
Under review as a conference paper at ICLR 2024

ADVERSARIALLY ROBUST LEARNING WITH OPTIMAL
TRANSPORT REGULARIZED DIVERGENCES

Anonymous authors
Paper under double-blind review

ABSTRACT

We introduce the ARMORD methods as novel approaches to enhancing the
adversarial robustness of deep learning models. These methods are based on a
new class of optimal-transport-regularized divergences, constructed via an infimal
convolution between an information divergence and an optimal-transport (OT) cost.
We use these as tools to enhance adversarial robustness by maximizing the expected
loss over a neighborhood of distributions, a technique known as distributionally
robust optimization (DRO). Viewed as a tool for constructing adversarial samples,
our method allows samples to be both transported, according to the OT cost, and
re-weighted, according to the information divergence; the addition of a principled
and dynamical adversarial re-weighting on top of adversarial sample transport
is the key innovation of ARMORD. We demonstrate the effectiveness of our
method on malware detection and image recognition applications and find that it
provides significant performance benefits. In malware detection, a discrete (binary)
data domain, ARMORD improves the robustified accuracy under rFGSM50

attack compared to the previous best-performing adversarial training methods by
22 percentage points while simultaneously lowering false negative rate from 4.99%
to 2.44%.

1 INTRODUCTION

Machine learning and specifically deep learning models are known to be vulnerable to adversarial
samples: inputs intentionally and meticulously modified by an adversary to evade/mislead the
classification model (Papernot et al., 2016; Goodfellow et al., 2014). One common and effective
way to enhance a model’s robustness against this vulnerability is to include adversarial samples
during the training process, known as adversarial training. However, adversarial training is often
challenging, as it is hard to maintain the model’s performance generalizability while also enhancing its
adversarial robustness (Carlini et al., 2019; Zhang et al., 2019). To date, the large body of prominent
defense mechanisms for enhancing adversarial robustness includes certifiable approaches Baharlouei
et al. (2023); Raghunathan et al. (2018), which can guarantee the absence of adversarial examples
misclassified by the model for a specific input, and adversarial training methods Papernot et al.
(2017); Madry et al. (2018); Hu et al. (2018); Wang et al. (2020); Zhang et al. (2019; 2020); Dong
et al. (2020); Regniez et al. (2021); Bui et al. (2022); Dong et al. (2023) which somehow construct
adversarial samples that are employed during training, with Sinha et al. (2018) having aspects of
both categories. Despite attractive guarantees, the certifiable approaches often operates on a convex
relaxation of the original model rather than the original model and tend to have inferior performance
compared to approaches in the latter category (Wang et al., 2020; Athalye et al., 2018).

In the pioneering robust optimization approach Madry et al. (2018) to adversarial training, the loss
function Lθ, depending on parameters θ ∈ Θ, is maximized over a metric-space ball centered at the
training samples xi, leading to the empirical risk minimization problem

inf
θ
EPn

[
sup

y:d(x,y)≤ϵ
Lθ(y)

]
, (1)

where Pn = 1
n

∑n
i=1 δxi

is the empirical distribution. In Regniez et al. (2021) and Bui et al. (2022) it
was recognized that (1) can be expressed as a distributionally robust optimization (DRO) problem
over an optimal-transport (OT) neighborhood U(Pn) = {Q : C(Q,Pn) ≤ ϵ} for an appropriate
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OT cost C; i.e., they noted that (1) = infθ supQ:C(Q,Pn)≤ϵEQ[Lθ]. DRO is a general framework
for taking a stochastic optimization problem infθ EP [Lθ] and regularizing (or robustifying) it by
maximizing over a neighborhood of distributions, U(P ), around the baseline distribution P , leading
to the general DRO problem

inf
θ

sup
Q∈U(P )

EQ[Lθ] . (2)

This formalizes an uncertainty in the underlying distribution P and can protect against overfitting,
leading to better out-of-sample performance; see Rahimian & Mehrotra (2022) for an overview of
DRO. For general distribution neighborhoods (2) is an intractable infinite dimensional problem but if
U has the appropriate structure then one can derive tractable finite dimensional reformulations of (2).
Prior approaches to the general theory of DRO employ various types of distribution neighborhoods,
such as moment constraints Goh & Sim (2010); Delage & Ye (2010); Wiesemann et al. (2014),
conditional moment constraints Blanchet et al. (2023), Kullback-Leibler (KL) and f -divergence
neighborhoods Ben-Tal et al. (2010); Ahmadi-Javid (2012); Hu & Hong (2013); Ben-Tal et al. (2013);
Lam (2019), MMD Staib & Jegelka (2019), Wasserstein neighborhoods Mohajerin Esfahani & Kuhn
(2018); Shafieezadeh-Abadeh et al. (2019); Wu et al. (2022); Yu-Meng Li & Mao (2022); Gao
& Kleywegt (2023), and more general optimal-transport (OT) neighborhoods Blanchet & Murthy
(2019).

In the present work we propose a novel class of divergences for comparing probability distributions,
which we call the optimal-transport-regularized divergences, that combines features of both OT costs
and information-theoretic divergences (such as KL) and use these to define distribution neighborhoods
for use in DRO (2). This leads us to propose a novel class of adversarial training methods that
simultaneously transport adversarial samples (with general OT cost) and re-weight the adversarial
samples according to the information-theoretic divergence. The former feature is shared with the
OT-DRO method Bui et al. (2022) (see also the related earlier work Sinha et al. (2018), which
used a soft Wasserstein constraint), but the ability of our method to use information from the loss
together with the OT cost in order to adversarially re-weight samples in a principled and dynamical
manner during training is a qualitatively new feature of our method; this feature follows naturally
from our more general DRO framework, which “mixes" information-theoretic and OT divergences
via an infimal convolution (see Eq. 3 below). In practice, the adversarial re-weighting causes the
optimization algorithm to focus on the samples in each minibatch that are more vulnerable to
adversarial perturbation. The DRO-based methods are in contrast to methods which directly modify
the loss Lθ, such as TRADES, Zhang et al. (2019), and MART, Wang et al. (2020). In fact, the
two types of techniques can be combined; in Bui et al. (2022) the combination of generalized OT
costs with TRADES/MART was shown to lead to further performance gains, beyond either method
individually. In this work we focus on evaluating the benefits of the adversarial re-weighting that is
inherent to our method; we leave for future work the analysis of our DRO framework in combination
with TRADES/MART-style loss modifications.

Optimal-Transport-Regularized Divergences: The new divergences that we introduce in this work
are defined as an infimal convolution between an optimal transport cost, C, and an information
divergence, D, e.g., an f -divergence, D = Df Liese & Vajda (2006), of which the KL-divergence is
one example. More precisely, given an OT cost function c(x, y) and an information divergence, D,
we define the OT-regularized divergence, Dc, of a distribution Q with respect to a distribution P by

Dc(Q∥P ) := inf
η∈P(X )

{D(η∥P ) + C(η,Q)} , (3)

where P(X ) denotes the set of probability distributions on the space X and the optimal transport
cost associated with the cost function c is given by

C(µ, ν) := inf
π:π1=µ,π2=ν

∫
c(x, y)π(dxdy) (4)

(πi denote the marginals of π ∈ P(X × X )); the only assumptions we make regarding c are non-
negativity, lower semicontinuity, and that c(x, x) = 0 for all x. Intuitively, one can view (3) as
specifying a cost via a two-step procedure for transforming P into Q. First, one redistributes the
probability-mass in P to form an intermediate distribution η, paying the cost D(η∥P ) (we say
redistribute because we focus on D that are information divergences, meaning they are computable
in terms of the likelihood ratio dη/dP , though most of our theorems in Appendix A apply more
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generally). Second, one performs optimal transport to transform η into Q, paying the cost C(η,Q).
The optimal intermediate measure η∗ determines the final cost Dc(Q∥P ). The infimal convolution
structure, including the bound Dc(Q∥P ) ≤ min{D(Q∥P ), C(P,Q)}, causes Dc to inherit proper-
ties from both D and C and allows it to interpolate between these two extremes; see Section 2.2. The
OT-regularized divergences are related to the Γ-divergences defined in Dupuis, Paul & Mao, Yixiang
(2022), (f,Γ)-divergences defined in Birrell et al. (2022) and the IC-Γ-Rényi divergences from Birrell
et al. (2023), but here we utilize optimal transport costs as opposed to integral-probability-metric
(IPM) regularization of information divergences. We found that OT-regularization is more naturally
suited to adversarial robustness methods than IPM regularization from a mathematical perspective.
Also, those prior works focused on the equality of the primal and dual formulas for the divergence,
which facilitates applications to GANs; here we focus on adversarial robustness, which requires
different techniques.

We use the OT-regularized divergences to define distribution neighborhoods of size ϵ > 0, leading to
following DRO problem, which we will employ as a tool for enhancing adversarial robustness

inf
θ

sup
Q:Dc(Q∥Pn)≤ϵ

EQ[Lθ] . (5)

The OT-regularized-divergence neighborhoods are qualitatively different from both f -divergence
and Wasserstein neighborhoods, as they allow for a combination of probability-mass transport and
redistribution when forming the perturbed distributions, Q. This allows for the support of Q to differ
from that of Pn (as in Bui et al. (2022)) and also for the probability of widely separated modes to be
re-weighted, something that is not possible with Wasserstein neighborhoods. When viewed as an
adversarial training method, we call (5) the ARMORD methods, standing for Adversarially Robust
Models with Optimal-Transport-Regularized Divergences.

In Section 2 we show how (5) can be converted into a computationally tractable optimization
problem and in Section 2.1 we provide a formal solution, thereby clarifying the manner in which our
method combines optimal transport and adversarial re-weighting. In Section 2.2 we list a number
of properties of the OT-regularized divergences, thus demonstrating that they are well-behaved
mathematical objects; precise statements and proofs are found in Appendix A. In Section 3 we test
the ARMORD methods on MNIST image classification as well as malware classification, where we
find it offers significant performance gains.

2 OT-REGULARIZED DIVERGENCES: DRO IDENTITY AND PROPERTIES

In general, the DRO problem (5) is an intractable infinite dimensional optimization problem. How-
ever, for appropriate choices of D one can derive a finite dimensional reformulation that leads to
computationally efficient implementations. In this section we provide a formal derivation of the key
identity. For a rigorous proof, and statement of the required assumptions, see Appendix A.2.

Noting that C is jointly convex and assuming that D is convex in its first argument (as is the case
when D is an f -divergence) one can see from (3) that Dc is convex in its first argument. Therefore
the DRO problem is a convex optimization problem and one can compute

sup
Q:Dc(Q∥Pn)≤ϵ

EQ[Lθ] (6)

= inf
λ>0
{λϵ+ sup

Q∈P(X )

{EQ[Lθ]− λDc(Q∥Pn)}} (7)

= inf
λ>0
{λϵ+ sup

Q,η∈P(X )

{EQ[Lθ]− λD(η∥Pn)− λC(η,Q)}} (8)

= inf
λ>0
{λϵ+ sup

η∈P(X )

{−λD(η∥Pn) + sup
Q∈P(X )

sup
π:π1=η,π2=Q

{EQ[Lθ]− λ
∫
cdπ}}} (9)

= inf
λ>0
{λϵ+ λ sup

η∈P(X )

{−D(η∥Pn) + sup
πx(dy)

∫ ∫
Lθ(y)/λ− c(x, y)πx(dy)η(dx)}} (10)

= inf
λ>0
{ϵλ+ λ sup

η∈P(X )

{
∫

sup
y∈X
{λ−1Lθ(y)− c(x, y)}η(dx)−D(η∥Pn)}} . (11)

The equality (7) is obtained using strong duality, lines (8) and (9) are obtained using the definitions (3)
and (4) of Dc and C along with properties of suprema and infima, (10) recognizes that the suprema

3



Under review as a conference paper at ICLR 2024

over Q and π can be rewritten as a supremum over probability kernels πx(dy), and finally (11)
uses the fact that the supremum over probability kernels achieves the pointwise supremum of the
integrand. To this point, the derivation closely follows that of Mohajerin Esfahani & Kuhn (2018)
for Wasserstein DRO, as well as the adversarial robustness approach by Bui et al. (2022). Note that
effect of the OT cost is to replace the loss Lθ with what we call the OT-regularized loss

Lcθ,λ(x) := sup
y∈X
{λ−1Lθ(y)− c(x, y)} , (12)

which is known as the c-transform in the optimal transport literature; see Definition 5.2 in Villani
(2008). The importance of the c-transformed loss for Wasserstein DRO is well known; see the
references to prior work on Wasserstein and OT-DRO in the introduction. The supremum over y ∈ X
in (12) can be thought of as selecting an adversarial sample that is paired with each real sample, x.
We note that our mathematical framework can be used to robustify any empirical risk minimization
problem, not only classification, and so our notation does not yet explicitly decompose the variables
into sample and label components, though we will do so when applying the method to classification
problems in Section 3.

The new ingredient in our OT-regularized-divergence DRO framework is the optimization over η in
(11). This can be recognized as the convex-conjugate of η 7→ D(η∥Pn) and for certain choices of
D, in particular for the f -divergences which we now focus on, this term can be reformulated as a
finite dimensional convex optimization problem. Using the generalization of the Gibbs variational
principle to f -divergences, see Theorem 4.2 in Ben-Tal & Teboulle (2007), one has

sup
η∈P(X )

{Eη[g]−Df (η∥P )} = inf
ρ∈R
{ρ+ EP [f

∗(g − ρ)]} , (13)

where f∗ is the Legendre transform of f . Using this we obtain the following finite-dimensional
reformulation of the DRO problem

inf
θ∈Θ

sup
Q:Dc

f (Q∥Pn)≤ϵ
EQ[Lθ] = inf

λ>0,ρ∈R,θ∈Θ

{
ϵλ+ ρ+ λ

1

n

n∑
i=1

f∗(Lcθ,λ(xi)− ρ/λ)

}
. (14)

Here we made the change of variables ρ → ρ/λ so that the objective function is jointly convex in
λ, ρ (see Corollary A.23). Note that the new variables λ, ρ simply augment the minimization over
model parameters θ by adding two real variables, which adds very small additional computational
cost. The λ parameter has the same interpretation as in the OT-DRO based method Bui et al. (2022);
it can be viewed as a dynamical OT-cost weight, selected according to the optimization (11), which is
tied to the neighborhood size ϵ. This perspective is most apparent in (7). The significance of ρ will
be discussed in Section 2.1 below. In Section 3 we will experiment with the KL divergence and the
family of α-divergences (i.e., f = fα as in Eq. 29), which we call the ARMORKL and ARMORα
methods respectively. An explicit formula for f∗ in the case of α-divergences is given in (30). In the
KL-divergence case the minimization over ρ can be evaluated analytically, yielding

inf
θ∈Θ

sup
Q:KLc(Q∥Pn)≤ϵ

EQ[Lθ] = inf
λ>0,θ∈Θ

{
ϵλ+ λ log

(
1

n

n∑
i=1

exp(Lcθ,λ(xi))

)}
. (15)

We will refer to either of (14) or (15) as the outer minimization problem and will call (12) the inner
maximization problem. While preparing this work a new DRO framework was proposed in Blanchet
et al. (2023), employing conditional moment constraints, which was also motivated in part by the
desire to combine transport and redistribution costs. Their approach reduces to the D = Df case of
our DRO framework under appropriate assumptions; see their Theorems 4.1, 5.1, and Proposition 5.1
and compare with our Theorem A.22 and Eq. 14-15. Our work is distinguished both mathematically,
through the proofs of a number of properties of the OT-regularized divergences that do not have
analogues in Blanchet et al. (2023) (see Section 2.2), and through our novel use of (14) and (15) as
tools for enhancing adversarial robustness, where we find it leads to substantial performance gains.

