

ITERATIVE TRAINING OF PHYSICS-INFORMED NEURAL NETWORKS WITH FOURIER-ENHANCED FEATURES

006 **Anonymous authors**

007 Paper under double-blind review

ABSTRACT

013 Spectral bias, the tendency of neural networks to learn low-frequency features
 014 first, is a well-known issue with many training algorithms for physics-informed
 015 neural networks (PINNs). To overcome this issue, we propose IFeF-PINN, an al-
 016 gorithm for iterative training of PINNs with Fourier-enhanced features. The key
 017 idea is to enrich the latent space using high-frequency components through Ran-
 018 dom Fourier Features. This creates a two-stage training problem: (i) estimate
 019 a basis in the feature space, and (ii) perform regression to determine the coef-
 020 ficients of the enhanced basis functions. For an underlying linear model, it is
 021 shown that the latter problem is convex, and we prove that the iterative training
 022 scheme converges. Furthermore, we empirically establish that Random Fourier
 023 Features enhance the expressive capacity of the network, enabling accurate ap-
 024 proximation of high-frequency PDEs. Through extensive numerical evaluation
 025 on classical benchmark problems, the superior performance of our method over
 026 state-of-the-art algorithms is shown, and the improved approximation across the
 027 frequency domain is illustrated.

1 INTRODUCTION

030 Capturing high-frequency behavior is central to modeling complex phenomena such as wave prop-
 031 agation, turbulence, and quantum dynamics. Traditional numerical methods, including spectral ap-
 032 proaches (Boyd, 2001), multiscale schemes (Weinan & Engquist, 2003), and oscillatory quadrature
 033 (Iserles & Nørsett, 2005), have achieved notable success but often require problem-specific adapta-
 034 tions or become prohibitively costly in complex or high-dimensional settings.

035 There is a need for new approximation strategies that capture high-frequency behavior without sac-
 036 rificing stability or tractability. Deep-learning surrogates of differential equations are a promising
 037 alternative, such as Physics-Informed Neural Networks (PINNs), which offer a grid-free alternative
 038 by combining data and physical models within a neural network framework (Raissi et al., 2017).
 039 This paradigm has shown strong performance in solving partial differential equations (PDEs) and
 040 inferring hidden dynamics, benefiting adaptability to complex geometries (Costabal et al., 2024), and
 041 high-dimensional scalability (Hu et al., 2024). Related approaches such as Fourier Neural Operators
 042 (Li et al., 2021) and DeepONet (Lu et al., 2021) further expand its reach. Despite these advances,
 043 PINN methods remain limited by *spectral bias*—the tendency of neural networks to learn low-
 044 frequency components first—which hinders accurate recovery of oscillatory solutions (Rahaman
 045 et al., 2019; Xu et al., 2025; Lin et al., 2021; Qin et al., 2024).

046 Several strategies have been proposed to mitigate spectral bias, including weight balancing (Wang
 047 et al., 2021a; Krishnapriyan et al., 2021), resampling (Lau et al., 2024; Tang et al., 2024; Song,
 048 2025), and curriculum or architecture-based approaches (Sirignano & Spiliopoulos, 2018; Waheed,
 049 2022; Chai et al., 2024; Mustajab et al., 2024; Eshkofi & Barreau, 2025; Wang & Lai, 2024). Table 1
 050 summarizes some of the most representative approaches. While effective in certain cases, these
 051 methods remain tied to single-level optimization frameworks, where feature learning and coefficient
 052 fitting are intertwined in neural networks, limiting both robustness and theoretical guarantees.

053 To address this gap, we draw inspiration from classical numerical PDE solvers, which approximate
 054 solutions using basis functions, and propose a novel neural network architecture and a tailored train-

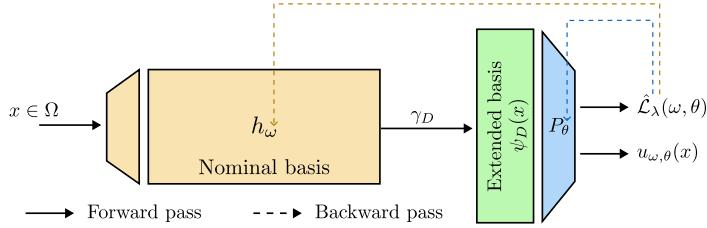


Figure 1: Architecture of IFeF-PINN. The first part (in yellow) generates the nominal basis vectors, which are then extended via γ_D generating random Fourier features ψ_D (in green), and a linear combination of the extended basis (in blue) forms the approximated solution $u_{\omega,\theta}$.

Table 1: Representative methods for approximating solutions to PDE, highlighting application domain, key idea, high-frequency handling (HF), limitations, and optimality.

Method	Domain	Key Idea	HF	Limitations / Optimality
Boyd (2001); Iserles & Nørsett (2005)	Linear	Global basis functions (Fourier, Chebyshev)	+++	Requires regular domains; global optimum
Weinan & Engquist (2003)	Multiscale	Separate scales and compute effective dynamics	++	Needs clear scale separation, problem-specific; local optimum
Raissi et al. (2017)	Generic	NN minimizing physics + data loss	-	Struggles with high-frequency components; local optimum
Li et al. (2021); Lu et al. (2021)	Operator	Learn mapping in Fourier / function space	+	Problem-specific, may require large networks; local optimum
Chai et al. (2024); Zhao et al. (2023)	Multiscale	Network architecture or training strategy	++	Problem-specific, not robust; local optimum
Lau et al. (2024); Tang et al. (2024); Song (2025)	General	Adaptive resampling	++	Computationally expensive, no convergence guarantees; local optimum
IFeF-PINN (this work)	Generic	Iterative training with extended basis via Fourier features	+++	Not adapted to resampling, high memory footprint; Global optimum (for linear PDEs)

ing algorithm. The key idea is to create a feed-forward neural network with three components, as illustrated in Figure 1. First, the hidden layers h_ω generate a nominal basis in the latent functional space. Next, this basis is extended to ψ_D through Random Fourier Features (RFF, introduced by Rahimi & Recht (2007)), which may include potentially higher-frequency elements, to span a larger latent space. Finally, the last linear layer performs regression on these extended basis vectors. The first and last blocks can be optimized separately, resulting in a two-stage iterative scheme alternating between latent basis construction and regression on output coefficients. A major feature of this framework, related to extreme learning machines (Dwivedi & Srinivasan, 2020), is that for linear differential equations, the regression stage is convex and achieves asymptotic global optimality. Unlike existing approaches, our method enriches the latent space representation, enabling systematic capture of high-frequency dynamics while leveraging the strengths of established PINN frameworks.

In this paper, we propose Iterative PINNs with Fourier-Enhanced Features (IFeF-PINN), a novel iterative two-stage training algorithm that mitigates the spectral bias of PINNs in high-frequency problems while maintaining accurate approximation on standard benchmark PDEs. Our contributions are threefold: (i) we introduce a flexible building block that augments existing PINNs architectures with improved high-frequency estimation and demonstrate its universal approximation capabilities; (ii) we propose an iterative two-stage training algorithm and prove its convergence properties; and (iii) we validate the approach through extensive simulations on benchmark problems, showing substantial improvements over existing methods.

