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Abstract

Large Language Models (LLMs) have shown001
remarkable comprehension abilities but face002
challenges in GPU memory usage during in-003
ference, hindering their scalability for real-004
time applications like chatbots. To accelerate005
inference, we store computed keys and values006
(KV cache) in the GPU memory. Existing007
methods study the KV cache compression to re-008
duce memory by pruning the pre-computed KV009
cache. However, they neglect the inter-layer010
dependency between layers and huge memory011
consumption in pre-computation. To explore012
these deficiencies, we find that the number of013
crucial keys and values that influence future014
generations decreases layer by layer and we015
can extract them by the consistency in attention016
weights. Based on the findings, we propose017
PyramidInfer, a method that compresses the018
KV cache by layer-wise retaining crucial con-019
text. PyramidInfer saves significant memory020
by computing fewer keys and values without021
sacrificing performance. Experimental results022
show PyramidInfer improves 2.2x throughput023
compared to Accelerate with over 54% GPU024
memory reduction in KV cache.025

1 Introduction026

Large Language Models (LLMs) (OpenAI, 2023;027

Anthropic, 2023; Jiang et al., 2023) like GPT4028

have demonstrated the unprecedented ability of029

remarkable comprehension in human languages.030

However, these large models meet up with a031

substantial challenge of immense GPU memory032

usage in the inference, due to the model and033

computational complexity. This hinders deploying034

LLMs at scale to meet the thousands of demands035

for chatting with chatbots.036

Different from training, models in the infer-037

ence do not need to record the optimizer states,038

activations, or gradients. As LLMs are mostly039

Transformer-based auto-regressive models, the040

GPU memory usage mainly consists of two parts:041

model parameters and KV cache. KV cache 042

presents the keys and values previously computed 043

in the attention. We store the KV cache in the 044

GPU memory and reuse it in future generations to 045

avoid re-computation. The KV cache mechanism 046

has been widely used to improve the inference 047

speed (Touvron et al., 2023; Zhang et al., 2022). 048

However, the KV cache consumes huge GPU 049

memory, especially for LLMs. For example, in 050

Figure 1, for a model with 7 billion parameters, 051

the parameters only consume 14 GB of memory 052

but the KV cache requires around 72 GB. The KV 053

cache has the potential to consume memory several 054

times the size of the model. It demonstrates a great 055

challenge that the throughput of LLM inference is 056

constrained by how much data (KV cache) we can 057

put in the GPU besides the model. 058
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Figure 1: Inference in the prefill phase: all models
of different sizes have the prompts of 64 × 2k.
LLM consumes huge GPU memory in the KV cache
compared to the small model. PyramidInfer can reduce
over 54% GPU memory usage in the KV cache while
having more than 2x throughput.

We break down LLM inference into two phases: 059

prefill phase and generation phase (Brown et al., 060

2020; Radford et al., 2019). In the prefill phase, 061

the prompt is computed in parallel to generate the 062

first token, and the initial KV cache is pre-filled. 063
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(a) StreamingLLM

evictd from KV cache

Drop all the intermediate KV cache 
thus forgetting the context and only 
remembering the recent tokens.

Layer N

Layer N+1

Layer N+2

(b) H2O / Scissorhands

evictd from KV cache

Compress the KV cache of different layers 
under the same standard ignoring their 
inter-layer dependency between them.

Layer N

Layer N+1

Layer N+2

(c) PyramidInfer (ours)

Only compute the crucial keys and 
values and gradually reduce the length 
of KV cache as the layer gets deeper. 
 

Computed KV cache in prefill phase Computed KV cache in generation phase Drop the keys and values from current KV cache

Figure 2: Comparison between PyramidInfer and other methods: (a) StreamingLLM only reserves the first and
recent tokens thus losing memorization of the previous context. (b) H2O/Scissorhands compress the KV cache
without difference for all the layers. They suffer great information loss by compressing too much in the shallow
layers. (c) Different from the above methods that can only compress after the KV cache has been computed,
PyramidInfer can compress the KV cache in the prefill phase. PyramidInfer only computes crucial keys and values
to do inference thus reducing more GPU memory and bringing higher throughput.

