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ABSTRACT

Visual texts embedded in videos carry rich semantic information, which is cru-
cial for both holistic video understanding and fine-grained reasoning about local
human actions. However, existing video understanding benchmarks largely over-
look textual information, while OCR-specific benchmarks are constrained to static
images, limiting their ability to capture the interaction between text and dynamic
visual contexts. To address this gap, we propose VidText, a new benchmark de-
signed for comprehensive and in-depth evaluation of video text understanding.
VidText offers the following key features: 1) It covers a wide range of real-world
scenarios and supports multilingual content, encompassing diverse settings where
video text naturally appears. 2) It introduces a hierarchical evaluation framework
with video-level, clip-level, and instance-level tasks, enabling assessment of both
global summarization and local retrieval capabilities. 3) The benchmark also in-
troduces a set of paired tasks for perception and reasoning, ranging from visual
text perception to cross-modal reasoning between textual and visual information.
Extensive experiments on 18 state-of-the-art Large Multimodal Models (LMMs)
reveal that current models struggle across most tasks, with significant room for
improvement. Further analysis validates the effectiveness of VidText—spanning
joint video-text and multimodal reasoning, multi-granularity task structure, and
temporal modeling. It also reveals substantial effects from model-intrinsic fac-
tors (input resolution, OCR capability) and external factors (auxiliary context and
video-text-centric Chain-of-Thought strategies). We hope VidText will fill the cur-
rent gap in video understanding benchmarks and serve as a foundation for future
research on multimodal reasoning with video text in dynamic environments.

1 INTRODUCTION

Large Multimodal Models (LMMs) (Bai et al., 2025; Chen et al., 2024d; Liu et al., 2023b; Alayrac
et al., 2022; Li et al., 2023a) are rapidly emerging as general-purpose solutions for a wide range of vi-
sion–language tasks, demonstrating impressive perception and cognitive capabilities across various
multimodal benchmarks. Building on this success, there is a growing interest in extending LMMs
to video understanding (Zhang et al., 2025a; Li et al., 2023b;c; Song et al., 2024; Fang et al., 2023a;
Ataallah et al., 2024), including video captioning, question answering, and retrieval (Fang et al.,
2023b). To support this development, a number of video benchmarks (Fu et al., 2024; Zhou et al.,
2024; Li et al., 2024c; Wu et al., 2024; Chandrasegaran et al., 2024) have recently been proposed to
enable more comprehensive evaluations of LMMs in dynamic visual environments.

However, existing video understanding evaluations primarily focus on major events, character ac-
tions, and interpersonal relationships, while largely overlooking video text. As a self-descriptive
visual component, text in videos plays a crucial role in visual understanding (Zhang et al., 2025b;
Zhao et al., 2022; Xu et al., 2021). On one hand, it provides explicit perceptual cues, such as street
signs, storefronts, or subtitles, that help identify key elements and clarify the scene. On the other
hand, text also enables contextual reasoning, revealing underlying motivations or causal relation-
ships. For example, a “SALE” sign in a shop may explain why people are gathering, which is not
readily apparent from visual cues alone.

Compared to images, perceiving dynamic video text and modeling its interaction with evolving
visual contexts in videos is significantly more challenging. It requires not only fine-grained local-
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Table 1: Comparison of video understanding benchmarks. “Vid”, “Cli” and “Ins” denote video-
level, clip-level and instance-level tasks. “T”, “S” and “C" mean temporal, spatial and causal dimen-
sions. “MC” and “OE” represent multiple-choice and open-ended questions. “TQ”: the percentage
of questions containing visual text instances.

Benchmark Video QA TQ % Multi
Lingual

Multi
Source

Multi
Granularity

Perception Reasoning Paired
Tasks TaskType

T S T S C

General Video Understanding Datasets
NExT-QA (Xiao et al., 2021) 5,440 52,044 – ✗ ✓ Vid+Cli ✗ ✗ ✓ ✗ ✓ ✗ MC+OE
MVBench (Li et al., 2024c) 4,000 4,000 – ✗ ✓ Vid+Cli ✓ ✓ ✓ ✗ ✓ ✗ MC
MovieChat-1K (Song et al., 2024) 1,000 13,000 – ✗ ✓ Vid+Cli ✗ ✗ ✓ ✗ ✗ ✗ MC+OE
Video-MME (Fu et al., 2024) 900 2,700 – ✓ ✓ Vid+Cli+Ins ✓ ✗ ✓ ✗ ✗ ✗ MC
MLVU (Zhou et al., 2024) 1,730 3,102 – ✓ ✓ Vid+Cli+Ins ✗ ✗ ✗ ✗ ✗ ✗ MC+OE
Video Text Datasets
BovText (Wu et al., 2021) 2,000 – – ✓ ✓ Ins ✓ ✓ ✗ ✗ ✗ ✗ OE
RoadText1k (Reddy et al., 2020) 1000 – – ✗ ✗ Ins ✓ ✓ ✗ ✗ ✗ ✗ OE
M4ViteVQA (Zhao et al., 2022) 680 2,103 40 ✗ ✓ Cli+Ins ✗ ✗ ✓ ✓ ✗ ✗ MC+OE
RoadTextVQA (Tom et al., 2023) 329 1,052 60 ✗ ✗ Cli+Ins ✗ ✗ ✓ ✓ ✗ ✗ MC
EgoTextVQA (Zhou et al., 2025) 1,507 7,064 52 ✓ ✗ Cli+Ins ✗ ✗ ✓ ✓ ✗ ✗ OE
Ours 939 2,857 65 ✓ ✓ Vid+Cli+Ins ✓ ✓ ✓ ✓ ✓ ✓ MC+OE

ization at the instance level, but also temporal tracking and spotting at the clip level, as well as
holistic understanding at the video level. Furthermore, video text appears in a wide range of sce-
narios and across multiple languages, which further increases the complexity of recognition and
reasoning. Based on these insights, we propose VidText, a comprehensive benchmark for video text
understanding, which introduces the following key advantages:

• It encompasses a wide variety of video genres, including media, entertainment, ego-centric,
sports, life record, and knowledge, with 27 fine-grained categories covering diverse scenarios
rich in visual text, such as scene text and subtitles. Moreover, it includes multilingual content,
covering English, Chinese, Korean, Japanese, and German.

• It supports multi-granularity evaluation, including video-level, clip-level, and instance-level
tasks. Video-level tasks involve holistic OCR understanding and reasoning over global video con-
tent. Clip-level tasks are designed to require localized comprehension based on specific temporal
segments. Instance-level tasks demand fine-grained temporal and spatial grounding of individual
text instances to support precise question answering.

• It spans from visual text perception to cross-modal reasoning with visual context. Building
upon the meticulously annotated video text data, we produce video text-centric Chain-of-Thought
(CoT) annotations, explicitly capturing the reasoning process between video descriptions and em-
bedded texts, including spatial relationships with surrounding objects and temporal dependencies
related to actions or events. In this way, we extend video text perception tasks into their corre-
sponding reasoning counterparts, forming a comprehensive paired perception–reasoning frame-
work that spans eight tasks covering multiple levels of understanding.

Tab. 1 shows that VidText enables a more comprehensive evaluation of video text understanding
compared to both general video understanding benchmarks and video text-specific benchmarks.
We conduct extensive evaluations on 18 popular LMMs, revealing several important insights. First,
video text understanding remains a technically challenging task for existing models. Although Gem-
ini 1.5 Pro (Team et al., 2023) achieves the highest performance, it only reaches an average score
of 46.8%, and all models perform poorly on multi-granularity tasks, which is far below estimated
human-level performance. Second, several concurrent open-source models (Zhang et al., 2025a;
Chen et al., 2024b) demonstrate competitive performance, narrowing the gap with proprietary sys-
tems. Third, our empirical findings prove the design principles of the benchmark, as well as ex-
ploring the crucial factors on video text understanding, including OCR capability, input resolution,
auxiliary information, and Chain-of-Thought strategies.

2 RELATED WORK

2.1 VIDEO LARGE LANGUAGE MODELS

With the rapid advancement of large language models (LLMs), a series of video large language
models (Video LLMs) have emerged (Liu et al., 2023b; Zhu et al., 2023; Liu et al., 2023a; Chen
et al., 2024c), leveraging LLMs as backbones to enhance video reasoning capabilities. Early Video
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LLMs primarily relied on sparsely sampled frames and temporal modeling mechanisms (Li et al.,
2023a; Liu et al., 2024d), such as Q-Former and temporal pooling, to facilitate video captioning
and question answering. Building upon these designs, subsequent models (Bai et al., 2025; Chen
et al., 2024d; Zhang et al., 2025a; Li et al., 2024d; Liu et al., 2024a; Zhang et al., 2024; Shu et al.,
2024; Liu et al., 2025; Yuan et al., 2025) have focused on addressing key challenges in video un-
derstanding, including fine-grained semantic alignment, temporal representation, and long-duration
video comprehension. For instance, Qwen-VL 2.5 (Bai et al., 2025) introduces dynamic resolution
processing and absolute temporal encoding to handle variable-resolution videos. Video-LLaMA3
(Zhang et al., 2025a) applies a frame compression strategy based on frame similarity to reduce the
number of visual tokens, resulting in more compact and precise video representations. To handle
extremely long videos, LongVA (Zhang et al., 2024) extends the context length of the LLM back-
bone and transfers its long-context capability to the video domain. Video-XL (Shu et al., 2024)
leverages the inherent key-value sparsification mechanism of LLMs to efficiently condense visual
inputs. VideoChatFlash (Li et al., 2024d) proposes a hierarchical compression strategy, reducing
token redundancy in both the video and language modules.