108
109

2 BACKGROUND

110
111

2.1 PHYSICS-INFORMED NEURAL NETWORKS

112
113
PINNs is a deep learning framework that integrates PDEs into the neural network training via the loss
114
function, enabling data-driven learning with physical constraints (Raissi et al., 2017; Karniadakis
et al., 2021).115
116
Generally, for $n > 0$, let $\Omega \subset \mathbb{R}^n$ be a bounded domain and \mathcal{W} an appropriate Sobolev space of
117
functions from Ω to \mathbb{R} , we consider linear PDEs of the form

118
119
$$\begin{aligned}\mathfrak{F}[u](x) &= f(x), \quad x \in \Omega, \\ \mathfrak{B}[u](s) &= g(s), \quad s \in \Gamma \subseteq \partial\Omega,\end{aligned}\tag{1}$$

120
121
122
123
where $u \in \mathcal{W}$ is the solution, $\mathfrak{F} : \mathcal{W} \rightarrow \mathcal{L}^2(\mathbb{R}^n, \mathbb{R})$ is the linear differential operator, $f \in \mathcal{L}^2(\Omega, \mathbb{R})$
124
is the source term, $\mathfrak{B} : \mathcal{W} \rightarrow \mathcal{Y}(\Gamma)$ is the linear boundary/initial operator, $g \in \mathcal{Y}(\Gamma)$ specifies the
125
boundary/initial conditions, where $\mathcal{Y}(\Gamma)$ denotes the appropriate trace space. We assume that this
126
problem is well-posed and therefore has a unique solution in \mathcal{W} .127
128
129
The objective of PINNs is to approximate the solution u with a feedforward neural network u_ω ,
130
where ω denotes the network parameters. Yeonjong et al. (2020) and Sirignano & Spiliopoulos
131
(2018) analyzed consistency in weak formulations under suitable assumptions, motivating the fol-
132
lowing continuum loss:

133
134
$$\mathfrak{L}_\lambda(u_\omega) = \frac{1}{|\Gamma|} \int_\Gamma \|g(s) - \mathfrak{B}[u_\omega](s)\|^2 ds + \frac{\lambda}{|\Omega|} \int_\Omega \|\mathfrak{F}[u_\omega](x)\|^2 dx,\tag{2}$$

135
136
137
with $\lambda > 0$ where, for A a bounded set, $|A|$ denotes its measure. However, this version is not
138
numerically tractable and, in practice, we use the Monte Carlo approximation

139
140
141
$$\hat{\mathfrak{L}}_\lambda(u_\omega) = \frac{1}{N_u} \sum_{i=1}^{N_u} \|g(x_u^i) - \mathfrak{B}[u_\omega](x_u^i)\|^2 + \frac{\lambda}{N_f} \sum_{i=1}^{N_f} \|\mathfrak{F}[u_\omega](x_f^i)\|^2,\tag{3}$$

142
143
144
where $\{x_u^i\}_{i=1, \dots, N_u}$ and $\{x_f^i\}_{i=1, \dots, N_f}$ are uniformly sampled on Γ and Ω , respectively. Finally,
145
the optimal parameters are found as $\omega^* = \arg \min_\omega \hat{\mathfrak{L}}_\lambda(u_\omega)$.146
147

2.2 RANDOM FOURIER FEATURES

148
149
150
In this work, we use Random Fourier Features (RFFs) introduced by Rahimi & Recht (2007) to
151
include high-frequency terms. Grounded on Bochner’s theorem, RFF provides a way to explicitly
152
construct a feature map that approximates a stationary kernel, enabling the scaling of kernel methods
153
to large datasets.154
155
156
RFF has been used by Tancik et al. (2020) to tackle spectral bias. The novelty is to extend the input
157
to the neural network using the RFF mapping

158
159
160
$$\gamma_D(x) = \frac{1}{\sqrt{D}} \begin{bmatrix} \cos(2\pi \mathbf{B}_D x) \\ \sin(2\pi \mathbf{B}_D x) \end{bmatrix} \in \mathbb{R}^{2D},\tag{4}$$

161
162
163
164
where the entries of the matrix $\mathbf{B}_D \in \mathbb{R}^{D \times n}$ are sampled from a given symmetric distribution.
165
Wang et al. (2021b) adapted this method to PINNs by using u_ω from the previous section with $2D$
166
inputs, so that the neural network becomes $u_\omega \circ \gamma_D$. This new architecture can learn to approximate
167
the solution from the enriched inputs.168
169

3 PROPOSED METHOD

170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327<br

162 to PINN pathologies, where gradients from interior residuals can dominate and suppress boundary
 163 terms, and spectral bias drives low-frequency learning first, leaving oscillatory components underfit
 164 and slowing convergence on high-frequency modes (Wang et al., 2021b; 2022).

165 To overcome this coupling issue, we approximate the solution u to the PDEs in (1) as a linear
 166 combination of basis functions. We thus consider the two problems in isolation: basis generation,
 167 which we will denote as the upper-level problem, and linear regression on the basis functions, which
 168 we will refer to as the lower-level problem.

170 3.1 THE UPPER-LEVEL PROBLEM: BASIS FUNCTION GENERATION

172 The initial step for the basis generation is to follow the classical PINN methodology and train a
 173 standard feed-forward neural network with parameters (ω, W) , denoted by

$$174 \tilde{u}_{\omega, W}(x) = Wh_{\omega}(x), \quad x \in \Omega,$$

175 to minimize $\omega, W \mapsto \hat{\mathcal{L}}_{\lambda}(\tilde{u}_{\omega, W})$. This is typically accomplished using a gradient-descent numerical
 176 scheme, such as ADAM (Kingma & Ba, 2014), or a more complex second-order solver, like
 177 L-BFGS (Liu & Nocedal, 1989). Then, the neural network $h_{\omega} : \mathbb{R}^n \rightarrow \mathbb{R}^p$ generates a basis
 178 $h_{\omega} \in \mathcal{C}(\mathbb{R}, \mathbb{R}^p)$ of the latent space while W is the projection operator. This initial step serves as a
 179 warm-up for the upper-level problem. Note that $\tilde{u}_{\omega, W}$ most likely contains only the low-frequency
 180 components of the original solution. Therefore, the surrogate $\tilde{u}_{\omega, W}$ might be an aliased or steady-
 181 state solution of the PDE, and the fit at the boundary points might be poor.

182 In our approach, the strategy is to apply an RFF mapping to the last hidden layer features h_{ω} . This
 183 upgrades the implicit linear kernel on h_{ω} to a stationary kernel, such as a radial basis function, in
 184 the adaptive feature space. Since \tilde{u} is probably a distorted version of the real solution u , the RFF
 185 extension might bring higher frequency signals that mitigate the spectral bias.