In the generation phase, the model decodes the064

next token one by one and appends the keys and065

values of the newly decoded token to the old KV066

cache. Recent studies (Zhang et al., 2023; Liu067

et al., 2023; Ge et al., 2023) compress the KV068

cache to reduce GPU memory usage. However,069

as shown in Figure 2, they all only reduce the KV070

cache that has been already computed rather than071

reducing the KV cache to be computed. They have072

to prefill the initial KV cache before they can start073

to compress, which neglects the great GPU memory074

consumption of computing the initial KV cache,075

especially for longer prompts and larger models. If076

the model can not process the prompt in the prefill077

phase, these methods are no longer applicable as078

their compression starts in the generation phase. In079

this paper, we focus on how to further compress080

the KV cache in the prefill phase besides the081

generation phase. We give out our findings and082

then propose our method PyramidInfer inspired by083

these findings.084

During the training, all input tokens predict085

the tokens next to themselves in an one-to-one086

teacher-forcing way (Lamb et al., 2016). During087

the inference, the tokens except for the last token088

no longer need to predict the next tokens but089

they still record this redundant information in090

keys and values. We call this Inference Context091

Redundancy (ICR) hypothesis. It inspires us to092

compress the KV cache by only computing the keys093

and values that record the context information.094

Another challenge arises as the initial KV cache095

is reused multiple times for generating future 096

tokens, necessitating careful retention of context 097

information during compression. Inspired by the 098

work (Liu et al., 2023), we further explore what 099

parts of the KV cache are always crucial for future 100

generations. We observe that queries of recent 101

tokens closer to the last token are more consistent 102

in attending to the same context keys and values, 103

denoted as the Pivotal Context (PvC). We call this 104

phenomenon as Recent Attention Consistency 105

(RAC). The consistency of attention weights in 106

recent tokens indicates that we can leverage it as 107

the oracle to select the crucial KV cache for future 108

generations in advance. 109

Based on our observations, we propose the 110

PyramidInfer, an effective method of reducing the 111

KV cache both in the prefill and generation phase 112

by layer-wise selecting the PvCs. In PyramidInfer, 113

the PvCs are gradually reduced as the layers get 114

deeper where the KV cache is like a pyramid. We 115

showcase the capability of PyramidInfer on a wide 116

range of tasks using OpenCompass (Contributors, 117

2023) on models of different types and sizes. 118

The results show that PyramidInfer has higher 119

throughput than the full cache method Accelerate 120

and Deepspeed by 2.2x and 1.4x, KV cache 121

compression method H2O by 2.4x with over 54% 122

less GPU memory in KV cache. 123

2 Related Work 124

Due to the increasing demands for chatting with 125

chatbots, efficient strategies are required to process 126
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thousands of queries to maximize the throughput.127

The fundamental way to improve the throughput128

is to put more data (larger batch) into the GPU129

memory to utilize the GPU parallelism better.130

Inference Parallelism One way is to enlarge the131

GPU memory. We can borrow the techniques used132

in training to accelerate the inference, e.g., pipeline133

parallelism (Huang et al., 2019), KV cache offload134

(Sheng et al., 2023), etc. These methods leverage135

multiple GPUs or even RAM to make up bigger136

space for input data.137

KV Cache Reduction However, if we have138

limited GPU memory, another way is to reduce139

the KV cache. For optimization in the CUDA,140

FlashAttention 2 (Dao, 2023) reduces the number141

of reads/writes between GPU HBM and GPU on-142

chip SRAM. PagedAttention (Kwon et al., 2023)143

borrows the virtual memory techniques to achieve144

near-zero waste in KV cache memory.145

Besides CUDA methods, we can optimize the146

KV cache from the model itself. From Figure 2,147

StreamingLLM (Xiao et al., 2023) reserves the re-148

cent context to enable unlimited input by sacrificing149

memorization of the history. Other methods like150

H2O (Zhang et al., 2023) and Scissorhands (Liu151

et al., 2023) leverage the attention to compress the152

KV cache. However, they treat the compression153

of different layers as the same thing and can154

not compress in the prefill phase. Our method155

PyramidInfer takes the difference in layers into156

account and realizes the compression in both the157

prefill and generation phases, thus better reducing158

the KV cache while maintaining the generation159

quality.160

3 Observation and Insight161

We verify the hypotheses of Inference Context Re-162

dundancy and Recent Attention Consistency, which163

inspire us to design the method PyramidInfer.164

3.1 Inference Context Redundancy165

Different from teacher-forcing in the training, only166

the last token has to predict the next token in the167

inference. We suppose there exist keys and values168

of the context that record the redundant information169

to predict the next token in the training but are not170

useful for inference. We call this the Inference171

Context Redundancy (ICR) hypothesis.172

3.1.1 Pivotal Context 173

To verify the hypothesis, we design an experiment 174

based on 40-layer LLaMA 2-13B to find out if 175

this redundancy exists in the KV cache. In this 176

experiment, we only reserve a proportion of keys 177

and values of certain layers while other layers 178

remain fixed and see how the perplexity of model 179

output will change. This selected proportion 180

consists of the important keys and values with 181

the top-p attention weights, denoted as the Pivotal 182

Context (PvC). 183

As shown in Figure 3, we show that, for most of 184

the layers, as the retention ratio of PvC decreases, 185

the perplexity of the output will increase. However, 186

as the layer becomes deeper (larger index), we 187

find that the influence of shorter PvC tends to 188

be smaller. For example, after Layer 27, the 189

perplexity remains stable even with 80% keys 190

and values are evicted. In Figure 4, we compute 191

the standard deviations across the retention ratios 192

of all the layers and observe they obey a power 193

law distribution. It indicates most of the keys 194

and values should be retained as the layers are 195

shallow and the redundancy in the KV cache 196

sharply increases as the layers become deeper. This 197

growing redundancy guides us to minimize the KV 198

cache while maximizing the performance. 199

3.1.2 Discussion 200

How does the model gather information to 201

predict the next token? Generating the next 202

token can be considered as a process that the last 203

token gathers the information from the context 204

based on the attention weights. In Figure 3, we 205

observe from the view of the last token. In the 206

shallow layer, the information in the context is 207

distributed in most of the tokens in the context. As 208

the layer goes deeper, only limited keys and values 209

contribute to the next token prediction. 210

The inference process differs from training 211

because all the input tokens predict the next tokens. 212

At this time, keys and values store two kinds of 213

information: 1) the information to predict what 214

the token is next to it; 2) the context information 215

for future tokens to leverage. So far, we have 216

verified that PvCs are the crucial keys and values 217

that are useful for inference. On the other hand, we 218

want to verify the non-PvC that may play a more 219

important role in teacher-forcing prediction instead 220

of being the context. As non-PvCs are trivial in 221

PyramidInfer, we discuss it in the Appendix A.2. 222
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Figure 3: For each layer, we reserve the keys and values with top-p attention weights (PvC) while other layers
maintain the full length. We calculate the average perplexity across different retention ratios p.
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Figure 4: The perplexity standard deviations when only
PvCs are reserved at each layer.