2.2 VIDEO UNDERSTANDING BENCHMARKS

With the growing interest in video LLMs, the development of dedicated benchmarks has become in-
creasingly emphasized. Existing benchmarks have been designed for a variety of video understand-
ing tasks, including action reasoning, spatio-temporal inference, video captioning, and long-video
comprehension (Fu et al., 2024; Zhou et al., 2024; Li et al., 2024c; Wu et al., 2024; Xiao et al.,
2021; Patraucean et al., 2023; Liu et al., 2024b; Maaz et al., 2023). For example, NeXT-QA (Xiao
et al., 2021) evaluates temporal reasoning abilities by testing models on the relationships between
human actions. VideoChatGPT-Bench (Maaz et al., 2023) focuses on open-ended video conver-
sation, constructing captioning and dialogue tasks to assess generative and interactive capabilities.
TempCompass (Liu et al., 2024b) introduces fine-grained temporal perturbations to assess whether
models can answer questions based on temporal changes within the video. To support compre-
hensive video question answering, MVBench (Li et al., 2024c) proposes a large-scale benchmark
covering 20 distinct subtasks, spanning multiple perception and reasoning dimensions. For long-
video understanding, VideoMME (Fu et al., 2024), MLVU (Zhou et al., 2024), LVBench (Wang
et al., 2024b) and LongVideoBench (Wu et al., 2024) curate diverse and extended-duration videos
to evaluate multi-level abilities across extended temporal contexts.

As text carries rich and structured information in videos, several benchmarks have been proposed to
evaluate video text understanding (Zhao et al., 2022; Wu et al., 2021; Reddy et al., 2020; Zhou et al.,
2025; Wu et al., 2023), including tasks such as text tracking, spotting, and reasoning. Specifically,
RoadTextVQA (Reddy et al., 2020) focuses on autonomous driving scenarios, while EgoTextVQA
(Zhou et al., 2025) targets egocentric perspectives in daily life settings. In addition, M4-ViteVQA
(Zhao et al., 2022) collects videos from nine diverse real-world scenarios, such as shopping, trav-
eling, and movies, to evaluate the generalization capabilities of video-language models. However,
these benchmarks exhibit two notable limitations. First, their task types are relatively simple, and
therefore insufficient for comprehensively evaluating the diverse capabilities of modern video LLMs.
Second, their video categories and language coverage remain limited, often constrained to specific
application domains.

3 DATASET CONSTRUCTION

In this section, we describe the dataset construction process for VidText. We begin by illustrating
how the source videos are collected (Sec. 3.1), followed by a detailed explanation of the annotation
pipeline (Sec. 3.2). Finally, we describe the task taxonomy of our benchmark (Sec. 3.3).

3.1 VIDEO COLLECTION

In VidText, we aim to evaluate video text understanding across diverse scenarios, including both
video category variety and language diversity. While several existing datasets (Zhao et al., 2022;
Wu et al., 2021; Reddy et al., 2020; Wu et al., 2023) provide detailed text annotations, they all
suffer from several key limitations: (1) Limited scenario diversity: Most datasets focus on specific

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

�[��
��
，）

[��
��
，�
��
�）

[��
��
，�
��
�）

[��
�，
��
��
）

[��
�，
��
�）[��
�，
��
�）[��
�，
��
�）[��

，�
��
）

�� ��� ��� ��� ���

N
um

be
r o

f T
ex

t I
ns

ta
nc

es

Video Number

Perception

HolisticOCR
���

LocalOCR
���

TextLocalization
���

TextTracking
���

Reasoning

HolisticReasoning
���

LocalReasoning
���

TemporalCausal
Reasoning

SpatialReasoning
��

 video-level clip-level   instance-level

Figure 1: Statistical overview of our VidText. (Left) Video genres included in VidText. (Top Right)
Visual Text Instance Distribution. (Bottom Right) Hierarchical Task type settings.

domains such as indoor scenes or egocentric videos, lacking coverage of richer, more interactive
contexts such as sports events, livestreaming games, or daily vlogs. (2) Lack of language diversity:
Nearly all existing datasets contain only English, failing to reflect the multilingual nature of real-
world video text. (3) Short video duration: Many videos are only 10–15 seconds long, which limits
their suitability for tasks involving cross-temporal reasoning or holistic understanding.

Therefore, in addition to incorporating existing datasets, we further collect video data from compre-
hensive long-form video benchmarks (Fu et al., 2024; Zhou et al., 2024) and public platforms such
as YouTube, in order to enhance the scenario diversity, temporal richness, and linguistic coverage.

For the manually collected videos, we leverage expert models to construct an effective selection
pipeline. First, we ensure the presence of visual text in each video by using Gomatching (He et al.,
2024), a video text detection tool, to assess text density. Second, we filter out low-quality videos con-
taining blur, watermarks, or low resolution, using existing video quality assessment models (Wen
et al., 2024; Mi et al., 2024). Third, we enforce a minimum duration threshold of 3 minutes to
guarantee sufficient temporal content. As a result, we collect a total of 939 high-quality videos,
each annotated with one of 27 predefined scene categories. Additionally, we record metadata for
each video, including language type, resolution, frame rate, and text density. Fig. 1 presents ba-
sic statistics of VidText. More detailed statistics across multiple dimensions are provided in the
Supplementary Materials.

3.2 ANNOTATIONS GENERATION

To support evaluation at both the perception and reasoning levels, VidText provides meticulously
constructed annotations tailored to the requirements of each task.

Perception. For each qualified video, we adopt a bottom-up strategy to construct multi-granularity
annotations, including instance-level, clip-level, and video-level information. First, annotators are
instructed to track at least three clear visual text instances throughout the video. For each instance,
we conduct frame-by-frame fine-grained annotation until it disappears, generating a sequence of
annotations that include bounding boxes, transcriptions, and unique track IDs. Second, the video
is segmented into multiple intervals based on its duration (i.e., longer videos are divided into more
segments). For each segment, we check the presence of visual text using instance-level annotations
and record clip-level labels, including the temporal span (start and end timestamps) and associated
transcriptions. Third, a separate group of annotators performs video-level annotations, which involve
recording all distinct transcriptions that appear across the entire video. Specifically, for Chinese, we
use text lines as the basic annotation unit, while for other languages, annotations are performed at
the word level.
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Timestamp:30.1

Timestamp:2307.6
22s 52s 62s

Timestamp:598.7
457.3s 462.1s

90.1s 116.3s

Q:Please provide all text in video. Q: Based on the video, which of the following 
statements accurately describe the video?GT:[EXITS] [IOE-W][495] [Long] [is] [Expwy] 

[Eastern] [Long] [is] [Manhattan] [RIGHT] 
[LANE] [SPEED] [LIMIT] [40]

GT:1. The video was recorded on Interstate 495 
(Long Island Expressway) in New York State.
2. Vehicles in the right can take Exit 10E.
3. The speed limit on this stretch of road is 40 mph.

Q:What is the author’s training plan between 52 
s and 62 s in the video?

GT:[HAPPY] [NEW] [YEAR!!!!] [HELLO] [2024]

Q:What texts appear between 22s and 52s 
in the video?

GT:The training plan is divided into push, pull, legs, 
and full-body parts.

Q:When the score is 105:83, what move did 
Lakers No.23 make?

GT:[457.3s,462.1s]

Q:At what time in the video does the score 
“105:83” appear?

GT:He stole the ball and dunked it.

Q:At 5:59 in the match, in which direction is BLG 
Bin relative to T1Oner, and what happens next?

GT:[0.46,0.67...], [0.58, 0.69...]

Q:What are the bounding box of Hero T1Oner at 
the start and at the end of the match interval 
from 5:59 to 6:15? GT:T1 Oner, positioned to the bottom-right of BLG 

BIN, and T1 Oner attempts to help his team-
mate gank BLG BIN.

TextTracking SpatialReasoning

TextLocalization TemporalCausalReasoning

LocalOCR LocalReasoning

HolisticOCR HolisticReasoning

05:59 06:15

T1 Oner
BLG Bin 

495 L o n g  I s  E x p w y

Eastern Long Is
Manhnttan

RIGHT LANE

EXITS  I O E - W

Figure 2: Examples from VidText. The benchmark includes eight tasks, featuring paired perception
and reasoning components designed to evaluate the video-level, clip-level, and instance-level capa-
bilities of LMMs. Given the video input and textual prompt, models are required to solve the tasks,
with ground-truth answers highlighted in green.
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Reasoning. Since the multi-granularity annotations constructed for perception address the question
of “what texts appear in the video or clip”, we further investigate “what actions or events are linked
to these texts”. To this end, we design a video text-centric Chain-of-Thought (CoT) annotation
pipeline. First, for each video or clip (as defined by the time span annotations), we apply an adaptive
sampling strategy to extract key frames. Then, we utilize the powerful vision-language model Aria
(Li et al., 2024b) to generate high-quality frame-level captions, capturing both intra-frame and inter-
frame contextual information. Based on the paired OCR transcripts and the multimodal descriptions,
human annotators are instructed to design QA pairs that focus on the semantic or causal relationships
between visual text and surrounding visual content. To ensure the quality of reasoning QA pairs,
we enforce two post-validation principles: (1) Mask the visual texts and verify whether the question
can be answered using only the visual content; (2) Mask the visual frames and check whether the
question can be answered using only the textual information.

