
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

ITERATIVE TRAINING OF PHYSICS-INFORMED
NEURAL NETWORKS WITH FOURIER-ENHANCED
FEATURES

Anonymous authors
Paper under double-blind review

ABSTRACT

Spectral bias, the tendency of neural networks to learn low-frequency features
first, is a well-known issue with many training algorithms for physics-informed
neural networks (PINNs). To overcome this issue, we propose IFeF-PINN, an al-
gorithm for iterative training of PINNs with Fourier-enhanced features. The key
idea is to enrich the latent space using high-frequency components through Ran-
dom Fourier Features. This creates a two-stage training problem: (i) estimate
a basis in the feature space, and (ii) perform regression to determine the coef-
ficients of the enhanced basis functions. For an underlying linear model, it is
shown that the latter problem is convex, and we prove that the iterative training
scheme converges. Furthermore, we empirically establish that Random Fourier
Features enhance the expressive capacity of the network, enabling accurate ap-
proximation of high-frequency PDEs. Through extensive numerical evaluation
on classical benchmark problems, the superior performance of our method over
state-of-the-art algorithms is shown, and the improved approximation across the
frequency domain is illustrated.

1 INTRODUCTION

Capturing high-frequency behavior is central to modeling complex phenomena such as wave prop-
agation, turbulence, and quantum dynamics. Traditional numerical methods, including spectral ap-
proaches (Boyd, 2001), multiscale schemes (Weinan & Engquist, 2003), and oscillatory quadrature
(Iserles & Nørsett, 2005), have achieved notable success but often require problem-specific adapta-
tions or become prohibitively costly in complex or high-dimensional settings.

There is a need for new approximation strategies that capture high-frequency behavior without sac-
rificing stability or tractability. Deep-learning surrogates of differential equations are a promising
alternative, such as Physics-Informed Neural Networks (PINNs), which offer a grid-free alternative
by combining data and physical models within a neural network framework (Raissi et al., 2017).
This paradigm has shown strong performance in solving partial differential equations (PDEs) and
inferring hidden dynamics, benefiting adaptability to complex geometries (Costabal et al., 2024), and
high-dimensional scalability (Hu et al., 2024). Related approaches such as Fourier Neural Operators
(Li et al., 2021) and DeepONet (Lu et al., 2021) further expand its reach. Despite these advances,
PINN methods remain limited by spectral bias—the tendency of neural networks to learn low-
frequency components first—which hinders accurate recovery of oscillatory solutions (Rahaman
et al., 2019; Xu et al., 2025; Lin et al., 2021; Qin et al., 2024).

Several strategies have been proposed to mitigate spectral bias, including weight balancing (Wang
et al., 2021a; Krishnapriyan et al., 2021; Barreau & Shen, 2025), resampling (Lau et al., 2024; Tang
et al., 2024; Song, 2025), and curriculum or architecture-based approaches (Sirignano & Spiliopou-
los, 2018; Howard et al., 2025; Waheed, 2022; Chai et al., 2024; Mustajab et al., 2024; Eshkofti &
Barreau, 2025; Wang & Lai, 2024). Table 1 summarizes some of the most representative approaches.
While effective in certain cases, these methods remain tied to single-level optimization frameworks,
where feature learning and coefficient fitting are intertwined in neural networks, limiting both ro-
bustness and theoretical guarantees.
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Figure 1: Architecture of IFeF-PINN. The first part (in yellow) generates the nominal basis vectors,
which are then extended via γD generating random Fourier features ψD (in green), and a linear
combination of the extended basis (in blue) forms the approximated solution uω,θ.

Table 1: Representative methods for approximating solutions to PDE, highlighting application do-
main, key idea, high-frequency handling (HF), limitations, and optimality.

