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ABSTRACT

The Earth system synthesizes multivariate interactions across atmospheric pro-
cesses, oceanic circulations, cryospheric dynamics, and radiative forcing. While
machine learning has transformed weather prediction within individual domains,
current models inadequately capture cross-component couplings critical for holis-
tic Earth system modeling. Fundamental challenges emerge from the disparities
in spatial and temporal scales and prohibitive computational costs of training in-
tegrated models ab initio. To overcome these limitations, we present the Coupled
Ocean-Atmosphere Framework (COAF), a deep learning architecture that dynam-
ically couples pre-trained atmospheric and oceanic models through continuous-
time modeling and a one-dimensional flux generation module to resolve scale
mismatches. COAF introduces two pivotal innovations: An effective structure
for cross-domain information exchange, analogous to energy-momentum trans-
fer in physical models, which avoids structural overhauls of existing models, and
an online replay buffer mechanism that drastically reduces memory consump-
tion for long-term training. Experimental results demonstrate COAF’s effective-
ness in medium-range weather forecasting, achieving a 10% reduction in latitude-
weighted RMSE for key prognostic variables (2500, T2m) beyond 10-day forecast
horizons. These advancements establish a new paradigm for coupled Earth system
modeling.

1 INTRODUCTION

Recently, data-driven methods for weather forecasting, such as deep learning and machine learn-
ing (Kurth et al., 2023 |Bi et al., 2023; |Lam et al., 2022; |Chen et al., 2023c; Kochkov et al., 2023;
Nguyen et al) [2023), have emerged as mainstream tools in meteorology (Ben-Bouallegue et al.,
2023 |Ling et al.l[2024)). These methods have significantly advanced weather prediction across vari-
ous domains, including atmospheric (Fig.[TLeft)) and oceanic systems (Fig.[T[(Middle)). However,
the coupling effects between these systems remain an open challenge. For instance, atmospheric pro-
cesses involve the exchange of energy, water, and other substances with underlying surfaces (Oort
& Rasmusson, [1971). Among these, the ocean, as the largest interface with the atmosphere, has a
profound influence on atmospheric dynamics (Neukermans et al., 2018)).

Despite its importance, effectively incorporating ocean data into atmospheric models remains chal-
lenging (Irrgang et al., 2021)). Ocean datasets are comparable in size to atmospheric datasets, but
integrating all relevant variables into a unified model is computationally prohibitive. Furthermore,
a fundamental challenge arises from the temporal inconsistency between the two systems. Ocean
data, typically available at daily or monthly intervals (Jean-Michel et al.| [2021), exhibits slower
variability compared to atmospheric data, which is often collected at hourly or six-hourly resolu-
tions. This mismatch in temporal scales complicates the synchronization of datasets and hinders the
development of coupled models.

Traditional dynamical models (Ly}, [1995) address this issue by characterizing ocean-atmosphere in-
teractions through fluxes, such as heat flux, radiation flux, and moisture flux. These models leverage
partial differential equations and flux information to integrate future atmospheric states over time, ef-
fectively mitigating the impact of temporal inconsistencies. However, current Al-based approaches
struggle to replicate this synergy. Most existing methods either: (1) oversimplify oceanic dynam-
ics by focusing solely on surface-level variables such as sea surface temperature (SST), neglecting
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critical subsurface processes (Zhong et al.|[2024); or (2) downsample atmospheric data to match the
temporal resolution of oceanic data, as seen in models like OLA (Wang et al., [2024), which discard
essential high-frequency signals. Furthermore, the rapid development of Al solutions (Bodnar et al.}
2024; [Nguyen et al.| [2024; [Xu et al., 2024} |Couairon et al., 2024} [Esteves et al., |2023} [Kochkov
et al.} 2024; |Price et al.||2023} Han et al.,[2024; |Chen et al.} 2025) for mid-range weather forecasting
is noteworthy. Implementing a unified coupling framework could facilitate the evolution of existing
Al models into comprehensive Earth system models.

To this end, we propose a Coupled Ocean-
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2021))). COAF bridges the timescale discrepancy
between rapid atmospheric dynamics and slower
oceanic processes through three key strategies:
(D) An autoregressive iterative method models the
rapidly changing atmosphere, while a continuity-
based approach simulates the gradual ocean, en-
suring temporal coherence. (II) A flux genera-

Figure 1: Schematic comparison of modeling
paradigms. (Left) Previous atmospheric pre-
diction models. (Middle) Previous oceanic
prediction models, focusing on ocean dynam-
ics. (Right) Our proposed coupled ocean-
atmosphere model, integrates atmospheric and
oceanic processes to address temporal inconsis-

tion module is designed that maps data into one-
dimensional spatial features, along with a condi-
tional control mechanism to facilitate interaction between the models. (III) Finally, a memory-
efficient online replay buffer strategy enhances long-term forecasting performance while minimiz-
ing computational costs. Experimental results demonstrate that COAF reduces the latitude-weighted
root-mean-square error (WRMSE) by approximately 10% for key atmospheric variables, such as
7500 and T2m, when the forecast lead time exceeds 10 days.

tencies and enhance forecasting accuracy.

Key contributions of this study include:

* A Novel Plug-and-Play Coupling Framework: We propose COAF, a generalizable
framework that efficiently upgrades existing pre-trained atmospheric models into cou-
pled ocean-atmosphere systems. It resolves the key challenge of temporal scale mismatch
through a hybrid auto-regressive and continuous-time modeling approach.

* An Efficient Conditional Interaction Mechanism: We introduce a learned flux-like vec-
tor to enable cross-system interaction, which avoids costly architectural modifications to
the pre-trained models and eliminates the need for training models from scratch.

* A Memory-Efficient Training Strategy: We propose an online replay buffer that reduces
the memory for long-term fine-tuning by over four orders of magnitude (from 4.6 GB to
0.08 MB), enabling the training of large-scale, high-resolution coupled models.

2 RELATED WORK

Deep Learning-based Weather Forecasting. Traditional numerical weather prediction (NWP)
has long relied on physical simulations of atmospheric dynamics. The paradigm began shifting with
the introduction of machine learning approaches, catalyzed by the WeatherBench benchmark (Rasp
et al.,[2020). Some methods (Weyn et al., 2020; Hu et al., {2023 |Nguyen et al.,|2023}; |[Esteves et al.,
2023)) employed deep neural networks such as ResNet (He et al., 2016), U-net (Ronneberger et al.,
2015)), Swin Transformer (Liu et al.,|2021) and so on to enhance model performance on this dataset,
but the performance of these data-driven models still has a big gap to The IFS-HRES.