3.3 TASK TAXONOMY

Based on the detailed annotations encompassing perception and reasoning, we further define 8 hier-
archical tasks which are demonstrated in Fig. 2.

Holistic OCR & Holistic Reasoning. Holistic OCR requires the model to recognize all visual
texts appearing throughout the entire video. Redundant entries are removed, and the remaining
text instances are sorted in chronological order. We evaluate this task using the F1-score, which
is calculated based on instance-level precision and recall. Holistic Reasoning assesses the model’s
ability to understand the overall topic of the video by integrating recognized textual information with
global semantic context. The task is formulated as a multi-label selection problem, where the model
is asked to choose three correct answers from seven candidate options. Performance is measured by
top-3 accuracy.

Local OCR & Local Reasoning. In contrast to holistic tasks, Local OCR and Local Reasoning
focus on the model’s ability to spot and interpret visual text within user-specified video segments.
Local OCR requires recognizing all visual texts that appear within a given segment and is evaluated
using the F1-score based on instance-level matching. Local Reasoning assesses the model’s ability
to infer local semantic meaning or intent from the text. It is formulated as a multiple-choice question,
and performance is measured by answer accuracy.

Text Localization & Temporal Causal Reasoning. Similar to temporal grounding tasks, Text
Localization requires the model to accurately predict the temporal interval during which a specific
text appears in the video. The task is evaluated using Mean Intersection-over-Union (mIoU) based
on ground-truth temporal spans. The corresponding reasoning task, Temporal Causal Reasoning,
extends beyond localization to assess whether the model can infer causal relationships between
identified texts and subsequent multimodal events or actions. Standard evaluation is conducted in a
multiple-choice format, with accuracy as the performance metric.

Text Tracking & Spatial Reasoning. Given a target text instance, Text Tracking requires the model
to predict its spatial bounding box locations at its first and last appearance within the video. Spatial
Reasoning extends this task by asking the model to infer spatial relationships between the textual in-
stance and surrounding visual elements at a specified timestamp. To enable standardized evaluation
with LMMs, both tasks are formatted as multiple-choice questions.

4 EXPERIMENTS

4.1 SETTINGS

We conduct a comprehensive evaluation of 18 large multimodal models (LMMs) using our VidText
benchmark, encompassing both open-source and proprietary models. For proprietary models, we
evaluate the Gemini series (Team et al., 2023) and GPT series (Achiam et al., 2023; Hurst et al.,
2024), using their official multi-image evaluation APIs. For open-source models, we select current
state-of-the-art video LMMs with diverse architectures and LLM sizes, enabling a broad assessment
of video text understanding capabilities. All evaluations are conducted in a zero-shot manner. More
details about the evaluation settings are provided in the Supplementary Materials.
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Table 2: The overall performance on VidText. HoliOCR: Holistic OCR; HoliRea.: Holistic Reason-
ing; LocalOCR: Local OCR; LocalRea.: Local Reasoning; TextLocal.: Text Localization; Tem-
pCauRea.: Temporal Causal Reasoning; TextTrac.: Text Tracking; SpaRea.: Spatial Reasoning;
Avg.: the average performance of the eight tasks. The best Accuracy / Score results are highlighted.

Method Size Avg. HoliOCR HoliRea. LocalOCR LocalRea. TextLocal. TempCauRea. TextTrac. SpaRea.

Human – 89.5 92.8 96.0 94.3 95.7 81.3 88.6 80.3 87.3
proprietary LMMs
GPT-4-Turbo (Achiam et al., 2023) – 29.7 22.9 28.7 36.7 36.5 15.8 39.4 24.3 33.6
Gemini 1.5 Flash (Team et al., 2023) – 34.7 26.3 34.0 40.2 42.4 28.9 40.0 30.7 35.4
GPT-4o (Hurst et al., 2024) – 40.2 29.5 38.9 46.0 43.3 45.5 42.5 36.2 39.8
Gemini 1.5 Pro (Team et al., 2023) – 45.3 34.8 43.6 50.2 50.1 48.7 47.0 40.3 47.9

Open-source LMMs
LongVU (Shen et al., 2024) 3B 17.0 5.8 20.4 15.4 17.0 15.6 15.9 15.4 30.5
Qwen2.5-VL (Bai et al., 2025) 3B 21.1 11.4 23.2 28.5 17.8 18.7 15.4 18.3 35.3
Video-XL-Pro (Liu et al., 2025) 3B 22.5 10.9 22.9 30.4 15.6 18.7 27.9 20.9 32.9
LongVA (Zhang et al., 2024) 7B 19.2 4.8 5.6 3.2 46.9 4.5 28.3 29.6 30.5
MiniCPM-V2.6 (Yao et al., 2024) 7B 26.5 29.2 21.2 11.4 42.9 13.3 30.3 20.5 43.2
VideoChatFlash (Li et al., 2024d) 7B 29.2 13.6 13.3 1.0 50.1 45.1 42.4 23.3 44.3
Qwen2-VL(Wang et al., 2024a) 7B 30.3 27.0 34.0 37.5 23.7 11.2 42.4 24.6 42.1
Qwen2.5-VL (Bai et al., 2025) 7B 31.9 35.9 36.0 37.0 26.5 26.5 35.4 22.4 35.2
VideoLLaMA3 (Zhang et al., 2025a) 7B 39.9 23.5 31.5 39.2 41.2 47.3 55.6 31.1 50.0
ShareGPT4Video (Chen et al., 2024a) 8B 16.4 2.5 2.6 0.8 43.5 0.0 27.3 28.0 26.1
Oryx-1.5 (Liu et al., 2024d) 32B 35.4 35.3 33.9 30.8 48.5 26.7 45.2 26.0 36.4
LLava-OV(Li et al., 2024a) 72B 36.1 20.1 28.1 41.3 49.4 9.9 54.6 31.8 53.4
Qwen2.5-VL (Bai et al., 2025) 72B 38.5 40.1 49.3 35.9 28.2 28.7 52.5 31.1 42.1
InternVL2.5 (Chen et al., 2024b) 78B 39.8 40.2 37.4 29.0 50.4 30.5 48.5 29.9 52.3

4.2 MAIN RESULTS

The overall evaluation results for all investigated LMMs in the VidText are shown in Tab. 2. Indi-
vidual performances are reported for each task, while average performances are provided. From the
results, we derive three primary conclusions:

1) Gemini 1.5 Pro (Team et al., 2023) achieves the best performance on our benchmark. It
significantly outperforms other models on video-text-based perception and reasoning tasks.

2) Proprietary models typically perform better than open-source models. However, some open-
source models deliver surprisingly strong results on specific tasks. For example, VideoLLaMA3
(Zhang et al., 2025a) achieves the highest performance on both Temporal Causal Reasoning and
Spatial Reasoning.

3) Video text understanding remains challenging for current video LMMs. Current models
fall far short of human-level performance, show limited ability in fundamental video OCR tasks
(where specialized OCR models often outperform), and struggle with multimodal reasoning based
on visual text cues—with all video multiple-choice reasoning tasks achieving below 60% accuracy,
significantly lagging behind similar image-based tasks (Biten et al., 2019; Singh et al., 2019).

Beyond the primary conclusions on overall performance, we further analyze model behaviors across
individual tasks.

4) Among multi-granular tasks, video-level and instance-level tasks are more challenging than
clip-level tasks, across both perception and reasoning settings. We hypothesize that this is due to
the limited capabilities of current LMMs in two aspects: video-level tasks require global information
aggregation, while instance-level tasks demand fine-grained retrieval and grounding, both of which
remain weak points for existing models.

5) For video-level and instance-level tasks, the performance of perception and reasoning shows
a strong correlation, while the two appear relatively independent in clip-level tasks. This may
be because certain clip-level perception tasks, such as text localization, require accurate temporal
grounding based on fine-grained visual cues. However, the corresponding reasoning tasks, such
as temporal reasoning, can often be solved using local visual clues from sparsely sampled frames,
allowing models to bypass the need for precise perception outputs.

6) Scaling up the size of LLMs leads to more significant performance gains on reasoning tasks
compared to perception tasks. This suggests that video text perception cannot be effectively im-
proved by model scale alone, and instead requires careful architectural design, specialized training
data, and other task-specific considerations.
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Figure 3: Ablations on the multi-granularity design (left) and temporal modeling (right) of VidText.
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Figure 4: Ablation studies on the joint reasoning of video texts and video contents. “HR”, “LR”
and “SR” denote Holistic Reasoning, Local Reasoning and Spatial Reasoning, respectively. We
visualize “Video content masking” and “Video Text masking” in the right part.

5 ABLATION STUDIES

5.1 INVESTIGATING THE EFFECTIVENESS OF VIDTEXT DESIGN

Joint video text and multimodal contexts reasoning. VidText successfully extends perception-
level tasks into reasoning tasks, which require the joint modeling of video texts and their multimodal
contextual information. To validate this, we perform an ablation study by selectively masking either
the visual text regions or the surrounding video content at varying random ratios. As shown in Fig. 4,
the performance on all reasoning tasks consistently drops as the masking ratio increases, confirming
that both textual and visual cues are essential for reasoning under our task design.

Multi-granularity design. VidText includes multi-granular tasks spanning video-level, clip-level,
and instance-level. To verify that tasks at different levels require correspondingly different levels
of contextual information, we conduct ablation studies using VideoLLaMA3 (Zhang et al., 2025a).
Specifically, for holistic tasks, we randomly extract 50% of the video duration as a segment and
evaluate performance on Holistic Reasoning. For clip-level and instance-level tasks, we select key
clips based on their original task annotations. As shown in Fig. 3, clip-level and instance-level
tasks benefit significantly from segment-based evaluation, as key frames provide concentrated visual
text information. In contrast, Holistic Reasoning performance declines, as the task requires global
information aggregation, which is lost when only partial segments are used.