2.1 INTERPRETING THE OUTER MINIMIZER: ADVERSARIAL SAMPLE WEIGHTS

In this section we give an intuitive interpretation of the minimization over the auxiliary parameters
λ, ρ in (14); they can be viewed as the computation of optimal adversarial weights for the adversarial
samples, where optimality is defined in part by the chosen f -divergence. This is a complement to the
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inner maximizer (12) which constructs the optimally transported adversarial samples, according to
the chosen OT cost function. This interpretation gives insight into the qualitatively novel nature of
our method.

Letting yi(λ) be the solution to the inner maximizer (12) with x = xi and λ∗ and ρ∗ be the optimal
scaling and shift parameters for the outer minimizer at a fixed θ (we suppress the θ-dependence of yi,
λ∗, and ρ∗ in the notation) we derive the following reformulation of (14) in Appendix B:

inf
λ>0,ρ∈R

{
ϵλ+ ρ+ λ

1

n

n∑
i=1

f∗(Lcθ,λ(xi)− ρ/λ)

}
= EQ∗,θ [Lθ] , (16)

where the optimal adversarial distribution is Q∗,θ :=
∑n
i=1 p∗,iδyi(λ∗), having optimal adversarial

weights

p∗,i :=
1

n
(f∗)′(Lcθ,λ∗

(xi)− ρ∗/λ∗) . (17)

This shows that the minimization over θ in (14) solves the risk minimization problem for the (θ-
dependent) optimal adversarial distribution Q∗,θ. The optimal adversarial distribution is supported on
the optimal adversarial samples yi(λ∗) and the weight of the i’th sample is changed from 1/n to p∗,i
(17). To understand the significance of the re-weighting p∗,i, first recall that f∗ is non-decreasing (see
Definition A.2 and Corollary A.23), hence p∗,i ≥ 0. In addition, the p∗,i’s sum to 1 as shown in (90)
below. Convexity of f∗ implies that (f∗)′ is also non-decreasing, hence the p∗,i’s shift more weight
towards the samples where the OT-regularized loss is larger, as would be expected for an adversarial
re-weighting. In some cases, such as for the α-divergences, f∗ is constant on (−∞,M) for some
M (M = 0 when f = fα, as seen in Eq. 30). In such cases, samples with Lcθ,λ∗

(xi) < ρ∗/λ∗ +M
have their weighting changed to 0. Intuitively, one can consider those samples as having sufficiently
small OT-regularized loss and hence the method moves its attention away from them to focus on
more troublesome samples. These samples are only temporarily ignored; attention may return to
them later in the training if their loss moves above the (dynamic) threshold. Part of the task of the
outer minimizer is to dynamically determine the optimal threshold for “sufficient smallness", as set
by ρ∗/λ∗. We emphasize that that this threshold changes with θ, as λ∗ and ρ∗ are both θ-dependent.

The ability of the ARMORD methods to re-weight adversarial samples in addition to transporting
them is the primary innovation of our approach, as compared to the prior OT-DRO based robustness
method Bui et al. (2022) or the earlier soft constraint based method Sinha et al. (2018). As we
demonstrate in the examples in Section 3 and Appendix C.8, this is a powerful new ingredient and
is made possible because our DRO neighborhoods incorporate both information-theoretic and OT
components via the infimal convolution (3). Our approach is distinct from the re-weighting method
proposed in Guo et al. (2022) for addressing the problem of class imbalance in the training data,
which is not an adversarial re-weighting. Our method is also distinct from the approach in Zhang et al.
(2020) where modified weights were introduced manually, based on an informal notion of distance to
the decision boundary. In contrast, re-weighting in ARMORD is determined in a principled manner
by the DRO framework, via the choice of f and c; it uses information from the OT-regularized loss
of each sample during training, along with a dynamic threshold, as seen in (17). In particular the
adaptive threshold, which determines which samples the optimizer currently considers "troublesome",
is a qualitatively novel feature of our method.

2.2 PROPERTIES OF THE OT-REGULARIZED DIVERGENCES

The OT-regularized divergences have many attractive mathematical properties, making them well
suited to DRO as well as other statistical learning tasks. We summarize a number of these properties
here; see Appendix A for precise statements of the required assumptions along with proofs. Given
appropriate assumptions on D and c one has the following:

1. Dc(ν∥µ) ≥ 0 and Dc(ν∥µ) = 0 if and only if ν = µ; see Theorem A.7. This divergence
property implies that Dc(ν∥µ) can be interpreted as measuring the discrepancy between ν
and µ.

2. There exists an optimal intermediate distribution that solves the minimization problem in
the definition (3), i.e., there exists η∗ such that

Dc(ν∥µ) = D(η∗∥µ) + C(η∗, ν) (18)
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and this η∗ is unique under appropriate assumptions. See Theorem A.9.
3. Dc(ν∥µ) is convex in ν (see Lemma A.4). This implies that the DRO neighborhoods
{Q : Dc(Q∥Pn) ≤ ϵ} are convex sets and is also key in the derivation of the DRO identity
(11).

4. Dc(ν∥µ) is lower semicontinuous in ν (see Theorem A.11). This property is useful for
theoretical purposes and it implies that the DRO neighborhoods {Q : Dc(Q∥Pn) ≤ ϵ} are
closed sets.

5. Dc interpolates between D and C in the following sense: For r > 0 define the scaled cost
function cr = rc. Then

lim
r→0+

r−1Dcr (ν∥µ) = C(µ, ν) (see Theorem A.12) , (19)

lim
r→∞

Dcr (ν∥µ) = D(ν∥µ) (see Theorem A.13). (20)

Informally, this property implies that DRO over both D and C neighborhoods can be
viewed as special cases of DRO over Dc neighborhoods. More specifically, (19) indicates
that when r is sufficiently small, DRO over the neighborhood {Q : Dcr (Q∥Pn) ≤ rϵ} is
approximately the same as DRO over the neighborhood {Q : C(Pn, Q) ≤ ϵ}. Similarly, (20)
indicates that when r is sufficiently large, DRO over the neighborhood {Q : Dcr (Q∥Pn) ≤
ϵ} is approximately the same as DRO over the neighborhood {Q : D(Q∥Pn) ≤ ϵ} (see
Theorems A.24 and A.25 for precise statements). Therefore if one includes the scale factor r
and neighborhood size ϵ as tunable hyperparameters (as we do in the experiments in Section
3) then the special cases of C and D neighborhoods will be (approximately) explored in the
process of tuning an ARMORD method.

We note that these properties do not require the distributions to have compact support, except for the
DRO interpolation results in Theorems A.24 and A.25.

3 EXPERIMENTS

In this section we evaluate the ARMORD adversarial robustness methods on two classification
problems: MNIST digit classification and malware detection, two common tasks featuring continuous
and discrete data, respectively.

Experimental Setup: To evaluate the performance of our proposed method, we consider the
application of adversarial robustness in two fundamental deep learning tasks: image recognition and
malware detection. For the image recognition task we use the MNIST dataset with 50,000 digits in
the training and 10,000 in the test set. For the malware detection task, we use a high-dimensional
dataset with 22,761 features provided by Al-Dujaili et al. (2018), which includes a total of 54,690
binary encoded malware and benign Windows Portable Executables (PEs) partitioned into training
(60%), validation (20%), and test set (20%). Each data point is represented as a 22,761-dimensional
binary feature vector denoting the existence of a particular feature in the executable. The target
detector models for image and malware data sets were a 4-layer convolutional neural network (CNN)
and a 3-layer feed-forward network, respectively, for which the architecture details are given in
Appendix C.3. In the binary encoded malware application there is an extra requirement: For the
adversarial sample to be functional and preserve malicious malware functionality only bit flips
from 0 to 1 are acceptable and not vice versa Al-Dujaili et al. (2018); this gives the problem an
inherent asymmetry. Following the guidelines in Carlini et al. (2019), we consider a threat model
characterizing the adversary’s goal, knowledge, and capabilities detailed in Appendix C.1.

3.1 EXPERIMENT 1: ILLUSTRATING THE IMPORTANCE OF ADVERSARIAL RE-WEIGHTING
VIA ROBUST IMAGE DETECTION

In this experiment we focus on evaluating the benefit provided by the adversarial sample re-weighting
component of the ARMORD method alone. Therefore we choose the OT-transport component so
that the inner maximizer (12) agrees with the inner maximizer of the Madry et al. (2018) approach,
(1), (which we call PGD-AT ). Specifically, in this example we choose

c((x, y), (x̃, ỹ)) =∞1d(x,x̃)>ϵ +∞1y ̸=ỹ , (21)
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where x, x̃ are samples and y, ỹ are the corresponding labels. This cost allows for the adversarial
sample to freely move within the ϵ-ball centered at the original sample, but not outside it, and does
not allow for label modification; we let d be the metric induced by the∞-norm.

Benchmark Methods and Evaluation Metrics: Following (Bui et al. (2022)), we evaluate the
methods against the Projected Gradient Method (PGD200) attack and the much stronger and more
recent AutoAttack Croce & Hein (2020). In this experiment we are evaluating the ARMORD’s
adversarial re-weighting mechanism alone. Our primary comparison will be the recent OT-DRO
based method Bui et al. (2022), called UDR, which like our method can also be used to enhance (1) or
any other empirical risk minimization problem. The resulting UDR-PGD and ARMORD-PGD
methods are compared on MNIST in Table 1. Following the experiment settings in Bui et al. (2022),
all attacks were conducted by a neighborhood size of 0.3, ℓ∞ neighborhood, and 40 iterations of
adversarial training. Implementation details are provided in Appendix C.

Results: The best hyperparameters for ARMORD were attained via a small grid-search on a
parameter space identified in Appendix C.4. To ensure a fair comparison, we closely followed
the same settings as in (Bui et al., 2022); see Appendix C.3. We compare the performance of the
methods under the attacks PGD200 and AutoAttack Croce & Hein (2020) as well as their performance
when not under attack (Nat) and report the performance in Table 1. Our proposed method attains
higher accuracy than the baseline PGD-AT method under both AutoAttack and PGD200. The
ARMORα augmentation of PGD also outperforms UDR-PGD on the stronger AutoAttack test.
This indicates that the ARMORα re-weighting mechanism is an effective tool for enhancing the
adversarial robustness of an empirical risk minimization problem. The effects of ARMORα can be
combined with UDR by modifying the OT-cost function (21) while retaining the sample re-weighing
provided by the f -divergence component of our method; we intend to explore this for a wider variety
of data sets in the future. In the present work, our second example in Section 3.2 explores the use of
modified OT-costs within our method.

Table 1: Enhancing adversarial robustness on MNIST: Here ARMORα uses natural samples
alongside the adversarial samples, as described in Appendix C.6. Best metrics are shown in bold font.

MNIST
Defense AutoAttack PGD200 Nat
PGD-AT 88.9% 94.0% 99.4%
UDR-PGD 90.0% 94.3% 99.5%
ARMORα-PGD 91.70% 94.24% 99.26%

3.2 EXPERIMENT 2: ENHANCING THE ADVERSARIAL ROBUSTNESS OF MALWARE
DETECTORS USING A SOFT OT CONSTRAINT AND ADVERSARIAL LABELS

Next we present our results on malware detection, a much higher dimensional and more realistic
problem; we closely followed the settings from Al-Dujaili et al. (2018). Appendix C provides the
implementation details. In this example we experiment OT cost modifications, which in our approach
can be combined with the adversarial re-weighting. We consider two types of OT costs.

Robust Classification Using Adversarial Samples: First consider optimal transport cost functions
of the form

c((x, y), (x̃, ỹ)) = L∥x− x̃∥q +∞1y ̸=ỹ (22)

on the space X = D × {0, ..., Nc − 1} (i.e., samples in D ⊂ Rd with label from Nc classes). This
applies a q-Wasserstein cost on the first component (sample) but infinite cost on changing the second
component (label); this is a form of soft-constraint, as opposed to the hard-constraint cost (21). The
hyperparameter L > 0 allows one to choose how much weight is placed on the OT cost, as compared
to the information divergence cost in Dc. The OT-regularized loss is then

Lcθ,λ(x, y) = sup
x̃∈D
{λ−1Lθ(x̃, y)− L∥x− x̃∥q} , (23)

and corresponds to the construction of a new sample, x̃, adversarial to the original sample x but
keeping the original label y. We consider the choice of vector norm to be a hyperparameter, selected
from ℓp, p ∈ [1,∞], and use the cross-entropy loss, Lθ(x̃, y) = CE(ϕθ(x̃), y) where ϕθ is the neural
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network (NN) classifier with NN-parameters θ. The adversarial loss (23) can then be used in either
of the outer minimizers (14) or (15) (or, more generally, Eq. 11 for some other D, provided one can
compute its convex conjugate) to obtain an ARMORD method. We use the notation advs to denote
methods that employ adversarial samples constructed via (23).

Robust Classification Using Adversarial Class Labels and Adversarial Samples: We will also
utilize OT cost functions that allow the class labels to be perturbed in the inner maximizer. To do
this we consider the sample space to be X = D × P({0, ..., Nc − 1}) where P({0, ..., Nc − 1})
is the space of probability vectors on the set of labels, with the original class labels mapped to the
corresponding one-hot vectors. We relax the term∞1y ̸=ỹ in (22) to allow for the perturbation of class
labels. Allowing for too much label uncertainly will destroy any predictive ability of the classifier, as
is also the case with adversarial perturbation of samples, but we find that a small amount improves
robustness. To this end, we consider OT cost functions of the form

c((x, p), (x̃, p̃)) = L∥x− x̃∥q +Kgδ(OT (p, p̃)) , (24)

whereOT is the optimal transport cost (with cost function 1i ̸=j) between the probability vectors p and
p̃, i.e., OT (p, p̃) = 1−

∑N
i=1 min{pi, p̃i}, and gδ : [0, δ) → [0,∞) is increasing, continuous, and

satisfies gδ(0) = 0, limz→δ− gδ(z) =∞; we then extend the definition via gδ|[δ,∞) :=∞. K > 0 is
a new cost coefficient hyperparameter and δ is a new hyperparameter that determines the maximum
amount by which the class probabilities can change. More specifically, if the original sample has
p = 1k (i.e., a one-hot vector with a 1 in the k’th position, corresponding to the label being k) then
OT (p, p̃) = 1 − p̃k and so the cost (24) will force the adversarial label to have p̃k > 1 − δ. In
particular we only use δ ∈ (0, 1/2] so that the predicted class is never changed; the class probabilities
are only relaxed from being either 0 or 1 to being in [0, 1]. Therefore, we do not consider labels to be
noisy in the sense discussed in, e.g., Natarajan et al. (2013); Shafieezadeh-Abadeh et al. (2019). We
consider this only as a tool to enhance robustness. In our experiments we take gδ(z) = z/(1− z/δ);
note this has a vertical asymptote at z = δ, as required. The inner maximizer with original sample
and label being (x, 1k) is then

Lcθ,λ(x, 1k) = sup
(x̃,p̃)∈X :
p̃k>1−δ

{
λ−1Lθ(x̃, p̃)− L∥x− x̃∥q −K

1− p̃k
1− (1− p̃k)/δ

}
. (25)

We let the baseline loss, Lθ, be the KL divergence between the adversarial probability vector, p̃, and
the classifier output ϕθ(x̃) (in the form of a probability vector); note that this is the same as the cross
entropy when the label is one-hot but when the labels are relaxed to general probability vectors in the
inner maximizer then they differ by the entropy of p̃. We use the notation advs,l to denote methods
that employ both adversarial labels and adversarial samples, constructed via (25).