In response, Chen et al propose SwinRDM (Chen et al., [2023b) by integrating an improved Swin-
VRNN (Hu et al.} 2023), which achieves higher performance than IFS at lead times of up to 5 days
at 1.4° in some variables. Subsequently, several researchers (Bi et al.| [2023; [Lam et al., 2022} |Chen
et al.| [2023ajc} [Price et al., 2023} |Couairon et al.,2024) developed advanced machine learning mod-
els that significantly enhance weather forecasting, surpassing the traditional IFS-HRES method in
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Figure 2: Overview of the Coupled Ocean-Atmosphere Framework (COAF). (a) A dual-pathway
framework coupling autoregressive atmospheric and continuous-time oceanic models via flux vec-
tors (Cy, C,). (b) The module that encodes spatial states into 1D flux vectors. (c) The coupler that
uses external signals for conditional feature modulation.

predictive performance at higher resolution (0.25°). However, these models are limited to training
with only atmospheric variables, ignoring interactions across layers like ocean-atmospheric cou-
pling. In this paper, we propose COAF, which couples oceanic data into global weather forecasting
and achieves further performance enhancements.

Ocean-Atmosphere Couple Dynamics. Traditional numerical weather prediction models have al-
ready taken into account the complex interplay between different Earth systems
[2016}; Rainaud et al, 2017). These models commonly employ a coupler approach 2018)
to integrate atmospheric and other models. In this process, the coupler acts as an intermediary, facili-
tating the exchange of data and information between models. This bidirectional interaction enhances
the accuracy of medium- to long-term weather forecasts by incorporating dynamic feedback from

both systems (Vellinga et al.,2020).

Currently, Zhong et al. propose FuXi-ENS (Zhong et al,[2024)), which includes one ocean variable
(sea surface temperature, SST) and employs an ensemble strategy to attempt probabilistic weather
forecasting. Although they consider the influence of the ocean, SST is not enough for a complete
ocean-atmosphere forecasting system. Signals from deeper ocean, like multi-layer ocean currents,

are also necessary (Vellinga et al.}[2020; Rainaud et al.,2017). In contrast, more recently models like

OLA (Wang et al.|[2024)) and Dlesym (Cresswell-Clay et al., 2025 employ complete a ocean model
to simulate the whole atmosphere and ocean system, but focus on the seasonal climate prediction.

Despite the utilization of both oceanic and atmospheric variables for seasonal climate prediction,
the impact of the ocean on global weather forecasts at the medium-term scale remains unexplored.
This paper proposes COAF, modeling the ocean and atmospheric modules separately and achieving
coupling for medium-term forecasting across different time scales through conditional control.

3 METHODS

3.1 PROBLEM FORMULATION

Traditional dynamical models 1995) implement ocean-atmosphere coupling through flux-based
differential equations:

]:tAQOy-FtO2A = Fcoup]e (At7 Ot) y (1)
Aiir = Fum(As, FO* 1), 2)
O¢1r = Fon(Oy, F29, 7). 3)
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Here, Feoupie denotes the flux parameterization operator calculating. The state transition operators
Fam and F,., govern atmospheric and oceanic evolution, respectively, with 7 representing the dis-
crete integration timestep. F;*2© denotes atmosphere-to-ocean fluxes (eg. momentum, heat). F°24
represents ocean-to-atmosphere fluxes (eg. moisture, radiation). Due to the inherent coupling be-
tween these systems, the intermediate variables generated through their interaction are often not
directly observable, which consequently leads to the incorporation of numerous empirical parame-
ters in the parameterization formulas.

To overcome the empirical limitations of physical parameterization while retaining first-principles
coupled logic, we believe that COAF should have the following key components:

* Flux Generation: The module employs domain-specific feature extractors to directly de-
rive flux representations from oceanic and atmospheric states, respectively, through sepa-
rate deep learning encoders. These data-driven flux embeddings serve as controlling signals
for cross-system state transitions, preserving dynamical coupling mechanisms akin to tra-
ditional flux-exchange formulations while eliminating explicit physical parameterization.

* Atmosphere Evolution: The atmospheric predictor module generates subsequent states
A, ; through autoregressive modeling of current atmospheric conditions A;_-, A; and
cross-system coupling features C,, ;1 from the Flux Generation module, ensuring accurate
atmospheric forecasts.

* Ocean Evolution: The oceanic predictor employs continuous-time neural operators to
model state evolution Ot+¢ over arbitrary intervals 7 € R™, conditioned on dynamically
interpolated atmospheric coupling signals C, ;.

To meet these requirements, COAF defines four key functions. These functions are computed se-
quentially to enable comprehensive ocean-controlled weather forecasting:

Cut=Fo (Ay -, A4, 07), )
6t+‘r =F, (04 7,Cat,6,), ©)
Coutr = F2 (Orir62), O
Appr =Fo (Ay_r, Ay, Coyir,ba). (7

Eq. E](F“) Extracts atmospheric interaction features C',, ; from the current and prev10us atmospheric

states (A¢, A;—,), using learned parameters 6¢. Eq. |5 I(Fo) Predicts oceanic state Ot+T by integrat-
ing initial ocean state Oy, timestep 7, and the atmospheric features C,, 4 with parameters ¢,. Eq. E]

(F2): Derives oceanic coupling features C, 4, from predicted state Ot+T using parameters 6.

Eq. I (Fo): Generates atmospheric state AHT by fusing historical states (A;, A;—,) with oceanic
features C, ;- via parameters 6.

3.2 THE FLOWCHART OF COAF

The flowchart of COAF is illustrated in Figure 2] The training process facilitates a bidirectional
information exchange between the ocean and atmosphere modules. The sequence begins with the
Atmospheric Flux Generation Module, which takes the current and previous atmospheric states as
input to produce a compact feature representation—the atmospheric flux vector. This vector is then
fused with the target time embedding to serve as a conditional signal for the Ocean Model, steering
its prediction of the future oceanic state. Subsequently, the process reverses. The predicted oceanic
state is fed into the Oceanic Flux Generation Module to derive an analogous oceanic flux vector,
which then acts as the conditional input for the Atmosphere Model, guiding its subsequent forecast.

3.3 FLUX GENERATION MODULE

The Flux Generation module is designed to encode the high-dimensional state of one Earth system
(e.g., the ocean) into a compact, one-dimensional vector. This vector serves as a learned latent repre-
sentation, analogous to physical fluxes in traditional dynamical systems, that provides a conditional
signal to control the evolution of the other system (e.g., the atmosphere). As depicted in Figure[2[b),
the process begins with a convolutional network using a 1 x 1 x C kernel to extract features into a
size of H x W x C. This is followed by a Swin Transformer and downsampling module for spatial
feature fusion, reducing the dimensions to H/2 x W/2 x 2C. Attention pooling is then applied to
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condense these features to a one-dimensional scale, specifically 1 x 1 x 2C'. This output serves as a
conditioning input for the ocean prediction model, allowing the next ocean prediction to incorporate
the current atmospheric state. The predicted ocean data is then reprocessed through the same mod-
ule to extract comprehensive information, further refining the atmospheric autoregressive iterative
predictions.

3.4 THE “ENCODE-FUSE-DECODE” STRUCTURE.

The atmosphere and ocean models in our framework both follow the “encode-fuse-decode” struc-
ture (Chen et al.||2023a}; Bodnar et al., 2024) (See Supplementary [A.2). Here, we made two modifi-
cations to adapt this structure to ocean-controlled atmospheric modeling.