Temporal Modeling. A fundamental question in video-text understanding is whether tasks gen-
uinely require video-level temporal modeling or whether processing sequential image inputs is suf-
ficient. To address this question, we conduct a controlled comparison using Gemini 1.5 Pro under
two experimental conditions: (1) Video mode, where the complete video is provided as a unified
input; and (2) Image-sequence mode, where uniformly sampled frames are fed as a sequence of
discrete images. As shown in Fig. 3, video input consistently outperforms sequential image across
nearly all evaluated tasks. This performance gap indicates that integrated temporal modeling and
redundancy suppression are essential components for effective video-text understanding. Notably,
tasks requiring temporal reasoning exhibit the most substantial improvements, with Temporal Causal
Reasoning and Spatial Reasoning showing the largest performance gains.

8
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Table 3: Detailed analysis about the impact of input resolution, image OCR ability, and LLM Back-
bone. LLaVA-Next: LLaVA-Next-Video (Liu et al., 2024a).

Impact of input resolution Impact of OCR ability Impact of LLM
Model resolution Avg Model OCRBench Avg Model LLM Avg

Oryx-1.5 4482 35.4 LLaVA-OV 621 36.1 LLaVA-OV Qwen2-7B 22.1
8962 38.6↑3.2 VideoLLaMA3 828 39.9↑3.8 Qwen2-72B 36.1↑14.0

InternVL 4482 39.8 GPT4V 645 29.7 LLaVA-Next LLaMA3-8B 15.3
8962 44.8↑5.0 GPT-4o 822 40.2↑10.5 Qwen2-7B 20.8 ↑5.2

Table 4: Ablations about auxiliary information (Left) and CoT strategy (Right) for video text un-
derstanding. “HR”, “LR”, “TR” and “SR” denote Holistic Reasoning, Local Reasoning, Temporal
Causal Reasoning and Spatial Reasoning.

Method HR LR TR SR

Qwen2.5-VL 36.0 26.5 35.4 35.2
Qwen2.5-VL + Audio 36.3 26.6 35.2 35.4
Qwen2.5-VL + Text 37.2 28.3 37.9 38.1
Qwen2.5-VL + Audio + Text 37.6 29.5 38.0 39.5

Method HR LR TR SR

Qwen2.5-VL 36.0 26.5 35.4 35.2
Qwen2.5-VL + CoT 40.5 28.7 37.2 40.9

VideoLLaMA3 31.5 41.2 55.6 50.0
VideoLLaMA3 + CoT 33.8 44.6 56.2 53.8

5.2 EXPLORING CRUCIAL FACTORS OF VIDEO TEXT UNDERSTANDING

Model-intrinsic Factors. As shown in Tab. 3, we conduct ablation studies on several factors.
First, we examine the impact of input resolution using two representative models, Oryx-1.5 (Liu
et al., 2024d) and InternVL2.5 (Chen et al., 2024d), both of which support adjustable input sizes.
Increasing the resolution significantly improves video text understanding performance, especially in
InternVL2.5 (Chen et al., 2024d), where the input images are divided into sub-patches to allow better
preservation of text details. Second, to assess the role of OCR capability, we refer to each model’s
performance on standard OCR benchmarks such as OCRBench (Liu et al., 2024c). The results show
that a model’s video text understanding performance generally aligns with its fundamental OCR
accuracy. Finally, we compare different LLM backbones and find that certain architectures (e.g.,
Qwen2.5) exhibit stronger performance in multilingual scenarios, often outperforming LLaMA-
based variants. These observations collectively indicate that video text understanding is influenced
by a combination of input fidelity, OCR capacity, and language modeling strength.

External Factors. As shown in Tab. 4, we first investigate whether external auxiliary information
can enhance video text understanding, particularly for reasoning tasks. In this study, we consider
audio transcripts and video text (e.g., subtitles or OCR outputs), both of which can be extracted using
specialized tools. We convert these modalities into textual sequences and append them to the original
query as contextual subtitles. As shown in our experiments, both sources contribute positively to
performance. Video text provides stronger gains in global tasks that require long-range context,
while audio transcripts are more beneficial for local tasks, possibly due to their alignment with short-
term actions or events. Second, we propose a video text-centric Chain-of-Thought (CoT) reasoning
strategy, which decomposes complex reasoning processes into structured sub-steps. Specifically, the
video is uniformly segmented into multiple clips. For each clip, the model is prompted to: (1) spot
all visible texts, (2) generate a detailed description of the clip, and (3) infer whether any visual texts
are semantically related to the description and answer the reasoning question accordingly. This CoT-
based prompting strategy yields consistent improvements across all reasoning tasks, highlighting the
potential of test-time reasoning augmentation for video-language models.

6 CONCLUSION

This paper presents VidText, a comprehensive benchmark for evaluating video text understanding in
large multimodal models. Through broad scenario coverage, multi-granular evaluation, and paired
perception-reasoning tasks, VidText enables systematic analysis of LMM capabilities. Our empir-
ical studies reveal that current LMMs face significant challenges in both perceiving and reasoning
over video texts, requiring joint optimization of model-intrinsic factors (input resolution, OCR ca-
pability, LLM backbone) and external strategies (auxiliary modality integration, Chain-of-Thought
prompting). We expect VidText to advance research in OCR and video understanding communities.
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ETHICS STATEMENT

Scope and Intended Use. VidText is a research-only benchmark for video text perception and
reasoning (e.g., scene texts, subtitles, signage). It is not designed for identity recognition, person
tracking, surveillance, or any privacy-invasive applications. The dataset, code, and evaluation scripts
are released to advance transparent, verifiable research on video–language understanding.

Data Sources and Licensing. VidText aggregates publicly-available video–text resources and es-
tablished benchmarks under their original research licenses. We additionally include a curated set
of public YouTube broadcasts (sports/esports). Redistribution is limited to non-commercial aca-
demic research. Items with ambiguous or restrictive licensing were excluded. For platform-sourced
videos, we primarily release indices and retrieval scripts rather than raw videos; if research ex-
emplars are strictly necessary, they are provided in de-identified, downsampled, and sparsely
sampled form to reduce re-use risks.

Consent and Human Involvement. A small-scale human evaluation involved three trained
graduate RAs who received an Information Sheet, provided informed consent, and were com-
pensated at the institution’s standard rate ($25/hour). No demographic attributes were collected, and
no audio/video recordings of annotators were made. All annotation artifacts are stored on encrypted
drives with access restricted to the author team. Consistent with US 45 CFR 46, EU GDPR, and our
institution’s policy, this activity qualifies as Exempt / Not Human-Subjects Research (Category
4: publicly available / anonymized data).

Privacy and De-identification. We do not actively record new data. For public videos, potentially
identifiable faces are blurred; channel identifiers/watermarks are masked or cropped; OCR/ASR
textual outputs that may contain personally identifiable information (PII) are removed or replaced
with placeholders. We perform a combined rules-based and model-aided check before release, keep
spot-check logs, and update the release when residual issues are reported.

Copyright and Takedown. We will provide a dedicated takedown contact on the project page and
repository. Upon verified request from content owners or data subjects, we will remove the corre-
sponding content within 48 hours. When removal is necessary, we follow established precedents
by retaining only sparse frames or annotation/metadata indispensable for scientific reproducibil-
ity. We keep audit logs of takedown requests and actions.

Bias, Fairness, and Transparency. The Dataset Card reports language/region distributions, task
coverage, and per-subset performance to surface disparities. We encourage reporting per-subset
metrics and conducting follow-up robustness/fairness analyses.

Misuse Prevention. The license and documentation explicitly prohibit surveillance, biometric
identification, targeted profiling, and other privacy-invasive or unlawful uses. Redistribution of
original platform videos is discouraged; instead, we provide indices and scripts that respect plat-
form Terms of Service (ToS).

Environmental Considerations. We report hardware profiles and approximate GPU-hours for
key experiments. To reduce energy cost, we offer evaluation pipelines with frame sampling, reso-
lution caps, and cache reuse, and we avoid redundant inference in ablations.

Disclaimer. VidText is released solely for non-commercial academic research. Users must ensure
compliance with applicable laws and data-source ToS; the authors do not grant rights beyond the
stated license. Verified complaints will be processed within 48 hours according to our takedown
policy.

REPRODUCIBILITY STATEMENT

Release Artifacts. We release: (i) JSON schemas and examples for all VidText tasks (video-
/clip-/instance-level); (ii) data indices and retrieval scripts (plus SHA256 checksums and directory
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layout); (iii) unified scoring scripts for every task; (iv) one-command evaluation/ablation scripts;
(v) a Dockerfile and conda environment specification; and (vi) logs for key experiments (hardware
profile, GPU-hours). Public entry points and documentation are provided at <repo_url>.

Evaluation Protocol. Each task specifies metric definitions and a single entry script. We fix the
following to avoid hidden degrees of freedom: sampling rate (FPS), temporal window and stride,
maximum frames per sample, input-resolution caps, and the concatenation rules for auxiliary text
(OCR/ASR). Default seeds and decoding parameters are provided; any deviations must be reported.