Benchmark Methods and Evaluation Metrics: We consider adversarial training with r_FGSMk

(Al-Dujaili et al., 2018) and the method proposed by Grosse et al. (2017). We note that Al-Dujaili
et al. (2018) proposes several variants for their adversarial training method among which r_FGSMk

produces the best results. Consistent with Al-Dujaili et al. (2018), we consider three evaluation
metrics: accuracy, false negative rate (FNR), and false positive rate (FPR) as well-established
evaluation metrics.

Results: Table 2 shows the malware experiment results for the non-robust model, benchmark models
(the method proposed by Grosse et al. (2017) and rFGSMk), as well as variations of ourARMORD
method. The best hyperparameters for ARMORD were attained via a small grid-search on the
parameter space in Appendix C.5. As observed in Table 2, our proposedARMORα (advs,l) achieves
the accuracy of 83.31%, FNR of 2.44% and FPR of 42.0% against rFGSM50 attack outperforming,
the benchmark methods and the non-robust model across all three evaluation metrics. ARMORα
(advs,l) also attains the lowest FNR against rFGSM50 and the lowest FNR against Grosse et al.’s
attack. We note that, as shown in Table 2, the best performance under attack for Grosse et al. occurs
when the adversarial training adopts the same method for inner maximizer. This is aligned with the
findings in Al-Dujaili et al. (2018) (see their Table 3). In addition to these results, we also provide
experiments to enhance the test generalizability of the malware detector in Appendix D.
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Table 2: Malware adversarial training to enhance performance under attack: Comparison
of the performance of our proposed method in enhancing the robustness on the malware dataset.
Hyperparameters were tuned to enhance performance under attack. advs denotes the use of adversarial
samples constructed via (23) and advs,l denotes the use of both adversarial samples and labels, as
in (25). nat refers to the use of natural samples alongside the adversarial samples, as described in
Appendix C.6. adva refers to asymmetric methods, as described in Appendix C.7, with only the
malicious samples robustified. See Table 5 for results tuned to maximize performance generalizability.

rFGSMk Attack Grosse et al. Attack No Attack
Defense Acc FNR FPR Acc FNR FPR Acc FNR FPR
Non-robust 14.71% 77.85% 98.48% 33.03% 99.86% 8.53% 92.96% 5.30% 10.13%
Grosse et al. 57.36% 10.96% 98.91% 91.08% 8.04% 10.48% 92.38% 5.47% 11.45%
rFGSMk (Al-Dujaili et al.) 60.79% 4.99% 100.00% 74.74% 32.39% 12.59% 92.83% 5.20% 10.66%
ARMORKL (advs) 73.86% 2.80% 67.61% 87.59% 12.50% 12.26% 92.58% 5.44% 10.94%
ARMORKL (advas ) 69.33% 5.39% 95.38% 85.53% 16.07% 11.62% 92.71% 5.14% 11.09%
ARMORKL (advs + nat) 84.25% 23.33% 2.28% 85.53% 20.50% 3.73% 92.90% 5.02% 10.81%
ARMORKL (advas + nat) 77.34% 3.14% 57.34% 72.45% 35.12% 14.11% 93.02% 5.39% 9.82%
ARMORα (advs) 83.23% 5.60% 36.62% 89.26% 9.67% 12.64% 92.92% 5.09% 10.63%
ARMORα (advas ) 68.12% 5.23% 79.21% 88.57% 9.99% 13.98% 92.65% 4.99% 11.55%
ARMORα (advs + nat) 66.21% 6.72% 81.88% 86.79% 18.30% 4.16% 92.93% 5.13% 10.51%
ARMORα (advas + nat) 76.20% 2.86% 60.99% 78.68% 17.66% 27.82% 92.38% 2.71% 16.35%
ARMORα (advs,l) 83.31% 2.44% 42.00% 71.70% 1.83% 75.33% 91.08% 9.00% 8.78%
Note: Best metrics are shown in bold font. The numbers for methods that outperform the non-robust model and
prior adversarial robustness methods across all three metrics are underlined.

4 CONCLUSION

In this work we proposed the ARMORD methods for enhancing adversarial robustness of deep
learning models. These methods are based on a new class of divergences for comparing probability
distributions, the optimal-transport-regularized divergences Dc, which are defined as an infimal
convolution between an information divergence D (such as KL) and an optimal-transport cost C. The
key innovation is the principled and dynamical manner in which the method combines transported
adversarial samples, along with adversarial re-weighting of the samples via the information divergence.
In practice, the adversarial re-weighting focuses the optimization towards improving the performance
on the most troublesome adversarial samples. We demonstrated that these new tools have many
attractive mathematical properties, making them well suited to applications in statistical learning. The
ARMORD methods were tested on classification problems representing both continuous (MNIST)
and discrete data (malware), where we find that it provides significant performance benefits and
outperforms existing methods at enhancing the robustness against adversarial attacks in most tests. For
MNIST, we designed the test to isolate the effect of the adversarial sample re-weighting mechanism
that is inherent to the ARMORD framework. We find that, when used to augment PGD-AT , it
increases the performance under AutoAttack by 2.8 percentage points, which is 1.7 points higher
than achieved by the recent state-of-the-art OT-based augmentation method Bui et al. (2022). In
malware detection, a discrete (binary) data domain, ARMORD improves the robustified accuracy
under rFGSM50 attack compared to the previous best-performing adversarial training methods by
22 percentage points while simultaneously lowering false negative rate from 4.99% to 2.44%. These
experiments were all done using ARMORD where D was an f -divergence, however the majority
of the rigorous theoretical development we provide in Appendix A applies to a much more general
class of D’s. Exploring cases beyond D = Df in the search for new variants of Dc that can be
efficiently and effectively applied to adversarial robustness, or to other statistical learning tasks, is
an interesting direction for future work. In particular, the Rényi divergences are a natural candidate
as their convex conjugate can be computed. Secondly, our method is based on a new general DRO
framework of Dc neighborhoods and hence can be used to augment any empirical risk minimization
problem. Therefore our work can be used in a manner similar to Bui et al. (2022), which used
OT-DRO neighborhoods to obtain enhanced versions of TRADES, Zhang et al. (2019), and MART,
Wang et al. (2020); exploring such enhancements using the Dc-DRO framework is another promising
direction for future work.

9



Under review as a conference paper at ICLR 2024

REPRODUCIBILITY STATEMENT

To facilitate reproducibility of the results presented in this paper we include implementation details in
Appendix C. Specifically, Appendix C.2 contains pseudocode for the method, Appendix C.3 provides
the target networks’ structure used for the malware and image applications, Appendix C.5 provides
the hyperparameters that yielded the results reported in Tables 3, 2, 4, and 5, Appendix C.6 discusses
the implementation of the adv + nat methods, and Appendix C.7 discusses the implementation of
the adva methods.
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A PROPERTIES OF THE OT-REGULARIZED DIVERGENCES: RIGOROUS
STATEMENTS AND PROOFS

In this appendix we rigorously develop the definition and properties of the optimal-transport-
regularized divergences that were introduced formally above. Here we will let X be a Polish
space (i.e., a complete separable metric space) with its Borel σ-algebra (denoted B(X )) and P(X )
will denote the space of Borel probability measures on X . A pre-divergence will be a mapping
D : P(X )× P(X )→ [0,∞] such that D(µ∥µ) = 0 for all µ ∈ P(X ). We will say that D has the
divergence property ifD(µ∥ν) = 0 iff µ = ν. A cost function on X will be a lower semicontinuous
(LSC) function c : X × X → [0,∞]. The associated optimal-transport (OT) cost is defined by
C : P(X )× P(X )→ [0,∞],

C(µ, ν) := inf
π∈P(X×X ):
π1=µ,π2=ν

∫
cdπ , (26)

where πi denote the marginal distributions. It is a simple exercise to check that if c(x, x) = 0 for
all x then C(µ, µ) = 0 for all µ and if c(x1, x2) = 0 iff x1 = x2 then C(µ, ν) = 0 iff µ = ν. Also
recall that C is convex and is LSC in the product of Prokhorov metric topologies. This follows from
Kantorovich duality; see Theorem 5.10 in Villani (2008). All subsequent topological statements
regarding probability distributions will refer to the Prokhorov metric topology (i.e., the topology of
weak convergence).
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Given the above ingredients we now define the class of optimal-transport regularized divergences that
are employed in this work.

Definition A.1. Let D be a pre-divergence and c a cost function. The OT-regularized divergence,
Dc : P(X )× P(X )→ [0,∞], is defined by

Dc(ν∥µ) := inf
η∈P(X )

{D(η∥µ) + C(η, ν)} . (27)

In the main text we frequently referred to D(η∥µ) as an information divergence, meaning it is
computable in terms of dη/dµ, and the experiments in Section 3 utilized the f -divergences, D = Df ,
which satisfy this property. However our rigorous development in this appendix will be stated
more generally. The search for cases beyond D = Df where Dc can be efficiently applied to
adversarial robustness, or to other statistical learning tasks, is an interesting direction for future work.
Throughout Section A.1 we provide remarks indicating how the theorems proven here can be applied
to OT-regularized f -divergences. We use the following definition of f -divergences.

Definition A.2. For a, b ∈ [−∞,∞] that satisfy −∞ ≤ a < 1 < b ≤ ∞ we define F1(a, b) to be
the set of convex functions f : (a, b) → R with f(1) = 0. For f ∈ F1(a, b), the corresponding
f -divergence between ν, µ ∈ P(X ) is defined by

Df (ν∥µ) =
{
EP [f(dν/dµ)], ν ≪ µ

∞, ν ̸≪ µ
, (28)

where the definition of f in (28) is extended to [a, b] by continuity and is set to∞ on [a, b]c.

Remark A.3. For certain choices of f one can assign a meaningful finite value to Df (ν∥µ) even
when ν ̸≪ µ Liese & Vajda (2006) but the definition (28) is more convenient for our purposes. That
alternative definition agrees with (28) for the choices of f used in the experiments in Section 3.

In our numerical experiments we use the KL divergence, defined via fKL(z) = z log(z), and the
α-divergences, defined via

fα(z) =
zα − 1

α(α− 1)
, α > 1 . (29)

The Legendre transform of fα will also be required

f∗α(z) = α−1(α− 1)α/(α−1) max{z, 0}α/(α−1) +
1

α(α− 1)
, α > 1 . (30)

A.1 PROPERTIES OF THE OT-REGULARIZED DIVERGENCES

Here we prove a number of key properties of the OT-regularized divergences.

Lemma A.4 (Convexity). Let D be a pre-divergence, c be a cost function, and µ ∈ P(X ). If
P 7→ D(P∥µ) is convex then P 7→ Dc(P∥µ) is convex.

Remark A.5. f -divergences satisfy this convexity property. In fact, the map (Q,P )→ Df (Q∥P ) is
convex for all f ∈ F1(a, b). This follows from the variational representation of f -divergences; see
Nguyen et al. (2010), Broniatowski & Keziou (2006) and also Proposition B.1 in Birrell et al. (2022).

Proof. C is convex on P(X )× P(X ) and so (η, ν) 7→ D(η∥µ) + C(η, ν) is convex. Therefore the
infimum over η is convex in ν.

Lemma A.6 (Pre-Divergence Property). Let D be a pre-divergence and c be a cost function that
satisfies c(x, x) = 0 for all x. Then Dc is a pre-divergence.

Proof. We need to show that Dc(µ∥µ) = 0 for all µ ∈ P(X ). To do this we bound the definition by
its value at η = µ to obtain

0 ≤ Dc(µ∥µ) ≤ D(µ∥µ) + C(µ, µ) = 0 , (31)

where C(µ, µ) = 0 follows from the assumption on c.
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Theorem A.7 (Divergence Property). Let D be a pre-divergence and c be a cost function that satisfy
the following properties.

1. If D(µn∥µ)→ 0 then µn → µ weakly.

2. c(x1, x2) = 0 iff x1 = x2.

Then Dc has the divergence property.
Remark A.8. In Theorem A.29 below we show that the f -divergences satisfy the weak convergence
property under mild assumptions and hence this theorem can be applied to OT-regularized f -
divergences.

Proof. If µ = ν then 0 ≤ Dc(ν∥µ) ≤ D(µ∥µ) + C(µ, ν) = C(ν, ν) = 0. Hence Dc(ν∥µ) =
0. Conversely if Dc(ν∥µ) = 0 then there exists a sequence ηn ∈ P(X ) such that D(ηn∥µ) +
C(ηn, ν)→ 0, i.e., D(ηn∥µ)→ 0 and C(ηn, ν)→ 0. By the weak convergence property of D we
have ηn → µ weakly. C is LSC, therefore

C(µ, ν) ≤ lim
n→∞

C(ηn, ν) = 0 (32)

and we can conclude that C(µ, ν) = 0. The assumption on c then implies µ = ν.

Next we provide conditions under which the infimum in (27) has a (unique) solution.
Theorem A.9. Let D be a pre-divergence, c a cost function, and µ, ν ∈ P(X ). If the mapping
P 7→ D(P∥µ) is LSC and has compact sublevel sets (i.e., {P : D(P∥µ) ≤M} is compact for all
M ∈ R) then there exists η∗ ∈ P(X ) such that

Dc(ν∥µ) = D(η∗∥µ) + C(η∗, ν) . (33)

If P 7→ D(P∥µ) is strictly convex on the set where it is finite and Dc(ν∥µ) < ∞ then this η∗ is
unique.
Remark A.10. For f ∈ F1(a, b) the f -divergences Df (·∥µ) are LSC and have compact sublevel
sets for all µ, provided that f∗ is finite everywhere; see Corollary B.2 and Lemma B.5 in Birrell et al.
(2022). If f is strictly convex on (a, b) then Df (·∥µ) is strictly convex on the set where it is finite;
see Lemma B.6 in Birrell et al. (2022). Therefore Theorem A.9 can be applied to OT-regularized
f -divergences for appropriate choices of f .