Method Domain Key Idea HF Limitations / Optimality

Boyd (2001); Iserles &
Nørsett (2005)

Linear Global basis functions
(Fourier, Chebyshev)

+++ Requires regular domains; global
optimum

Weinan & Engquist
(2003)

Multiscale Separate scales and
compute effective dy-
namics

++ Needs clear scale separation,
problem-specific; local optimum

Raissi et al. (2017) Generic NN minimizing physics
+ data loss

- Struggles with high-frequency
components; local optimum

Li et al. (2021); Lu et al.
(2021)

Operator Learn mapping in
Fourier / function space

+ Problem-specific, may require
large networks; local optimum

Chai et al. (2024); Wa-
heed (2022); Zhao et al.
(2023)

Multiscale Network architecture or
training strategy

++ Problem-specific, not robust; local
optimum

Lau et al. (2024); Tang
et al. (2024); Song
(2025)

General Adaptive resampling ++ Computationally expensive, no
convergence guarantees; local
optimum

IFeF-PINN (this work) Generic Iterative training with
extended basis via
Fourier features

+++ Not adapted to resampling, high
memory footprint; Global opti-
mum (for linear PDEs)

To address this gap, we take inspiration from classical numerical PDE solvers (Zienkiewicz et al.,
2005), which approximate solutions using basis functions. We propose a new neural network ar-
chitecture and tailored training algorithm. The key idea is to create a feed-forward neural network
comprising three components, as illustrated in Figure 1. First, the hidden layers hω generate a
nominal basis in the latent functional space. Next, this basis is extended to ψD with potentially
higher-frequency elements to span a larger latent space. This is done through Random Fourier Fea-
tures (RFF), introduced by Rahimi & Recht (2007). Finally, the last linear layer performs regression
on these extended basis vectors. The first and last blocks can be optimized separately, resulting in
a two-stage iterative scheme alternating between latent basis construction and regression on output
coefficients. A major feature of this framework, related to extreme learning machines (Dwivedi &
Srinivasan, 2020), is that for linear differential equations, the regression stage is convex and achieves
asymptotic global optimality. Unlike existing approaches, our method enriches the latent space rep-
resentation, enabling systematic capture of high-frequency dynamics while leveraging the strengths
of established PINN frameworks.

In this paper, we propose Iterative PINNs with Fourier-Enhanced Features (IFeF-PINN), a novel iter-
ative two-stage training algorithm that mitigates the spectral bias of PINNs in high-frequency prob-
lems while maintaining accurate approximation on standard benchmark PDEs. Our contributions
are threefold: (i) we introduce a flexible building block that augments existing PINNs architectures
with improved high-frequency estimation and demonstrate its universal approximation capabilities;
(ii) we propose an iterative two-stage training algorithm and prove its convergence properties; and
(iii) we validate the approach through extensive simulations on benchmark problems, showing sub-
stantial improvements over existing methods.
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2 BACKGROUND

2.1 PHYSICS-INFORMED NEURAL NETWORKS

PINNs is a deep learning framework that integrates PDEs into the neural network training via the loss
function, enabling data-driven learning with physical constraints (Raissi et al., 2017; Karniadakis
et al., 2021).

Generally, for n > 0, let Ω ⊂ Rn be a bounded domain and W an appropriate Sobolev space of
functions from Ω to R, we consider PDEs of the form

F[u](x) = f(x), x ∈ Ω,

B[u](s) = g(s), s ∈ Γ ⊆ ∂Ω,
(1)

where u ∈ W is the solution, F : W → L2(Rn,R) is the differential operator, f ∈ L2(Ω,R) is
the source term, B : W → Y(Γ) is the boundary/initial operator, g ∈ Y(Γ) specifies the bound-
ary/initial conditions, where Y(Γ) denotes the appropriate trace space. We assume that this problem
is well-posed and therefore has a unique solution in W .

The objective of PINNs is to approximate the solution u with a feedforward neural network uω ,
where ω denotes the network parameters. Yeonjong et al. (2020) and Sirignano & Spiliopoulos
(2018) analyzed consistency in weak formulations under suitable assumptions, motivating the fol-
lowing continuum loss:

Lλ(uω) =
1

|Γ|

∫
Γ

∥g(s)−B[uω](s)∥2ds+
λ

|Ω|

∫
Ω

∥F[uω](x)∥2dx, (2)

with λ > 0 where, for A a bounded set, |A| denotes its measure. However, this version is not
numerically tractable and, in practice, we use the Monte Carlo approximation

L̂λ(uω) =
1

Nu

Nu∑
i=1

∥g(xiu)−B[uω](x
i
u)∥2 +

λ

Nf

Nf∑
i=1

∥F[uω](xif )∥2, (3)

where {xiu}i=1,...,Nu and {xif}i=1,...,Nf
are uniformly sampled on Γ and Ω, respectively. Finally,

the optimal parameters are found as ω∗ = argminω L̂λ(uω).

