕ (ĉt) + xΦ (ĉt)

=
t

2
+

∞∑
n=0

(−1)nĉ2n+1

2n+1(n+ 1)!(2n+ 1)
t2n+2.

So λk = 0 when k is odd, and when k is even:

λk = (−1)(k+1)/2

(
1

2

)k
Γ((d− 1)/2)

Γ(k + (d− 1)/2)

wd−1

wd

Cd√
2π

∞∑
β=0

(−1)β ĉ2β+k(2β + k − 2)!!(2k + d− 3)!!

(2β)!!(2β + 2k + d− 2)!!

Furthermore, when k � d,

λk � (−1)k/2k−
d
2

(
ĉ

2

√
e

k

)k
exp

(
− ĉ

2

4

)
,

F.5. Computing covariance matrix

In this part, we prove Theorem 4 by computing Σ(0) and Σ(1).

Theorem 4 NTK of a binary weight neural network can be decomposed using equation (5). If k � d, then

Poly1(k)(C)−k ≤ uk ≤ Poly2(k)(C)−k

where Poly1(k) and Poly2(k) denote polynomials of k, and C is a constant.

We make use of the results in Section F.4, and remind that λk, λ′k depends on ĉ, we make this explicit as λk(ĉ), λ′k(ĉ).

We introduce an auxiliary parameter w ∼ N (0, I), and denote c̃ =
√

cVar[Θ]
d ς̃2 =

√
Var[θ]

1−Var[θ] , w̃ = w/‖w‖2, then the
decomposition of kernel (5) can be computed by

Σ(1) = Eθ [σ̃ (µ) σ̃ (µ)]

= Ew∼N (0,I) [σ̃(c̃〈w, x〉)σ̃(c̃〈w, x′〉)]

= E‖w‖
∫
σ̃(c̃〈w̃, x〉)σ̃(c̃〈w̃, x′〉)dτ(w̃)

= E‖w‖
∞∑
k=0

(λk(c̃‖w‖))2N(p, k)Pk(〈x, x′〉),

Σ(0) = Eθ [σ̃′ (µ) σ̃′ (µ)]

= E‖w‖
∞∑
k=0

(λ′k(c̃‖w‖))2N(p, k)Pk(〈x, x′〉).

First compute Σ(0). According to Lemma 16 in Bietti and Mairal (2019),

u0,k = Ew∼N (0,I)[λ
′
k

2
] = E‖w‖[λ′k

2
].

Remind that

λ′k(c̃‖w‖) � (−1)k/2k−d/2
(
c̃‖w‖

2

√
e

k

)k
exp

(
− c̃

2‖w‖2

4

)
.
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u0,k = E‖w‖(λ′k(c̃‖w‖))2

� E‖w‖k−d
(
c̃2‖w‖2e

4k

)k
exp

(
− c̃

2‖w‖2

2

)
= k−d (k/e)

−k Ec̃‖w‖
(
c̃2‖w‖2

4

)k
exp

(
− c̃

2‖w‖2

2

)

Because w ∼ N (0, 1), ‖w‖22 satisfy Chi-square distribution, and its momentum generating function is

MX(t) = E[exp(t‖w‖2)] = (1− 2t)−d/2

It’s k-th order derivative is

M
(k)
X = E[‖w‖2k exp(t‖w‖2)] =

(d+ 2k − 2)!!

(d− 2)!!
(1− 2t)−

d
2−k

Let t = −c̃2/2, we get

E
[
‖w‖2k exp

(
− c̃

2‖w‖2

2

)]
=

(d+ 2k − 2)!!

(1 + c̃2)d/2+k(d− 2)!!

� 2k
Γ(k + d/2)

Γ(d/2)
(1 + c̃2)−k−d/2

�
(

2k

(1 + c̃2)e

)d/2+k
√

1

k

so

u0,k �
(
c̃

2

)2k

k−d (k/e)
−k
(

2k

(1 + c̃2)e

)d/2+k

� k−(d−1)/2

(
c̃2

2(1 + c̃2)

)k
when k is odd, and 0 when k is even.

Similarly,

u1,k �
(
c̃

2

)2k

k−d (k/e)
−k
(

2k

(1 + c̃2)e

)d/2+k

� k−(d−1)/2

(
c̃2

2(1 + c̃2)

)k
when k is even, and 0 when k is odd.

Finally, using the recurrence relation

tPk(t) =
k

2k + d− 3
Pk−1(t) +

k + d− 3

2k + d− 3
Pk+1(t)

taking them into (34) finishes the proof.