186 Concretely, we define $\psi_D(x) = \gamma_D(h_{\omega}(x)) = \frac{1}{\sqrt{D}} \begin{bmatrix} \cos(2\pi \mathbf{B}_D h_{\omega}(x)) \\ \sin(2\pi \mathbf{B}_D h_{\omega}(x)) \end{bmatrix}$ where $\mathbf{B}_D \in \mathbb{R}^{D \times p}$ is a
 187 constant matrix with entries sampled i.i.d. from $\mathcal{N}(0, \sigma^2)$.

190 3.2 THE LOWER-LEVEL PROBLEM: LINEAR REGRESSION

192 The linear output layer over h_{ω} induces a dot-product kernel in feature space, which can limit express-
 193 sivity and exacerbate spectral bias toward low frequencies. Applying RFF to h_{ω} equips the adaptive
 194 features with a stationary kernel without adding trainable parameters, injecting high-frequency com-
 195 ponents via random projections. Formally speaking, an approximate solution to the PDE in (1) with
 196 $\theta \in \mathbb{R}^{2D}$ becomes

$$197 u_{\omega, \theta}(x) = \psi_D(x)^{\top} \theta, \quad x \in \Omega. \quad (5)$$

198 As we show in Appendix B, since the operators \mathfrak{F} and \mathfrak{B} are linear, the loss function $\hat{\mathcal{L}}_{\lambda}(u_{\omega, \theta})$ is
 199 quadratic in θ :

$$200 \mathcal{L}_{\text{lower}}(\theta | \omega) := \hat{\mathcal{L}}_{\lambda}(u_{\omega, \theta}) = \frac{1}{2} \theta^{\top} Q(\omega) \theta + c(\omega)^{\top} \theta + b, \quad (6)$$

201 where Q and c collect boundary and interior residual terms.

203 **Proposition 1.** *Assume that $\lambda > 0$ and that the rank condition (3) from Appendix B.1 is verified.
 204 Then Q is positive definite and there is a unique solution to $\arg \min_{\theta} \mathcal{L}_{\text{lower}}(\theta | \omega) = -Q^{-1}(\omega)c(\omega)$.*

205 The proof is given in Appendix B.1. The application of the RFF mapping in the last hidden layer
 206 enables the generation of an arbitrary number of basis functions ψ_D independently of the network's
 207 width on which we can leverage quadratic programming to get the unique optimal solution. This
 208 would otherwise not be possible because constrained by the basis dimension.

210 3.3 THE GLOBAL BI-LEVEL PROBLEM

212 Combining the results from the two previous subsections, we get the following formulation that
 213 decouples basis learning (upper-level) from linear regression (lower-level):

$$214 \omega^*(\theta) = \arg \min_{\omega} \hat{\mathcal{L}}_{\lambda}(u_{\omega, \theta}) := \arg \min_{\omega} \mathcal{L}_{\text{upper}}(\omega | \theta), \\ 215 \theta^*(\omega) = \arg \min_{\theta} \hat{\mathcal{L}}_{\lambda}(u_{\omega, \theta}) := \arg \min_{\theta} \mathcal{L}_{\text{lower}}(\theta | \omega). \quad (7)$$

216 The classical bi-level optimization framework (Bard, 1991) proposes the following three-step nu-
 217 matical method: (i) sample w_0, θ_0 randomly; (ii) solve the upper-level problem $\omega^+ = \omega^*(\theta_0)$;
 218 (iii) solve the lower-level problem $\theta^+ = \theta^*(\omega^+)$. The final parameters (ω^+, θ^+) are the optimal
 219 solutions to the bi-level optimization.

220 However, this approach does not consider a warm
 221 start and is not particularly adapted to a learning
 222 problem. For better approximation capabilities, we
 223 propose an iterative scheme. We warm start using a
 224 vanilla PINN pre-training to get an initial value ω_0
 225 for the weights of the basis generator. Then we com-
 226 pute $\theta_{i+1} = \theta^*(\omega_i)$ before performing a one-step
 227 gradient-descent on ω_i to minimize $\mathcal{L}_{\text{upper}}(\omega_i \mid \theta_{i+1})$
 228 to get ω_{i+1} . This leads to Algorithm 1. The con-
 229 vergence of this numerical scheme and the approxima-
 230 tion capabilities of the new neural network architec-
 231 ture are studied in the next section.

232 *Remark 1* (Relation to deep kernel learning). In deep kernel learning, we use a neural network to
 233 learn a nonlinear feature transformation, and a Gaussian process is defined over the resulting feature
 234 space using a traditional kernel function. This enables learning a flexible, data-driven kernel that
 235 combines the expressiveness of deep learning with the uncertainty estimation of Gaussian processes
 236 (Wilson et al., 2016). However, to the best of the authors’ knowledge, learning a Gaussian process
 237 with a nonlinear PDE prior is not yet possible (Jidling et al., 2017); we propose a solution in this
 238 case.

239 *Remark 2* (On the warm start). Pre-training a standard PINN for several hundred epochs provides
 240 initial network parameters for basis generation. This is necessary for homogeneous PDEs to prevent
 241 convergence to $u \equiv 0$, since standard initialization yields near-zero outputs that trivially minimize
 242 the lower-level problem. For non-homogeneous PDEs, the source term prevents this issue.

243 3.4 EXTENSION TO NONLINEAR PDES

244 For nonlinear PDEs, the physics residual term
 245 $\frac{\lambda}{N_f} \sum_{i=1}^{N_f} \|\mathfrak{F}[u_{\omega, \theta}](x_f^i)\|^2$ becomes nonlinear in θ ,
 246 making the lower-level problem $\mathcal{L}_{\text{lower}}(\theta \mid \omega)$ non-
 247 convex and lacking a closed-form solution. We
 248 therefore replace the exact solution in Proposition 1
 249 with gradient descent to find an approximate local
 250 minimizer when the Second-Order Sufficient Condi-
 251 tion (SOSC) holds, i.e., when the gradient van-
 252 ishes and the Hessian is positive definite. The com-
 253 plete update is given in Algorithm 2. For computa-
 254 tional efficiency, we update θ to a local minimizer
 255 every N_{lower} epochs. For initialization, we can ei-
 256 ther warm start only the network parameters ω via
 257 standard PINN pre-training as in the linear case, or
 258 initialize both ω and θ jointly via end-to-end training
 259 as discussed in Section 6.4.1.

260 4 THEORETICAL ANALYSIS

261 4.1 CONVERGENCE PROPERTIES OF THE BI-LEVEL ALGORITHM

262 We establish convergence by showing that the optimal lower-level solution $\theta^*(\omega)$ is Lipschitz con-
 263 tinuous with respect to the upper-level parameters ω , which ensures a well-defined Lipschitz hyper-
 264 gradient for gradient descent on the upper level.