2.2 RANDOM FOURIER FEATURES

In this work, we use Random Fourier Features (RFFs) introduced by Rahimi & Recht (2007) to
include high-frequency terms. Grounded on Bochner’s theorem, RFF provides a way to explicitly
construct a feature map that approximates a stationary kernel, enabling the scaling of kernel methods
to large datasets.

RFF has been used by Tancik et al. (2020) to tackle spectral bias. The novelty is to extend the input
to the neural network using the RFF mapping

γD(x) =
1√
D

[
cos(2πBDx)
sin(2πBDx)

]
∈ R2D, (4)

where the entries of the matrix BD ∈ RD×n are sampled from a given symmetric distribution. Wang
et al. (2021b) adapted this method to PINNs by using uω from the previous section with 2D inputs,
so that the neural network becomes uω ◦ γD. This new architecture can learn to approximate the
solution from the enriched inputs. However, when the input is of low dimension, such as for PINNs,
this could limit its asymptotic approximation capabilities.

3 PROPOSED METHOD

We leverage the PINNs and RFFs in a novel way. Note first that the PINN training process couples
two roles within a single nonconvex objective: (i) hidden layers hω learn a nonlinear feature basis,
and (ii) a linear regression operator Pθ : hω 7→ h⊤ω θ finds the optimal projection coefficients θ of the
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approximated solution onto the feature basis, thereby minimizing the loss L̂λ. This coupling leads
to PINN pathologies, where gradients from interior residuals can dominate and suppress boundary
terms, and spectral bias drives low-frequency learning first, leaving oscillatory components underfit
and slowing convergence on high-frequency modes (Wang et al., 2021b; 2022).

To overcome this coupling issue, we approximate the solution u to the PDEs in (1) as a linear
combination of basis functions. We thus consider the two problems in isolation: basis generation,
which we will denote as the upper-level problem, and linear regression on the basis functions, which
we will call the lower-level problem.

3.1 THE UPPER-LEVEL PROBLEM: BASIS FUNCTION GENERATION

The initial step for the basis generation is to follow the classical PINN methodology and train a
standard feed-forward neural network with parameters (ω,W ), denoted by

ũω,W (x) =Whω(x), x ∈ Ω, (5)

to minimize ω,W 7→ L̂λ(ũω,W ). This is usually done using a gradient-descent numerical scheme
such as ADAM (Kingma & Ba, 2014) or a more complex second-order solver such as L-BFGS (Liu
& Nocedal, 1989). Then, the neural network hω : Rn → Rp generates a basis hω ∈ C(R,Rp) of
the latent space while W is the projection operator. This initial step acts as a warm start for the
upper-level problem. Note that ũω,W most likely contains only the low-frequency components of
the original solution. Therefore, the surrogate ũω,W might be an aliased or steady-state solution of
the PDE, and the fit at the boundary points might be poor.

In our approach, the strategy is to apply an RFF mapping to the last hidden layer features hω . This
upgrades the implicit linear kernel on hω to a stationary kernel, such as a radial basis function, in
the adaptive feature space. Since ũ is probably a distorted version of the real solution u, the RFF
extension might bring higher frequency signals that mitigate the spectral bias.

Concretely, we define ψD(x) = γD (hω(x)) = 1√
D

[
cos(2πBDhω(x))
sin(2πBDhω(x))

]
where BD ∈ RD×p is a

constant matrix with entries sampled i.i.d. from N (0, σ2).

3.2 THE LOWER-LEVEL PROBLEM: LINEAR REGRESSION

The linear output layer over hω induces a dot-product kernel in feature space, which can limit expres-
sivity and exacerbate spectral bias toward low frequencies. Applying RFF to hω equips the adaptive
features with a stationary kernel without adding trainable parameters, injecting high-frequency com-
ponents via random projections. Formally speaking, an approximate solution to the PDE in (1) with
θ ∈ R2D becomes

uω,θ(x) = ψD(x)⊤θ, x ∈ Ω.

As we show in Appendix B, assuming that the operators F and B are linear, the loss function
L̂λ(uω,θ) is quadratic in θ:

Llower(θ | ω) := L̂λ(uω,θ) =
1
2 θ

⊤Q(ω)θ + c(ω)⊤θ + b, (6)

where Q and c collect boundary and interior residual terms.