Models and Checkpoints. We list external models and versions with exact checkpoint iden-
tifiers (e.g., Video-LLaMA3-<ckpt>, InternVL2.5-<ckpt>, Qwen-VL-2.5-<ckpt>,
Gemini-1.5-Pro-<date>). Inference configs include: input resolution, max token/sequence
length, sampling temperature/top-p, and video-text-centric Chain-of-Thought (CoT) prompt tem-
plates. All prompts are released verbatim.

Auxiliary Pipelines (OCR/ASR). We provide reproducible OCR/ASR pipelines with engine ver-
sions and settings: OCR (engine name/version, language packs, page segmentation/reading order
options) and ASR (engine name/version, sampling rate, VAD settings). A standardized prompt-
concatenation template appends cleaned OCR/ASR text to user queries, preserving determinism.

Ablation Protocols (One-Command). We supply toggles and single-entry scripts for the follow-
ing, each with fixed hyperparameters:

• Temporal modeling: establishes the necessity of true video input.

• Multi-Video Effectiveness: cross-clip evidence aggregation (e.g., voting, retrieval-and-
rerank).

• Resolution Scans: resolution sweep (e.g., {224, 336, 448, 560}) and visual partition set-
tings.

• OCR Capability Alignment: alignment table mapping core OCR scores to downstream
performance.

• Aux/CoT On–Off: visual-only, visual+OCR, visual+ASR,
visual+OCR+ASR, visual+CoT, visual+Aux+CoT.

Canonical Commands. We expose minimal, deterministic entry points; actual script names are
provided in the repo README.

Determinism and Environment. We fix random seeds across Python/NumPy/PyTorch and enable
deterministic backends when available. We document unavoidable non-deterministic sources (e.g.,
vendor kernels, closed APIs). We provide a Docker image and a conda env.yml with exact
package versions, CUDA/cuDNN/driver requirements, and OS details.

Hardware Disclosure. We report GPU models/counts, driver/CUDA/cuDNN versions, average
inference time, and peak memory for principal baselines and ablations. Where applicable, we report
energy-related proxies (e.g., GPU-hours). Representative configs: <GPU_type>, <CUDA_ver>,
<driver_ver>.

Data Integrity and Versioning. All downloadable artifacts have SHA256 checksums. Re-
leases are versioned; metric-affecting changes are accompanied by a revised reference evaluation.
Takedown-driven updates (e.g., removal or de-identification improvements) are recorded in a public
changelog.

Support and Questions. Reproducibility questions and bug reports can be filed on the issue
tracker or sent to our e-mail. We aim to respond within two business days.
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A OVERVIEW OF APPENDIX

• Limitations (B)
• Discuss (C)
• Use of LLMs (D)
• Broader impact (E)
• More Details of VidText (F)
• More ablation studies (G)
• Collecting details of VidText (H)
• Details of annotation (I)
• Detailed experimental results (J)
• Model prompts (K)
• More visualization results (L)
• Ethics and Responsible Dataset Use (M)

B LIMITATIONS

We summarize the limitations of our work as follows:

• Limited scenario coverage: Although VidText includes 27 fine-grained video categories, it still
lacks representation of long-tail or high-risk domains such as medical emergencies, industrial
workflows, or disaster scenarios.

• Imbalanced language distribution: The majority of samples are in English and Chinese, with
significantly fewer examples in other languages such as German, Korean, and Japanese. This
imbalance prevents a thorough evaluation of multilingual OCR and reasoning capabilities.

• Scarcity of challenging text instances: VidText contains relatively few examples involving dif-
ficult text conditions such as severe occlusion, low resolution, motion blur, unusual fonts, or
multi-line arrangements. This limits the benchmark’s ability to fully assess model robustness
under real-world noise and distortion.

C DISCUSSION

These dataset and model limitations are mutually reinforcing. Dataset gaps may conceal important
weaknesses in current models, while existing models’ deficiencies highlight the need for broader and
more diverse benchmarks. Future efforts should focus on expanding long-tail scene and language
coverage in VidText, while also improving LMM architectures with better multilingual OCR, noise
robustness, and cross-modal reasoning abilities. Furthermore, we also summarize three insights as
follows:

• Weak cross-domain transfer: Most LMMs are pretrained on image-based OCR tasks and strug-
gle to generalize to unseen video scenes, such as sports broadcasts or livestream interfaces, where
text appearance and context are highly dynamic.

• Insufficient multilingual alignment: Current models show limited ability in detecting, tran-
scribing, and semantically linking non-English texts to the visual context, resulting in degraded
performance on multilingual content.

• Low robustness to visual noise: Models often fail when confronted with noisy, blurry, or oc-
cluded text, particularly in tasks requiring instance-level grounding. This degrades downstream
reasoning performance and reflects a need for stronger visual resilience.

D USE OF LARGE LANGUAGE MODELS (LLMS)

Scope. We used LLMs only for language polishing and light scripting assistance. LLMs were not
used to generate data, labels, model outputs, evaluation results, or figures.
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Writing assistance. LLMs were employed to improve grammar, wording, and clarity of prose and
to reformat LaTeX. All technical content (methods, formulas, hyperparameters, tables, and numbers)
was authored and verified by the authors.

Scripting assistance. LLMs helped draft boilerplate code such as command-line wrappers, dataset
loaders, or small utilities (e.g., argument parsing, logging). All scripts were manually reviewed,
edited, and tested by the authors before inclusion. Final experimental pipelines are specified in our
repository and Reproducibility Statement.

No synthetic labels or data. No LLM-generated text was used as ground-truth labels, dataset
entries, or to augment training/evaluation data. Test annotations, metrics, and reported results are
human-authored or taken from public benchmarks per their licenses.

Privacy and ToS. We did not upload private or license-restricted raw videos to third-party APIs.
Any prompts contained no personally identifiable information. Our usage complies with data-source
licenses and platform Terms of Service.

Reproducibility. All scripts produced with LLM assistance are fully documented and version-
controlled; seeds, hyperparameters, and command entry points are fixed. Therefore, the use of
LLMs does not affect experimental validity or reproducibility.

E BROADER IMPACT

The VidText benchmark is poised to make a significant contribution to both the OCR and video
understanding communities by bridging the gap between low-level text perception (Shu et al., 2025;
Li et al., 2024e; Zeng et al., 2024) and high-level semantic reasoning (Long et al., 2021; Zhu et al.,
2016) in video contexts.

For the OCR community, VidText offers a valuable opportunity to move beyond traditional image-
based text detection and recognition (Huang et al., 2022; Zhou et al., 2017; Liao et al., 2020; Shu
et al., 2023). By shifting the focus to temporal and contextual dynamics in videos, it promotes the
development of algorithms that can track, ground, and interpret visual texts over time.

For the video understanding community, VidText introduces the underexplored yet semantically rich
modality of scene text into the landscape of video-language research. By incorporating fine-grained
text perception tasks and their paired reasoning counterparts, VidText pushes video-language models
to integrate visual texts with multimodal contextual cues, fostering more explainable, interpretable,
and grounded video understanding.

F MORE DETAILS OF VIDTEXT

Scene and language distributions. Fig. 5 illustrates the distribution of visual text quantity across
six video scene categories. The largest number of text instances appears in Entertainment and
Sports-related content, while Knowledge and Media are less dense in text content.For complete-
ness, Tab. 5 reports the proportional breakdown of languages. The two largest—English and Chi-
nese—account for 46.1% and 32.3% of the corpus, respectively, while Japanese (8.2%), Korean
(7.0%), and German (6.4%) together make up the remaining 21.6%. This skew toward high-
resource languages suggests that models may generalize better on English/Chinese content, whereas
performance on lower-resource languages could be constrained by data scarcity.

Video duration distribution. VIDTEXT exhibits a wide range of video durations, with an average
length of 108.2 seconds. As shown in Fig. 6, this highlights the multi-duration characteristic of
VIDTEXT, ensuring the temporal diversity needed to support both short-form and long-form video
understanding tasks.

Semantic content word cloud. To visualize the semantic richness and diversity of video–text
interactions, we construct a word cloud using all questions and answers in VIDTEXT. As shown
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Table 5: Distribution of scene super-categories and languages in VIDTEXT.

Scene super-category # Videos Proportion

Media 192 20.4%
Knowledge 164 17.5%
Life-record 180 19.2%
Entertainment 123 13.1%
Ego-centric 101 10.8%
Sport 179 19.0%

Languages

English 433 46.1%
Chinese 303 32.3%
Japanese 77 8.2%
Korean 66 7.0%
German 60 6.4%

TextNumber

60,000

50,000

40,000

30,000

20,000

10,000

0
Entertainment Knowledge  LifeRecord Ego-centric Media Sports 

Figure 5: Text quantity distribution across six scene categories.

in Fig. 7, high-frequency words such as text, video, content, and EXIT reflect a strong alignment
between text and semantic reasoning. The co-existence of spatial keywords (e.g., LEFT, RIGHT),
functional terms (e.g., score, speed), and contextual references (e.g., player, talent) highlights the
multi-granular reasoning needs of the dataset.

G MORE ABLATION STUDIES

G.1 FURTHER IMPACT ANALYSIS OF KEY DESIGN CHOICES

Impact of Video Duration To investigate the influence of video duration on various tasks, we
grouped videos into five duration intervals and evaluated four representative tasks: Text Localiza-
tion, Temporal Causal Reasoning, Local OCR, and Local Reasoning. The results are shown in
Tab. 6.