265 **Proposition 2** (Lipschitz Continuity of the Solution Map). *Let the lower-level problem be a strongly
 266 convex QP problem parameterized by ω . Assume that the mappings $\omega \mapsto Q(\omega)$ and $\omega \mapsto c(\omega)$ are
 267 locally Lipschitz continuous, and that the smallest eigenvalue of $Q(\omega)$ is uniformly bounded below*

Algorithm 1 IFeF-PINN for linear PDEs

Initialize network parameter w_0, θ_0 and B
for k from 0 **to** N_{epoch} **do**
 Formulate extended RFF basis ψ_D
Lower update: $\theta_{k+1} = -Q(\omega_k)^{-1}c(\omega_k)$
Upper update:

$$\omega_{k+1} = \omega_k - \eta \nabla_{\omega} \mathcal{L}_{\text{upper}}(\omega_k \mid \theta_{k+1})$$

end for
return $\omega_{N_{\text{epoch}}}, \theta^*(\omega_{N_{\text{epoch}}})$

Algorithm 2 IFeF-PINN for nonlinear PDEs

Initialize network parameter w_0, θ_0 and B
for k from 0 **to** N_{epoch} **do**
 Formulate extended RFF basis ψ_D
Lower update:
if $k \bmod N_{\text{lower}} = 0$ **then**

$$\theta_{k+1} \approx \arg \min_{\theta} \mathcal{L}_{\text{lower}}(\omega_k \mid \theta_k)$$

else

$$\theta_{k+1} = \theta_k$$

end if
Upper update:

$$\omega_{k+1} = \omega_k - \eta_{\omega} \nabla_{\omega} \mathcal{L}_{\text{upper}}(\omega_k \mid \theta_{k+1})$$

end for
return $\omega_{N_{\text{epoch}}}, \theta^*(\omega_{N_{\text{epoch}}})$

270 by $\mu_Q > 0$ on any compact set of ω . Then, the optimal solution map $\theta^*(\omega)$ is also locally Lipschitz
 271 continuous with respect to ω .

273 The detailed proof is provided in Appendix C.2. This also holds in the nonlinear PDE cases, when
 274 the SOSC is satisfied, the local minimizer $\theta^*(\omega)$ retains Lipschitz continuity and differentiability
 275 in a neighborhood of ω . Consequently, the hypergradient is L-smooth, which we leverage in our
 276 convergence analysis.

277 **Theorem 1** (Convergence to a stationary point). *Assume that 1) the functions Q and c are continuously
 278 differentiable with respect to ω , the upper-level loss $\mathcal{L}_{\text{upper}}$ is continuously differentiable with
 279 respect to both θ and ω ; 2) The lower-level problem is μ -strongly convex; 3) the objective function
 280 $\mathcal{L}_{\text{upper}}(\cdot | \theta)$ is bounded below and its hypergradient is L-smooth.*

281 *Then, the sequence of iterates $\{\omega_k\}_{k=0}^\infty$ generated by the gradient descent algorithm with a constant
 282 step size $\eta \in (0, 2/L)$ converges to a stationary point of $\mathcal{L}_{\text{upper}}(\cdot | \theta)$.*

283 The assumptions made are classical in learning problems and are a direct consequence of the structure
 284 of the bi-level framework. A formula for the hypergradient is derived via the Implicit Function
 285 Theorem in Appendix C.1, showing it as a composition of smooth functions. Its Lipschitz continuity
 286 is then guaranteed by the Lipschitz continuity of the solution map θ^* established in Proposition 2.
 287

288 4.2 UNIVERSAL APPROXIMATION CAPABILITIES

290 To analyze the expressiveness of the RFF-augmented features, we show that the hypothesis class
 291 is not less expressive than linear readouts over the last hidden layer features. The necessary function
 292 spaces for this analysis are defined with comprehensive foundational definitions and proofs in
 293 Appendix D.

294 **Definition 1.** *The feature space \mathcal{H}_f and the composite RFF function space \mathcal{H}_{RFF} are defined as:*

$$295 \quad \mathcal{H}_f := \{g \mid g(x) = h_\omega(x)^\top \theta, \theta \in \mathbb{R}^p\}, \quad \mathcal{H}_{\text{RFF}} := \{g \mid g(x) = \psi_D(x)^\top \theta, \theta \in \mathbb{R}^{2D}\}, \quad (8)$$

296 where $\psi_D = \gamma_D \circ h_\omega$ denotes the vector of composite RFF features defined in Equation 4.

298 We will show that $\overline{\mathcal{H}_{\text{RFF}}}$ strictly contains \mathcal{H}_f , and thus defines a more expressive hypothesis class.
 299 The argument constructs a bridge between the two spaces using a reproducing kernel Hilbert space.

300 **Theorem 2.** *Let f be any target function in $\mathcal{L}^2(\Omega, \mathbb{R})$. The projection error (see Definition 3 in
 301 D.1) achievable by the composite RFF Function Space \mathcal{H}_{RFF} is no greater than the projection error
 302 achieved by the original Feature Space \mathcal{H}_f when the number of RFF features D goes to infinity.*

303 The proof is given in Appendix D.2. This result establishes a powerful theoretical assurance that RFF
 304 embedding offers better approximation capabilities. Theorem 2 yields the universal approximation
 305 corollary presented below, the proof of which is given in Appendix D.2.1

306 **Corollary 1** (Universal approximation). *The projection error of the solution u to equation 1 onto
 307 \mathcal{H}_{RFF} can be made as small as desired, provided enough neurons and RFF features D .*

309 5 RELATED WORK

311 **Weight-balancing strategies** These methods adapt the physics weight λ in equation 3 during
 312 training. For instance, (Wang et al., 2021a) dynamically updates λ to balance the gradients of
 313 data and physics losses, while the NTK framework (Jacot et al., 2018; Krishnapriyan et al., 2021)
 314 enforces equal decay rates, theoretically recovering high-frequency solutions. Primal-dual methods
 315 (Goemans & Williamson, 1997; Barreau & Shen, 2025) instead compute λ from the PDE residual.
 316 Although simple to implement, these approaches offer weak convergence guarantees and remain
 317 tied to single-level optimization. Nonetheless, they are complementary to our framework and could
 318 be integrated as weight-balancing strategies within the upper-level problem.

319 **Resampling strategies** A second line of work reduces the gap between the true loss \mathcal{L}_λ and its
 320 sampled counterpart $\hat{\mathcal{L}}_\lambda$. Examples include NTK-informed sampling (Lau et al., 2024), adversarial
 321 sampling (Tang et al., 2024), and reinforcement learning (Song, 2025). While effective in reducing
 322 approximation error, these methods do not explicitly target spectral bias, which is the focus of our
 323 proposed method.

324 **Curriculum learning strategies** Finally, new architectures and training schedules aim to better
 325 capture high-frequency components. Attention mechanisms (Sirignano & Spiliopoulos, 2018),
 326 multi-stage networks (Howard et al., 2025; Waheed, 2022; Chai et al., 2024; Mustajab et al., 2024;
 327 Eshkofi & Barreau, 2025; Wang & Lai, 2024), or finite-basis approximation (Moseley et al., 2023)
 328 have shown improved multi-scale resolution. However, their complexity often makes training slow
 329 and delicate, and they still lack dedicated optimization algorithms.