Classification of Model Inputs. Atmospheric variables are previously considered as different
classes (Chen et al., [2023a} [Bodnar et al., |2024) and assigned to different expert models, i.e.,
encoder-decoder pairs. Following prior conventions, we adopt six atmospheric classes: geopotential,
temperature, humidity, zonal/meridional winds, and surface pressure.

For oceanic variables, however, we adopt a depth-based classification approach, assigning different
depth levels to distinct expert models. This shift from variable-based to depth-based classification is
due to the variation in modeling errors across ocean layers (Gouretskil [2018])) as well as the increasing
sparsity of data in deep ocean. Based on the stratification of ocean layers (L1 et al. [2020), we
roughly divide ocean depths as follows: (0-5m, 5-16m, 16-56m, 56-187m, 187-1063m), resulting in
five modalities, which contain 5, 8, 12, 12, and 16 variables, respectively.

Time Encoding. Due to the ocean’s high density and heat capacity, changes also occur
slowly (Hoegh-Guldberg et al.| 2014)), so ocean data are collected every day rather than every 6
hours like atmospheric data. To facilitate the coupling of temporal and atmospheric models, we
have formulated ocean prediction as a continuous forecasting model. As shown in the figure 2c),
we adopt the time encoding method used in DiT (Peebles & Xiel[2023), applying sine and cosine en-
coding to time ¢ as a condition to control the output of each transformer block in the ocean prediction
model. Specifically, leveraging the current oceanic state and a forecast time interval ¢, we generate
the oceanic state at time ¢ as per the formula provided. An essential advantage of this approach
lies in training with daily time intervals, enabling the generation of predictions at any time interval ¢
during inference. This feature streamlines the alignment of time scales in ocean-atmosphere coupled
model training and inference with atmospheric prediction models.

3.5 CONDITIONAL TRANSFORMER-BASED COUPLER

To enable the interaction between the ocean and atmosphere models, we modulate the features of
the atmospheric model using the learned flux vector from the ocean model. This is achieved through
an adaptive feature modulation mechanism, a technique proven effective in other domains for in-
jecting conditional information, such as in style transfer (AdaIN) (Huang & Belongie, [2017) and
conditional image synthesis(Zhan et al.,[2024). Specifically, as shown in Figure @kc), each block in
our atmospheric model’s transformer can operate in two modes, controlled by a conceptual switch.
When the switch is set to “1”, the transformer is degraded to the traditional Swin-Transformer (Liu
et al., [2021)). Conversely, when the switch is set to “2”, conditional inputs will be considered and
interactions between ocean and atmosphere are involved. To achieve such comprehensive ocean-
atmospheric coupling, conditional Swin-Transformer is trained in three stages.

Stage 1: atmosphere module training. As shown in Figure[2{c), the atmosphere model is trained
with the switch set to “1”°. At this stage, only atmospheric variables are considered, and the trans-
former is reduced to a traditional Swin-Transformer, as used in previous weather forecasting mod-
els (B1 et al., [2023; |Chen et al., [2023al).

Stage 2: ocean module training. Unlike the atmosphere module, the ocean module is trained
with the switch set to “2”. Conditional inputs include time embedding features, as the ocean is
formulated as a continuous time forecasting model due to its slower pace of change compared to the
atmosphere, as we have discussed.

Stage 3: ocean-atmosphere coupling. After independently training the atmosphere and ocean mod-
ules, an additional training phase is required to couple them, enabling ocean features to condition
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(a) 7500 (b) T850 (c) T2mM (d) U10 (e) V10

IFS-HRES*: 137.0 305.0 806.0 131 194 3.69 119 16 276 19 281 479 195 291 4.93
Pangu-Weather*-136.0 296.0 786.0 1025. 115 179 361 444 109 156 277 339 164 255 445 508 17 264 469 533
GraphCast(oper.)*- 127.0 282.0 763.0 1004. 11 169 3.46 434 114 151 265 328 164 248 441 509 168 257 461 532

FuXi*;128.0 282.0 643.0 767.0 1.09 171 298 337 1.03 147 227 258 152 238 354 38 157 248 3.73 | 3.96

NeuralGCM 0.7°-115.0 267.0 751.0 0.97 158 3.42
SWinVRNN'.. 139 2.05 118 1.63
SwinRDM- 153.0 316.0 IRIEN NI%6; 1.01 143

COAF Atmos- 133.0 287.0 703.0 884.0 1.09 166 3.12 373  1.01 141 246 299 149 226 3.67 422 154 235 3.83 422

COAF-131.0 277.0 634.0 769.0 1.07 161 2.87 332 098 134 219 254 1.49 222 346 379 1.54 231 3.64 3.94
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Figure 3: Comparison of different models on WRMSE (lower is better) at lead times of 3, 5, 10, and
15 days. The models marked with * were trained and tested using data with a resolution of 0.25°.

Neural GCM 0.7° utilized data at 0.7° resolution, and the remaining models used 1.4° resolution.

the atmospheric evolution and establish ocean-atmosphere interactions. In this phase, the switch in
the atmosphere model is set to “2”. The parameters of the atmospheric Flux Generation Module are
initialized to ensure that the initial atmospheric feature output is zero.

Additionally, for a stable start to coupled fine-tuning, the parameters of the conditional control
module (Figure [2{c)) are specifically initialized: the modulating scale, shift, and gate vectors are
set to 1, 0, and 1, respectively. This initialization ensures that, at the beginning of training, the
atmospheric and oceanic models function independently. As training progresses, the parameters
adjust, gradually incorporating ocean-atmosphere interactions.

3.6 ONLINE REPLAY BUFFER

The replay buffer training strategy (Details in Supplementary [A.4) has achieved significant success
in enhancing the long-term performance of weather forecasting (Bodnar et al.| [2024), allowing for
gradually increasing the training probability for longer forecast steps as training progresses. At
the same time, it ensures that data with shorter forecast steps has a higher training probability to
maintain short-term performance while enhancing long-term prediction accuracy. In this study, we
adopt a probability simulation method to model the autoregressive training step probabilities.

As shown in Supplementary Algorithm [3] The autoregressive iteration steps n during the training
period are obtained by the online replay buffer algorithm (Supplementary Algorithm[2)). Specifically,
when the algorithm returns a training step n, it indicates that we need to train the data sequentially
from the first step to the nth step. Compared to the replay buffer algorithm in Previous Work (Chen
et al.,[2023a; Bodnar et al.| [2024)), this method effectively saves memory.

To achieve this, we set up a list, Cy,4in, to record how many times each training step has been
trained. When sampling a training step, we first check if the sampled value is greater than or equal
to the training count. If it is less, it means we have already trained the data for that step in previous
samples. Otherwise, we proceed to train the data for that step. By using this method, we achieve
sampling probabilities similar to the replay buffer strategy while significantly reducing memory
usage by avoiding the need to store intermediate variables.