3.2 Recent Attention Consistency223

In the verification of ICR, we use the attention224

weights to find PvCs. However, in an attention225

layer, there are several attention weights for one226

token xi as every subsequent token xt>i will attend227

to it. Which attention weights should we choose228

as the metric to find PvCs? Intuitively, the optimal229

weights must be from the last token xn. However,230

the PvCs selected by these weights are suitable for231

predicting xn+1 but not always suitable for future232

tokens xt>n+1. Our goal is to find if there exists233

shared PvCs that can be used as a general oracle234

to predict several future tokens xt>n+1 besides the235

last token xn+1.236

3.2.1 PvC Consistency237

We convert this goal to finding if there exist238

keys and values that are frequently attended by239

subsequent tokens. First of all, we define a relative240

distance of how far the context token xi is relative 241

to the last token xn, which is called the Recent 242

Ratio d = (n− i)/n× 100%. We divide the input 243

sequence into two parts where we denote the tokens 244

with 0 < d < 30% as the recent sequence Sr and 245

d ≥ 30% as the context sequence Sc. We only 246

compute the attention weights of Sr to Sc to check 247

if there are tokens in the Sc that are always attended 248

by the tokens in the Sr. For each token in Sr of 249

each layer, we select the keys and values with top- 250

80% attention weights as their PvCs. We set the 251

keys and values with top-80% attention weights of 252

the last token (d = 0) as the PvC selection baseline. 253

After the setup, we want to measure how much 254

the overlap will be that the PvCs of recent tokens 255

are consistent with the PvC of the last token. If 256

there is overlap, we can infer the intersection 257

should be the shared PvC where many subsequent 258

tokens are consistently interested. Thus for each 259

layer l, we calculate the overlap ratio C of PvCs as 260

follows: 261

Cl,i =
|{x|x ∈ PvCl,i} ∩ {x|x ∈ PvCl,last}|

|{x|x ∈ PvCl,last}|
.

(1) 262

From the results in Figure 5a, the recent tokens 263

in Sr have an average 86% overlap with the PvC 264

selected by the last token. It indicates there exists 265

shared PvCs that are always interested in by the 266

subsequent tokens. However, it is not enough 267

to be the oracle to predict future tokens. For 268

example, if we want to predict the xn+1 token 269

using only the PvC extracted from the token with 270
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(a) Separate PvC overlap ratios of recent tokens.
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(b) Ensemble PvC overlap ratios of recent tokens.

Figure 5: PvC overlap ratio heatmap.

d = 25%, we only have about 83% PvC contributes271

to the prediction, which suffers a great context272

information loss.273

Fortunately, the PvC selections from recent274

tokens have high consistency and we can integrate275

multiple tokens to select the shared ones. In Figure276

5b, we integrate the attention weights by averaging277

weights of subsequent [d, d + 10%] tokens as the278

ensemble weights of the token with d. We select the279

keys and values with top-80% ensemble weights280

as PvCs. We observe that the average PvC overlap281

ratios increase by a large margin to approximately282

93%. The overlap ratios have hardly any drop with283

d = 20%, which indicates we can leverage the284

PvCs selected from ensemble tokens with d = 20%285

as an oracle to predict the xn+1 which is 20%286

ahead.287

3.2.2 Discussion288

Why do the deeper layers tend to have lower289

PvC overlap ratios? If we check overlap ratios290

along the layer axis, we find that only shallow291

layers have relatively high ratios. It is because in292

deeper layers there is context redundancy: Only293

a small number of keys and values have high294

weights that are always selected as PvCs; The295

others have similar low weights so they are not296

always selected, which results in lower overlap297

ratios. This phenomenon is consistent with the298

power law distribution observed in ICR, which is299

further discussed in Appendix A.1.300

Context information is mostly stored in the301

shared PvCs. In Figure 5b, the consistent PvC302

overlap ratios from small d to large d show that 303

wherever recent tokens are, they only leverage 304

nearly the same number of keys and values in the 305

context. These keys and values, also known as 306

shared PvCs, store most of the context information. 307

4 Layer-wise PvC Selection 308

Based on the observations, we design the Pyramid- 309

Infer, a method to highly increase the inference 310

throughput by layer-wise selecting the PvCs to 311

compress the KV cache for each layer. 312

4.1 Method 313

As shown in Figure 2, PyramidInfer can not only 314

reduce the KV cache in the generation phase but 315

also in the prefill phase without computing the 316

complete keys and values of the prompt for all 317

the layers. Following the inference process, we 318

introduce the PyramidInfer in the prefill phase 319

and generation phase separately and see how 320

PyramidInfer can save lots of GPU memory by 321

carefully selecting the PvCs. 322

Prefill Phase In the prefill phase, we have to 323

process the prompt to prefill the initial KV cache. 324

Different from the common inference process 325

that reserves all keys and values of the prompt, 326

PyramidInfer only reserves the PvCs of each layer 327

as the initial KV cache. 328

Similarly, we divide the input sequence into 329

recent sequence Sr and context sequence Sc. As 330

shown in Algorithm 1, based on the RAC, we 331

first calculate the ensemble attention weights by 332
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Figure 6: The overview of the PyramidInfer.