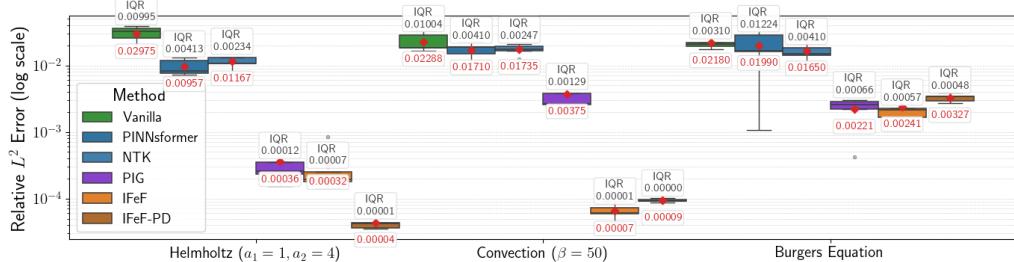
331 6 NUMERICAL EXPERIMENTS

334 **Objective.** In this section, we describe comprehensive experiments that establish four main ad-
 335 vantages of IFeF-PINN. First, improved approximation over PINNs and SOTA variants on low-
 336 frequency PDEs. Second, higher accuracy on high-frequency and multi-scale linear PDEs, where
 337 standard PINNs typically show failure modes. Third, our framework exhibits strong generalization
 338 capabilities when integrated with advanced PINN variants. Finally, a spectrum analysis experiment
 339 demonstrates that our proposed method improves the network fitting accuracy for high-frequency
 340 signals.

342 **Experiment setup.** We will use four PDEs, namely the 2D Helmholtz equation (low and high
 343 frequency), 1D convection equation (low and high frequency), 1D convection-diffusion equation,
 344 and the viscous Burgers’ equation. The baseline methods are Vanilla PINNs, NTK (Wang et al.,
 345 2022), PINNsformer (Zhao et al., 2023), and Physics-Informed Gaussians (PIG) (Kang et al., 2024),
 346 keeping their default settings for a fair comparison. Additional experimental comparisons with Mu-
 347 ltiple Fourier Features (MFF) (Wang et al., 2021b) are provided in Appendix G.1. For simplicity, we
 348 set $\lambda = 0.01$ for the Vanilla PINNs in Equation 3. Detailed hyperparameters for our proposed
 349 methods are in Appendix E. For low-frequency 2D Helmholtz and low-frequency 1D convection
 350 equations, we adopt the uniform sampling strategy settings of Zhao et al. (2023). For the viscous
 351 Burgers’ equation, we follow the setup of Raissi et al. (2019). For the high-frequency Helmholtz
 352 equation, we employ Latin hypercube sampling (McKay et al., 2000) to improve domain cov-
 353 erage. We evaluate two variants of our framework: IFeF (Vanilla training) and IFeF-PD (primal-dual
 354 weight-balancing proposed by Barreau & Shen (2025)). PDE definitions, datasets, and network ar-
 355 chitectures are provided in Appendix F. We measure the relative L^2 -error after convergence, defined
 356 as $\frac{\|u_{\text{pred}} - u_{\text{real}}\|_2}{\|u_{\text{real}}\|_2}$. Each method is run five times with independent random seeds, with the best predic-
 357 tions for each approach. All models are implemented in PyTorch and trained on a single NVIDIA
 358 GeForce RTX 4090 GPU. The code for all benchmarks will be released on GitHub upon acceptance.
 Computational aspects are evaluated in Appendix G.2.

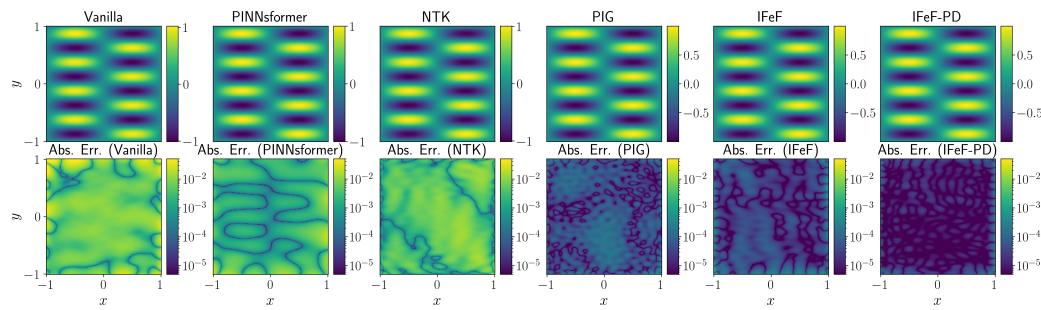
360 6.1 RESULTS ON BENCHMARK PDEs

362 We begin with three popular low-frequency benchmark PDEs: 2D Helmholtz equation, 1D convec-
 363 tion equation, and the viscous Burgers’ equation. Figure 2 summarizes relative L^2 -errors across
 364 baseline methods; boxplots display medians and IQRs, and red diamonds denote means. Additional
 365 prediction and absolute error maps are provided in Appendix G.



377 Figure 2: Boxplot of relative L^2 -errors (log10 scale) for all methods on three low-frequency bench-
 378 marks with median, inter-quartile range (IQR), and mean (red diamonds).

378 Across all these problems, our proposed method attains the lowest median errors with reduced vari-
 379 ability. On Helmholtz, IFeF-PD achieves the best relative L^2 error of 3.5×10^{-5} . On convection,
 380 IFeF achieves the best error of 4.3×10^{-5} . Even in the nonlinear case of Burgers’ equation, IFeF
 381 obtains the lowest median error. In addition, we conducted an ablation study where we discarded
 382 the RFF basis extension but performed a similar iterative two-step optimization process, obtaining
 383 results that were similar but slightly better than those of the Vanilla PINN (1.4923×10^{-2} rela-
 384 tive L^2 -error) on the low-frequency convection problem. Figure 3 presents the predictions for the
 385 low-frequency 2D Helmholtz case. On a logarithmic scale, the gap between box plot summaries.
 386 These results highlight the strong approximation capability of the proposed method, especially for linear equations, underscoring its robustness for
 387 solving diverse PDEs.
 388



390
 391 Figure 3: Low-frequency Helmholtz equation prediction solution (up) and absolute error on a log10
 392 scale (bottom) of baseline methods.
 393

402 6.2 MITIGATING THE SPECTRAL BIAS

403 To evaluate challenging cases of spectral bias, we study the failure modes of PINNs on high-
 404 frequency and multi-scale PDEs, where vanilla PINNs typically struggle to learn rapidly oscillatory
 405 or widely separated frequency components. In particular, we study the high-frequency Helmholtz
 406 and convection equations, as well as a multi-scale convection-diffusion equation. Table 2 presents
 407 the mean and standard deviation of the relative L^2 -errors over baselines applied to these problems.
 408 Additional prediction and absolute error maps are provided in Appendix G.
 409