F.6. Gaussian kernel

KRGauss(x, x′) = E[KGauss(κx, κx′)]

= E
[
exp

(
−κ

2‖x− x′‖
ξ2

)]
= E

[
exp

(
−‖x− x

′‖
(ξ/κ)2

)]
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Figure 3: Approximation of quasi neural network. (a)(b): before (a) and after (b) training, histogram of output under fixed
model parameter (blue), and fitted with Gaussian distribution (red). (c)(d): E(y|Θ) computed from quasi neural network
(horizontal axis) and by Monte Carlo (Vertical axis). The red line shows y = x.

This indicates that this kernel can be decomposed using spherical harmonics (5), and when k � d, the coefficient

uk = E

[
exp

(
−2κ2

ξ2

)(
ξ

κ

)d−2

Ik+d/2−1

(
2κ2

ξ2

)
Γ

(
d

2

)]

� E

exp

(
−2κ2

ξ2

)
Γ

(
d

2

) ∞∑
j=0

1

j!Γ(k + d/2 + j)

(
κ2

ξ2

)k+2j


=

∞∑
j=0

Γ(d/2)

j!Γ(k + d/2 + j)
E

[(
κ2

ξ2

)k+2j

exp

(
−2κ2

ξ2

)]

=

∞∑
j=0

Γ(d/2)

j!Γ(k + d/2 + j)

Γ(k + 2j + d/2)

Γ(d/2)

(
2

ξ2

)k+2j (
1

1 + 4/ξ2

)(k+2j+d/2)

�
(

2

ξ2

)k (
1 +

4

ξ2

)(−k−d/2) ∞∑
j=0

1

j!

(
k(2/ξ2)2

(1 + 4/ξ2)2

)j

�
(

2

4 + ξ2

)k
exp

((
2

4 + ξ2

)2

k

)
.

Note that 2
4+ξ2 exp

((
2

4+ξ2

)2
)

is always smaller than 1 so uk is always decreasing with k.

G. Additional information about numerical result
G.1. Toy dataset

In neural networks (NN) experiment, we used three layers with the first layer fixed. The number of hidden neural is 512. In
neural network with binary weights (BWNN) experiment, the setup is the same as NN except the second layer is Binary.
We used BinaryConnect method with stochastic rounding. We used gradient descent with learning rate searched from
10−3, 10−2, 10−1. For Laplacian kernel and Gaussian kernel, we searched kernel bandwidth from 2−2µ to 22µ by power of
2, and µ is the medium of pairwise distance. The SVM cost value parameter is from 10−2 to 104 by power of 2.

More results are listed in Table 1. Accuracy are shown in the format of mean ± std. P90 and P95 denotes the percentage of
dataset that a model achieves at least 90% and 95% of the highest accuracy, respectively.
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Table 1: More results in UCI dataset experiment.

Classifier Training Testing
Accuracy P90 P95 Accuracy P90 P95

NN 96.19±8.03% 96.67% 91.11% 77.62±16.10% 73.33% 56.67%
BWNN 93.55±10.39% 84.44% 76.67% 77.83±16.57% 77.78% 54.44%

Laplacian 93.52±9.65% 85.56% 76.67% 81.62±14.72% 97.78% 91.11%
Gaussian 91.08±10.63% 76.67% 58.89% 81.40±14.85% 95.56% 87.78%
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Figure 4: Training/testing error rate and loss of neural networks with/without binary weight. (a) Training and testing error
rate. (b) Training and testing loss. (c) Testing error rate - Training error rate. (d) Testing loss - Training loss.

G.2. MNIST-like dataset

Similar to the toy dataset experiment, we used three layer neural networks with the first layer fixed, and only quantize the
second layer. The number of neurons in the hidden layer is 2048. The batchsize if 100 and ADAM optimizer with learning
rate 10−3 is used.

H. Additional Lemmas
Lemma 17 (Kolmogorov’s Strong Law of Large Number (SLLN)). Suppose X1, X2, . . . are independent variables such
that E[Xn] = µ and

∑
n Var[Xn]/n2 <∞. Then,

∑n
i=1Xi
n → µ a.e..

Lemma 18 (Continuous mapping theorem). Let {Xn}, X be random elements defined on a metric space S. Suppose a
function g : S → S′ (where S′ is another metric space) has the set of discontinuity points Dg such that Pr[X ∈ Dg] = 0.
Then

Xn
d→ X ⇒ g (Xn)

d→ g(X)

Xn
p→ X ⇒ g (Xn)

p→ g(X)

Xn
a.s.→ X ⇒ g (Xn)

a.s.→ g(X)

(39)



1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649

Why Quantization Improves Generalization: NTK of Binary Weight Neural Network

Table 2: Pairwise performance comparison on selected 90 UCI datasets.

Classifier Testing Training-Testing
t-stats p-val < > t-stats p-val < >

NN-BWNN 0.7471 0.4569 53.33% 41.11% 4.034 0.000 26.67% 67.77%
Laplace-Gaussian 0.4274 0.6701 51.11% 33.33% 3.280 0.001 37.78% 53.33%