Algorithm 1 One forward pass in PyramidInfer
Input: KV cache KV , recent window length L, min PvC

length N = {N0, . . . , Nl, . . . }
Output: updated KV cache KV

for layer l ∈ layers do
if KV is not None then

KV = cat([PvCpast,KV ])

A ← compute attention weights of KV
Ae ← weighted_avg(A[−L :, : −L], dim = −2)
if len(KV ) > Nl then

TopP_index← TopP(Ae, p = p)
PvC← Gather(KV, index = TopP_index)

KV ← PvC
Reduce p by multiplying a decay ratio

return KV

weightedly averaging the attention weights of Sr.333

We assign larger weights for more recent tokens to334

enlarge their impact on PvC selection. Based on the335

ensemble attention weights, We layer-wise select336

the keys and values with top-p weights as the PvC.337

According to the conclusion of ICR, the increment338

of redundancy obeys the power law distribution.339

We choose a larger p to retain more tokens in the Sc340

for not to lose the semantics in the shallow layers.341

Then we gradually decrease the p to reduce the342

length of PvCs in deeper layers. Therefore, the343

PvCs of the deeper layers are shorter and the KV344

cache becomes a "pyramid".345

The layer-wise PvC selection saves much more346

GPU memory than other methods computing the347

whole prompt in the prefill phase. Besides the348

prefill phase, PyramidInfer continues to boost349

efficiency in the generation phase because LLMs350

only need to reuse a smaller initial KV cache.351

Generation Phase As we have reserved the352

initial PvCs as the KV cache, what we should do353

in the generation phase is to update these PvCs354

according to the new recent tokens. As shown355

in Figure 6, we maintain a sliding recent window356

to update the newly generated token to be new357

recent tokens. Based on the new Sr, we update the358

PvCs of the KV cache where the operation is the359

same as the prefill phase. By controlling the length360

of the PvC of each layer, we can easily tune the361

compression ratio and even support unlimited input362

like StreamingLLM by maintaining a fixed number363

of PvCs in the KV cache.364

5 Evaluation 365

5.1 Basic Evaluation 366

We evaluate PyramidInfer on various tasks and 367

models to showcase that PyramidInfer can largely 368

reduce the GPU memory and increase the through- 369

put while maintaining the generation quality. 370

Experimental Setup We choose four kinds of 371

scenarios: 1) Language modeling: we measure 372

the perplexity on wikitext-v2 (Merity et al., 2016). 373

2) LLM benchmarks: we evaluate on MMLU 374

(Hendrycks et al., 2021) and BBH (Srivastava 375

et al., 2022) for language understanding, GSM8K 376

(Cobbe et al., 2021) for mathematical reasoning, 377

HumanEval (Chen et al., 2021) for coding. 3) 378

Conversation: We evaluate on MT-Bench (Zheng 379

et al., 2023) to see how PyramidInfer can handle 380

multi-turn conversation. 4) Long context: we 381

evaluate on long text summarization of the LEval 382

(An et al., 2023) to see if PyramidInfer can 383

maintain the quality while accepting longer input. 384

We evaluate these tasks on LLaMA 2 (Touvron 385

et al., 2023), LLaMA 2-Chat, Vicuna 1.5-16k 386

(Zheng et al., 2023) and CodeLLaMA (Rozière 387

et al., 2023) with different sizes (7B, 13B, 34B and 388

70B) 1. We set the full KV cache method as the 389

baseline. Besides that, we also include the "local" 390

strategy as another baseline that reserves only the 391

recent KV cache. 392

1We quantize the 34B and 70B models to INT8 data type
to reduce the computational cost.
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Figure 7: Benchmark results of comparison between models with full cache, "local" strategy, and PyramidInfer.