4 EXPERIMENT

4.1 EXPERIMENTAL SETUP

Tasks. We evaluate COAF’s performance on a 1.4° global, multi-level, medium-range weather
forecast through a deterministic model to predict the next-step atmospheric (A;;A;) and oceanic
variables (O¢ya¢). These predictions are conditioned on the current and previous atmospheric states
(A, A;_1) as well as the initial oceanic state (Op). The time step At is set to 6 hours for atmospheric
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variables. Given the differing update frequencies of the oceanic data (once per day) compared to the
atmospheric data (every 6 hours), oceanic predictions are updated every four atmospheric prediction
time steps. (Details, please refer to Supplementary [A.5).

Datasets. In this study, atmospheric data was sourced from ERAS5 (Hersbach et al. [2020). And we
selected 4 surface variables and 5 multi-level variables, along with 13 pressure levels. This brings
the total to 69 variables. For the ocean data, we utilized the GLORYS12V1 (Jean-Michel et al.,
2021)), developed within the framework of the Copernicus Marine Environment Monitoring Service
(CMEMS). This product provides daily mean states of multi-layer ocean data. To align with the
atmospheric data, we selected temperature, salinity, the U and V component of currents, and sea
surface height, with data taken from 13 vertical levels. Details in Supplementary Table [}

To manage computational requirements, both datasets were downsampled to a 1.4° resolution us-
ing bilinear interpolation. While the state-of-the-art in data-driven forecasting has converged on a
higher 0.25° resolution, the primary contribution of this work is a novel coupling framework. We
therefore adopt the 1.4° resolution as a standard benchmark to rigorously isolate and demonstrate
the significant performance gains attributable to ocean-atmosphere coupling. For the atmospheric
model’s pre-training (Stage 1), we selected the period from 1979 to 2015. The subsequent training
phases (Stages 2 and 3) were aligned to use the same data periods, with the years 1993 to 2021
serving as the training set and 2022 designated as the test set.

Metrics. Consistent with previous works (Bi et al., 2023 [Lam et al., 2022; |[Hu et al.| 2023} |(Chen
et al.,|2023b)), we used latitude-weighted root-mean-square error (WRMSE) and Anomaly Correla-
tion Coefficient (WACC) to evaluate forecast performance.

4.2 TRAINING HYPERPARAMETER

Stage 1: atmosphere model training. The atmospheric prediction model uses two time steps of
atmospheric states as input to forecast the next time step, which utilizes the AdamW optimizer
with a batch size of 32 and is trained for 50 epochs. Additionally, a cosine annealing schedule is
implemented, with an initial learning rate of Se-4, and gradually decreasing it to zero.

Stage 2: ocean model training. In contrast to atmospheric model training, the ocean prediction
model uses one step of ocean state and target time as the input conditions during the training period.
The other training hyperparameters are set the same as those in atmospheric model training.

Stage 3: ocean-atmosphere coupling. Finally, we integrate the pre-trained models into COAF, then
use the online replay buffer strategy to train the overall model with a batch size of 8 for 5 epochs,
each containing 10,000 steps. The training process utilizes the AdamW optimizer with a cosine
annealing schedule, starting with an initial learning rate of Se-6.

4.3 EXPERIMENT RESULTS

Compared Methods. To evaluate the forecast skills of COAF, we conducted a comparative analysis,
comparing its performance with the state-of-the-art dynamical model (IFS-HRES) and leading Al
methods in medium-range weather forecasting (Figure [3). The forecast skill scores for IFS-HRES
were sourced from its official 2022 dataset repository. For the SwinVRNN, SwinRDM, and Neural-
GCM 0.7° models, we refer to performance metrics reported in their original research papers. Un-
fortunately, neither SwinVRNN nor SwinRDM considers the deterministic weather forecast that ex-
ceeds 5 days. To further validate our model’s effectiveness at longer lead times, we compared COAF
with high-impact Al weather forecasting models, including Pangu-Weather, GraphCast(oper. and
FuXi, all of which operate at a 0.25° spatial resolution. The performance for these models was
obtained using their open-source frameworks on the 2022 dataset.

Performance of COAF. Figure 3]and Supplementary Table [§]indicate that our model performs well
in terms of WRMSE and WACC, particularly for surface variables, where it consistently outperforms
previous models. It has reduced the WRMSE by 5-12% compared with SwinRDM at a 5-day lead
time. Moreover, our model remains competitive over the 5-day lead time, outperforming current
state-of-the-art high-resolution models.

!GraphCast(oper.) is the official model fine-tuned on HRES data from 2016-2021, its inference results
shown here are based on the operational analysis dataset.
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Figure 4: Visualization of t2m prediction results for 3-Day, 5-Day, and 10-Day forecasts at the

initialization time of January 2, 2022, 00:00 UT’?able 1: Training efficiency comparison of differ-

ent weather models. The table shows the hardware
platform, number of devices, and training time for
COAF, Pangu, GraphCast, and Stormer. The train-
ing cost for COAF is broken down into its three
main stages.

To qualitatively evaluate the forecast quality,
Figure [ and Supplementary Figure [f] visual-
ize the prediction results for T2m and Z500
at 3, 5, and 10-day lead times. The forecasts
(top row) maintain high fidelity to the ERAS
ground truth (middle row), accurately cap-

. . Method Hardware Number Time

turing the large-scale patterns and evolution
of weather systems. The error analysis (bot-  Pangu Nvidia V100 192 16d
tom row) reveals that forecast errors occur in ~ GraphCast TPU v4 32 28d
the mid-to-high latitudes, regions known for ~ Stormer Nvidia A100 128 24h
complex and frequent interactions between =~ COAF Stage 1~ Nvidia A100 8 2.5d
cold and hot air masses. COAF Stage 2 Nvidia A100 8 14h
COAF Stage 3  Nvidia A100 8 20h

Ablation Study on Coupling Ocean-
Atmosphere. To demonstrate the necessity of ocean-atmosphere coupling, we performed a
comprehensive ablation study by comparing our full COAF model against a variant trained without
the ocean module (COAF Atmos). As shown in Figure 3] the incorporation of oceanic data yields
a consistent performance improvement across all variables and forecast horizons. The benefits
become particularly pronounced at longer lead times; after 10 days, the coupled model achieves a
10% reduction in WRMSE for Z500, T850, and T2M, and a 5% reduction for U10 and V10.

Furthermore, to validate the versatility of our framework, we replaced our atmospheric backbone
with the Pangu-Weather model and retrained the coupling modules. The resulting coupled model
again showed significant performance gains (see Supplementary [B-4), proving that COAF is a gen-
eralizable framework that can enhance other state-of-the-art atmospheric models.

Computational Efficiency and Framework Flexibility. A key advantage of the COAF framework
lies in its exceptional computational efficiency, particularly in its “plug-and-play” capability to en-
hance existing pre-trained models. As detailed in Table[T] while Stages 1 and 2 represent a one-time
pre-training cost, the most important coupled fine-tuning (Stage 3) is remarkably rapid, requiring
only 20 hours on 8 NVIDIA A100 GPUs. This efficiency highlights the framework’s significant
practical value and flexibility. It enables researchers to easily integrate a powerful pre-trained atmo-
spheric model—which may have required thousands of GPU-days to train—into a more physically
consistent and accurate coupled ocean-atmosphere system with minimal additional computational
cost. This demonstrates that COAF is not merely a standalone model, but an efficient and versatile
framework for facilitating ocean-atmosphere coupling.