Proposition 1. Assume that the operators F and B are linear, λ > 0, and that the rank condition
(3) from Appendix B.1 is verified. Then Q is positive definite and there is a unique solution to
argminθ Llower(θ | ω) = −Q−1(ω)c(ω).

The proof is given in Appendix B.1.

In the case of nonlinear operators F and B, the cost Llower is not necessarily convex in θ. Con-
sequently, it is generally not possible to get an explicit solution of the optimal coefficients, and
uniqueness is not guaranteed. In this case we use a gradient-descent update or L-BFGS to reach a
local minimum.
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3.3 THE GLOBAL BI-LEVEL PROBLEM

Combining the results from the two previous subsections, we get the following formulation that
decouples basis learning (upper-level) from linear regression (lower-level):

ω⋆(θ) = argmin
ω

L̂λ(uω,θ) := argmin
ω

Lupper(ω | θ),

θ⋆(ω) = argmin
θ

L̂λ(uω,θ) := argmin
θ

Llower(θ | ω).
(7)

The classical bi-level optimization framework (Bard, 1991) proposes the following three-step nu-
merical method: (i) sample w0, θ0 randomly; (ii) solve the upper-level problem ω+ = ω⋆(θ0);
(iii) solve the lower-level problem θ+ = θ⋆(ω+). The final parameters (ω+, θ+) are the optimal
solutions to the bi-level optimization.

Algorithm 1 IFeF-PINN training
Initialize network parameter w0, θ0 and B
for k from 0 to Nepoch do

Formulate extended RFF basis ψD

Lower update: θk+1 = −Q(ωk)
−1c(ωk)

Upper update:
ωk+1 = ωk − η∇ωLupper(ωk | θk+1)

end for
return ωNepoch

, θ⋆(ωNepoch
)

However, this approach does not consider a warm
start and is not particularly adapted to a learning
problem. For better approximation capabilities, we
propose an iterative scheme. We warm start using a
vanilla PINN pre-training to get an initial value ω0

for the weights of the basis generator. Then we com-
pute θi+1 = θ∗(wi) before performing a one-step
gradient-descent on ωi to minimize Lupper(ωi | θi+1)
to get ωi+1. This leads to Algorithm 1. The conver-
gence of this numerical scheme and the approxima-
tion capabilities of the new neural network architec-
ture are studied in the next section.
Remark 1. Our approach is related to deep kernel learning, where a neural network learns a nonlinear
feature transformation, and a Gaussian process is defined over the resulting feature space using
a traditional kernel function. This enables learning a flexible, data-driven kernel that combines the
expressiveness of deep learning with the uncertainty estimation of Gaussian processes (Wilson et al.,
2016). However, to the best of the authors’ knowledge, learning a Gaussian process with a nonlinear
PDE prior is not yet possible (Jidling et al., 2017), and we propose a solution in that case.
Remark 2 (On resampling strategies). The proposed framework has broad integration potential, as
it can be added to almost any existing neural architecture by changing the last layer to include the
RFF extension. However, in practice, resampling strategies to approximate the integrals must be
taken with care. Since the upper update is a slow process, resampling does not abruptly impact the
solution, while, for the lower-level problem, its convexity implies a fast convergence. If there are not
enough sampling points, we might converge to an aliased solution as a local minimum. A practical
condition (given in Appendix B.1) on the minimum number of sampling points is Nu +Nf > 2D.

4 THEORETICAL ANALYSIS

4.1 CONVERGENCE PROPERTIES OF THE BI-LEVEL ALGORITHM

We establish convergence by showing that the optimal lower-level solution θ⋆(ω) is Lipschitz con-
tinuous with respect to the upper-level parameters ω, which ensures a well-defined Lipschitz hyper-
gradient for gradient descent on the upper level.

Proposition 2 (Lipschitz Continuity of the Solution Map). Let the lower-level problem be a strongly
convex QP problem parameterized by ω. Assume that the mappings ω 7→ Q(ω) and ω 7→ c(ω) are
locally Lipschitz continuous, and that the smallest eigenvalue of Q(ω) is uniformly bounded below
by µQ > 0 on any compact set of ω. Then, the optimal solution map θ⋆(ω) is also locally Lipschitz
continuous with respect to ω.