In addition, we showcase how much Pyramid-393

Infer can save GPU memory and improve the394

throughput. We compare the efficiency of Pyra-395

midInfer with other full cache methods, including396

Accelerate (HuggingFace, 2021), Deepspeed2 (Am-397

inabadi et al., 2022). We also select H2O3 (Zhang398

et al., 2023), a KV cache compression method, as399

another baseline. It is noted that PyramidInfer is400

orthogonal to the non-KV-compression methods401

like Deepspeed to improve efficiency further.402

Benchmark Result In Figure 7, we evaluate the403

LLMs with different compression ratios. We show404

that PyramidInfer maintains the generation quality405

with much less GPU memory compared with the406

full cache baseline. PyramidInfer also outperforms407

the "local" strategy with a large gap across different408

types and sizes of models and tasks.409

In the LEval that tests the long context ability,410

we show that the "local" strategy that is similar to411

the technique used in StreamingLLM causes a huge412

2https://github.com/microsoft/
DeepSpeedExamples/tree/master/inference

3https://github.com/FMInference/H2O

decline in memorization of history. PyramidInfer 413

can accept longer input with less GPU memory 414

without sacrificing too much performance. 415

Efficiency Result In Table 1, we fix the input 416

length and the batch size. For LLaMA 2-13B, 417

PyramidInfer showcases 2.24x throughput than 418

full cache using Accelerate with 54.6% less GPU 419

memory in the KV cache. For LLaMA 2-70B, 420

PyramidInfer can still generate in the prefill phase 421

compared to other me. Existing KV cache com- 422

pression methods like H2O can not even process 423

the prompt and strike the OOM before the start of 424

compression. 425

In Table 2, we exhaust the memory of an 80GB 426

A100 GPU to test the maximum throughput by 427

maximizing the batch sizes. PyramidInfer enables 428

more than 2x batch size than others and has higher 429

throughput than full cache methods Accelerate 430

and Deepspeed by 2.8x and 1.7x, KV cache 431

compression method H2O by 2.1x. PyramidInfer 432

can also be utilized to enhance Deepspeed by 433

increasing the throughput by 1.9x. 434
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Table 1: The evaluation of inference methods using an A100 80GB GPU
on LLaMA 2-13B and 70B. Length: prefill length + generation length.
Bsz: batch size. KV mem.: GPU memory usage (GB) of the KV cache.
Thr.: throughput (token/s)

Model Bsz Length Method KV Mem. Thr.

13B 32 512+256

Accelerate 24.2 (100%) 621 (1.0x)
Deepspeed 24.2 (100%) 934 (1.5x)

H2O 21.6 (89.2%) 584 (0.9x)
PyramidInfer 11.0 (45.4%) 1389 (2.2x)

70B 8 256+128
Accelerate/

Deepspeed/H2O OOM -
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Figure 8: Sr ratio ablation study.

Table 2: We exhaust the memory of an A100 80GB GPU
to find out the maximum throughput of these methods
on LLaMA 2-13B. We set the input length to 512+256.
Lat.: latency to generate one token (ms/token).

Method Max Bsz Lat. Thr.

Accelerate 42 1.72 (100%) 581 (1.0x)
Deepspeed 40 1.03 (59.8%) 972 (1.6x)
H2O 48 1.39 (80.8%) 769 (1.3x)
PyramidInfer 88 0.59 (34.3%) 1678 (2.8x)
PyramidInfer
+Deepspeed 86 0.53 (30.8%) 1887 (3.2x)

5.2 Ablation Study435

We conduct the ablation studies using the LLaMA436

2-13B model to explore the PyramidInfer by437

answering the following questions: 1) Which438

way should we choose to gradually reduce the439

PvC length as the layer becomes deeper without440

sacrificing too much performance? 2) What441

proportion of the input should we partition as the442

recent sequence Sr?443

Table 3: PvC length decay ablation study.

Strategy PPL GSM8K MMLU

Reduce more 4.93 26.82 53.1
Reduce uniformly 4.55 28.32 54.8
Reduce less (PyramidInfer) 4.20 29.56 55.7
Reduce None (Full cache) 4.42 28.58 55.4

PvC Length Decay Based on ICR, we gradually444

reduce the length of PvCs for each layer as the layer445

becomes deeper to maximize efficiency. However,446

excessive reduction of PvC length in shallow layers447

may lead to the loss of context information. We448

try to find out which way is the best to reduce the449

PvC length. Under the same compression ratio of450

60%, we compare three patterns: 1) reduce more451

PvC length in shallow layers but less in the deeper 452

layers (reduce 15% cache in the first 50% layers). 453

2) uniformly reduce the PvC length (reduce 10% 454

cache in the first 50% layers); 3) obey the power 455

law pattern based on ICR to reduce less at first 456

(reduce 7% cache in the first 50% layers). 457

The result in Table 3 demonstrates that following 458

the power law pattern is the best way to reduce the 459

PvC length and even slightly improve performance 460

on downstream tasks. 461

Recent Sequence Ratio In PyramidInfer, we 462

select the recent tokens of the input as the recent 463

sequence Sr. The Sr is not only leveraged as the 464

context but also the criteria to select the PvC from 465

the context sequence Sc. If the Sr ratio increases, 466

Sc will be shorter thus fewer tokens in Sc will be 467

compressed. Therefore, we need to find a balance 468

to decide how large the Sr ratio should be. 469

In Figure 8, we set the GPU memory usage of 470

the KV cache of the full cache method as the 100% 471

baseline and test how the perplexity will change 472

with different Sr ratios. As the Sr ratio increases, 473

we observe a decline in the GPU memory usage 474

but a trough in the perplexity at 40-60% Sr ratio. 475

Thus we can choose 40% as a trade-off between 476

performance and GPU memory usage. 477

6 Conclusion 478

We alleviate the difficulty of deploying LLMs at 479

scale by introducing PyramidInfer, a novel method 480

that efficiently compresses the KV cache during 481

both prefill and generation phases. Inspired by ICR 482

and RAC, PyramidInfer significantly reduces GPU 483

memory usage without compromising model per- 484

formance. Experimental results present Pyramid- 485

Infer is a promising solution for optimizing LLM 486

deployment in resource-constrained environments. 487
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Limitations488