Ablation Study on Ocean Prediction Model. Due to the slower dynamics of the ocean compared to
the atmosphere, we employ a continuous-time modeling approach tailored for oceanic systems. Con-
sidering the varying physics at different depths, we adopt a multi-expert design that treats distinct
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Table 2: Comparison of different ocean prediction models at lead times of 1, 5, 10, and 15 days for
Surface Temperature, V component of currents and Ocean salinity in 2022.

Method thetao VO o)

FourcastNet 0.13/2.95/4.06/4.97 0.037/0.183/0.260/0.314 0.072/1.047/1.450/1.634
COAF Ocean iter 0.13/1.25/2.37/3.52 0.038/0.128/0.180/0.216 0.073/0.862/1.321/1.629
COAF Ocean* 0.14/0.36/0.49/0.53 0.042/0.089/0.105/0.114 0.077/0.176/0.217/0.238
COAF Ocean 0.13/0.35/0.46/0.52 0.037/0.080/0.097/0.106 0.073/0.171/0.211/0.233
Climatology 1.94/1.94/1.94/1.94 0.133/0.133/0.133/0.133 0.513/0.513/0.513/0.513

Table 3: Performance comparison of Replay Buffer and Online Replay Buffer. The latitude-
weighted RMSEs are shown for key variables at lead times of 3, 5, and 10 days, alongside the
required memory. Results are evaluated on 2022 ERAS data.

Method 7500 T850 T2M Memory
Replay Buffer 132/281/679 1.08/1.63/3.04 0.99/1.37/2.33 4692.19M
Online Replay Buffer 131/277/634 1.07/1.61/2.87 0.98/1.34/2.19 0.08M

ocean layers as separate modalities, detailed in Section[3.4] To validate our architectural designs, we
conduct two ablation studies with the latitude-weighted RMSE presented in Table 2] First, we com-
pare our continuous-time approach against standard autoregressive methods, including FourcastNet
and the iterative version of our model (COAF Ocean iter). Second, we evaluate our depth-based
expert strategy by comparing our final model, COAF Ocean, against a variant that partitions experts
by variable instead of depth, denoted COAF Ocean*.

While autoregressive models (FourcastNet, COAF Ocean iter) perform competitively on the first day,
they suffer from rapid error accumulation at longer lead times. In contrast, our continuous-time mod-
els maintain significantly lower error growth. Notably, the depth-based classification COAF Ocean
consistently outperforms the variable-based classification COAF Ocean*, confirming the superiority
of our proposed multi-expert, continuous-time architecture for stable and accurate long-range ocean
forecasting.

Effectiveness of Online Replay Buffer. The Online Replay Buffer is designed to mitigate the pro-
hibitive memory overhead of the standard replay buffer strategy by simulating its training effects
without explicitly storing intermediate model outputs. The effectiveness of this approach is demon-
strated in Table[3] Our online strategy not only achieves slightly better long-term forecasting accu-
racy across key variables (Z500, T850, and T2M) but also reduces memory consumption by over
four orders of magnitude—from over 4.6 GB to a negligible 0.08 MB. These results were obtained
using 69-channel data at 1.4° resolution with a buffer length of 20@ Most importantly, while the
memory of a standard replay buffer scales linearly with buffer size and data resolution, our online
strategy is unaffected by this limitation, making it a far more scalable solution for high-resolution
models.

5 DISCUSSION AND FUTURE WORK

In this paper, we introduce the Coupled Ocean-Atmosphere Framework (COAF), an Al-driven ap-
proach designed to achieve temporal consistency between oceanic and atmospheric predictions. By
employing a conditional control method for data integration and an online replay buffer for memory-
efficient long-term training, our framework creates a more cohesive and robust forecasting system.
Our results demonstrate that COAF establishes a new state-of-the-art for coupled ocean-atmosphere
forecasting at the standard 1.4° resolution, providing a crucial proof-of-concept for our coupling
methodology and training strategy. Looking ahead, the immediate priority is to scale the COAF
framework to the operational 0.25° resolution. Furthermore, the flexible nature of our framework
opens exciting avenues for incorporating other Earth system components, such as sea ice or land
surface models, paving the way for more holistic Al-based Earth system simulations.

2 A queue of length 200 stores atmospheric data for two time steps, oceanic data for one time step (in float32),

Lo . . . 2 2 1282 120x256) x4
and target indices. The required storage is approximately: 00 (269 1%24?13254“ 0x256)x4 4692, MB
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A METHOD

A.1 THE “ENCODE-FUSE-DECODE” STRUCTURE.

The atmosphere and ocean models in our framework both follow the “encode-fuse-decode” structure
in general (Figure ). Initially, multi-dimensional data is classified and assigned to different expert
models, i.e., encoder-decoder pairs. This classification process resembles a Mixture-of-Experts ap-
proach but is predetermined by criteria such as variable types or depth levels. The classified data is
then embedded into a feature space using a convolutional network with a 1 x 1 x C kernel. Next, each
data class is downsampled to H/2 x W /2 x 2C using an encoder comprising two Swin Transformer
blocks. The downsampled data is then concatenated in a feature fusion module, where attention
mechanisms and MLPs integrate features across various positions. After fusion, the data is directed
to the corresponding decoders, which upsample it to its original dimensions. To preserve high-
resolution details, a residual connection is applied to each encoder-decoder pair, ensuring accurate
predictions across diverse multi-dimensional variables.

Input Output
\
1
Residual Connection :
Swin :
1
1
-
1
Residual Connection 1
1
1
1
1
1
1
1
]
]
1

Figure 5: Overview of “encode-fuse-decode” structure

A.2 ATMOSPHERE PREDICT MODEL

We employ an iterative approach to pre-train the atmospheric prediction model. Specifically, we use
a six-hour interval method to predict the atmospheric state six hours ahead based on the current state
and the state six hours earlier, shown in the following formula:

X+l — AtmosphereModel (Xiyxi_l) ) ®

at is the current atmospheric state, '~ denotes the state six hours ago, and z'*! represents the
state six hours in the future. Considering the varying speed of changes in the numerical ranges of
different variables, we utilize a probability loss, illustrated as:

it 64t = AtmosphereModel (Xi, Xi_l) , )

where '™ and 6°*! are predicted mean and variance of prediction X**!. And the probability of
atmosphere variables can be calculated according to 4! and 6! of Eq. @

The model generates the mean and standard deviation for each variable at each position for the next
atmospheric state.

i+1 ~i41 ~i+1 _ ~i+1 ~it1
p (‘rc,w,h | /“Lc,w,h7ac,w7h) _N (luc,w,fﬂac,w,h) ’ (10)
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Table 4: Atmospheric and oceanic variables utilized in our datasets. The atmospheric multi-level
variables are measured at 13 pressure levels: 50 hPa, 100 hPa, 150 hPa, 200 hPa, 250 hPa, 300 hPa,
400 hPa, 500 hPa, 600 hPa, 700 hPa, 850 hPa, 925 hPa, and 1000 hPa. The oceanic multi-depth
variables correspond to depth levels: 0.49 m, 5.07 m, 15.81 m, 25.21 m, 40.34 m, 55.76 m, 109.73
m, 155.85 m, 186.13 m, 318.13 m, 453.94 m, 763.33 m, and 1062.44 m.