Proof. If Dc(ν∥µ) = ∞ then the definition (27) implies that (33) holds for all η∗ ∈ P(X ). Now
consider the case where Dc(ν∥µ) <∞. Take ηn such that Dc(ν∥µ) = limn(D(ηn∥µ) +C(ηn, ν)).
Without loss of generality we can assume that D(ηn∥µ) ≤ Dc(ν∥µ) + 1 <∞ for all n, i.e., ηn are
all contained in a sublevel set of D(·∥µ), which is compact by assumption. Therefore there exists a
weakly convergent subsequence ηnj → η∗. Lower semicontinuity of D(·∥µ) and of C then implies
lim infj D(ηnj∥µ) ≥ D(η∗∥µ) and lim infj C(ηnj , ν) ≥ C(η∗, ν). Therefore

Dc(ν∥µ) = lim
j
(D(ηnj

∥µ) + C(ηnj
, ν)) ≥ D(η∗∥µ) + C(η∗, ν) . (34)

The reverse inequality is obvious from the definition of Dc, hence we can conclude

Dc(ν∥µ) = D(η∗∥µ) + C(η∗, ν) . (35)

Now consider the case where P 7→ D(P∥µ) is also strictly convex on the set where it is finite.
Suppose there exist distinct η∗,1, η∗,2 ∈ P(X ) such that

Dc(ν∥µ) = D(η∗,1∥µ) + C(η∗,1, ν) = D(η∗,2∥µ) + C(η∗,2, ν) . (36)

Letting η∗ = 1
2 (η∗,1 + η∗,2) we can use convexity of C and strict convexity of D(·∥µ) to compute

Dc(ν∥µ) ≤D(η∗∥µ) + C(η∗, ν) (37)

<
1

2
D(η∗,1∥µ) +

1

2
D(η∗,2∥µ) +

1

2
C(η∗,1, ν) +

1

2
C(η∗,2, ν)

=
1

2
Dc(ν∥µ) + 1

2
Dc(ν∥µ) = Dc(ν∥µ) .

This is a contradiction, therefore we can conclude the optimizer is unique.
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Using Theorem A.9 we can prove Dc(·∥µ) is LSC; see Remark A.10 for the application to OT-
regularized f -divergences.
Theorem A.11 (Lower Semicontinuity). Let D be a pre-divergence, c a cost function, µ ∈ P(X ),
and assume that D(·∥µ) is LSC and has compact sublevel sets. Then ν 7→ Dc(ν∥µ) is LSC.

Proof. Let νn, ν ∈ P(X ) with νn → ν weakly and define M := lim infnD
c(νn∥µ). If M = ∞

then we clearly have lim infnD
c(νn∥µ) ≥ Dc(ν∥µ) so suppose M <∞. Therefore, fixing δ > 0,

there exists N such that for all n ≥ N we have infj≥nDc(νj∥µ) < M + δ. Hence we can construct
a subsequence jk such that Dc(νjk∥µ) < M + δ for all k. Theorem A.9 implies that there exists η∗,n
such that

Dc(νn∥µ) = D(η∗,n∥µ) + C(η∗,n, νn) (38)
for all n, and so

M + δ > Dc(νjk∥µ) = D(η∗,jk∥µ) + C(η∗,jk , νjk) (39)
for all k. In particular, the η∗,jk are contained in the compact sublevel set {D(·∥µ) ≤ M + δ}.
Therefore there exists a convergent subsequence η∗,jkℓ

→ η∗. Lower semicontinuity of D(·∥µ) and
C then implies

M + δ ≥ lim inf
ℓ

(D(η∗,jkℓ
∥µ) + C(η∗,jkℓ

, νjkℓ
)) (40)

≥ lim inf
ℓ

D(η∗,jkℓ
∥µ) + lim inf

ℓ
C(η∗,jkℓ

, νjkℓ
))

≥D(η∗∥µ) + C(η∗, ν)

≥Dc(ν∥µ) .
Taking δ → 0+ and recalling the definition of M completes the proof.

Finally, we prove a pair of results showing that Dc reduces to either D or C in certain limits.
Therefore one can think of Dc as a type of interpolation between D and C. To apply these theorems
to the case D = Df , see Remarks A.8 and A.10.
Theorem A.12 (Interpolation). Let D be a pre-divergence, c be a cost function, and µ, ν ∈ P(X )
that satisfy the following.

1. The mapping P 7→ D(P∥µ) is LSC and has compact sublevel sets.

2. D(µn∥µ)→ 0 implies µn → µ weakly.

For r > 0 define the cost function cr = rc. Then
lim
r→0+

r−1Dcr (ν∥µ) = C(µ, ν) for all µ, ν ∈ P(X ). (41)

Proof. From the definitions we have
r−1Dcr (ν∥µ) = inf

η∈P(X )
{r−1D(η∥µ) + C(η, ν)} (42)

and the right-hand side is non-increasing in r. Therefore for rn ↘ 0 we have
lim
n
r−1
n Dcrn (ν∥µ) = sup

n
r−1
n Dcrn (ν∥µ) ≤ C(µ, ν) , (43)

where the inequality comes from bounding (27) by its value at η = µ. We will show that the
assumption that this inequality is strict leads to a contradiction, which will complete the proof. If
the inequality is strict then Dcrn (ν∥µ) <∞ for all n and Theorem A.9 implies the existence of η∗,n
such that
D(η∗,n∥µ) ≤ D(η∗,n∥µ) + rnC(η∗,n, ν) = Dcrn (ν∥µ) ≤ rn sup

m
r−1
m Dcrm (ν∥µ) <∞ . (44)

Taking n → ∞ we see that D(η∗,n∥µ) → 0 and therefore η∗,n → µ weakly. C is LSC, therefore
lim infn C(η∗,n, ν) ≥ C(µ, ν). Combining these we have

C(µ, ν) > sup
n
r−1
n Dcrn (ν∥µ) ≥ lim inf

n
(r−1
n D(η∗,n∥µ) + C(η∗,n, ν)) (45)

≥ lim inf
n

C(η∗,n, ν) ≥ C(µ, ν) . (46)

This is a contradiction, hence the proof is complete.
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Theorem A.13 (Interpolation). Let D be a pre-divergence, c be a cost function, and µ, ν ∈ P(X )
that satisfy the following.

1. The mapping P 7→ D(P∥µ) is LSC and has compact sublevel sets.

2. c(x1, x2) = 0 iff x1 = x2.

For r > 0 define the cost function cr = rc. Then

lim
r→∞

Dcr (ν∥µ) = D(ν∥µ) for all µ, ν ∈ P(X ). (47)

Proof. From the definitions we have

Dcr (ν∥µ) = inf
η∈P(X )

{D(η∥µ) + rC(η, ν)} ≤ D(ν∥µ) (48)

and the left-hand side is non-decreasing in r. Therefore for rn ↗∞ we have

lim
n→∞

Dcrn (ν∥µ) = sup
n
Dcrn (ν∥µ) ≤ D(ν∥µ) . (49)

Assuming this inequality is strict will lead to a contradiction, thus completing the proof. Suppose that
supnD

crn (ν∥µ) < D(ν∥µ). Theorem A.9 implies the existence of η∗,n such that

Dcrn (ν∥µ) = D(η∗,n∥µ) + rnC(η∗,n, ν) . (50)

In particular, supnD(η∗,n∥µ) ≤ supnD
crn (ν∥µ) <∞ and therefore η∗,n all lie in a sublevel set of

D(·∥µ), which is compact. Hence there exists a weakly convergent subsequence η∗,nj
→ η∗. Next

we show that η∗ = ν. To do this, note that

∞ > sup
n
Dcrn (ν∥µ) ≥ sup

n
rnC(η∗,n, ν) (51)

and therefore limn C(η∗,n, ν) = 0. Lower semicontinuity implies 0 = limj C(η∗,nj
, ν) ≥

C(η∗, ν) ≥ 0 and so C(η∗, ν) = 0. The cost function has the property c(x1, x2) = 0 iff x1 = x2,
hence we can conclude that η∗ = ν. To complete the proof we can use the lower semicontinuity of
D(·∥µ) to compute

D(ν∥µ) > sup
n
Dcrn (ν∥µ) ≥ lim inf

j
D(η∗,nj∥µ) ≥ D(η∗∥µ) = D(ν∥µ) . (52)

This is a contradiction and so the proof is complete.

A.2 DRO USING OT-REGULARIZED DIVERGENCES

In this section we provide rigorous proofs for the key identities that transform the DRO problem over
OT-regularized-divergence neighborhoods into a computationally tractable form. This will involve
the construction of regularized loss functions, as defined below.

Definition A.14. Given a loss function L : X → [−∞,∞] we define the corresponding family of
OT-regularized losses by

Lcλ(x) := sup
y∈X
{L(y)/λ− c(x, y)} , λ > 0 , (53)

where we employ the convention∞−∞ := −∞. Lcλ is known as the c-transform in the optimal
transport literature; see Definition 5.2 in Villani (2008).

Remark A.15. From a mathematical perspective, the convention∞−∞ := −∞ is motivated by
the proof of Theorem A.18 below. It also coincides with the behavior one intuitively wants based
on viewing the maximization in (53) as the construction of a new sample y that is adversarial to
the original sample x. If the transport cost c(x, y) = ∞ then one should view y as impossible to
reach when starting from x and so y should not be a valid adversarial sample to pair with x, even if
L(y) =∞. Therefore such y’s should be excluded from the maximization in (53); mathematically,
this corresponds to defining∞−∞ := −∞.
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In the main text we use DRO as a tool for enhancing adversarial robustness, and there we consider
distribution neighborhoods of the form {Q : Dc(Q∥Pn) ≤ ϵ}, where the baseline distribution is
an empirical distribution Pn. However, it can be useful to have a proof of the DRO identity for the
neighborhoods {Q : Dc(Q∥P ) ≤ ϵ} with a general baseline distribution P and so we study this
more general problem below. A key tool will be the following interchangeability result, which has
previously been used in Wasserstein and OT DRO; see the discussion in Zhang et al. (2022). For
completeness we provide a proof of the version employed in this work; our proof mimics the strategy
used for the more general result stated in Zhang et al. (2022). Below we will use the notationMµ for
the completion of a σ-algebra,M, with respect to a measure µ, we will denote the completion of µ
by µ, andM∗ will denote the σ-algebra of universally measurable sets (with respect toM).
Lemma A.16 (Interchangeability). Let µ ∈ P(X ) and ϕ : X ×X → [−∞,∞] be measurable. Then
x 7→ supy∈X ϕ(x, y) is a B(X )∗-measurable function and

sup
π∈P(X×X ):π1=µ

Eπ[ϕ] =

∫
sup
y∈X

ϕ(x, y)µ(dx) . (54)

Remark A.17. In (54) we use the convention∞−∞ := −∞ to ensure all integrals therein are
defined, though when using this result in the proof of Theorem A.18 below we will have further
assumptions that guarantee all integrals are defined without relying on any such convention.

Proof. Define Φ = supy∈X ϕ(·, y). For a ∈ R we have

{x : Φ(x) > a} = {x : ∃y, ϕ(x, y) > a} , (55)

which is the projection of the measurable set ϕ−1((a,∞]) onto its first component. Therefore the
measurable projection theorem (see, e.g., Proposition 8.4.4 in Cohn (2013)) implies {x : Φ(x) > a}
is B(X )∗-measurable. The rays (a,∞] for a ∈ R generate the σ-algebra on [−∞,∞], hence Φ is
universally measurable as claimed.

To prove (54), first suppose
∫
Φ−dµ <∞, where Φ− denotes the negative part of Φ. Define Φn =

min{n,Φ− 1/n} and note that min{0,Φ− 1} ≤ Φn < Φ, and Φn ↗ Φ. The Φn are universally
measurable, therefore Cn := {(x, y) ∈ X ×X : ϕ(x, y) > Φn(x)} are B(X )µ

⊗
B(X )-measurable.

For every x ∈ X we have Φn(x) < Φ(x) = supy∈X ϕ(x, y), hence there exists y ∈ X such that
(x, y) ∈ Cn. Therefore the projection of Cn onto its first component equals X . The measurable
selection theorem, Corollary 8.5.4 in Cohn (2013), then implies that there exists Tn : X → X that
is ((B(X )µ)∗,B(X ))-measurable such that the graph of Tn is contained in Cn. Using the result
of Cohn Ex. 8.4.2(b) we have (B(X )µ)∗ = B(X )µ, therefore Tn is (B(X )µ,B(X ))-measurable.
The map ψ : x 7→ (x, Tn(x)) is (B(X )µ,B(X )

⊗
B(X ))-measurable and the pushforward measure

ψ#µ ∈ P (X × X ) satisfies (ψ#µ)1 = µ, therefore

sup
π∈P(X×X ):π1=µ

Eπ[ϕ] ≥ Eψ#µ[ϕ] =

∫
ϕ(x, Tn(x))µ(dx) ≥

∫
Φndµ , (56)

where in the last inequality we used the fact that the graph of Tn is contained in Cn. We have the
lower bound Φn ≥ −Φ− − 1 ∈ L1(µ) and therefore we can use the monotone convergence theorem
to obtain

sup
π∈P(X×X ):π1=µ

Eπ[ϕ] ≥ lim
n→∞

∫
Φndµ =

∫
Φdµ . (57)

This also trivially holds if
∫
Φ−dµ = ∞ due to our convention ∞ − ∞ := −∞. The reverse

inequality follows easily from the bound Φ(x) ≥ ϕ(x, y) for all x and y, together with the fact that
there exists a B(X )-measurable function that equals Φ µ-a.s.

Now we derive a formula that relates the convex conjugate of Dc(·∥P ) to the convex conjugate of
D(·∥P ). This is a useful result in its own right and is a key ingredient in solving the DRO problem.
Theorem A.18. Suppose we have the following:

1. A measurable function L : X → [−∞,∞] that is bounded below or is bounded above.

2. A distribution P ∈ P(X ).
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3. A pre-divergence, D, such that D(·∥P ) is convex.

4. A cost function, c, that satisfies c(x, x) = 0 for all x ∈ X .

Then for λ > 0 we have

sup
Q∈P(X ):

Dc(Q∥P )<∞

{EQ[L]− λDc(Q∥P )} = sup
Q∈P(X ):

D(Q∥P )<∞

{EQ[λLcλ]− λD(Q∥P )} , (58)

where Lcλ (defined in Eq. 53) is a universally measurable function.

Remark A.19. In Theorem A.18 and in the following, when it is convenient for simplifying notation we
use the same symbol to denote a probability measure and its completion, as the correct interpretation
is easily discovered by examining the measurably of the integrand. When needed for clarity, we will
again use Q to denote the completion of Q ∈ P(X ).