Despite the effective strategy to reduce the keys and489

values to be computed by selecting the PvCs, Pyra-490

midInfer has to bring in additional computation so491

that it has limited speedup with a small batch size,492

as discussed in Appendix B.1.493

Besides that, we are the pioneers in compressing494

the KV cache in the prefill phase, which is an area495

not fully explored. PyramidInfer is not a method496

to compress the KV cache losslessly in the prefill497

stage and more effective methods can be explored498

in future works.499

References500

Reza Yazdani Aminabadi, Samyam Rajbhandari, Minjia501
Zhang, Ammar Ahmad Awan, Cheng Li, Du Li, Elton502
Zheng, Jeff Rasley, Shaden Smith, Olatunji Ruwase,503
and Yuxiong He. 2022. Deepspeed inference:504
Enabling efficient inference of transformer models at505
unprecedented scale.506

Chenxin An, Shansan Gong, Ming Zhong, Mukai Li,507
Jun Zhang, Lingpeng Kong, and Xipeng Qiu. 2023.508
L-eval: Instituting standardized evaluation for long509
context language models.510

Anthropic. 2023. Introducing claude. https://www.511
anthropic.com/index/introducing-claude.512

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie513
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind514
Neelakantan, Pranav Shyam, Girish Sastry, Amanda515
Askell, Sandhini Agarwal, Ariel Herbert-Voss,516
Gretchen Krueger, Tom Henighan, Rewon Child,517
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,518
Clemens Winter, Christopher Hesse, Mark Chen, Eric519
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,520
Jack Clark, Christopher Berner, Sam McCandlish,521
Alec Radford, Ilya Sutskever, and Dario Amodei.522
2020. Language models are few-shot learners.523

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan,524
Henrique Ponde de Oliveira Pinto, Jared Kaplan,525
Harri Edwards, Yuri Burda, Nicholas Joseph, Greg526
Brockman, Alex Ray, Raul Puri, Gretchen Krueger,527
Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela528
Mishkin, Brooke Chan, Scott Gray, Nick Ryder,529
Mikhail Pavlov, Alethea Power, Lukasz Kaiser,530
Mohammad Bavarian, Clemens Winter, Philippe531
Tillet, Felipe Petroski Such, Dave Cummings,532
Matthias Plappert, Fotios Chantzis, Elizabeth Barnes,533
Ariel Herbert-Voss, William Hebgen Guss, Alex534
Nichol, Alex Paino, Nikolas Tezak, Jie Tang, Igor535
Babuschkin, Suchir Balaji, Shantanu Jain, William536
Saunders, Christopher Hesse, Andrew N. Carr, Jan537
Leike, Josh Achiam, Vedant Misra, Evan Morikawa,538
Alec Radford, Matthew Knight, Miles Brundage,539
Mira Murati, Katie Mayer, Peter Welinder, Bob540
McGrew, Dario Amodei, Sam McCandlish, Ilya541

Sutskever, and Wojciech Zaremba. 2021. Evaluating 542
large language models trained on code. 543

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, 544
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias 545
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro 546
Nakano, Christopher Hesse, and John Schulman. 547
2021. Training verifiers to solve math word 548
problems. 549

OpenCompass Contributors. 2023. Opencompass: 550
A universal evaluation platform for foundation 551
models. https://github.com/open-compass/ 552
opencompass. 553

Tri Dao. 2023. FlashAttention-2: Faster attention with 554
better parallelism and work partitioning. 555

Suyu Ge, Yunan Zhang, Liyuan Liu, Minjia Zhang, 556
Jiawei Han, and Jianfeng Gao. 2023. Model tells you 557
what to discard: Adaptive kv cache compression for 558
llms. arXiv preprint arXiv:2310.01801. 559

Dan Hendrycks, Collin Burns, Steven Basart, Andy 560
Zou, Mantas Mazeika, Dawn Song, and Jacob 561
Steinhardt. 2021. Measuring massive multitask 562
language understanding. 563

Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan 564
Firat, Mia Xu Chen, Dehao Chen, HyoukJoong Lee, 565
Jiquan Ngiam, Quoc V. Le, Yonghui Wu, and Zhifeng 566
Chen. 2019. Gpipe: Efficient training of giant neural 567
networks using pipeline parallelism. 568

HuggingFace. 2021. Hugging face accelerate. https: 569
//huggingface.co/docs/accelerate/index. 570

Albert Q. Jiang, Alexandre Sablayrolles, Arthur 571
Mensch, Chris Bamford, Devendra Singh Chaplot, 572
Diego de las Casas, Florian Bressand, Gianna 573
Lengyel, Guillaume Lample, Lucile Saulnier, 574
Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre 575
Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang, 576
Timothée Lacroix, and William El Sayed. 2023. 577
Mistral 7b. 578

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying 579
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E. 580
Gonzalez, Hao Zhang, and Ion Stoica. 2023. 581
Efficient memory management for large language 582
model serving with pagedattention. 583

Alex M Lamb, Anirudh Goyal ALIAS PARTH GOYAL, 584
Ying Zhang, Saizheng Zhang, Aaron C Courville, 585
and Yoshua Bengio. 2016. Professor forcing: A new 586
algorithm for training recurrent networks. Advances 587
in neural information processing systems, 29. 588