Type Variable name Short name level

Geopotential z 13
Specific humidity q 13
U component of wind u 13
Atmos. V component of wind v 13
Temperature t 13

10 metre u wind component ul0 1

10 metre v wind component v10 1

2 metre temperature 2m 1

Mean sea level pressure msl 1
Ocean temperature thetao 13
Ocean salinity S0 13
Ocean. U component of currents uo 13
V component of currents Vo 13

Sea surface height ssh 1

where each element x?u} pin X “+1 with subscript (¢, w, h) follows an independent univariate Gaus-
sian distribution A/ (/:‘erl,h» &i’tul’h), where ¢ = 1,...,69 denotes the index for the channel, i.e.

different pressure levels and weather variables. w and h respectively denote the latitude grid and
longitude grid.

Optimizing the model by maximizing the probability of the actual state at the next moment falling
within the Gaussian distribution composed of the current mean and standard deviation, as illustrated
in Eq. This method allows for the learning of weights through the standard deviation for different
atmospheric variables at different positions.

loss = —log B (p (2l | ibht 62001 ) (an

i+1 ~itl 2
(aith, — At ) ))

1
= logE | ——— exp(— (12)
( 2#(&211 n)? 2(‘7c,+wl,h)2

(mi+1 _ ﬂi+1 )2 ]
= E(ﬁ +1log(2(6¢41)%) + C. (13)
c,w,h

A.3 OCEAN PREDICT MODEL

Ocean prediction is modeled as a continuous-time prediction process. Given the current oceanic
state and a prediction time interval ¢, the model directly generates the predicted ocean state for day
t, as shown in:

Xt = OceanModel (Xi,t) , (14)

During pre-training, we optimize the model parameters by minimizing the mean absolute error
(MAE) between the predicted results conditioned on any time interval ¢ and the target ocean state.

L(0) = Etwp(t),(x0.x0)~Dl[fo(Xo, ) — X¢l[2], (15)

where P(t) represents the sampling probability for different time intervals. In this experiment, we
utilize an inverse function to generate sampling probabilities for time intervals ranging from 1 to 15
days.
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A.4 REPLAY BUFFER

The replay buffer strategy has demonstrated effective performance in the long-term fine-tuning of
models. As illustrated in Algorithm [I] during the fine-tuning phase, the model enhances its long-
term performance by simultaneously training on both real data and model predictions in a propor-
tional manner. However, this approach requires storing intermediate variables in memory, which
leads to significant memory resource consumption.

Algorithm 1 Standard Replay Buffer Training

Require: Dataset D, model M, finetune rate k
1: Initialize Replay Buffer B with max size.
2: procedure TRAINANDUPDATE(z, y)

4
5:
6
7

8

9: Jt + TRAINANDUPDATE (x4, yt)
10: if ¢ is not the final step in sequence then
11: Add (§,t + 1) to buffer B
12: end if
13: for i =1to k do
14: (xj,t;) < Randomly sample from 3
15: y; < Get target from D at index ¢;
16: 9; +— TRAINANDUPDATE(x;, y;)
17: if ¢; is not the final step in sequence then
18: Add (g;,t; + 1) to buffer B

19: end if
20: end for
21: end for

g M(x)

L« Loss(§,y)

Update parameters of M using VL
return y

: end procedure

> Forward pass
> Compute loss
> Backward pass & optimizer step

: for each batch (x4, y;) with target index ¢ from D do

> Perform standard training step

> Perform k replay/finetuning steps

Algorithm 2 Online Replay Buffer Logic

Require: Sample rate k£, Deque length ‘deque_len‘, Max forecast steps T,qz

1:

o

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:

Add step ‘1°to Q
if Csample[l] > Ctrain[l] then
Ctrain[l] — Ctraz'n[l] +1
yield 1
end if
for i =1to k do
ts < Randomly sample a step from Q
Addstepts +1to Q
if Csample[ts] > Otrm'n [ts] then
for j =1tots do
Ctrain []] — Ctrain [.7] + 1
end for
yield t; + 1
end if
Csample[ts} <~ Csample[ts] +1
end for

21: end while

Initialize sample counts Csgmpie(t] <~ 0fort =1,..., Thnas
Initialize training counts Cypqin[t] « 0fort =1,..., Thax
Initialize a deque Q with maximum length ‘deque_len‘.
while training do

> Yield step 1 to be trained

> Update train counts for all previous steps
> Yield the steps to be trained

> Update sample count for the drawn step
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A.5 TRAINING DETAILS OF ONLINE REPLAY BUFFER

As in Algorithm 3] COAF employs an online replay buffer to implement multi-step training. When
processing data at time step ¢, including atmospheric data at times ¢ and ¢ — 7, as well as oceanic
data at time ¢, we take the atmospheric data at ¢ as April 5, 2025 (00:00 UTC) as an example.

In this case, the input atmospheric data includes April 5, 2025 (00:00 UTC) and April 4, 2025 (18:00
UTC), while the input oceanic data corresponds to April 4, 2025. The time embedding for ocean
prediction is set to 0.25, indicating that we aim to generate oceanic data for six hours later.

During the first iteration of training, the model outputs atmospheric data for April 5, 2025 (06:00
UTC) and the predicted oceanic data six hours later. Since oceanic data is processed daily, only
the atmospheric prediction error is calculated, and backpropagation is used to train the model. Sub-
sequently, the output atmospheric data for April 5, 2025 (06:00 UTC) and the previously input
atmospheric data for April 5, 2025 (00:00 UTC) are re-entered into the model, keeping the oceanic
input unchanged. The time embedding for ocean prediction is set to 0.5, meaning that the model
outputs atmospheric data for April 5, 2025 (12:00 UTC) and oceanic data for 12 hours later. At this
point, only the atmospheric prediction error is calculated, and backpropagation is performed to train
the model.

This process is repeated until the inputs are the atmospheric data for April 5, 2025, along with the
original oceanic data (April 4, 2025). The time embedding for ocean prediction is set to 1, indicating
that the model predicts oceanic data for one day ahead. The model then outputs atmospheric data
for April 6, 2025 (00:00 UTC) and the oceanic data for April 6, 2025. At this point, both the
atmospheric and oceanic losses are calculated and used for backpropagation to train the model.

This process continues, with oceanic losses used for training only when the ocean prediction time
embedding is an integer. Otherwise, only atmospheric losses are used for training. The iteration
count for this process is determined by sampling through the online replay buffer.

Additionally, if the initial data sampled includes atmospheric data for April 4, 2025 (18:00 and 12:00
UTC), as well as oceanic data for April 3, 2025, the next atmospheric prediction is for April 5, 2025
(00:00 UTC). At this point, the ocean prediction time embedding is set to 1, and the model outputs
atmospheric data for April 5, 2025 (00:00 UTC) and oceanic data for April 4, 2025. Both oceanic
and atmospheric losses are calculated and used to train the model via backpropagation.