The detailed proof is provided in Appendix C.2. This holds both in the nonlinear and linear PDE
cases, though the proof is more straightforward for linear cases. Consequently, the hypergradient is
L-smooth, which we use in the convergence analysis.

Theorem 1 (Convergence to a stationary point). Assume that
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1. The functions Q and c are continuously differentiable with respect to ω. The upper-level
loss Lupper is continuously differentiable with respect to both θ and ω.

2. The lower-level problem is µ-strongly convex.

3. The objective function Lupper(· | θ) is bounded below and its hypergradient is L-smooth.

Then, the sequence of iterates {ωk}∞k=0 generated by the gradient descent algorithm with a constant
step size η ∈ (0, 2/L) converges to a stationary point of Lupper(· | θ).

The assumptions made are classical in learning problems and are a direct consequence of the struc-
ture of the bi-level framework. A formula for the hypergradient is derived via the Implicit Function
Theorem in Appendix C.1, showing it as a composition of smooth functions. Its Lipschitz continuity
is then guaranteed by the Lipschitz continuity of the solution map θ⋆ established in Theorem 2.

4.2 UNIVERSAL APPROXIMATION CAPABILITIES

To analyze the expressiveness of the RFF-augmented features, we show that the hypothesis class
is not less expressive than linear readouts over the last hidden layer features. The necessary func-
tion spaces for this analysis are defined with comprehensive foundational definitions and proofs in
Appendix D.

Definition 1. The feature space Hf and the composite RFF function space HRFF are defined as:

Hf :=
{
g | g(x) = hω(x)

⊤θ, θ ∈ Rp
}
, HRFF :=

{
g | g(x) = ψD(x)⊤θ, θ ∈ R2D

}
, (8)

where ψD = γD ◦ hω denotes the vector of composite RFF features defined in Equation 4.

We will show that HRFF strictly contains Hf , and thus defines a more expressive hypothesis class.
The argument constructs a bridge between the two spaces using a reproducing kernel Hilbert space.

Theorem 2. Let f be any target function in L2(Ω,R). The projection error (see Definition 2 in
Appendix D.1) achievable by the composite RFF Function Space HRFF is no greater than the pro-
jection error achieved by the original Feature Space Hf when the number of RFF features D goes
to infinity.

The proof is given in Appendix D.2. This result establishes a powerful theoretical assurance that RFF
embedding offers better approximation capabilities. Theorem 2 yields the universal approximation
corollary presented below, the proof of which is given in Appendix D.2.1.

Corollary 1 (Universal approximation). The projection error of the solution u to equation 1 onto
HRFF can be made as small as desired, provided enough neurons and RFF features D.

5 RELATED WORK

Weight-balancing strategies These methods adapt the physics weight λ in equation 3 during
training. For instance, (Wang et al., 2021a) dynamically updates λ to balance the gradients of
data and physics losses, while the NTK framework (Jacot et al., 2018; Krishnapriyan et al., 2021)
enforces equal decay rates, theoretically recovering high-frequency solutions. Primal–dual methods
(Goemans & Williamson, 1997; Barreau & Shen, 2025) instead compute λ from the PDE residual.
Although simple to implement, these approaches offer weak convergence guarantees and remain
tied to single-level optimization. Nonetheless, they are complementary to our framework and could
be integrated as weight-balancing strategies within the upper-level problem.

Resampling strategies A second line of work reduces the gap between the true loss Lλ and its
sampled counterpart L̂λ. Examples include NTK-informed sampling (Lau et al., 2024), adversarial
sampling (Tang et al., 2024), and reinforcement learning (Song, 2025). While effective in reducing
approximation error, these methods do not explicitly target spectral bias, which is the focus of our
proposed method.
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Curriculum learning strategies Finally, new architectures and training schedules aim to bet-
ter capture high-frequency components. Attention mechanisms (Sirignano & Spiliopoulos, 2018),
multi-stage networks (Howard et al., 2025; Waheed, 2022; Chai et al., 2024; Mustajab et al., 2024;
Eshkofti & Barreau, 2025; Wang & Lai, 2024), or finite-basis approximation (Moseley et al., 2023)
have shown improved multi-scale resolution. However, their complexity often makes training slow
and delicate, and they still lack dedicated optimization algorithms.