Zichang Liu, Aditya Desai, Fangshuo Liao, Weitao 589
Wang, Victor Xie, Zhaozhuo Xu, Anastasios 590
Kyrillidis, and Anshumali Shrivastava. 2023. Scis- 591
sorhands: Exploiting the persistence of importance 592
hypothesis for llm kv cache compression at test time. 593

Stephen Merity, Caiming Xiong, James Bradbury, and 594
Richard Socher. 2016. Pointer sentinel mixture 595
models. arXiv preprint arXiv:1609.07843. 596

9

http://arxiv.org/abs/2207.00032
http://arxiv.org/abs/2207.00032
http://arxiv.org/abs/2207.00032
http://arxiv.org/abs/2207.00032
http://arxiv.org/abs/2207.00032
http://arxiv.org/abs/2307.11088
http://arxiv.org/abs/2307.11088
http://arxiv.org/abs/2307.11088
https://www.anthropic.com/index/introducing-claude
https://www.anthropic.com/index/introducing-claude
https://www.anthropic.com/index/introducing-claude
http://arxiv.org/abs/2005.14165
http://arxiv.org/abs/2107.03374
http://arxiv.org/abs/2107.03374
http://arxiv.org/abs/2107.03374
http://arxiv.org/abs/2110.14168
http://arxiv.org/abs/2110.14168
http://arxiv.org/abs/2110.14168
https://github.com/open-compass/opencompass
https://github.com/open-compass/opencompass
https://github.com/open-compass/opencompass
http://arxiv.org/abs/2009.03300
http://arxiv.org/abs/2009.03300
http://arxiv.org/abs/2009.03300
http://arxiv.org/abs/1811.06965
http://arxiv.org/abs/1811.06965
http://arxiv.org/abs/1811.06965
https://huggingface.co/docs/accelerate/index
https://huggingface.co/docs/accelerate/index
https://huggingface.co/docs/accelerate/index
http://arxiv.org/abs/2310.06825
http://arxiv.org/abs/2309.06180
http://arxiv.org/abs/2309.06180
http://arxiv.org/abs/2309.06180
http://arxiv.org/abs/2305.17118
http://arxiv.org/abs/2305.17118
http://arxiv.org/abs/2305.17118
http://arxiv.org/abs/2305.17118
http://arxiv.org/abs/2305.17118


OpenAI. 2023. Gpt-4 technical report.597

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,598
Dario Amodei, Ilya Sutskever, et al. 2019. Language599
models are unsupervised multitask learners. OpenAI600
blog, 1(8):9.601

Baptiste Rozière, Jonas Gehring, Fabian Gloeckle,602
Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi603
Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom604
Kozhevnikov, Ivan Evtimov, Joanna Bitton, Manish605
Bhatt, Cristian Canton Ferrer, Aaron Grattafiori,606
Wenhan Xiong, Alexandre Défossez, Jade Copet,607
Faisal Azhar, Hugo Touvron, Louis Martin, Nicolas608
Usunier, Thomas Scialom, and Gabriel Synnaeve.609
2023. Code llama: Open foundation models for code.610

Ying Sheng, Lianmin Zheng, Binhang Yuan, Zhuohan611
Li, Max Ryabinin, Daniel Y. Fu, Zhiqiang Xie,612
Beidi Chen, Clark Barrett, Joseph E. Gonzalez,613
Percy Liang, Christopher Ré, Ion Stoica, and614
Ce Zhang. 2023. Flexgen: High-throughput615
generative inference of large language models with a616
single gpu.617

Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao,618
Abu Awal Md Shoeb, Abubakar Abid, Adam Fisch,619
Adam R Brown, Adam Santoro, Aditya Gupta,620
Adrià Garriga-Alonso, et al. 2022. Beyond the621
imitation game: Quantifying and extrapolating the622
capabilities of language models. arXiv preprint623
arXiv:2206.04615.624

Hugo Touvron, Louis Martin, Kevin Stone, Peter625
Albert, Amjad Almahairi, Yasmine Babaei, Nikolay626
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti627
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton628
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,629
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian630
Fuller, Cynthia Gao, Vedanuj Goswami, Naman631
Goyal, Anthony Hartshorn, Saghar Hosseini, Rui632
Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez,633
Madian Khabsa, Isabel Kloumann, Artem Korenev,634
Punit Singh Koura, Marie-Anne Lachaux, Thibaut635
Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu,636
Yuning Mao, Xavier Martinet, Todor Mihaylov,637
Pushkar Mishra, Igor Molybog, Yixin Nie, Andrew638
Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan639
Saladi, Alan Schelten, Ruan Silva, Eric Michael640
Smith, Ranjan Subramanian, Xiaoqing Ellen Tan,641
Binh Tang, Ross Taylor, Adina Williams, Jian Xiang642
Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen643
Zhang, Angela Fan, Melanie Kambadur, Sharan644
Narang, Aurelien Rodriguez, Robert Stojnic, Sergey645
Edunov, and Thomas Scialom. 2023. Llama 2: Open646
foundation and fine-tuned chat models.647

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song648
Han, and Mike Lewis. 2023. Efficient streaming649
language models with attention sinks.650

Susan Zhang, Stephen Roller, Naman Goyal, Mikel651
Artetxe, Moya Chen, Shuohui Chen, Christopher652
Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al.653
2022. Opt: Open pre-trained transformer language654
models. arXiv preprint arXiv:2205.01068.655