In the next iteration of training, the predicted atmospheric data for April 5, 2025 (00:00 UTC), along
with the atmospheric data for April 4, 2025 (18:00 UTC), and the initial oceanic data for April 3,
2025, are fed into the model. The ocean prediction time embedding is set to 1.25. At this point, only
the atmospheric data is used for training, and the process continues iteratively.

B EXPERIMENT

B.1 SOFTWARE AND HARDWARE
The model is implemented in PyTorch. The training and inference are conducted on eight 80GB

NVIDIA A100 devices. For Stage One, the training process takes 2.5 days using 8 NVIDIA A100
GPUs. Stage Two requires 1 day, while Stage Three takes 20 hours on 8 NVIDIA A100 GPUs.

B.2 METRICS

We evaluated forecast performance using the latitude-weighted Root-Mean-Square Error (WRMSE)
and the latitude-weighted Anomaly Correlation Coefficient (WACC). WRMSE is defined as follows:

T

w H

1 1 4T ST+T

RMSE(e,7) = 7 >\ 777 2 D @M @ehy ) — i), (16)
i=1 w=1h=1

where a(h) represents the latitude weight defined as TW - —ppo2s(w.r)

=w——=——. Here, ¢, w, h denote the
W —1 COS(DLwIYh)

indices for channel, latitude, and longitude, respectively.

16



Under review as a conference paper at ICLR 2026

Algorithm 3 COAF Training with Online Replay Buffer

Require: Dataset D, COAF model, Online Buffer Sampler S
1: Initialize Optimizer
2: for each initial state (A;—1, A¢, O;) from D do

3: n < S.next() > Get number of rollout steps from Online Buffer
4: Initialize states: Acyrr < Aty Aprev < At—1, Oinpur < Ot
5: for:=1tondo > Perform autoregressive rollout training for n steps
6: > — Ocean Prediction Step —
7: Cy < AtmosFluxEncoder(Acyrr, Apres)
8: ] coan — 1 X At > Calculate continuous time step for ocean
o: Opred < OceanModel(O;pnput, theeqns Ca)
> — Atmosphere Prediction Step —
10: C,  OceanFluxEncoder(Opyeq)
11: Apegt < AtmosModel(Acyrr, Aprev, Co)
> — Loss Calculation —
12: Eair — LOSS(Anezt7 Atarget,tJri)
13: Loea <0
14: ift) ..., is a daily interval (e.g., i (mod 4) == 0) then
15: £sea — LOSS(Opred7 Otarget,t+i)
16: end if
17: Liotal & Lair + Lsea
> — Update states for next iteration —
> Update model parameters after the rollout
18: Update COAF parameters using V Lio1q1
19: Aprey < Acyrr-detach()
20: Acurr  Apegt-detach()
21: end for
22: end for

WACC is defined as follows:
i+T

T st
ACC(e,7) = % 3 2w Of(h)x cot cmh —, a7
s e @02 T alh) @ )2
where _
e = Toan = Ol (18)
and _
g = BT, — CHT (19)

Here, C’éfj ,, 1s the climatological mean over the day-of-year containing the validity time ¢ + 7 for

a given weather variable c at longitude w and latitude h. It is averaged from the years 1993 to 2016
with the ERAS data on a daily basis.

B.3 COMPARISON WITH CONCAT TRAINING

To validate the necessity and effectiveness of the multi-stage approach in COAF, we processed
the atmospheric data into daily averages and combined it with ocean data to train the model from
scratch. The comparison results are shown in Table 5] For a fair comparison, we transformed the
COAF prediction results into daily averages and calculated the metrics. The results indicate that
directly concatenating ocean and atmospheric data performs significantly worse than COAF. This
discrepancy is likely attributed to the limited amount of training data. Since the ocean dataset only
contains daily data from 1993 to 2021, the concatenation of ocean and atmospheric data results in
insufficient training samples, leading to poorer performance. In contrast, COAF separates the two
datasets, allowing it to leverage the pre-trained atmospheric model and remain unaffected by the
limited availability of ocean data.
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Table 5: Comparison of COAF and Training of concat daily RMSE at lead times of 3, 5, 10 days in
2022.

Method 7500 T850 T2M
Training of Concat  164/346/803  1.03/1.75/3.46 0.9/1.4/2.5
COAF 92/219/583  0.73/1.21/2.55  0.73/1.06/1.93

B.4 THE VERSATILITY VERIFICATION OF COAF

To validate the versatility of COAF, we integrated the well-known Pangu-Weather model as the at-
mospheric model for training and testing. Noted that since Pangu-Weather is not fully open-sourced,
we are only able to utilize the NVIDIA-reproduced version (https://github.com/NVIDIA/
physicsnemo/blob/main/physicsnemo/models/pangu/pangu. py)) for training and
testing, which might lead to a performance gap between this version and their original paper. From
Table @ it can be seen that for other transformer-based models, COAF can still effectively achieve
air-sea coupling and improve performance. Nevertheless, we are still able to verify the versatility of
our COAF framework, because Pangu-Weather can be easily incorporated. We believed that once the
official code of Pangu-Weather is integrated, its performance could also undergo an improvement.

Table 6: Comparison of COAF(Pangu-Weather) and Pangu-Weather RMSE at lead times of 3, 5, 10,
15 days in 2022.

Method 7500 T850 T2M

Pangu-Weather 235/439/851/1052  1.79/2.67/4.37/5.3  1.73/2.17/3.15/3.71
COAF(Pangu-Weather)  195/370/698/813 1.4/2.0/3.2/3.7 1.51/1.84/2.60/2.95

B.5 ABLATION STUDY ON UTILIZING CROSS-ATTENTION FOR COUPLING INTERACTION

In addition, we also attempted to use the cross-attention mechanism for air-sea coupling interactions.
As shown in the Table[7] although the cross-attention method achieves some improvement compared
to using only the atmospheric model, it still falls short compared to directly adopting the time-control
method. This may be ascribed to that the cross-attention mechanism focuses more on high-resolution
detail information, which is prone to larger errors during the iterative process. Furthermore, long-
term air-sea interactions are more about macroscopic energy exchanges, which may explain why the
performance of the cross-attention method is relatively worse.

Table 7: Comparison of Cross-Attn and Time-Control at lead times of 3, 5, 10, 15 days in 2022.

Method 7500 T850 T2M
Atmospheric-only model  133/287/703/884  1.09/1.66/3.12/3.73  1.01/1.41/2.46/2.99
Cross-Attn 133/287/668/804  1.07/1.63/2.96/3.43  0.99/1.35/2.24/2.60
Time-Control 131/277/634/769  1.07/1.61/2.87/3.32  0.98/1.34/2.19/2.54

B.6 ATOMOSPHERIC RESULTS

The latitude-weighted Anomaly Correlation Coefficient (WACC) measures a model’s ability to pre-
dict deviations from normal conditions, with higher values indicating greater prediction accuracy.
We compared the WACC of COAF with various models. Table [8| shows that COAF also demon-
strates better performance in WACC for nearly all lead times and most variables. Additionally, we
visualized the Z500 prediction results for 3-day, 5-day, and 10-day lead times, as shown in Figure|[6]
As the forecast step increases, the absolute error also increases and diffuses to adjacent areas.