Observation. Perception-heavy tasks (e.g., Text Localization and OCR) suffer a significant perfor-
mance drop as video length increases. This indicates the challenge of long-range visual-text depen-
dency modeling. Reasoning tasks also degrade but show more fluctuation. In particular, Temporal
Causal Reasoning performs unexpectedly poorly on 30–60 s videos.
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30-60 sec, 50.40%

1-5 min,8.10%

5-30 min, 6.40%

>30 min, 1.80%

0-30 sec, 33.30%

Figure 6: Video duration distribution in VIDTEXT.

Figure 7: Word cloud of all questions and answers in VIDTEXT.

We hypothesize this may not only be due to duration, but also due to difficulty in locating the relevant
temporal segment where the causal text appears. To verify this, we conduct an additional ablation
study: for each sample, we crop the ground-truth segment and feed only that segment into the model.
The results in Tab. 6 demonstrate that models perform significantly better when provided with only
the relevant segment, confirming that text localization is a key bottleneck.

This ablation emphasizes that improving temporal grounding and retrieval capabilities is essential
for long-form causal reasoning tasks.

Language diversity ablation. We analyze Holistic/Local OCR across languages (Tab. 7) for
Qwen2.5-VL-7B and VideoLLaMA3-7B. We observe notable performance drops on lower-
resource languages (Korean, Japanese, German) versus high-resource ones (English, Chinese), sug-
gesting bias from training data distributions.

Alignment with training distribution (controlled fine-tuning). Since most model developers do
not disclose language ratios, we conduct a controlled study on LLaVA-One-Vision by incrementally
adding multilingual OCR data during instruction tuning: Phase 1 (IC13+IC15; English), Phase 2
(+ReCTS+TextOCR; add Chinese), Phase 3 (+MLT17+MLT19; add Korean/Japanese/German). We
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Table 6: Impact of video duration and segment cropping.

Impact of Video Duration Impact of Segment Cropping on TCR

Duration Range Text Loc. ↑ OCR ↑ Reasoning ↑ Model Full Video Segment ∆

0–30 s 29.81 27.07 45.45 VideoLLaMA3 43.33 56.67 (↑13.34)
30–60 s 29.01 24.25 54.55 Qwen2.5-VL 26.67 33.33 (↑6.66)
1–5 min 14.45 30.21 42.86
5–30 min 8.28 18.31 46.57
≥30 min 0.00 0.00 33.33

Table 7: OCR performance (%) across languages. Comparison between Qwen2.5-VL and VideoL-
LaMA3 on local and holistic OCR tasks.

Language Qwen2.5-VL↑ VideoLLaMA3↑
Local OCR Holistic OCR Local OCR Holistic OCR

English 49.3 45.2 45.5 32.1
Chinese 26.3 25.4 24.5 22.6
Korean 17.6 16.4 18.9 13.5
Japanese 22.8 23.1 23.1 18.3
German 14.5 12.4 14.8 11.2

keep the original video instruction data to preserve video ability. Tab. 8 (Holistic OCR) shows
consistent gains with multilingual supervision, especially on lower-resource languages.

G.2 MODEL-INTRINSIC FACTORS

We ablate three influential factors (Tab. 3): (i) Input resolution: Increasing resolution improves
video-text performance, especially for models that partition inputs into sub-patches (e.g., In-
ternVL2.5), which better preserve text details at higher resolutions. (ii) OCR ability: Performance
aligns with standard OCR benchmarks (e.g., OCRBench), indicating that fundamental OCR com-
petence is predictive for video text understanding. (iii) LLM backbone: Some backbones (e.g.,
Qwen2.5) show stronger multilingual performance than LLaMA-based variants, suggesting lan-
guage modeling strength matters alongside perception.

G.3 CHAIN-OF-THOUGHT (COT) STRATEGY: EFFECTIVENESS AND SCOPE

Why it works. CoT boosts performance mainly due to two factors: (i) it decouples complex video–
text reasoning into two sub-problems, visual text spotting and video content understanding, allowing
the model to focus on one aspect at a time; (ii) it mitigates the temporal aggregation bottleneck in
current Video LLMs by segmenting long videos and enabling localized reasoning within clips. For
global tasks like Holistic Reasoning, CoT processes long videos sequentially, clip by clip; for local
tasks (e.g., Local Reasoning, Temporal Causal Reasoning), it transforms the search space from
vision to text, using a retrieval-like strategy to locate relevant cues.

Ablations. We design two ablated CoT variants to understand its impact(Tab. 9: (1) Partial-Task
CoT, where prompts only include either video summarization (VS) or visual text spotting (VTS);
and (2) Partial-Time CoT, where the model reasons over the full video instead of clip-wise segments.
Results show that the full CoT strategy outperforms both ablations, demonstrating that joint mod-
eling of segmented temporal reasoning and dual-modality decomposition is essential for complex
video text understanding.

Scope and limitations. Despite its effectiveness, CoT introduces extra computation (video seg-
mentation and intermediate generations), increasing inference latency. Moreover, its performance
depends on the base model’s perception and generation capacity: stronger models yield better CoT-
based reasoning.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Table 8: Holistic OCR vs. multilingual supervision during instruction tuning (LLaVA-One-Vision).

Language Phase 1 Phase 2 Phase 3

English 34.2 36.7 39.2
Chinese 22.3 26.4 29.1
Korean 12.1 13.5 16.0
Japanese 10.0 11.2 14.2
German 8.5 8.2 14.3

Table 9: Ablation of CoT strategies on Qwen2.5-VL-7B. HR, LR, TR, SR denote Holistic, Local,
Temporal, and Spatial Reasoning respectively.

Method HR ↑ LR ↑ TR ↑ SR ↑
Baseline 36.0 26.5 35.4 35.2
Partial-Time CoT 36.2 26.3 35.4 35.3
Partial-Task CoT (VS only) 37.3 27.1 35.9 37.2
Partial-Task CoT (VTS only) 38.5 27.5 36.8 38.4
Full CoT (ours) 40.5 28.7 37.2 40.9

H COLLECTING DETAILS OF VIDTEXT

This section outlines the procedures for sourcing, filtering, and analyzing the video content in VID-
TEXT.

Sources. To ensure a broad coverage of video scenarios and textual styles, VIDTEXT integrates
data from six public datasets:

• BOVText (Wu et al., 2021) — Multi-scene videos suitable for holistic OCR tasks.
• RoadText-1K (Reddy et al., 2020) — Dense road-text detection in driving scenarios.
• DSText (Wu et al., 2023) — Subtitles from indoor instructional videos.
• M4-ViteVQA (Zhao et al., 2022) — Clip- and instance-level multimodal QA videos.
• Video-MME/MLVU (Fu et al., 2024; Zhou et al., 2024) — Long-form videos with strong tem-

poral reasoning demands.

YouTube supplementation. To supplement long-form data, we collect additional videos from
YouTube, focusing on the following categories:

• Sports highlights: NBA, FIFA World Cup, and related competitions.
• Gaming commentary: live streams and post-game analysis.
• TV shows and variety entertainment.

Retrieval and filtering criteria. Candidate videos were retrieved using targeted keyword queries
such as "match subtitles", "game commentary", and "captioned recap". We applied the following
filtering rules:

• Minimum duration: ≥3 minutes for YouTube, >30 minutes for Video-MME.
• Scene-text richness: We use the latest detector Gomatching (He et al., 2024) to calculate the

proportion of frames containing text.
• Density thresholds: Videos must meet a minimum ratio of text-bearing frames: 20% for

YouTube videos and 10% for Video-MME.

Metadata statistics. We also collect metadata such as video length, resolution, and frame rate to
ensure coverage diversity across temporal and visual characteristics.
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Instance Annotation Guidelines
Step 1: Text Detection (Bounding Box)
1.Draw a bounding box around 3-5 visible text instance in each video.
2.Annotate entire text lines, not individual words or characters.
3.If the same text appears across multiple frames, assign it the same Track ID using the tracking tool provided.
Step 2: Text Classification
Each bounding box must be assigned one of the following text categories:
Clear Text:clearly visible text.
Illegible: text that is unreadable due to blur, occlusion, or low resolution.
Step 3: Text Transcription
All Text instances require transcription.
For tracked text across multiple frames, you only need to transcribe it once—the tool will propagate it across 
the track automatically
Special Handling: Blur or Occlusion
If a text instance becomes blurred or occluded:
If the blur/occlusion lasts 3 frames or fewer, continue the original track.
If it lasts more than 3 frames, end the current track and create a new one labeled as Illegible.
If a text transitions from unreadable to readable (or vice versa), create a new track with the updated label

Figure 8: Instance-level annotation guidelines.

I DETAILS OF ANNOTATION

I.1 INSTANCE ANNOTATION

Each video underwent a two-stage text annotation process. In the first stage, annotators drew tight
bounding boxes around visible text lines and assigned each to a category: ClearText or Illegible. A
tracking tool automatically propagated bounding boxes across frames using consistent Track IDs.
More details are shown in Fig. 8.

I.2 CLIP-LEVEL ANNOTATION

Videos shorter than 1 minute were split into 5-second clips; longer ones into 20-second clips. For
each clip, annotators recorded all visible, legible text and its temporal span. Repeated instances
within a clip were marked only once. Illegible or heavily blurred texts were ignored. More details
are shown in Fig. 9.

I.3 VIDEO-LEVEL TEXT COLLECTION

A separate annotation team reviewed the OCR predictions from our model. Annotators removed
hallucinated content and added missing instances. Chinese was annotated by full lines; other lan-
guages (e.g., English, German) were annotated by words. Each unique string was listed once in the
final inventory. More details are shown in Fig. 9.