Proof. Universal measurability of Lcλ follows from the interchangability result, Lemma A.16. To
prove (58), first suppose that L is bounded above. Using the definitions of Dc and C we can compute

sup
Q∈P(X ):Dc(Q∥P )<∞

{EQ[L]− λDc(Q∥P )} (59)

= sup
Q∈P(X )

{
EQ[L]− λ inf

η∈P(X )
{D(η∥P ) + C(η,Q)}

}

=λ sup
η∈P(X )

{
sup

Q∈P(X )

{EQ[L/λ]− C(η,Q)} −D(η∥P )

}

=λ sup
η∈P(X ):D(η∥P )<∞

{
sup

Q∈P(X )

{
sup

π:π1=η,π2=Q

{∫
λ−1L(y)− c(x, y)π(dxdy)

}}
−D(η∥P )

}

=λ sup
η∈P(X ):D(η∥P )<∞

{
sup

π:π1=η

{∫
λ−1L(y)− c(x, y)π(dxdy)

}
−D(η∥P )

}
=λ sup

η∈P(X ):D(η∥P )<∞

{∫
sup
y∈X
{λ−1L(y)− c(x, y)}η(dx)−D(η∥P )

}
, (60)

where we used the interchangability result, Lemma A.16, to obtain the last line. The assumption
that L is bounded above, and hence EQ[L] ∈ [−∞,∞) for all Q, ensured that ∞ −∞ was not
encountered in (59)-(60). Recalling the definition (53) this completes the proof when L is bounded
above.

Now suppose L is bounded below. Define Ln(x) := min{L(x), n}, n ∈ Z+. These are bounded
below uniformly in n and so supnEQ[Ln] = EQ[L] for all Q by the monotone convergence theorem.
The Ln are bounded above, hence we can use (59)-(60) to obtain

sup
Q∈P(X ):Dc(Q∥P )<∞

{EQ[L]− λDc(Q∥P )} (61)

=sup
n

sup
Q∈P(X ):Dc(Q∥P )<∞

{EQ[Ln]− λDc(Q∥P )}

=sup
n

sup
Q∈P(X ):D(Q∥P )<∞

{
λ

∫
(Ln)cλ(x)Q(dx)− λD(Q∥P )

}
= sup
Q∈P(X ):D(Q∥P )<∞

{
λ sup

n

∫
(Ln)cλ(x)Q(dx)− λD(Q∥P )

}
= sup
Q∈P(X ):D(Q∥P )<∞

{λEQ[Lcλ]− λD(Q∥P )} ,

where, noting that the functions (Ln)cλ are bounded below uniformly in n, we again used the monotone
convergence theorem in the final equality. We emphasize that the convention ∞−∞ = −∞ is
needed to justify the computation supn(Ln)cλ(x) = supy{supn Ln(y)/λ − c(x, y)} = Lcλ(x) for
all x. This proves the claim when L is bounded below and so the proof is complete.
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In particular, when D = Df is an f -divergence we can further evaluate the convex conjugate of Df

to obtain a formula that only involves expectations with respect to P .

Corollary A.20. Suppose we have the following:

1. A measurable function L : X → [−∞,∞] that is bounded below or is bounded above.

2. A distribution P ∈ P(X ) such that L− ∈ L1(P ), where L− denotes the negative part of L.

3. f ∈ F1(a, b) with a ≥ 0.

4. A cost function, c, that satisfies c(x, x) = 0 for all x ∈ X .

Then for λ > 0 we have

sup
Q∈P(X ):Dc

f (Q∥P )<∞
{EQ[L]− λDc

f (Q∥P )} = λ inf
ρ∈R
{ρ+ EP [f

∗(Lcλ − ρ)]} , (62)

where the definition of f∗ is extended by f∗(±∞) :=∞.

Proof. Df is a pre-divergence and Df (·∥P ) is convex, hence Theorem A.18 gives

sup
Q∈P(X ):Dc

f (Q∥P )<∞
{EQ[L]− λDc

f (Q∥P )} = λ sup
Q∈P(X ):Df (Q∥P )<∞

{EQ[L
c
λ]−Df (Q∥P )}

(63)

for all λ > 0. We have Lcλ(x) ≥ L(x)/λ and so (Lcλ)− ≤ L−/λ ∈ L1(P ). Therefore (Lcλ)− ∈
L1(P ) and we can employ the Gibbs variational principle for f -divergences (see Theorem 4.2 in
Ben-Tal & Teboulle (2007)) to compute

sup
Q:Df (Q∥P )<∞

{EQ[L
c
λ]−Df (Q∥P )} = inf

ρ∈R
{ρ+ EP [f

∗(Lcλ − ρ)]} . (64)

We revert to explicit completion notation here to clarify a technical point. Theorem 4.2 from Ben-Tal
& Teboulle (2007) assumes measurability of the integrand and not universal measurability. However
one can easily prove that (64) still follows by first replacing Lcλ with a B(X )-measurable function
that agrees with it P -a.s. and then using the fact that Df (Q∥P ) <∞ implies Q≪ P ; see Definition
(A.2). Also, the result in Ben-Tal & Teboulle (2007) assumes the integrand on the left-hand side
of (64) is in L1(P ) but the case where the positive part is not integrable is easily checked to yield
infinity on both sides of the identity. Combining (64) and (63) completes the proof.

Before proceeding to the DRO problem we need a lemma regarding the finiteness of expectations as
the distribution ranges over an OT-regularized-divergence neighborhood.

Lemma A.21. Suppose we have the following:

1. A measurable function L : X → [−∞,∞].

2. A distribution P ∈ P(X )

3. A pre-divergence, D, such that D(·∥P ) is convex.

4. A cost function, c, that satisfies c(x, x) = 0 for all x ∈ X .

Suppose there exists ϵ > 0 such that L ∈ L1(Q) for all Q ∈ P(X ) that satisfy Dc(Q∥P ) ≤ ϵ. Then
L ∈ L1(Q) for all Q that satisfy Dc(Q∥P ) <∞.

Proof. The assumptions imply that Dc is a pre-divergence (see Lemma A.6) and Dc(·∥P ) is convex
(see Lemma A.4). Take any Q with Dc(Q∥P ) <∞ and define Qt = tQ+ (1− t)P for t ∈ (0, 1).
By convexity and the pre-divergence property we have Dc(Qt∥P ) ≤ tDc(Q∥P ). We assumed
Dc(Q∥P ) < ∞, hence there exists t ∈ (0, 1) with Dc(Qt∥P ) ≤ ϵ. This implies L ∈ L1(Qt) and
so∞ > EQt

[|L|] = tEQ[|L|] + (1 − t)EP [|L|]. We have t ∈ (0, 1), therefore we can conclude
EQ[|L|] <∞ as claimed.
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We are now ready to consider the DRO problem for general P . We also allow for an explicit Dc

penalty term, in addition to maximizing over the distribution neighborhood, though we do not employ
such a penalty term in the experiments in Section 3.
Theorem A.22. Suppose we have the following:

1. A measurable function L : X → [−∞,∞] that is bounded below or is bounded above.

2. A distribution P ∈ P(X ) such that L− ∈ L1(P ).

3. A pre-divergence, D, such that D(·∥P ) is convex.

4. A cost function, c, that satisfies c(x, x) = 0 for all x ∈ X .

Then for ϵ > 0, κ ≥ 0 we have
sup

Q:Dc(Q∥P )≤ϵ
{EQ[L]− κDc(Q∥P )} (65)

= inf
λ>0
{λϵ+ (λ+ κ) sup

Q∈P(X ):D(Q∥P )<∞
{EQ[Lcλ+κ]−D(Q∥P )}} .

Proof. We will show that
sup

Q:Dc(Q∥P )≤ϵ
{EQ[L]− κDc(Q∥P )} = inf

λ>0
{λϵ+ sup

Q:Dc(Q∥P )<∞
{EQ[L]− (λ+ κ)Dc(Q∥P )}} .

(66)
Combining this with the result of Theorem A.18 will then complete the proof. If there exists Q such
that Dc(Q∥P ) ≤ ϵ and EQ[L+] =∞ then it is straightforward to see that both sides of (66) equal
∞. Therefore it suffices to consider the case where EQ[L+] <∞ for all Q satisfying Dc(Q∥P ) ≤ ϵ.
Applying Lemma A.21 to L+ then implies L+ ∈ L1(Q) for all Q satisfying Dc(Q∥P ) < ∞.
Therefore the F : Q 7→ EQ[L] − κDc(Q∥P ) is a concave map from {Q : Dc(Q∥P ) < ∞} to
[−∞,∞) and Q 7→ Dc(Q∥P ) is a convex constraint. P satisfies F [P ] ∈ R and Dc(P∥P ) < ϵ.
Therefore Slater’s constraint qualification condition holds (see, e.g., Theorem 3.11.2 in Ponstein
(2004)) and we can conclude strong duality

sup
Q:Dc(Q∥P )≤ϵ

{EQ[L]− κDc(Q∥P )} (67)

= inf
λ>0
{λϵ+ sup

Q:Dc(Q∥P )<∞
{EQ[L]− (κ+ λ)Dc(Q∥P )}} .

We note that the infimum can be restricted to λ > 0 (rather than λ ≥ 0) due to the lower bound on
the constraint function, Dc(·∥P ) ≥ 0. This proves the claim.

If D is an f -divergence, the convex conjugate term (i.e., the supremum over Q) in (65) can be
evaluated by the same method as in Corollary A.20 and the result is a two-dimensional convex
optimization problem.
Corollary A.23. Suppose we have the following:

1. A measurable function L : X → [−∞,∞] that is bounded below or is bounded above.

2. A distribution P ∈ P(X ) such that L− ∈ L1(P ).

3. f ∈ F1(a, b) where a ≥ 0.

4. A cost function, c, that satisfies c(x, x) = 0 for all x ∈ X .

Define f∗(±∞) :=∞. Then for ϵ > 0, κ ≥ 0 we have
sup

Q:Dc
f (Q∥P )≤ϵ

{EQ[L]− κDc
f (Q∥P )} (68)

= inf
λ>0,ρ∈R

{λϵ+ ρ+ (λ+ κ)EP [f
∗(Lcλ+κ − ρ/(λ+ κ))]}

and the objective function for the minimization, (0,∞)× R→ (−∞,∞],
(λ, ρ) 7→ λϵ+ ρ+ (λ+ κ)EP [f

∗(Lcλ+κ − ρ/(λ+ κ))] , (69)
is convex.
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Proof. Equation (68) follows from applying Theorem A.22 to D = Df and then evaluating the
convex conjugate of Df (·∥P ) by the same method as in Corollary A.20. To prove convexity of the
objective function, first note that for all x the maps hx(t) := supy{tL(y)− c(x, y)} are convex in
t ∈ (0,∞) and either hx > −∞ or hx(t) = −∞ for all t. f∗ is convex and it is straightforward
to check that a ≥ 0 implies f∗ is non-decreasing on (−∞,∞]. These facts together imply that
(t, ρ) 7→ f∗(hx(t)− ρ) are convex on (0,∞)×R for all x. Linearity of the expectation then implies
H(t, ρ) := EP [f

∗(hx(t) − ρ)] is convex (note that f∗(z) ≥ z and so the assumptions on L imply
that H(t, ρ) > −∞). Therefore the perspective of H , given by (λ, t, ρ) 7→ λH(t/λ, ρ/λ), is convex
on (0,∞)× (0,∞)×R. Composing with the affine map (λ, ρ) 7→ (λ+κ, 1, ρ) and adding the linear
term λϵ+ ρ results in a convex function on (0,∞)× R. Substituting in the definitions of H and hx
we see that this function equals (69), thereby completing the proof.

Finally, we derive limiting formulas for the DRO problem, analogous to the interpolation results for
Dc, Theorems A.12 and A.13. Though we don’t use those theorems directly, the method of proof is
similar and the conclusions align with what one expects in light of those results. We do require the
more stringent assumptions that X is compact and L is upper semicontinuous (USC), which are often
the case in practice.

Theorem A.24. Suppose the Polish space X is compact and that we have the following:

1. An USC function L : X → [−∞,∞).

2. A distribution P ∈ P(X ).

3. A pre-divergence D such that D(·∥P ) is LSC and D(µn∥P )→ 0 implies µn → P weakly.

4. A cost-function c.

For r > 0 define the cost functions cr = rc. Then for ϵ > 0 we have

lim
r→0+

sup
Q:Dcr (Q∥P )≤rϵ

EQ[L] = sup
Q:C(P,Q)≤ϵ

EQ[L] . (70)

If Lθ : X → [−∞,∞), θ ∈ Θ, is a family of USC functions then

lim
r→0+

inf
θ∈Θ

sup
Q:Dcr (Q∥P )≤rϵ

EQ[Lθ] = inf
θ∈Θ

sup
Q:C(P,Q)≤ϵ

EQ[Lθ] . (71)

Proof. Compactness of X and upper semicontinuity of L implies that L has a maximizer and
hence L is bounded above. In particular, the expectations in (70) are all well-defined. The bound
Dcr (Q∥P ) ≤ rC(P,Q) implies

sup
Q:C(P,Q)≤ϵ

EQ[L] ≤ sup
Q:Dcr (Q∥P )≤rϵ

EQ[L] (72)

for all r > 0. DefineKr := {Q : Dcr (Q∥P ) ≤ rϵ} and note that r2 ≤ r1 impliesKr2 ⊂ Kr1 , hence
the right-hand side of (72) is non-decreasing in r. D(·∥P ) is LSC, therefore it has closed sublevel sets.
X is a compact Polish space, therefore P(X ) is compact (see, e.g., page 117 of Bogachev (2018)).
Therefore the sublevel sets of D(·∥P ) are also compact. Theorem A.11 then implies Dcr (·∥P ) is
LSC for all r and so the Kr are closed sets, hence also compact. L is USC and bounded above,
therefore the Portmanteau theorem implies that Q 7→ EQ[L] is USC, hence it achieves its maximum
on Kr, i.e., there exists Qr ∈ Kr such that

sup
Q∈Kr

EQ[L] = EQr
[L]. (73)

Take rn ↘ 0+. Compactness of P(X ) implies the existence of a weakly convergent subsequence
Qj := Qrnj

→ Q∗. Upper semicontinuity then implies lim supj EQj
[L] ≤ EQ∗ [L]. By Theorem

A.9 there exist η∗,j ∈ P(X ) such that

ϵ ≥ 1

rnj

D
crnj (Qj∥P ) =

1

rnj

D(η∗,j∥P ) + C(η∗,j , Qj) . (74)
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In particular we see that limj→∞D(η∗,j∥P ) = 0. The assumptions on D therefore imply that
η∗,j → P weakly. Now we can use lower semicontinuity of C to compute

C(P,Q∗) ≤ lim inf
j

C(η∗,j , Qj) ≤ lim inf
j

1

rnj

D
crnj (Qj∥P ) ≤ ϵ . (75)

Therefore Q∗ ∈ {Q : C(P,Q) ≤ ϵ}. Putting these pieces together we find
sup

Q:C(P,Q)≤ϵ
EQ[L] ≥EQ∗ [L] ≥ lim sup

j
EQrnj

[L] = lim sup
j

sup
Q∈Krnj

EQ[L] (76)

≥ inf
r>0

sup
Q:Dcr (Q∥P )≤rϵ

EQ[L] = lim
r→0+

sup
Q:Dcr (Q∥P )≤rϵ

EQ[L] ,

where the last equality follows from the fact that the right-hand side is non-decreasing in r. Combining
this inequality with (72) completes the proof of (70). If one has a family of USC functions Lθ then
apply (70) for each θ and note that the limit as r → 0+ is an infimum, hence one can commute the
infimum over θ with the limit r → 0+ to obtain (71).