410 Baseline	411 Helmholtz ($a_1 = a_2 = 100$)	412 Convection ($\beta = 200$)	413 Convection-Diffusion ($k_{\text{low}} = 4\pi, k_{\text{high}} = 60\pi$)
414 Vanilla	415 -	416 0.9024 (0.0239)	417 0.0501 (0.0030)
418 PINNsformer	419 -	420 1.2278 (0.2010)	421 0.0525 (0.0001)
422 NTK	423 -	424 0.8685 (0.0318)	425 0.0526 (0.0001)
426 PIG	427 1.6884 (0.2775)	428 1.0009 (0.0003)	429 0.0560 (0.0010)
430 IFeF	431 0.0156 (0.0055)	432 0.0027 (0.0010)	433 0.0009 (0.0003)
434 IFeF-PD	435 0.0092 (0.0031)	436 0.0025 (0.0005)	437 0.0010 (0.0002)

420 Table 2: Average relative L^2 -error with corresponding standard deviation for each baseline on three
 421 high-frequency PDEs. A dash '-' denotes that the baseline failed to converge.
 422

423 Figure 4 depicts the high-frequency Helmholtz solutions and the corresponding log-scale absolute
 424 errors. In the considered scenarios, all baselines exhibit clear failure modes. We also conducted a
 425 similar ablation study as described in the previous section, removing the RFF basis extension, and
 426 the training did not converge for both the high-frequency Helmholtz and convection equations. In
 427 contrast, the proposed IFeF-PINN method effectively mitigates the spectral bias of neural networks.
 428 Moreover, when combined with the primal-dual method to adaptively balance the physics-based
 429 loss, our method achieves accurate solutions even under very high frequencies, which illustrates the
 430 flexibility of the proposed framework in incorporating advanced learning methods. A similar result
 431 holds for the multi-scale convection-diffusion equation in Figure 4 in Appendix G, clearly showing
 432 that only IFeF-PINN succeeds in learning both low and high frequency components of the solution.

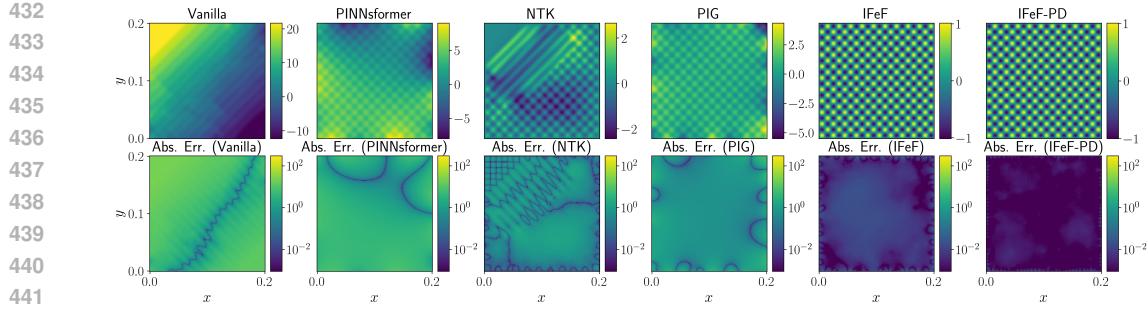


Figure 4: High-frequency Helmholtz equation prediction solution (up) and absolute error in log scale (bottom) of baseline methods.

In contrast, all baselines suffer from the spectral bias failure mode, where models prioritize learning low-frequency components and tend to ignore the high-frequency components.

6.3 SPECTRUM ANALYSIS

To quantitatively demonstrate our method’s ability to mitigate spectral bias, we employ the Fast Fourier transform to analyze the frequency-domain distribution of the network’s prediction. We conduct a spectrum analysis similar to Rahaman et al. (2019), designing a challenging multi-scale convection equation with an initial condition composed of a superposition of ten sinusoids of different frequencies and unit amplitude. More details of the setup are in Appendix F.2.

During analysis, we compare the performance of Vanilla PINNs against models where the basis is extended with a varying number of random Fourier features and carry out a one-step solution of the lower-level objective in Equation 6. No additional training is performed for the upper-level problem.

We compute the magnitude of their discrete Fourier transform at frequencies k_i , denoted as $|\tilde{f}_{k_i}|$. Figure 5 presents the average normalized magnitudes $\frac{|\tilde{f}_{k_i}|}{A_i}$ over five independent runs. The results clearly illustrate the spectral bias of Vanilla PINNs, which struggle to accurately capture high-frequency components. In contrast, by extending the network’s basis through RFF, the network can fit high-frequency signals much more effectively, even without the subsequent bi-level training procedure of IFeF-PINN. Furthermore, we observe that increasing the number of random features enhances the network’s ability to approximate high-frequency components, confirming the effectiveness of our basis extension strategy.

6.4 ABLATION STUDIES

In this section, we present experiments to demonstrate the effects of two-stage training in IFeF-PINN and the number of Fourier-enhanced features and the Gaussian sampling parameter σ .

6.4.1 END-TO-END TRAINING

To validate the necessity of two-stage training in IFeF-PINN, we conduct an end-to-end ablation where both network parameters ω and coefficients θ are jointly optimized. We keep the approximation in Equation 5 but incorporate θ as learnable parameters alongside ω , and directly minimize $\hat{\mathcal{L}}_\lambda(u_{\omega, \theta})$ without the two-stage training. Unlike IFeF-PINN where θ is always optimal under current features $\psi_D(x)$, θ is randomly initialized and updated simultaneously with ω , losing the optimality guarantee. Table 3 presents the results for low- and high-frequency Helmholtz and Burgers’ equa-

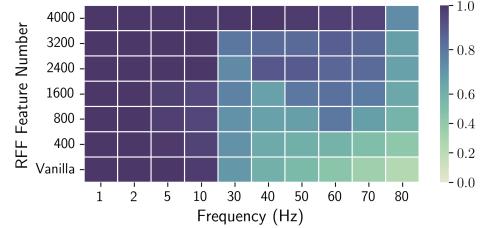


Figure 5: Prediction of the network spectrum with an increasing number of Fourier features. The x-axis represents frequency, and the colorbar shows the normalized magnitude of the predicted solution at $t = 0$. The colorbar is scaled accordingly from 0 to 1.

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

tions. This ablation validates the necessity of two-stage training, as IFeF-PINN significantly outperforms end-to-end training in linear PDEs through guaranteed lower-level optimality of θ , while showing modest improvements in nonlinear PDEs where the lower-level becomes non-convex.