6 NUMERICAL EXPERIMENTS

Objective. In this section we describe comprehensive experiments that establish four main ad-
vantages of IFeF-PINN. First, improved approximation over PINNs and SOTA variants on low-
frequency PDEs. Second, higher accuracy on high-frequency and multi-scale linear PDEs, where
standard PINNs typically show failure modes. Third, strong generalization capabilities of our frame-
work when integrated with advanced PINN variants. Finally, a spectrum analysis experiment demon-
strates that our proposed method improves the network fitting accuracy for high-frequency signals.

Experiment setup. We will use four PDEs, namely the 2D Helmholtz equation (low and high
frequency), 1D convection equation (low and high frequency), 1D convection-diffusion equation,
and the viscous Burgers’ equation. The baseline methods are Vanilla PINNs, NTK (Wang et al.,
2022), PINNsformer (Zhao et al., 2023), and Physics-Informed Gaussians (PIG) (Kang et al., 2024),
keeping their default settings for a fair comparison. For simplicity, we set λ = 0.01 for the Vanilla
PINNs in Equation 3. Detailed hyperparameters for our proposed methods are in Appendix E. For
low-frequency 2D Helmholtz and low-frequency 1D convection equations, we adopt the uniform
sampling strategy settings of Zhao et al. (2023). For the viscous Burgers’ equation, we follow
the setup of Raissi et al. (2019). For the high-frequency Helmholtz equation, we employ Latin
hypercube sampling (McKay et al., 2000) to improve domain coverage. We evaluate two variants
of our framework: IFeF (Vanilla training) and IFeF-PD (primal-dual weight-balancing proposed
by Barreau & Shen (2025)). PDE definitions, datasets, and network architectures are provided in
Appendix F. We measure the relative L2-error after convergence. Each method is run five times with
independent random seeds, with the best predictions for each approach. All models are implemented
in PyTorch and trained on a single NVIDIA GeForce RTX 4090 GPU. The code for all benchmarks
will be released on GitHub upon paper acceptance.

6.1 RESULTS ON BENCHMARK PDES

We begin with three popular low-frequency benchmark PDEs: 2D Helmholtz equation, 1D convec-
tion equation, and the viscous Burgers’ equation. Figure 2 summarizes relative L2-errors across
baseline methods; boxplots display medians and IQRs, and red diamonds denote means. Additional
prediction and absolute error maps are provided in Appendix G.

Figure 2: Boxplot of relative L2-errors (log10 scale) for all methods on three low-frequency bench-
marks with median, inter-quartile range (IQR), and mean (red diamonds).

Across all these problems, our proposed method attains the lowest median errors with reduced vari-
ability. On Helmholtz, IFeF-PD achieves the best relative L2 error of 3.5 × 10−5. On convection,
IFeF achieves the best error of 4.3 × 10−5. Even in the nonlinear case of Burgers’ equation, IFeF
obtains the lowest median error.
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In addition, we conducted an ablation study where we discarded the RFF basis extension but per-
formed a similar iterative two-step optimization process, obtaining similar but slightly better results
than the Vanilla PINN (1.4923× 10−2 relative L2-error) on the low-frequency convection problem.

Figure 3 presents the predictions for the low-frequency 2D Helmholtz case. On a logarithmic scale,
the gap between IFeF-PINN and other methods is consistent with the box plot summaries. These
results highlight the strong approximation capability of the proposed method, especially for linear
equations, underscoring its robustness for solving diverse PDEs.

Figure 3: Low-frequency Helmholtz equation prediction solution (up) and absolute error on a log10
scale (bottom) of baseline methods.

6.2 MITIGATING THE SPECTRAL BIAS

To evaluate challenging cases of spectral bias, we study the failure modes of PINNs on high-
frequency and multi-scale PDEs, where vanilla PINNs typically struggle to learn rapidly oscillatory
or widely separated frequency components. In particular, we study the high-frequency Helmholtz
and convection equations, as well as a multi-scale convection-diffusion equation. Table 2 presents
the mean and standard deviation of the relative L2-errors over baselines applied to these problems.
Additional prediction and absolute error maps are provided in Appendix G.