Theorem A.25. Suppose the Polish space X is compact and that we have the following:

1. An USC function L : X → [−∞,∞).

2. A distribution P ∈ P(X ).

3. A pre-divergence D such that D(·∥P ) is LSC.

4. A cost-function c that satisfies c(x1, x2) = 0 iff x1 = x2.

For r > 0 define the cost functions cr = rc. Then for ϵ > 0 we have
lim
r→∞

sup
Q:Dcr (Q∥P )≤ϵ

EQ[L] = sup
Q:D(Q∥P )≤ϵ

EQ[L] . (77)

If Lθ : X → [−∞,∞), θ ∈ Θ, is a family of USC functions then
lim
r→∞

inf
θ∈Θ

sup
Q:Dcr (Q∥P )≤ϵ

EQ[Lθ] = inf
θ∈Θ

sup
Q:D(Q∥P )≤ϵ

EQ[Lθ] . (78)

The proof of Theorem A.25 is similar to that of Theorem A.24, with slight differences that are
motivated by the proof of Theorem A.13; we omit the details.

A.3 WEAK CONVERGENCE AND f -DIVERGENCES

In this section we show that f -divergences can be used to prove weak convergence of measures;
this is needed in Theorem A.7 as well as to apply many of the properties from Appendix A.1 to
OT-regularized f -divergences. In fact, we will prove the stronger setwise convergence property.
In this section we let Mb(Ω) denote the set of bounded measurable real-valued functions on a
measurable space (Ω,M).
Definition A.26. Let {µn}∞n=1, µ be probability measures on the measurable space (Ω,M). We say
that µn → µ setwise if limn→∞ µn(A) = µ(A) for all A ∈M.

First recall that setwise convergence implies convergence of integrals; we provide a simple proof of
this fact.
Lemma A.27. Let (Ω,M) be a measurable space and µn, µ be probability measures on Ω. If
µn → µ setwise then

∫
ϕdµn →

∫
ϕdµ for all ϕ ∈Mb(Ω).

Remark A.28. In particular, if (Ω,M) is a metric space with the Borel σ-algebra then this implies
µn → µ weakly.

Proof. Let ϕ ∈Mb(Ω). Take a sequence of simple functions ϕj that converge uniformly to ϕ (see,
e.g., Theorem 2.10 in Folland (2013)). With these we can compute

|
∫
ϕdµn −

∫
ϕdµ| ≤|

∫
ϕdµn −

∫
ϕjdµn|+ |

∫
ϕjdµn −

∫
ϕjdµ|+ |

∫
ϕjdµ−

∫
ϕdµ|

≤∥ϕ− ϕj∥∞(µn(Ω) + µ(Ω)) + |
∫
ϕjdµn −

∫
ϕjdµ| . (79)
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The fact that ϕj are simple and µn → µ setwise implies that |
∫
ϕjdµn −

∫
ϕjdµ| → 0 as n→∞

for all j, hence

lim sup
n→∞

|
∫
ϕdµn −

∫
ϕdµ| ≤ 2∥ϕ− ϕj∥∞ (80)

for all j. Taking j →∞ completes the proof.

We now prove that convergence of an f -divergence to zero implies setwise convergence under mild
assumptions on f .
Theorem A.29. Let (Ω,M) be a measurable space, f ∈ F1(a, b), and define w0 := f ′+(1) (where
f ′+ denotes the right derivative of f , which exists because f is convex). Suppose w0 ∈ {f∗ <∞}o
(Ao denotes the interior of the set A) and f is strictly convex on a neighborhood of 1. If Pn, P are
probability measures on Ω and either Df (Pn∥P )→ 0 or Df (P∥Pn)→ 0 then Pn → P setwise.

If (Ω,M) is a metric space with the Borel σ-algebra then we can further conclude Pn → P weakly.

Proof. Take any probability measures Q1, Q2 on (Ω,M) and A ∈ M. For all ϵ > 0 we define
ϕϵ = w0 + ϵ1A. Then ϕϵ ∈ Mb(Ω), hence the variational representation of f -divergences (see
Proposition B.1 in Birrell et al. (2022)) implies

Df (Q1∥Q2) ≥EQ1 [ϕϵ]− EQ2 [f
∗(ϕϵ)] (81)

=w0 + ϵQ1(A)− EQ2
[f∗(w0 + ϵ1A)] .

We have assumed that w0 ∈ {f∗ < ∞}o, hence there exists δ > 0 with Bδ(w0) ⊂ {f∗ < ∞}.
Using properties of the Taylor expansion of convex functions (see Liese & Vajda (2006)) along with
the identities f∗(w0) = w0 and (f∗)′+(w0) = 1 (see Lemma A.9 in Birrell et al. (2022)) we can
compute

f∗(y) =f∗(w0) + (f∗)′+(w0)(y − w0) +Rf∗(w0, y) (82)
=y +Rf∗(w0, y)

≤y + |y − w0||(f∗)′+(y)− (f∗)′+(w0)|
for all y ∈ Bδ(w0). Letting ϵ < δ we have range(w0 + ϵ1A) ⊂ Bδ(w0) and so

f∗(w0 + ϵ1A) ≤w0 + ϵ1A + |w0 + ϵ1A − w0||(f∗)′+(w0 + ϵ1A)− (f∗)′+(w0)| (83)

=w0 + ϵ1A + ϵ1A|(f∗)′+(w0 + ϵ)− (f∗)′+(w0)| .
Hence

Df (Q1∥Q2) ≥w0 + ϵQ1(A)− EQ2 [w0 + ϵ1A + ϵ1A|(f∗)′+(w0 + ϵ)− (f∗)′+(w0)|] (84)

=ϵ[Q1(A)−Q2(A)(1 + |(f∗)′+(w0 + ϵ)− (f∗)′+(w0)|)] .

Now let Pn, P be probability measures on Ω and consider the following two cases.

1. Suppose Df (Pn, P )→ 0. Then letting Q1 = Pn and Q2 = P in the above we get

0 = lim sup
n

Df (Pn∥P ) (85)

≥ϵ[lim sup
n

Pn(A)− P (A)(1 + |(f∗)′+(w0 + ϵ)− (f∗)′+(w0)|)] (86)

for all ϵ ∈ (0, δ). If lim supn Pn(A) > P (A) then by right-continuity of (f∗)′+ (the
right-derivative of a convex function), for ϵ small enough the term in brackets in (86) is
positive, which is a contradiction. Therefore lim supn Pn(A) ≤ P (A). This holds for all
A ∈ M, hence for a given A we can apply it to Ac to get lim supn Pn(A

c) ≤ P (Ac),
hence lim infn Pn(A) ≥ P (A). Together these bounds imply limn Pn(A) = P (A) for all
A ∈M, hence Pn → P setwise.

2. Suppose Df (P, Pn)→ 0. Letting Q1 = P and Q2 = Pn we have

0 = lim sup
n

Df (P∥Pn) (87)

≥ϵ[P (A)− lim inf
n

Pn(A)(1 + |(f∗)′+(w0 + ϵ)− (f∗)′+(w0)|)] .
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If P (A) > lim infn Pn(A) then for ϵ sufficiently small we again find the term in brackets
to be positive, which is a contradiction. Hence P (A) ≤ lim infn Pn(A) for all A ∈ M.
Applying this toAc and combining the results gives limn→∞ Pn(A) = P (A) for allA ∈M.
Hence Pn → P setwise.

If (Ω,M) is a metric space with the Borel σ-algebra then we can further conclude Pn → P weakly
by using Lemma A.27.

B INTERPRETING THE OUTER MINIMIZER: ADVERSARIAL SAMPLE WEIGHTS

In this appendix we derive the (formal) solution (16) to the optimization problem (14) that was
presented in Section 2.1 above. We work under the assumptions that X = Rd, exact optimizers exist,
and all functions are sufficiently smooth.

Begin by letting yi(λ) be the solution to the inner maximizer (12) with x = xi as a function of λ and
let λ∗ and ρ∗ be the optimal scaling and shift parameters for the outer minimizer at a fixed θ (we
suppress the θ-dependence of yi, λ∗, and ρ∗ in the notation). Taking the gradient of the objective
function for the inner maximizer (12) with respect to y and evaluating at the optimizer yi(λ), we find

λ−1∇yLθ(yi(λ))−∇yc(xi, yi(λ)) = 0 (88)

for all λ. Differentiating the objective function in (95) with respect to ρ we find

∂ρ|ρ=ρ∗(ϵλ∗ + ρ+ λ∗
1

n

n∑
i=1

f∗(Lcθ,λ∗
(xi)− ρ/λ∗)) (89)

=1 + λ∗
1

n

n∑
i=1

(f∗)′(Lcθ,λ∗
(xi)− ρ∗/λ∗)(−λ−1

∗ ) = 0 ,

i.e.,

1

n

n∑
i=1

(f∗)′(Lcθ,λ∗
(xi)− ρ∗/λ∗) = 1 . (90)

In particular, this implies that the p∗,i’s, defined by

p∗,i :=
1

n
(f∗)′(Lcθ,λ∗

(xi)− ρ∗/λ∗) , (91)

sum to 1. We next differentiate the objective function with respect to λ to obtain

ϵ+
1

n

∑
i

f∗(Lcθ,λ∗
(xi)− ρ∗/λ∗) (92)

+ λ
1

n

∑
i

(f∗)′(Lcθ,λ∗
(xi)− ρ∗/λ∗)(∂λ|λ=λ∗Lcθ,λ(xi) + ρ∗/λ

2
∗) = 0 ,

where we can use (88) to simplify

∂λLcθ,λ(xi) =− λ−2Lθ(yi(λ)) + (λ−1∇yLθ(yi(λ))−∇yc(xi, yi(λ))) · y′i(λ) (93)

=− λ−2Lθ(yi(λ)) .
Combining (90), (92), and (93) we can compute

ϵλ∗ + ρ∗ + λ∗
1

n

∑
i

f∗(Lcθ,λ∗
(xi)− ρ∗/λ∗) (94)

=
1

n

∑
i

(f∗)′(Lcθ,λ∗
(xi)− ρ∗/λ∗)(Lθ(yi(λ∗))− ρ∗)− λ∗

1

n

∑
i

f∗(Lcθ,λ∗
(xi)− ρ∗/λ∗)

+ ρ∗ + λ∗
1

n

∑
i

f∗(Lcθ,λ∗
(xi)− ρ∗/λ∗)

=
1

n

∑
i

(f∗)′(Lcθ,λ∗
(xi)− ρ∗/λ∗)Lθ(yi(λ∗)) .
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Recalling the definition of λ∗ and ρ∗, this implies

inf
λ>0,ρ∈R

{
ϵλ+ ρ+ λ

1

n

n∑
i=1

f∗(Lcθ,λ(xi)− ρ/λ)

}
= EQ∗,θ [Lθ] , (95)

where the optimal adversarial distribution is

Q∗,θ :=

n∑
i=1

1

n
(f∗)′(Lcθ,λ∗

(xi)− ρ∗/λ∗)δyi(λ∗) . (96)

This is the equality claimed above in (95). See Section 2.1 for a discussion of the implications of this
formula.

B.1 RELATION TO OT-BASED ADVERSARIAL TRAINING

The robust-optimization adversarial training method (1) is a special case of OT-DRO, as was noted
previously in Regniez et al. (2021); Bui et al. (2022), with a specific choice of cost function. The
ARMORD methods, which allow for general OT cost, are therefore generalizations (1). In addition,
the inclusion of an information-theoretic component inARMORD implies that it is also an extension
of the general OT-DRO method Bui et al. (2022), allowing for distribution neighborhoods which
have qualitatively different structure. This allows for qualitatively new types of robustness (i.e.,
beyond the shifting of samples within an allowed neighborhood), such as miss-specification of the
mass of widely-separated modes. Algorithmically, this feature effectively introduces dynamical
sample weights (91), as shown via the formal solution (96)-(96). In short, adversarial samples in
the ARMORD method are both transported (as in other OT-based methods) and re-weighted, with
the latter being the new ingredient in our method. This new feature contributes non-trivially to the
performance of the ARMORD methods (see Appendix C.8).

C IMPLEMENTATION DETAILS

To foster reproducability of our results, we provide the threat model, pseudocode for the OT-
regularized-divergence adversarial robustness methods, the target network structures used in the
malware and image applications, and the hyperparameters that yielded the results in Tables 3, 2, 4,
and 5.

C.1 THREAT MODEL

Following the guidelines in Carlini et al. (2019), we consider the following threat model characterizing
the adversary’s goal, knowledge, and capabilities in implementing ARMORD as a method for
enhancing adversarial robustness.

1. Adversaries goal: The adversaries goal is to generate adversarial samples that force the
image/malware detector to make erroneous predictions. To avoid restrictive assumptions,
any wrong classification is considered as a successful attack.

2. Adversary’s knowledge: To avoid restrictive assumptions, we assume that the adversary
has complete knowledge of the inner workings of the target model (i.e., white-box access).
This aligns with the Kerckhoff’s principle that mandates security even if system details are
known to the adversary.

3. Adversary’s Capabilities: The adversary can apply arbitrary modifications to natural samples
of any class (e.g., both malicious and benign in the binary classification case).

C.2 ALGORITHM PSEUDOCODE

In this appendix we provide pseudocode for the methods proposed in this work. We will refer to the
objective functions (97)- (100) therein, where ϕθ denotes the target model (i.e., classifier) and CE
denotes the cross-entropy loss. The following applies to the adversarial samples methods (i.e., advs),
obtained from the cost function (22); the generalization to both adversarial samples and labels (i.e.,
advs,l) using (24) is described following Algorithm 1.
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1. Inner Maximizer Objective with Adversarial Samples (see Eq. 23):

As(x, x̃, y, λ, θ) := λ−1CE(ϕθ(x̃), y)− L∥x− x̃∥q . (97)

2. Inner Maximizer Objective with Adversarial Labels and Samples (see Eq. 25):

As,l(x, x̃, y, ỹ, λ, θ) := λ−1(CE(ϕθ(x̃), p̃)− CE(ỹ, p̃))− L∥x− x̃∥q −Kgδ(1− p̃k) ,
(98)

where gδ(z) = z/(1− z/δ), p̃ = Softmax(ỹ) is the adversarial label probability-vector,
y = 1k is a one-hot encoded label corresponding to the class being k, and p̃k is the k’th
component of p̃.

3. KL-Divergence Outer Minimizer Objective (see Eq. 15):

AKLw (x, x̃, y, λ, θ) := ϵλ+ λ log

(
1

B

B∑
i=1

exp(As(xi, x̃i, yi, λ, θ))

)
. (99)

4. f -Divergence Outer Minimizer Objective (see Eq. 14):

Afw(x, x̃, y, λ, ρ, θ) := ϵλ+ ρ+ λ
1

B

B∑
i=1

f∗(As(xi, x̃i, yi, λ, θ)− ρ/λ) . (100)

In the examples in Section 3 we use the α-divergences, for which f∗α is given in (30).