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong 656
Chen, Lianmin Zheng, Ruisi Cai, Zhao Song, 657
Yuandong Tian, Christopher Ré, Clark Barrett, 658
Zhangyang Wang, and Beidi Chen. 2023. H2o: 659
Heavy-hitter oracle for efficient generative inference 660
of large language models. 661

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan 662
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin, 663
Zhuohan Li, Dacheng Li, Eric P. Xing, Hao Zhang, 664
Joseph E. Gonzalez, and Ion Stoica. 2023. Judging 665
llm-as-a-judge with mt-bench and chatbot arena. 666

A Extended Discussions 667

A.1 The Association between ICR and RAC 668

In Section 3.2.2, we mention the phenomenon that 669

deeper layers have lower PvC overlap ratios is 670

consistent with the power law distribution observed 671

in Figure 4. This is because, as we observe alone 672

the layer index of the heatmap, we find that the 673

color quickly deepens by a large gap where the 674

depth change is approximate to the power law 675

distribution. 676

The insight behind these two power law distribu- 677

tions is the same. The high redundancy in deeper 678

layers indicates that most of the keys and values 679

are useless for inference. These non-PvCs all have 680

similarly low attention weights, resulting in limited 681

influence on the perplexity and few opportunities 682

to be selected as PvCs. 683

A.2 Further Verification of ICR about the 684

Role of Non-PvCs 685

To complete the verification of ICR, we have to 686

verify the non-PvCs are redundant because they 687

carry the information of predicting the tokens next 688

to themselves instead of context information. In 689

Figure 9, to better illustrate, we divide the keys and 690

values of one layer into two main parts, PvCs and 691

non-PvCs. For the PvCs, we further divide them 692

into shared PvCs and non-shared PvCs. 693

Shared PvCs (overlapped) Non-shared 
PvCs Non-PvCs

Keys and values of one layer

Figure 9: The composition of the keys and values of one
layer.

In Figure 5a, we demonstrate that there is an 694

87% overlap between tokens and the last token 695

in terms of PvC, as denoted as shared PvC. We 696

first identify the role of the remaining 13% of keys 697

and values where these non-shared PvCs are not 698

used in PyramidInfer. The non-shared PvCs are 699
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also assigned high attention weights by the current700

token, which means they are useful for predicting701

the token next to the current token. It is interesting702

to see what these non-shared PvCs are from the703

perspective of the subsequent tokens: Will they704

also consider these keys and values important?705

We use the recent sequence ratio of 20% to select706

the shared PvCs. We extract non-shared PvCs from707

the tokens with 10% < d < 20%. We want to708

find these non-shared PvCs belong to which parts709

of keys and values of the subsequent tokens with710

d < 10%.711

From Figure 11, we can draw conclusions for712

these three parts of the KV cache:713

1. The shared PvCs are the keys and values that714

subsequent tokens collectively pay attention715

to.716

2. The non-shared PvCs seldom appear in non-717

shared PvCs of other tokens. It means that718

non-shared PvCs are mostly highly interested719

in by the current token, with less attention720

from subsequent tokens. They are mainly721

used to predict the token next to themself722

in a teacher-forcing way, which is especially723

useful in training.724

3. Among the non-PvCs, a significant portion is725

occupied by non-shared PvCs of other tokens.726

So far, we have completely verified the Inference727

Context Redundancy hypothesis that the tokens728

except for the last token no longer need to predict729

the next tokens but they still record this redundant730

information to predict the next tokens in keys and731

values.732

B Extended Experiments and Details733

B.1 Additional Computational Cost in734

PyramidInfer735

In Section 4, we introduce how PyramidInfer736

improves the inference throughput by selecting737

the PvCs based on the attention of Sr. However,738

the process of selecting PvC introduces additional739

computation in each layer. As shown in Algorithm740

1, the additional cost is mainly caused by the sort741

operation in top-p while others can be neglected.742

To evaluate the influence of the additional cost,743

we gradually increase the batch size of the models744

and compare the throughput between PyramidInfer745

and the full cache baseline. As shown in Figure,746

PyramidInfer has limited acceleration with a small747
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Figure 10: Comparison between PyramidInfer and full
cache baseline with different batch sizes on the LLaMA
2-7B model with input length of 512+256.

batch size because the additional computation 748

offsets the acceleration from the reduced KV cache. 749

As the batch size increases, this cost becomes 750

trivial compared to the acceleration brought by the 751

PyramidInfer. 752

B.2 Position Encoding 753

As we reduce the number of keys and values of 754

each layer, some positions of keys and values 755

are missing. There are two choices to obtain the 756

new position encoding: 1) re-encode the positions 757

from position 0 in order; 2) gather the scattered 758

original position encodings of the keys and values. 759

As shown in Table 4, we experiment on these 760

two choices on LLaMA 2-13B and find that the 761

latter one has a slightly better performance in the 762

downstream tasks.

Table 4: Position encoding comparison.

Strategy GSM8K MMLU

Re-encode 29.12 55.5
Gather 29.56 55.7

763
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Figure 11: The overlap ratios between non-shared PvCs and non-shared PvCs of other tokens (blue) and the overlap
ratios between non-shared PvCs and non-PvCs of other tokens (orange).
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