Ablation	Helmholtz ($a_1 = 1, a_2 = 4$)	Helmholtz ($a_1 = a_2 = 100$)	Viscous Burgers ($\nu = \frac{0.01}{\pi}$)
End-to-End	0.0088(0.0006)	-	0.0049(0.0009)
IFeF	0.0003(0.0003)	0.0156(0.0055)	0.0024(0.0011)
IFeF-PD	0.00005(0.00002)	0.0092(0.0031)	0.0033(0.0004)

Table 3: Average relative L^2 -error with corresponding standard deviation for end-to-end training and IFeF-PINN on three benchmarks. A dash '-' denotes that the baseline failed to converge.

6.4.2 HYPERPARAMTER ABLATION

We conduct an ablation on two key hyperparameters in IFeF-PINN: the number of Fourier features D and the Gaussian sampling parameter σ . We evaluate their impact on performance using the low- and high-frequency Helmholtz equations, with results shown in Table 4. The ablation shows that too few features reduce expressivity while excessive features cause overfitting and may break the rank condition discussed in Appendix B.1. For σ , larger values are essential for high-frequency problems discussed in Tancik et al. (2020); Wang et al. (2021b). Low-frequency problems are robust to both hyperparameters, while high-frequency problems are sensitive, especially to σ .

Helmholtz ($a_1 = 1, a_2 = 4$)					
D ($\sigma = 1$)	100	400	800	1200	3000
Rel. L^2 error	5.5×10^{-4}	2.1×10^{-4}	3.2×10^{-4}	5.7×10^{-4}	4.5×10^{-4}
σ ($D = 800$)	2	1	0.5	0.2	0.1
Rel. L^2 error	4.0×10^{-4}	3.2×10^{-4}	5.5×10^{-4}	3.3×10^{-4}	1.5×10^{-3}
Helmholtz ($a_1 = a_2 = 100$)					
D ($\sigma = 1$)	800	1200	1600	2400	3000
Rel. L^2 error	7.11×10^{-2}	5.40×10^{-2}	3.09×10^{-2}	1.56×10^{-2}	2.22×10^{-2}
σ ($D = 2400$)	20	10	5	1	0.2
Rel. L^2 error	4.6×10^{-3}	3.0×10^{-3}	5.7×10^{-3}	1.56×10^{-2}	1.05×10^{-1}

Table 4: Average relative L^2 -error for hyperparameter ablation for D and σ on Helmholtz equations.

7 CONCLUSION

In this paper, we introduce IFeF-PINN, a novel iterative training method for Fourier-enhanced Features PINNs. By augmenting the network with Random Fourier Features mapping as a basis extension with the bi-level problem, IFeF-PINN mitigates the spectral bias problem of standard PINNs when capturing the high-frequency and multi-scale components during training. Experimental results demonstrate that IFeF-PINN consistently outperforms advanced baselines across various scenarios, including popular low-frequency benchmarks and handling high-frequency and multi-scale PDEs. Furthermore, it has strong flexibility when integrating with different training strategies for PINNs.

Despite its strengths, IFeF-PINN faces challenges when extended to nonlinear PDEs. For nonlinear PDEs, the lower-level problem becomes nonconvex, precluding a one-step solve and requiring iterative two-stage gradient descent updates that can stall in local minima. Advancing principled bi-level optimization techniques to better handle the nonlinear lower-level problem remains a promising direction for future work.

540 REFERENCES
541

- 542 Jonathan F Bard. Some properties of the bilevel programming problem. *Journal of optimization*
543 *theory and applications*, 68(2):371–378, 1991.
- 544 Matthieu Barreau and Haoming Shen. A control perspective on training PINNs. *arXiv preprint*
545 *arXiv:2501.18582*, 2025.
- 546 John P Boyd. *Chebyshev and Fourier spectral methods*. Courier Corporation, 2001.
- 548 Xintao Chai, Wenjun Cao, Jianhui Li, Hang Long, and Xiaodong Sun. Overcoming the spectral bias
549 problem of physics-informed neural networks in solving the frequency-domain acoustic wave
550 equation. *IEEE Transactions on Geoscience and Remote Sensing*, 2024.
- 551 Francisco Sahli Costabal, Simone Pezzuto, and Paris Perdikaris. δ -pinns: Physics-informed neu-
552 ral networks on complex geometries. *Engineering Applications of Artificial Intelligence*, 127:
553 107324, 2024.
- 555 Vikas Dwivedi and Balaji Srinivasan. Physics informed extreme learning machine (pielm)—a rapid
556 method for the numerical solution of partial differential equations. *Neurocomputing*, 391:96–118,
557 2020.
- 558 Katayoun Eshkofi and Matthieu Barreau. Vanishing stacked-residual pinn for state reconstruction
559 of hyperbolic systems. *IEEE Control Systems Letters*, 2025.
- 561 Michel X Goemans and David P Williamson. The primal-dual method for approximation algorithms
562 and its application to network design problems. *Approximation algorithms for NP-hard problems*,
563 pp. 144–191, 1997.
- 564 Amanda A. Howard, Sarah H. Murphy, and al. Stacked networks improve physics-informed training:
565 Applications to neural networks and deep operator networks. *Foundations of Data Science*, 2025.
- 567 Zheyuan Hu, Khemraj Shukla, George Em Karniadakis, and Kenji Kawaguchi. Tackling the curse
568 of dimensionality with physics-informed neural networks. *Neural Networks*, 176:106369, 2024.
- 569 Arieh Iserles and Syvert P Nørsett. Efficient quadrature of highly oscillatory integrals using deriva-
570 tives. *Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences*, 461
571 (2057):1383–1399, 2005.
- 572 Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and gen-
573 eralization in neural networks. *Advances in neural information processing systems*, 31, 2018.
- 575 Carl Jidling, Niklas Wahlström, Adrian Wills, and Thomas B Schön. Linearly constrained gaussian
576 processes. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan,
577 and R. Garnett (eds.), *Advances in Neural Information Processing Systems*, volume 30. Cur-
578 ran Associates, Inc., 2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/file/71ad16ad2c4d81f348082ff6c4b20768-Paper.pdf.
- 580 Namgyu Kang, Jaemin Oh, Youngjoon Hong, and Eunbyung Park. Pig: Physics-informed gaussians
581 as adaptive parametric mesh representations. *arXiv preprint arXiv:2412.05994*, 2024.
- 583 G. E. Karniadakis, I. G. Kevrekidis, L. Lu, P. Perdikaris, S. Wang, and L. Yang. Physics-informed
584 machine learning. *Nature Reviews Physics*, 2021.
- 585 Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. *arXiv preprint*
586 *arXiv:1412.6980*, 2014.
- 587 Aditi Krishnapriyan, Amir Gholami, Shandian Zhe, Robert Kirby, and Michael W Mahoney. Char-
588 acterizing possible failure modes in physics-informed neural networks. *Advances in neural infor-*
589 *mation processing systems*, 34:26548–26560, 2021.
- 591 Gregory Kang Ruey Lau, Apivich Hemachandra, See-Kiong Ng, and Bryan Kian Hsiang Low. PIN-
592 NACLE: PINN adaptive collocation and experimental points selection. In *The Twelfth Interna-*
593 *tional Conference on Learning Representations*, 2024. URL <https://openreview.net/forum?id=GzNaCp6Vcg>.