Algorithm 1 Adversarially Robust Deep Learning Models with Optimal-Transport-Regularized
Divergences (ARMORD)

Input: Labeled training data {xi, yi}, target model ϕθ depending on NN-parameters θ, number of
training epochs N , minibatch size B, information divergence D (D = KL or D = Df ), number
of inner maximizer iterations M , learning rates lrx̃, lrλ, and lrθ, other hyperparameters listed in
Appendix C.5.

Output: robustified model ϕθ
1: for n = 1, . . . , N do
2: Sample a minibatch Bn
3: for (xi, yi) ∈ Bn do
4: x̃i ← xi+noise
5: for m = 1, . . . ,M do
6: x̃i ← x̃i + lrx̃∇x̃As(xi, x̃i, yi, λ, θ) ▷ See (97)
7: end for
8: end for
9: if D = KL then

10: λ← λ− lrλ∇λAKLw (x, x̃, y, λ, θ) ▷ See (99)
11: θ ← θ − lrθ∇θAKLw (x, x̃, y, λ, θ)
12: else if D = Df then
13: (λ, ρ)← (λ, ρ)− lrλ∇(λ,ρ)A

f
w(x, x̃, y, λ, ρ, θ) ▷ See (100)

14: θ ← θ − lrθ∇θAfw(x, x̃, y, λ, ρ, θ)
15: end if
16: end for

Lines 3-8 of Algorithm 1 implement the inner maximizer, wherein the adversarial samples x̃i are
constructed and lines 9-15 implement one step of the outer minimizer. In line 4 of the inner maximizer
we allow for noise to be added to the natural sample when initializing the adversarial sample; default
is IID Uniform[−lrx̃, lrx̃] noise added to each component. To incorporate adversarial labels into
Algorithm 1 one can make the following modifications. First, after line 4 in Algorithm 1 add the
initialization

ỹi ← log((Nc − 1)(2− δ)/δ)yi , (101)

where Nc is the total number of classes and yi is the one-hot encoded label for the sample xi; this
corresponds to initializing the adversarial label probabilities so that the probability of the given
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class is 1 − δ/2, with the remaining probability-mass equally distributed over the other classes
(other initialization strategies are certainly possible, but we did not experiment with any alternatives).
Second, within the inner maximizer replace As in line 6 with As,l (98) and after line 6 add the update

ỹi ← ỹi + lrỹ∇ỹAs,l(xi, x̃i, yi, ỹi, λ, θ) . (102)

Finally, in the outer minimizers, replace As with As,l (98) in the definitions of AKLw (99) in lines
10-11 and Afw (100) in lines 13-14.

The modifications to Algorithm 1 (specifically, to the outer minimizers) that yield the adv + nat and
adva methods are outlined in Appendices C.6 and C.7 respectively below.

Fail-safe Mechanisms Used in Training In our implementation we adopted the following two
fail-safe mechanisms to ensure that quantities remain in their specified domains:

• In the rare instance that λ becomes negative due to large learning rates, we used a fail-safe
mechanism in which we applied the Softplus function, Softplus(z) = log(1 + exp(z)) to
λ to ensure it remains positive during the learning process.

• advs,l methods: In the rare event that in (25) we obtain p̃k ≤ 1−δ (where y = 1k is the one-
hot encoded label) due to large learning rates in updating ỹ (where p̃ = Softmax(ỹ)) we
override the updated value by resetting it to the same value used to initialize the adversarial
training loop; see (101).

C.3 TARGET NETWORKS’ STRUCTURE

The malware detector is a feed-forward neural network with 3 hidden layers each with 300 ReLU-
activated neurons. The output layer uses a negative log-likelihood loss and training of the NN-
parameters was done using the ADAM optimization with a 0.001 learning rate, a minibatch of size
16, learned over 150 epochs Al-Dujaili et al. (2018). For the MNIST dataset, we followed Bui et al.
(2022) with the network structure from Carlini & Wagner (2017). The MNIST image detector is a
CNN network with four convolutional layers (32, 32, 64, and 64) each with a square filter of size 3
and ReLU activations, two 2× 2 max-pooling layers, and three fully connected layers with a dropout
layer between the first and second fully connected layer (Carlini & Wagner (2017)). This network
was trained with SGD optimizer over 100 epochs with a starting learning rate of 1e− 2 reduced by
×0.1 at epochs {55, 70, 90}.

C.4 PARAMETER SEARCH SPACE AND SELECTED HYPERPARAMETERS FOR SECTION 3.1

1. The distribution neighborhood size ϵ > 0 The value was selected from ϵ ∈ {2e− 1, 2.2e−
1, 2.4e− 1, 2.5e− 1, 3e− 1}.

2. The α-divergence parameter (29) The value was selected from α ∈ {2, 2.5, 3, 3.5, 7}.
3. The learning rate lrλ used for both λ and ρ, the real parameters in the outer minimizers (14)

and (15) The value was selected from lrλ ∈ {8e− 4, 1.5e− 3, 1.6e− 3, 2e− 3}.

Hyperparameters used by ARMORα-PGD in Table 1
ARMORα (advs + nat): ϵ = 2.4e− 1, α = 3, and lrλ = 1.6e− 3.

C.5 PARAMETER SEARCH SPACE AND SELECTED HYPERPARAMETERS FOR SECTION 3.2 AND
APPENDIX D

1. The distribution neighborhood size ϵ > 0 in (14)-(15):
The value was selected from ϵ ∈ {1e − 4, 2e − 4, 4e − 4, 5e − 4, 6e − 4, 7e − 4, 8e −
4, 1e− 3, 2e− 3, 4e− 3, 5e− 3, 6e− 3, 7e− 3, 8e− 3, 1e− 2, 2e− 2, 4e− 2, 5e− 2, 6e−
2, 7e− 2, 8e− 2, 1e− 1, 2e− 1, 3e− 1, 4e− 1, 5e− 1, 6e− 1, 7e− 1, 8e− 1, 1e− 2, 1e−
1, 1.0, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 10.0}.

2. The coefficient L > 0 in the cost functions (22) and (24):
The value was selected from L ∈ {1e − 5, 2e − 5, 5e − 5, 8e − 5, 1e − 4, 2e − 4, 5e −
4, 8e− 4, 1e− 3, 2e− 3, 5e− 3, 8e− 3, 1e− 2, 2e− 2, 3e− 2, 5e− 2, 8e− 2, 1e− 1, 2e−
1, 5e− 1, 8e− 1, 1.0, 2.0, 5.0, 10.0}.

28



Under review as a conference paper at ICLR 2024

3. The coefficient K > 0 in the cost function (24):
The value was selected from K ∈ {2e − 3, 5e − 3, 8e − 3, 2e − 2, 5e − 2, 8e − 2, 2e −
1, 5e− 1, 8e− 1, 1.0, 1.5e1, 5e1, 8e1, 1e2, 1.5e2, 2e2, 4.5e2, 5e2, 1e3}

4. The parameter δ in the cost function (24):
The value was selected from δ ∈ {1e− 1, 2e− 1, 3e− 1, 4e− 1}

5. The power q > 0 in the cost functions (22) and (24):
The value was selected from q ∈ {0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 4.0, 5.0}.

6. The α-divergence parameter (29), α > 1:
The value was selected from α ∈ {1.5, 1.8, 2.0, 2.5, 3.0, 3.5, 4.0, 5.0, 6.0}.

7. The vector norm in the cost functions (22) and (24) was selected from ℓ1, ℓ2, and ℓ∞.
8. The learning rate lrλ used for both λ and ρ, the real parameters in the outer minimizers (14)

and (15):
The value was selected from lrλ ∈ {2e − 4, 5e − 4, 8e − 4, 2e − 3, 5e − 3, 8e − 3, 2e −
2, 5e− 2, 8e− 2, 1e− 1, 2e− 1}

9. The coefficient t ∈ [0, 1] for the loss of original samples (1− t denotes the coefficient for
the loss of adversarial samples) in the nat methods (see Appendix C.6):
The value was selected from t ∈ {1e− 1, 2e− 1, . . . , 9e− 1}.

For the asymmetric methods (see Appendix C.7) we always use s = 1/2 and did not test other values.
Following Kolter & Madry (2018), the step size parameter for learning x̃ in the inner maximizer for
all MNIST experiments was fixed to 0.01. Following Al-Dujaili et al. (2018), this parameter was
fixed to 0.02 for all malware experiments. In experiments with adversarial labels, i.e., ARMORα
(advs,l) and ARMORα (advs,l + nat), the step size for learning ỹ was the same as for x̃ in all cases
(i.e., 0.01 for MNIST and 0.02 for malware).

C.5.1 HYPERPARAMETERS IN MALWARE EXPERIMENTS FOR ENHANCING ADVERSARIAL
ROBUSTNESS: TABLE 2

• ARMORKL (advs): ϵ = 1e− 1, L = 1e− 2, q = 2.0, lrλ = 2e− 3, and ℓ∞ norm.
• ARMORKL (advas ): ϵ = 1e− 2, L = 5e− 3, q = 1.5, lrλ = 2e− 3, and ℓ∞ norm.
• ARMORKL (advs + nat): ϵ = 1e− 1, L = 1e− 2, q = 2.0, lrλ = 2e− 4, t = 0.5, and
ℓ∞ norm.

• ARMORKL (advas + nat): ϵ = 3.5, L = 1e− 3, q = 2.0, lrλ = 8e− 3, t = 0.5, and ℓ∞
norm.

• ARMORα (advs): ϵ = 3.0, L = 3e− 2, q = 2.0, α = 2.5, lrλ = 8e− 4, and ℓ∞ norm.
• ARMORα (advas ): ϵ = 1e − 2, L = 1e − 2, q = 2.0, α = 1.5, lrλ = 2e − 4, and ℓ∞

norm.
• ARMORα (advs + nat): ϵ = 3.0, L = 3e− 2, q = 1.5, lrλ = 8e− 4, α = 2.5, t = 0.5,

and ℓ∞ norm.
• ARMORα (advas + nat): ϵ = 3.0, L = 1e− 3, q = 2.0, lrλ = 8e− 4, α = 2.5, t = 0.5,

and ℓ∞ norm.
• ARMORα (advs,l): ϵ = 3.0, L = 3e − 2, q = 2.0, lrλ = 8e − 4, α = 2.5, t = 0.5, ℓ∞

norm, δ = 0.4, and K = 450.

C.5.2 HYPERPARAMETERS IN IMAGE EXPERIMENTS FOR ENHANCING ADVERSARIAL
ROBUSTNESS: TABLE 3

• ARMORKL (advs): ϵ = 5e− 4, L = 1e− 1, q = 1.5, lrλ = 2e− 4, and ℓ2 norm.
• ARMORKL (advs + nat): ϵ = 1.0, L = 8e− 2, q = 2.0, lrλ = 2e− 3, t = 0.5, and ℓ∞

norm.
• ARMORα (advs): ϵ = 6e− 4, L = 1e− 1, q = 2.0, α = 2.0, lrλ = 5e− 4, and ℓ2 norm.
• ARMORα (advs + nat): ϵ = 2.0, L = 3e− 2, q = 1.5, lrλ = 8e− 4, α = 2.5, t = 0.5,

and ℓ∞ norm.
• ARMORα (advs,l + nat): ϵ = 3.0, L = 3e− 2, q = 1.5, lrλ = 8e− 4, α = 2.5, t = 0.5,

and ℓ2 norm, δ = 0.1, K = 8e− 2.
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C.5.3 HYPERPARAMETERS IN IMAGE EXPERIMENTS FOR ENHANCING TEST
GENERALIZABILITY: TABLE 4

• ARMORKL (advs): ϵ = 5e− 4, L = 1e− 1, q = 1.5, lrλ = 2e− 4, and ℓ2 norm.
• ARMORKL (advs + nat): ϵ = 4e− 3, L = 8e− 3, q = 2.0, lrλ = 2e− 3, t = 0.5, and
ℓ2 norm.

• ARMORα (advs): ϵ = 5e− 4, L = 1e− 1, q = 2.5, α = 5.0, lrλ = 5e− 4, and ℓ2 norm.
• ARMORα (advs + nat): ϵ = 2.0, L = 3e− 2, q = 1.5, lrλ = 8e− 4, α = 2.5, t = 0.5,

and ℓ∞ norm.
• ARMORα (advs,l + nat): ϵ = 3.0, L = 3e− 2, q = 1.5, lrλ = 8e− 4, α = 2.5, t = 0.5,
ℓ∞ norm, δ = 0.1, and K = 8e− 2.

C.5.4 HYPERPARAMETERS IN MALWARE EXPERIMENTS FOR ENHANCING TEST
GENERALIZABILITY: TABLE 5

• ARMORKL (advs): ϵ = 7e− 1, L = 5e− 5, q = 2.0, lrλ = 2e− 3, and ℓ1 norm.
• ARMORKL (advas ): ϵ = 1e− 2, L = 5e− 3, q = 1.5, lrλ = 2e− 3, and ℓ1 norm.
• ARMORKL (advs + nat): ϵ = 2e− 1, L = 5e− 5, q = 2.0, lrλ = 2e− 4, t = 0.5, and
ℓ1 norm.

• ARMORKL (advas + nat): ϵ = 3.5, L = 1e− 3, q = 2.0, lrλ = 8e− 3, t = 0.5, and ℓ∞
norm.

• ARMORα (advs): ϵ = 3.0, L = 3e− 2, q = 2.0, α = 2.5, lrλ = 8e− 4, and ℓ∞ norm.
• ARMORα (advas ): ϵ = 2e− 1, L = 5e− 5, q = 2.0, α = 2.5, lrλ = 2e− 4, and ℓ1 norm.
• ARMORα (advs + nat): ϵ = 7e − 1, L = 1e − 2, q = 2.0, lrλ = 2e − 4, α = 2.5,
t = 0.5, and ℓ∞ norm.

• ARMORα (advas + nat): ϵ = 4e − 1, L = 5e − 5, q = 2.0, lrλ = 2e − 4, α = 2.5,
t = 0.5, and ℓ1 norm.

• ARMORα (advs,l): ϵ = 4e− 1, L = 5e− 5, q = 2.0, lrλ = 2e− 4, α = 2.5, t = 0.5, ℓ1
norm, δ = 0.4, and K = 150.

C.6 ROBUST OPTIMIZATION USING A MIXTURE OF ADVERSARIAL AND NATURAL SAMPLES

The best performance in the experiments presented in Section 3 was often obtained using a mixture
of adversarial samples along with the original training data (called the natural samples) and their
corresponding losses. This can be viewed as DRO over distribution neighborhoods of the form

UD
c

ϵ,t (Pn) := {tPn + (1− t)Q : Dc(Q∥Pn) ≤ ϵ} , ϵ > 0, t ∈ (0, 1) , (103)

as we have

inf
θ∈Θ

sup
Q∈UDc

ϵ,t (Pn)

EQ[Lθ] = inf
θ∈Θ

{
tEPn

[Lθ] + (1− t) sup
Q:Dc(Q∥Pn)≤ϵ

EQ[Lθ]

}
. (104)

The supremum over Q on the right-hand side of (104) can then be evaluated by the method discussed
in Section 2 and the resulting expression is used in what we call the adv + nat methods. More
specifically, the advs variants refer to the use of adversarial samples constructed via the OT-regularized
loss (23) while advs,l refers to the use of adversarial samples together with adversarial labels, both
of which are constructed via the OT-regularized loss (25). We generally find the best performance
occurs when combining the natural loss, which incorporates all samples in each minibatch, with our
method’s adversarial re-weighting, which focuses on the most difficult samples.