I.4 HOLISTIC REASONING

Annotators watched the full video and consulted the video-level text inventory to write one multi-
label question per video (see Fig. 10). Each question included seven options describing high-level
semantics such as scene, role, topic, or sponsor.

I.5 LOCAL REASONING

For every clip (as defined in D.2), annotators created one four-option multiple-choice question re-
quiring reasoning between localized text and visual context (e.g., subtitle or character behavior). The
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    Clip & Video-Level Annotation Guidelines
Clip Level:
Video Segmentation
1.Divide the video into consecutive temporal segments ：If the video is shorter than 1 minute:divide it into 
clips of 5 seconds each.Else; divide it into clips of 20 seconds each.
2.Each segment should have a clear start_time and end_time.
Text Identification
1.For each clip, annotate all readable text instances that appear within the clip’s time span.
2.Ignore illegible, blurred, or heavily occluded text.
3.If the same text appears multiple times within the clip, annotate it only once.
Video Level:
Global Text Collection
1.Watch through the full video and record all clearly visible and legible text content.
2.You will be provided with a preliminary list of detected texts (from an automatic text detection model). In 
this case, carefully review and correct the list by adding missing texts and removing false positives to ensure 
accuracy.
3.Each unique text instance should be annotated only once (no need to mark repetitions).
Language-Based Annotation Rules
1.For Chinese text: annotate by complete text lines (e.g., subtitle or sign line).
2.For Non-Chinese languages (e.g., English, German): annotate by individual words.
3.For mixed-language cases, follow the dominant language rule and note exceptions when needed.

Figure 9: Clip- and video-level annotation guidelines.

    Annotation Guidelines for Holistic Reasoning
goal::  Given the overall textual and visual content throughout the video—including information across multiple time 
segments—annotate a global question that requires semantic reasoning across time and space.
 Input
You will be given the full video and its OCR transcription.
Your goal is to:Observe the entire video, noting important text and visual elements across different timepoints.Identify high-
level topics, roles, actions, or patterns that emerge over time.
Create a multi-option question that tests understanding of the video’s overall narrative or semantic structure, including content 
distributed across time.
Select 3 correct options from a set of 7 plausible answers.
CoT Expectation:
You should simulate how a model would connect multiple distributed cues, 
such as:“The subtitle shows the name + stage text shows show name + outfit = talent show”
“Multiple timepoints include branding (e.g., sponsor, stage banner) → context clue”
“Introduction + mid-performance + audience shot = global understanding of scene”

GOOD EXAMPLE:
Question：Based on the video text and description, which of the following statements accurately describe the scene and 
content of the video?
"A": "The young performer is identified as a 12-year-old talent from a rural background.",
"B": "The show being referenced is \"中国达人秀\" (China's Got Talent).",
"F": "The show features a challenge round sponsored by \"海飞丝\"
 

Figure 10: Holistic reasoning annotation guidelines.

question must require multimodal reasoning and not be solvable using text or image alone. More
details are shown in Fig. 11.

I.6 TEMPORAL CAUSAL REASONING

Given a reference text (e.g., scoreboard or subtitle), annotators identified the timestamp of its ap-
pearance, observed the following 3–30 seconds, and formulated a causal reasoning question. The
answer was a single factual sentence describing the resulting action. Each QA pair was anchored to
the cue’s timestamp. More details are shown in Fig. 12.
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                                     Annotation Guidelines for Local Reasoning
goal::  Within a specific time segment of the video, reason over the text and visual context to answer a multimodal question 
grounded in localized semantics. 
Input
You are given a specific video segment along with:
•Detected OCR text within the segment
•The corresponding video frames
Your task is to:
Understand the meaning and context of the visible text in the clip.Interpret surrounding visual content (e.g., characters, 
objects, layout)
Construct a multiple-choice question that tests the model's semantic understanding and reasoning ability
Provide 4 candidate options and select the correct answer
CoT Expectation:
Ask: what does the text cause / reflect / imply?
Simulate the model making the connection:
“If the subtitle says ‘stay still’, and the character hides behind a wall → he’s afraid / threatened”

GOOD EXAMPLE:
Q: “In the clip, the text 'Final Round' is shown. What does it suggest about the competition?”
A: “The winner will be decided in this match.”
Q: “When the subtitle says 'Don't move', what is the person doing?”
A: “They are hiding quietly behind the shelf.” 

Figure 11: Local reasoning annotation guidelines.

   Annotation Guidelines for Temporal Causal Reasoning
goal:Track a specific text instance in the video, analyze the sequence of related events, and annotate a question–answer pair 
that reflects their causal relationships.
 Input
1.Locate the reference text
•Find the timestamp where the given text appears clearly (e.g., scoreboard, sign, subtitle).
•Pause at that moment and record the text content and timestamp.
2.Observe what happens next
•Watch the following 3–30 seconds of the video.
•Identify any actions, changes, or reactions that may be caused by or related to the text.
3.Write the QA pair
Question: Frame a question that highlights the relationship (e.g., “what happened after…” / “how did the player respond to…”).
Answer: Describe the actual action concisely and factually.
CoT Expectation:
you should consider the temporal progression: what happened after the text appeared, and why it might be related.
Example: a low score triggers a coach’s timeout; a red light prompts braking.
GOOD EXAMPLE:
"question": "At a score of 105:83, what move did James make to score?",
  "answer": "He stole the ball and dunked it.“
"question": "At the beginning of the game when the score was 0:0, how did the Warriors player score while being defended by 
Player 1?",
 “answer": "By scoring a three-point shot",

Figure 12: Temporal causal reasoning annotation guidelines.

I.7 SPATIAL REASONING

As shown in Fig. 13, at a given timestamp, annotators located a reference text or entity and con-
structed a question requiring reasoning over its spatial relation to nearby visual elements (e.g., di-
rection, proximity, interaction).

Quality control. All annotations underwent double review. Each item was cross-validated by a
second annotator, and disagreements were resolved by expert adjudication. On a random sample of
200 items, we achieved an average inter-annotator agreement of 0.81 (Cohen’s κ), indicating high
reliability.
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    Annotation Guidelines for Spatial Reasoning
goal:At a specific timestamp, infer the spatial relationship between a text instance (or person) and surrounding visual 
elements—such as direction, relative position, or interaction.
 Input
1.Locate the reference text
•Find the timestamp where the given text appears clearly (e.g., scoreboard, sign, subtitle).
•Pause at that moment and record the text content and timestamp.
2.Observe what happens next
•Watch the following 3–30 seconds of the video.
•Analyze the scene: what object or person is near, behind, or interacting?
3.Write the QA pair
Compose a multiple-choice or open-form reasoning question and answer
CoT Expectation:
you should consider Reason about spatial layout: who is positioned where, and what action is implied.
Use directional and functional cues: “behind”, “to the right”, “blocking”, “following”.
GOOD EXAMPLE:
 "question": "When the score was 31:18 and 2:09 remained in the game, where was Player 8 located when attempting the 
three-point shot?",
 "answer": "Bottom-middle of the image, right 45-degree three-point position"
"question": "With the score 0:0, who is the player defending Timber-wolves' Player 5 (white jersey)?",
 “answer": "Player 31"

Figure 13: Spatial reasoning annotation guidelines.

J DETAILS OF EXPERIMENTAL SETTINGS

J.1 MODEL CONFIGURATION

We outline the primary baselines evaluated on VIDTEXT. To ensure fair comparison across both
open- and closed-source models, we explicitly standardize frame sampling and spatial resolution for
each baseline, as summarized in Tab. 10.

For proprietary models such as GPT-4o, Gemini 1.5 (Pro and Flash), and GPT-4-Turbo, we follow
their official or API-supported settings. GPT-4o supports up to ∼500 image inputs, for which we
adopt a uniform sampling rate of 0.5 fps with an input resolution of 512×512 to accommodate most
of our videos. GPT-4-Turbo is restricted to 16 frames, uniformly sampled across the video, and
resized to the same resolution.

For open-source models, we align each configuration with their original public implementations.
VideoChat-Flash, Qwen2-VL (7B), and all Qwen2.5-VL variants (3B/7B/72B) operate
under a 1 fps sampling strategy, with a maximum of 768 frames per video. Models supporting
extended temporal contexts—such as VideoLLaMA 3, InternVL 2.5, and LLaVA-OV—are
provided with 64 uniformly sampled frames, resized to 336 × 336. ShareGPT4Video also uses
64 frames, but with a reduced spatial resolution of 224× 224. LongVU and LongVA are evaluated
with sparse and extended frame settings. LongVU uses 1 fps sampling, while LongVA accepts up
to 128 uniformly distributed frames. MiniCPM-V2.6 applies a fixed 64-frame sliding window,
following its official implementation.

J.2 HUMAN PERFORMANCE STUDY

To assess the upper-bound of performance on VIDTEXT, we conducted a controlled human eval-
uation across all tasks in our benchmark. Three annotators with experience in video analysis and
text recognition were recruited to answer a representative subset of questions spanning all eight task
types. Each participant was given access to the full video content and instructed to answer using
their best judgment, without time constraints. The average human accuracy across all tasks reaches
89.5%, substantially outperforming all evaluated models. In particular, humans demonstrated near-
perfect scores in holistic and local OCR, reasoning, and spatial understanding tasks, highlighting the
gap between human-level comprehension and the capabilities of current multimodal large models.
These results serve as a reference ceiling for future model development and underline the complexity
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Table 10: Frame–sampling and input-resolution settings for baselines.