- 594 Zongyi Li, Nikola Borislavov Kovachki, Kamyar Azizzadenesheli, Burigede liu, Kaushik Bhat-
 595 tacharya, Andrew Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial
 596 differential equations. In *International Conference on Learning Representations*, 2021. URL
 597 <https://openreview.net/forum?id=c8P9NQVtmnO>.
- 598 Chensen Lin, Zhen Li, Lu Lu, Shengze Cai, Martin Maxey, and George Em Karniadakis. Operator
 599 learning for predicting multiscale bubble growth dynamics. *The Journal of Chemical Physics*,
 600 154(10), 2021.
- 602 Dong C Liu and Jorge Nocedal. On the limited memory bfgs method for large scale optimization.
 603 *Mathematical programming*, 45(1):503–528, 1989.
- 605 Lu Lu, Pengzhan Jin, Guofei Pang, Zhongqiang Zhang, and George Em Karniadakis. Learning
 606 nonlinear operators via deeponet based on the universal approximation theorem of operators.
 607 *Nature machine intelligence*, 3(3):218–229, 2021.
- 608 Michael D McKay, Richard J Beckman, and William J Conover. A comparison of three methods for
 609 selecting values of input variables in the analysis of output from a computer code. *Technometrics*,
 610 42(1):55–61, 2000.
- 612 Ben Moseley, Andrew Markham, and Tarje Nissen-Meyer. Finite basis physics-informed neural
 613 networks (fbpinns): a scalable domain decomposition approach for solving differential equations.
 614 *Advances in Computational Mathematics*, 49(4):62, 2023.
- 615 Abdul Hannan Mustajab, Hao Lyu, Zarghaam Rizvi, and Frank Wuttke. Physics-informed neural
 616 networks for high-frequency and multi-scale problems using transfer learning. *Applied Sciences*,
 617 14(8):3204, 2024.
- 619 Shaoxiang Qin, Fuyuan Lyu, Wenhui Peng, Dingyang Geng, Ju Wang, Naiping Gao, Xue Liu, and
 620 Liangzhu Leon Wang. Toward a better understanding of fourier neural operators: Analysis and
 621 improvement from a spectral perspective. *CoRR*, 2024.
- 622 Nasim Rahaman, Aristide Baratin, Devansh Arpit, Felix Draxler, Min Lin, Fred Hamprecht, Yoshua
 623 Bengio, and Aaron Courville. On the spectral bias of neural networks. In *International conference
 624 on machine learning*, pp. 5301–5310. PMLR, 2019.
- 626 Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines. *Advances in
 627 neural information processing systems*, 20, 2007.
- 628 Maziar Raissi, Paris Perdikaris, and George Em Karniadakis. Physics informed deep learning
 629 (part i): Data-driven solutions of nonlinear partial differential equations, 2017. URL <https://arxiv.org/abs/1711.10561>.
- 632 Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks: A
 633 deep learning framework for solving forward and inverse problems involving nonlinear partial
 634 differential equations. *Journal of Computational physics*, 378:686–707, 2019.
- 635 J. Sirignano and K. Spiliopoulos. DGM: A deep learning algorithm for solving partial differential
 636 equations. *Journal of computational physics*, 2018.
- 638 Zhenao Song. RL-pinns: Reinforcement learning-driven adaptive sampling for efficient training of
 639 pinns. *arXiv preprint arXiv:2504.12949*, 2025.
- 640 Matthew Tancik, Pratul Srinivasan, Ben Mildenhall, Sara Fridovich-Keil, Nithin Raghavan, Utkarsh
 641 Singhal, Ravi Ramamoorthi, Jonathan Barron, and Ren Ng. Fourier features let networks learn
 642 high frequency functions in low dimensional domains. *Advances in neural information processing
 643 systems*, 33:7537–7547, 2020.
- 645 Kejun Tang, Jiayu Zhai, Xiaoliang Wan, and Chao Yang. Adversarial adaptive sampling: Unify
 646 PINN and optimal transport for the approximation of PDEs. In *The Twelfth International Confer-
 647 ence on Learning Representations*, 2024. URL <https://openreview.net/forum?id=7QI7tVrh2c>.

- 648 Umair Bin Waheed. Kronecker neural networks overcome spectral bias for pinn-based wavefield
 649 computation. *IEEE Geoscience and Remote Sensing Letters*, 19:1–5, 2022.
 650
- 651 Sifan Wang, Yujun Teng, and Paris Perdikaris. Understanding and mitigating gradient flow patholo-
 652 gies in physics-informed neural networks. *SIAM Journal on Scientific Computing*, 43(5):A3055–
 653 A3081, 2021a.
- 654 Sifan Wang, Hanwen Wang, and Paris Perdikaris. On the eigenvector bias of fourier feature net-
 655 works: From regression to solving multi-scale pdes with physics-informed neural networks. *Com-
 656 puter Methods in Applied Mechanics and Engineering*, 384:113938, 2021b.
- 657 Sifan Wang, Xinling Yu, and Paris Perdikaris. When and why pinns fail to train: A neural tangent
 658 kernel perspective. *Journal of Computational Physics*, 449:110768, 2022.
 659
- 660 Yongji Wang and Ching-Yao Lai. Multi-stage neural networks: Function approximator of machine
 661 precision. *Journal of Computational Physics*, 504:112865, 2024.
 662
- 663 E Weinan and Bjorn Engquist. The heterognous multiscale methods. *Communications in Mathe-
 664 matical Sciences*, 1(1):87–132, 2003.
- 665 Andrew Gordon Wilson, Zhiting Hu, Ruslan Salakhutdinov, and Eric P Xing. Deep kernel learning.
 666 In *Artificial intelligence and statistics*, pp. 370–378. PMLR, 2016.
 667
- 668 Zhi-Qin John Xu, Lulu Zhang, and Wei Cai. On understanding and overcoming spectral biases of
 669 deep neural network learning methods for solving pdes. *Journal of Computational Physics*, pp.
 670 113905, 2025.
- 671 Shin Yeonjong, Darbon Jérôme, and Em Karniadakis, George. On the convergence of physics-
 672 informed neural networks for linear second-order elliptic and parabolic type pdes. *Communica-
 673 tions in Computational Physics*, 28(5):2042–2074, 2020.
- 674 Zhiyuan Zhao, Xueying Ding, and B Aditya Prakash. Pinnsformer: A transformer-based framework
 675 for physics-informed neural networks. *arXiv preprint arXiv:2307.11833*, 2023.
 676
- 677
- 678
- 679
- 680
- 681
- 682
- 683
- 684
- 685
- 686
- 687
- 688
- 689
- 690
- 691
- 692
- 693
- 694
- 695
- 696
- 697
- 698
- 699
- 700
- 701