C.7 ASYMMETRIC ROBUST OPTIMIZATION

In many cases the training samples are naturally partitioned into distinct components, with corre-
sponding empirical distributions Pn,0 and Pn,1 (e.g., distinct class labels), and one wishes to robustify
only one component of the partition (e.g., to protect against false negative adversarial attacks but
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not false positives). In such cases one can formulate the DRO problem in an asymmetric manner as
follows. Define the baseline distribution Pn,s = (1− s)Pn,0 + sPn,1 for some s ∈ (0, 1) and define
the distribution neighborhoods

Ua,D
c

ϵ (Pn,s) := {(1− s)Pn,0 + sQ : Dc(Q∥Pn,1) ≤ ϵ} . (105)

The corresponding DRO problem can be rewritten as

inf
θ∈Θ

sup
Q∈Ua,Dc

ϵ (Pn,s)

EQ[Lθ] = inf
θ∈Θ

{
(1− s)EPn,0 [Lθ] + s sup

Q:Dc(Q∥Pn,1)≤ϵ
EQ[Lθ]

}
, (106)

where one can clearly see that the objective on the right-hand side is non-robust in Pn,0 but uses
OT-regularized-divergence robust optimization for the Pn,1 component. The parameter s weights the
relative importance of the partition components in the overall loss; it can be chosen to correspond
to the relative sizes of the partition components (i.e., so that Pn,s = Pn) or it can be used as a
hyperparameter. The supremum over Q on the right-hand side of (106) can be evaluated by the
method discussed in Section 2 and the resulting expression is used in what we call the adva methods.
Similar to the notation in Appendix C.6, the advas variants refer to the use of adversarial samples
constructed via the OT-regularized loss (23) while advas,l refers to the use of adversarial samples
together with adversarial labels, both of which are constructed via the OT-regularized loss (25). This
method can easily be extended to partitions with more than two components, though we only utilize
two components in Section 3.

Asymmetric Robust Optimization Using a Mixture of Adversarial and Natural Samples: One
can combine asymmetry with the use of natural samples. To do this, choose a mixing parameter
t ∈ (0, 1) and define the distribution neighborhoods

Ua,D
c

ϵ,t (Pn,s) :={tPn,s + (1− t)((1− s)Pn,0 + sQ) : Dc(Q∥Pn,1) ≤ ϵ} (107)

={(1− s)Pn,0 + tsPn,1 + (1− t)sQ : Dc(Q∥Pn,1) ≤ ϵ} .
The corresponding DRO problem can be rewritten as

inf
θ∈Θ

sup
Q∈Ua,Dc

ϵ,t (Pn,s)

EQ[Lθ] (108)

= inf
θ∈Θ

{
(1− s)EPn,0 [Lθ] + tsEPn,1 [Lθ] + (1− t)s sup

Q:Dc(Q∥Pn,1)≤ϵ
EQ[Lθ]

}
.

Once again, the supremum over Q on the right-hand side can be evaluated by the method discussed
in Section 2 and the resulting expression is used in what we call the adva + nat methods.

C.8 INTERPOLATING BETWEEN OT-REGULARIZED-Df AND OT METHODS

Here we describe a general procedure for modifying an f -divergence into a one-parameter family,Dfβ ,
so that the resulting OT-regularized-Dfβ method interpolates between OT DRO and OT-regularized-
Df DRO. In particular, this enables us to examine the effect of "turning off" the information
divergence component of the method, i.e., the adversarial sample weights (see Section 2.1).

Given an f -divergence, Df , and β ∈ (0, 1] define

fβ(z) = βf((z − 1 + β)/β) , (109)

(not to be confused with the α-divergences, Eq. 29). The fβ are convex and fβ(1) = 0 for all β,
hence Dfβ is a well-defined family of divergences with β = 1 giving the original f -divergence. It is
straightforward to compute the Legendre transform of fβ in terms of that of f ,

f∗β(z) = βf∗(z) + (1− β)z . (110)

Therefore one can use fβ to define an OT-regularized-divergence DRO problem and simplify it as
follows

inf
θ∈Θ

sup
Q:Dc

fβ
(Q∥Pn)≤ϵ

EQ[Lθ] (111)

= inf
λ>0,ρ∈R,θ∈Θ

{
ϵλ+ β(ρ+ λ

1

n

n∑
i=1

f∗(Lcθ,λ(xi)− ρ/λ)) + (1− β)λ 1
n

n∑
i=1

Lcθ,λ(xi)

}
.
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As β → 0+ the objective function in (111) approaches that of OT-DRO and so (111) can be thought
of as a mixture of OT DRO and OT-regularized-Df DRO. Moreover, the mixing parameter β sets a
lower bound on the adversarial sample weights (91), with p∗,i ≥ (1− β)/n. In the KL case one can
evaluate the infimum over ρ in (111) to obtain

inf
θ∈Θ

sup
Q:KLc

β(Q∥Pn)≤ϵ
EQ[Lθ] (112)

= inf
λ>0,θ∈Θ

{
ϵλ+ βλ log

(
1

n

n∑
i=1

exp(Lcθ,λ(xi))

)
+ (1− β)λ 1

n

n∑
i=1

Lcθ,λ(xi)

}
.

When Df is an α-divergence we denote the method (111) by ARMORα,β . We denote the method
(112) by ARMORKLβ

. In our tests on MNIST we found that the performance degrades significantly
as β decreases to 0, both in terms of adversarial robustness or performance generalizability (see
Figure 1). This implies that the information divergence, and the adversarial sample weights which it
generates, contributes non-trivially to the success of the method.

Figure 1: MNIST ARMORα,β-robustified model performance against β, where β = 1 corresponds
ARMORα (advs,l + nat).

D ADDITIONAL EXPERIMENTS

D.1 COMPARISON OF ARMORD VARIANTS

In this section, we present the results of our experiments where ARMORD’s hyperparameters are
tuned with the goal of enhancing performance generalizability on the test set. Table 4 and Table 5
summarize these results on MNIST and the malware dataset, respectively. As shown in Table 4, on
MNIST, our proposedARMORα (advs+nat) achieves the accuracy of 99.30%, FNR of 0.70%, and
FPR of 0.08%, outperforming all benchmark methods across all three evaluation metrics. ARMORα
(advs,l + nat) yields the second best performance generalizability (99.28% accuracy, 0.73% FNR,
and 0.08% FPR). Additionally, it is observed that in almost all cases, the performance under attack is
also improved as a result of adversarial training with our proposed method. As observed in Table 5,
on the malware dataset, our proposed ARMORα (advs,l) achieves the accuracy of 93.9%, FNR of
5.19% and FPR of 9.97% outperforming the benchmark methods and the non-robust methods across
all three evaluation metrics.
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Table 3: MNIST adversarial training to enhance performance under attack: Comparison of
the performance of our proposed method for enhancing the robustness on the MNIST dataset.
Hyperparameters were tuned to enhance performance under attack, though we find that performance
when not under attack is simultaneously improved. advs denotes the use of adversarial samples
constructed via (23) and advs,l denotes the use of both adversarial samples and labels, as in (25). nat
refers to the use of natural samples alongside the adversarial samples, as described in Appendix C.6.
See Table 4 for results tuned to enhance performance generalizability.

PGD Attack FGSM Attack No Attack
Defense Acc FNR FPR Acc FNR FPR Acc FNR FPR
Non-robust 25.36% 74.23% 8.29% 52.76% 46.96% 5.24% 99.01% 1.00% 0.11%
FGSM 96.63% 3.39% 0.37% 97.45% 2.57% 0.28% 99.05% 0.96% 0.11%
PGD 97.10% 2.92% 0.32% 97.26% 2.76% 0.30% 99.15% 0.85% 0.09%
ARMORKL (advs) 97.68% 2.34% 0.26% 98.10% 1.92% 0.21% 99.25% 0.76% 0.08%
ARMORKL (advs + nat) 98.11% 1.91% 0.21% 98.23% 1.78% 0.20% 99.09% 0.92% 0.10%
ARMORα (advs) 97.31% 2.71% 0.30% 97.63% 2.40% 0.26% 99.15% 0.86% 0.09%
ARMORα (advs + nat) 98.05% 1.97% 0.22% 98.25% 1.77% 0.19% 99.30% 0.70% 0.08%
ARMORα (advs,l + nat) 98.18% 1.83% 0.20% 98.29% 1.72% 0.19% 99.21% 0.80% 0.09%
Note: Best metrics are shown in bold font. The numbers for methods that outperform the non-robust model and
prior adversarial robustness methods across all three metrics are underlined.

Table 4: MNIST adversarial training to enhance performance generalizability: Comparison of
the performance of our proposed method on the MNIST dataset where hyperparameters were tuned
to enhance performance generalizability without attack. We find that performance when under attack
is simultaneously improved. advs denotes the use of adversarial samples constructed via (23) and
advs,l denotes the use of both adversarial samples and labels, as in (25). nat refers to the use of
natural samples alongside the adversarial samples, as described in Appendix C.6.

No Attack PGD Attack FGSM Attack
Defense Acc FNR FPR Acc FNR FPR Acc FNR FPR
Non-robust 99.01% 1.00% 0.11% 25.36% 74.23% 8.29% 52.76% 46.96% 5.24%
FGSM 99.05% 0.96% 0.11% 96.63% 3.39% 0.37% 97.45% 2.57% 0.28%
PGD 99.15% 0.85% 0.09% 97.10% 2.92% 0.32% 97.26% 2.76% 0.30%
ARMORKL (advs) 99.25% 0.76% 0.08% 97.68% 2.34% 0.26% 98.10% 1.92% 0.21%
ARMORKL (advs + nat) 99.15% 0.85% 0.09% 97.99% 2.03% 0.22% 98.04% 1.98% 0.22%
ARMORα (advs) 99.16% 0.85% 0.09% 97.26% 2.77% 0.30% 97.67% 2.35% 0.26%
ARMORα (advs + nat) 99.30% 0.70% 0.08% 98.05% 1.97% 0.22% 98.25% 1.77% 0.19%
ARMORα (advs,l + nat) 99.28% 0.73% 0.08% 98.07% 1.95% 0.21% 98.17% 1.85% 0.20%
Note: Best metrics are shown in bold font. The numbers for methods that outperform the non-robust model and
prior adversarial robustness methods across all three metrics are underlined.
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Table 5: Malware adversarial training to enhance performance generalizability: Comparison of
the performance of our proposed method on the malware dataset, Al-Dujaili et al. (2018), where the
hyperparameters were tuned to maximize performance generalizability without attack. We find that
performance under attack is simultaneously improved. advs denotes the use of adversarial samples
constructed via (23) and advs,l denotes the use of both adversarial samples and labels, as in (25). nat
refers to the use of natural samples alongside the adversarial samples, as described in Appendix C.6.
adva refers to asymmetric methods, as described in Appendix C.7, with only the malicious samples
robustified.

No Attack rFGSMk Attack Grosse et al. Attack
Defense Acc FNR FPR Acc FNR FPR Acc FNR FPR
Non-robust 92.96% 5.30% 10.13% 14.71% 77.85% 98.48% 33.03% 99.86% 8.53%
Grosse et al. 92.38% 5.47% 11.45% 57.36% 10.96% 98.91% 91.08% 8.04% 10.48%
rFGSMk (Al-Dujaili et al.) 92.83% 5.20% 10.66% 60.79% 4.99% 100.00% 74.74% 32.39% 12.59%
ARMORKL (advs) 93.02% 5.16% 10.23% 61.50% 6.62% 95.13% 84.73% 22.60% 2.23%
ARMORKL (advas ) 92.86% 4.81% 11.27% 68.60% 10.39% 68.73% 82.34% 19.52% 14.37%
ARMORKL (advs + nat) 92.90% 5.02% 10.81% 84.25% 23.33% 2.28% 85.53% 20.50% 3.73%
ARMORKL (advas + nat) 93.02% 5.39% 9.82% 77.34% 3.14% 57.34% 72.45% 35.12% 14.11%
ARMORα (advs) 92.92% 5.09% 10.63% 83.23% 5.60% 36.62% 89.26% 9.67% 12.64%
ARMORα (advas ) 92.90% 4.86% 11.09% 68.93% 9.26% 69.82% 85.20% 15.89% 12.87%
ARMORα (advs + nat) 93.04% 5.04% 10.36% 64.73% 5.69% 87.82% 86.49% 20.15% 1.73%
ARMORα (advas + nat) 92.84% 4.99% 11.02% 70.90% 5.44% 71.12% 59.05% 55.11% 15.81%
ARMORα (advs,l) 93.09% 5.19% 9.97% 59.52% 8.72% 96.90% 72.68% 36.86% 10.38%
Note: Best metrics are shown in bold font. The numbers for methods that outperform the non-robust model and
prior adversarial robustness methods across all three metrics are underlined.

D.2 FURTHER COMPARATIVE ANALYSIS OF THE PROPOSED METHOD

To further illustrate the effectiveness of the proposed method, we examine a subset of MNIST test
digits for which the performance of the FGSM, PGD, and our ARMORα (advs,l + nat) methods
differ, i.e., the digits for which at least one, but not all three of these methods failed under adversarial
attack. This subset consists of 225 digits out of the 10,000 digit MNIST test set. The models
robustified with FGSM, PGD, and our method correctly classified 54 digits (24.00%), 100 digits
(44.44%), and 198 digits (88.00%) out of this set, respectively. Figure 2 shows the results on 12
randomly selected examples from the constructed set of 225 digits. We see that our method exhibits
significantly greater robustness on this subset of digits, and on the test set overall (see Table 3),
though there remains a subset of “difficult" samples on which all three methods fail under adversarial
attack. Figure 2a depicts the performance of the non-robust model under the PGD attack for the
random sample described above, while Figure 2b, Figure 2c, and Figure 2d show the corresponding
performance under PDG attack of the same CNN model robustified by adversarial training with
FGSM, PDG, and our proposed ARMORα (advs,l + nat) method respectively. All attacks in
this section were conducted by the neighborhood size of 0.1, ℓ∞ neighborhood, 20 iterations for
adversarial training, and 40 iterations for evaluation of adversarial robustness.
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(a) Non-robustified CNN model under the PGD40

attack
(b) Robustified CNN model using adversarial training

with FGSM under the PGD40 attack

(c) Adversarial training with PGD20 under the
PGD40 attack

(d) Adversarial training with our ARMORα

(advs,l + nat) under the PGD40 attack

Figure 2: The majority of the images, all except the second digit in the bottom row (“7”), were
classified correctly by the non-robust CNN model when not under attack, but all 12 samples modified
with the PGD40 attack successfully mislead the non-robust CNN (Figure 2a). The robustified
model via adversarial training with FGSM leads to two correct predictions (for digits “6” and “8")
(Figure 2b). The number of correct predictions in this sample increases to 9 via adversarial training
with PGD20 (Figure 2c). The number of correct predictions increases to 11 with our proposed
method under the same attack (Figure 2d).
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