In addition, we also compared COAF with Stormer, Climax, and WeatherGFT. The results (Fig-
ure [/) show that COAF performs comparably to Stormer in the short term and gains an advantage
as the forecast period extends. This is because Stormer uses a multi-member ensemble forecast,
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Table 8: Comparison of COAF, IFS and different AI models on WACC (higher is better) at lead
times of 3, 5, 10, and 15 days.

Method 7500 T850 T2M u10 V1o
IFS-HRES 0.99/0.93/0.51/* 0.93/0.84/0.45/* 0.93/0.87/0.62/* 0.89/0.76/0.33/* 0.89/0.75/0.29/*
Pangu-Weather 0.99/0.93/0.53/0.21  0.94/0.87/0.46/0.19  0.94/0.87/0.60/0.40 ~ 0.91/0.78/0.34/0.14  0.90/0.78/0.30/0.10
GraphCast_operational ~ 0.99/0.94/0.55/0.24  0.95/0.88/0.49/0.21  0.93/0.88/0.63/0.45  0.92/0.80/0.36/0.16  0.92/0.80/0.33/0.12
FuXi 0.99/0.94/0.63/0.39  0.95/0.88/0.57/0.34  0.95/0.89/0.71/0.60  0.92/0.81/0.48/0.31  0.92/0.81/0.44/0.26
COAF. 0.99/0.94/0.63/0.39  0.95/0.89/0.58/0.35  0.95/0.90/0.72/0.60  0.93/0.83/0.49/0.30  0.93/0.82/0.45/0.26

2022-01-05 00:00 UTC

2022-01-07 00:00 UTC

2022-01-12 00:00 UTC

COAF

Absolute Error

~ - ,j.. ./

Figure 6: Visualization comparison of Z500 prediction results for 3-Day, 5-Day, and 10-Day fore-
casts at the initialization time of January 2, 2022, 00:00 UTC. The first row displays the model
outputs, the second row shows the corresponding ERAS states, and the third row illustrates the Ab-
solute Error between the two.

offering better performance than single-member models. Compared to Climax and WeatherGFT,
COAF maintains an overall lead. Climax, with its time-based direct prediction framework, faces
higher training difficulty, while WeatherGFT focuses on short intervals, resulting in lower overall
performance.

B.7 OCEANIC RESULTS

For continuous-time ocean prediction models, since the original ocean data are daily averages, we
are unable to quantify the accuracy of 6-hour interval predictions. Therefore, we visualized the
predicted and actual values of the lateral flow speed at a specific location near the equator in the
ocean, as in Figure[§| which shows gradual changes with prediction time, indicating COAF will not
introduce large errors for intervals smaller than 24 hours, thus leading to faithful predictions in 24
hours.

In addition to the simple comparison presented in Table 2 of main text, we also visualize various
variables. The experimental results highlight the forecasting capabilities of the ocean prediction
module of COAF across multiple variables and spatiotemporal scales. Figure [J]illustrates a com-
parative analysis of sea surface height (zos) visualizations for 3-day, 5-day, and 10-day forecasts
initialized at 00:00 UTC on July 1, 2022. The sea surface height forecasts exhibit coherent patterns
of large-scale features through the 10-day predictions, although there is a noticeable error growth,
especially in the regions of western boundary currents.

Figure [I0] focuses on temperature at a depth of 0.494 m, also initialized on July 1, 2022. Similar
trends are observed in the model outputs for the 3-, 5-, and 10-day forecasts. The 10-day fore-
casts exhibit strong alignment with GLORYS12V1 states, particularly in the equatorial regions and
warming pool areas. Additionally, COAF provides relatively accurate 10-day forecasts even amidst
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IFS-HRES*-
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COAF Atmos-
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(a) Z500 (b) T850 (c) T2M (d) U10 (d) V10
137.0 305.0 806.0 131 1.94 3.69 1.19 1.6 2.76 1.9 2.81 4.79 1.95 291 4.93
136.0 296.0 786.0 1025.| 1.15 1.79 3.61 4.44 1.09 1.56 2.77 3.39 1.64 255 4.45 5.08 1.7 264 4.69 533
127.0 282.0 763.0 1004. 1.1 169 3.46 434 1.14 1,51 2.65 3.28 1.64 2.48 4.41 5.09 1.68 2.57 4.61 5.32
128.0 282.0 643.0 767.0 1.09 1.71 2.98 3.37 1.03 1.47 2.27 2.58 1.52 2.38 3.54 | 3.8 1.57 2.48 3.73 |3.96
115.0 267.0 751.0 0.97 1.58 3.42
1.39 2.05 1.18 1.63
153.0 316.0 1.15 1.76 1.01 1.43
Climax'.. . 2.17 1.42 181 215 2.9
152.0 316.0 1.17 1.84 1.14 1.58 1.66 2.6
134.0 285.0 661.0 1.04 1.62 3.01 0.88 1.27 2.21 1.41 2.21 3.55 146 23 374
133.0 287.0 703.0 884.0 1.09 1.66 3.12 3.73 1.01 1.41 246 2.99 1.49 2.26 3.67 4.22 1.54 2.35 3.83 4.22
131.0 277.0 634.0 769.0 1.07 1.61 2.87 3.32 0.98 1.34 2.19 2.54 1.49 2.22 3.46 3.79 1.54 231 3.64 3.94
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Figure 7: Comparison of more models.
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Figure 8: Visualization of the 6-hourly forecasts and actual values of uo within 15 days starting from
January 1, 2022, at 5.6°N, 142°W.
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high-frequency variations in current speeds and salinity, effectively revealing nutrient transport and
ecological dynamics (see Figure[TT).

Finally, to validate the key three-dimensional vertical structure of the ocean, we visualized the ver-
tical meridional profile of upper ocean temperature at 180°E on July 11, 2022 (Figure [I2). The re-
sults indicate that even on the tenth day, the model accurately predicts the ocean’s three-dimensional
thermal stratification. Furthermore, the prediction of the thermocline remains stable, accurately
forecasting the position of the 20°C isotherm. This highlights the physically consistent predictive
capability of the ocean model.

2022-07-04 00:00 UTC 2022-07-06 00:00 UTC 2022-07-11 00:00 UTC

COAF

GLORYS12V1

Absolute Error

Figure 9: Comparison of Sea surface height (zos) visualizations from 3-, 5-, and 10-day forecasts
initialized on 1 July 2022 00:00 UTC. The first row displays the model outputs, the second row
shows the corresponding GLORYS12V1 states, and the third row illustrates the MAE between the
two.
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Figure 12: Vertical-meridional profile of upper ocean temperature forecast at 180°E for 11 July 2022
at 00:00 UTC across 3, 5, and 10-Day lead time.
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