Model Size Sampling Resolution

Proprietary MLLMs
GPT-4-Turbo – 16 frames 5122

Gemini 1.5 Flash – 1 fps 5122

GPT-4o – 0.5 fps 5122

Gemini 1.5 Pro – 1 fps 5122

Open-source MLLMs
LongVU 3 B 1 fps 4482

Qwen2.5-VL 3 B 1 fps 4482

Video-XL-Pro 7 B 1 fps 4482

LongVA 7 B 128 frames –
MiniCPM-V2.6 7 B 64 frames 4482

VideoChat-Flash 7 B 1 fps 4482

Qwen2-VL 7 B 1 fps 4482

Qwen2.5-VL 7 B 1 fps 4482

VideoLLaMA 3 7 B 64 frames 3362

ShareGPT4Video 8 B 64 frames 2242

Oryx-1.5 32 B 64 frames 3362

LLaVA-OV 72 B 64 frames 3362

Qwen2.5-VL 72 B 1 fps 4482

InternVL 2.5 78 B 64 frames 3362

and nuance of the video-text understanding challenges posed by VIDTEXT. More details are shown
in Tab. 2.

J.3 EXPERIMENT ENVIRONMENT

All experiments are conducted on a server equipped with 4×NVIDIA A100 GPUs (80GB each).
Model inference and evaluation are implemented in PyTorch with mixed-precision support.

K MODEL PROMPTS

Fig. 14 shows the prompt template used to obtain detailed frame-level captions from the Aria model.
The prompt includes instructions to describe the scene, detect visible text, summarize actions, and
relate them spatially and semantically. Tab. 11 lists the standardized prompt templates used for each
task in VIDTEXT.

L MORE VISUALIZATION RESULTS

We present additional visualizations of our VIDTEXT annotation examples in Fig. 15, Fig. 16, and
Fig. 17.

M ETHICS AND RESPONSIBLE DATASET USE

M.1 CONSENT AND COMPENSATION FOR HUMAN ANNOTATORS

Our human evaluation involved three graduate research assistants. Prior to participation, all anno-
tators were provided with an Information Sheet that clearly explained: (i) the research purpose;
(ii) the nature of the data to be viewed; (iii) estimated workload and duration; (iv) voluntary
participation with the right to withdraw at any time; and (v) assurance that no personal infor-
mation would be collected and that results would be reported in aggregate form. All annotators
gave informed consent by signing the document and were compensated at $25/hour, following our
institution’s standard rate for annotation tasks. No demographic or identity-related information was
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Aria Caption Generation Prompt
You are given images sampled from a video. Please imagine yourself in the scene and describe in detail what you 
see from your viewpoint. Your description should focus on the following aspects:
1. What is the overall scene or environment?
2. What visible objects or people are present?
3. Are there any  texts (e.g., signs, labels, instructions)? If yes, what do they say?
4. What activities or actions are happening in the scene?
5. Are there any meaningful relationships between the scene texts and the objects, people, or actions around them?
Please write the description in a natural and informative way, as if explaining what you are currently seeing. Avoid 
mentioning “image” or “frame”, and do not speculate beyond what is visible.
Output format:
- Scene description: [...]
- Visible texts: [...]
- Human and object activities: [...]
- Spatial or semantic relationships (if any): [...]

 

Figure 14: Prompt template used for Aria to generate frame-level captions.

collected, and no audio/video recordings were made. All annotation files are stored on encrypted
drives accessible only to the author team.

Based on international guidelines (US 45 CFR 46, EU GDPR, and our institution’s ethics policy),
this activity is classified as Not Human-Subjects Research (Not-HSR) or Exempt Category #4
(publicly available / anonymized data). We completed an internal ethics self-assessment, and
will include the signed consent forms and self-review documentation in the supplementary materi-
als.

M.2 PRIVACY AND COPYRIGHT COMPLIANCE FOR YOUTUBE VIDEOS

Regarding the 76 YouTube videos (sports and esports content) used in our dataset: (i) all videos
are sourced from publicly accessible broadcasts where faces are generally indistinct; (ii) for any
identifiable individuals, we apply automatic face blurring and crop out channel identifiers; (iii)
derived data are downsampled in resolution and watermarks removed; (iv) the dataset is released
strictly for non-commercial academic research under the CC-BY-NC-SA 4.0 license.

We adopt a takedown policy: a dedicated contact email will be provided on the dataset homepage
and GitHub; upon request from content creators or copyright holders, we will remove the relevant
video within 48 hours; in cases of full takedown, we will retain only sparse sampled frames or
annotations/metadata, following the practice of datasets like MovieNet (Huang et al., 2020). A
detailed Usage and Takedown Policy is included in the supplementary materials to ensure privacy
protection, responsible use, and copyright compliance.
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Table 11: Prompt templates used for VIDTEXT tasks.

Task Prompt template

Holistic OCR

"Recognize all visual texts in the video.
If the text is not in English, do not provide an English translation.
Do not include any descriptions, narrative, or context.
Output only the extracted text lines, each on a new line."

Holistic Reasoning

"Watch the video carefully and select the correct three answers.
Question: {question}
Options: {options}
Please output your answer in the format: Correct Answers: A, B, C"

Local OCR

"Watch the video and answer the following question based on its content.
Question: {question}
Please output only the texts that appear in the specified time interval as a JSON array of strings,
with each element representing one piece of text. Do not include any additional description or translation."

Local Reasoning

"Watch the video and answer the following multiple-choice question based on its content.
Question: {question}
Options:
Option A: {text}
Option B: {text}
...
Please select the correct option."

Text Localization

"Watch the video and answer the following question based on its content.
Please provide the time interval (in seconds, precise to 0.1s) during which the text appears in the video.
Output your answer in JSON format with keys ’start’ and ’end’. For example: {"start": 0.0, "end": 30.0}.
Do not include any extra commentary."

Temporal Causal Reasoning

"Watch the video and answer the following multiple-choice question based on its content.
Question: {question}
Options:
Option A: {text}
Option B: {text}
...
Please select the correct option."

Text Tracking (Same prompt as Spatial Reasoning)

Spatial Reasoning

"Watch the video and answer the following multiple-choice question based on its content.
Question: {question}
Options:
Option A: {text}
Option B: {text}
...
Please select the correct option."
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HolisticOCR

Timestamp:30.1Q:Please provide all text in video
GT: [12岁的天籁唱将12岁的天籁唱将], [克服紧张后惊艳全场] ,[（下）], [《中国达人秀》] ...

Q:Please provide all text in video
GT: [ When] ,[the], [time] ,[comes] ,[to],[pack] ,[and],[head] ,[back], [home] ...

Timestamp:110.2

HolisticReasoning

Timestamp:64.1Q:Based on the video which are accurately depicted as part of the learning 
experience in the video?
GT: 1.Completing a session on HTML Basics Level 3; 2. Completing a session on Calculus 
Level 1;...
.

Q:Based on the video, which of the following statements are true 
GT:  1.The character uses Google Classroom to check their math homework 
assignments ;2.The character initially forgets to write down their homework 
assignment.];...

Timestamp:27.6

    Local OCR

Timestamp.2814.1Q:What text appears between 1295s and 1303s in the video?
GT: [IF],[You],[Like],[The],[Ride],[Tip],[The],[Guide!],[Tips],[Are],[Appreciated]...

Q:What texts appear between 230s and 240s in the video? 
GT:  [pendulum],[squat],[3x10],[reps].

Timestamp:368.4

Figure 15: (Top) more examples of HolisticOCR. (Middle) more examples of HolisticReasoning.
(Bottom) more examples of LocalOCR.

30



1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

    Local Reasoning

Timestamp:1819.1Q:"What is the special significance of the text '17 October 2021'?
GT: Marathon race day.

Q:What does the text '1322' represent? 
GT:  The author's race number.

Timestamp:2452.6

  Textlocalization 

Timestamp.867.1Q:When does the text 'MODE OF TRANSPORT E-SCOOTER 3/5' exist
 in the video?
GT: [1215.1s,1220.2s]

Q: When does the text 'tAWE beach & bar grill' exist in the video? 
GT:  [665.0s,667,8s]

Timestamp:550.3

 TemporalCausalReasoning 

Timestamp.811.7Q:When the score was 10:7 and 8:19 remained in the first quarter, what 
offensive action did the Thunder's Player 2 (white jersey) choose?
GT: Passed to a teammate for a three-point shot

Q: At 3:06 of the game, who did the red-black No.10 player pass the ball to, and 
what happened next?
GT:  Passed to No.7, who scored a goal.

Timestamp:530.3

7

Figure 16: (Top) more examples of LocalReasoning. (Middle) more examples of TextLocalization.
(Bottom) more examples of TemporalCausalReasoning.
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       TextTracking

Timestamp.581.8Q:From 19:14 remaining in the first quarter to 19:10, please provide the 
bounding box of the player wearing the white jersey number 10 at both the 
start and end time points.
GT:  [0.44, 0.83...],[0.67,0.83...]

Q: Please provide the start and end positions for the text \"CRAVE COFFEE\".?
GT:  [0.32, 0.77...],[0.54,0.55...]

Timestamp:550.3

11

      SpatialReasoning

Timestamp.182.8Q:t 86:36 of the match, who is behind Argentina’s No.24 player,and 
what is he doing?       
GT:  Green No.24, trying to stop the attack.

Q: When the score is 0:5, which player is defending Clippers number 24 (white) under 
the basket?
GT:  15

Timestamp:585.3

11

Figure 17: (Top) more examples of TextTracking. (B ottom) more examples of SpatialReasoning.
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