Baseline
Helmholtz

(a1 = a2 = 100)
Convection
(β = 200)

Convection-Diffusion
(klow = 4, khigh = 60)

Vanilla - 0.9024 (0.0239) 0.0501 (0.0030)
PINNsformer - 1.2278 (0.2010) 0.0525 (0.0001)
NTK - 0.8685 (0.0318) 0.0526 (0.0001)
PIG 1.6884 (0.2775) 1.0009 (0.0003) 0.0560 (0.0010)
IFeF 0.0156 (0.0055) 0.0027 (0.0010) 0.0009 (0.0003)
IFeF-PD 0.0092 (0.0031) 0.0025 (0.0005) 0.0010 (0.0002)

Table 2: Average relative L2-error with corresponding standard deviation for each baseline on three
high-frequency PDEs. A dash ’-’ denotes that the baseline failed to converge.

Figure 4: High-frequency Helmholtz equation prediction solution (up) and absolute error in log
scale (bottom) of baseline methods.
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Figure 4 depicts the high-frequency Helmholtz solutions and the corresponding log-scale absolute
errors. In the considered scenarios, all baselines exhibit clear failure modes. We also conducted a
similar ablation study as described in the previous section, removing the RFF basis extension, and
the training did not converge for both the high-frequency Helmholtz and convection equations. In
contrast, the proposed IFeF-PINN method effectively mitigates the spectral bias of neural networks.
Moreover, when combined with the primal-dual method to adaptively balance the physics-based
loss, our method achieves accurate solutions even under very high frequencies, which illustrates the
flexibility of the proposed framework in incorporating advanced learning methods. A similar result
holds for the multi-scale convection-diffusion equation in Figure 4 in Appendix G, clearly showing
that only IFeF-PINN succeeds in learning both low and high frequency components of the solution.
In contrast, all baselines suffer from the spectral bias failure mode, where models prioritize learning
low-frequency components and tend to ignore the high-frequency components.

6.3 SPECTRUM ANALYSIS

To quantitatively demonstrate our method’s ability to mitigate spectral bias, we employ the Fast
Fourier transform to analyze the frequency-domain distribution of the network’s prediction. We
conduct a spectrum analysis similar to Rahaman et al. (2019), designing a challenging multi-
scale convection equation with an initial condition composed of a superposition of ten sinusoids
of different frequencies and unit amplitude. More details of the setup are in Appendix F.2.

Figure 5: Prediction of the network spec-
trum with an increasing number of Fourier
features. The x-axis represents frequency,
and the colorbar shows the normalized mag-
nitude of the predicted solution at t = 0. The
colorbar is scaled accordingly from 0 to 1.

During analysis, we compare the performance of
Vanilla PINNs against models where the basis is ex-
tended with a varying number of random Fourier
features and carry out a one-step solution of the
lower-level objective in Equation 6. No additional
training for the upper-level problem is performed.

We compute the magnitude of their discrete Fourier
transform at frequencies ki, denoted as |f̃ki

|. Fig-
ure 5 presents the average normalized magnitudes
|f̃ki|
Ai

over five independent runs. The results clearly
illustrate the spectral bias of Vanilla PINNs, which
struggle to accurately capture high-frequency com-
ponents. In contrast, by extending the network’s ba-
sis through RFF, the network can fit high-frequency
signals much more effectively, even without the sub-
sequent bi-level training procedure of IFeF-PINN. Furthermore, we observe that increasing the num-
ber of random features enhances the network’s ability to approximate high-frequency components,
confirming the effectiveness of our basis extension strategy.

7 CONCLUSION

In this paper, we introduced IFeF-PINN, a novel iterative training of Fourier-enhanced Features
PINNs. By augmenting the network with Random Fourier Features mapping as a basis extension
with the bi-level problem, IFeF-PINN mitigates the spectral bias problem of standard PINNs when
capturing the high-frequency and multi-scale components during training. Experimental results
demonstrate that IFeF-PINN consistently outperforms advanced baselines across various scenarios,
including popular low-frequency benchmarks and handling high-frequency and multi-scale PDEs.
Furthermore, it has strong flexibility when integrating with different training strategies for PINNs.

Despite its strengths, IFeF-PINN faces two main challenges. First, for nonlinear PDEs, the lower-
level problem becomes nonconvex, precluding a one-step solve and requiring iterative two-stage
gradient descent updates that can stall in local minima. Advancing principled bi-level optimization
to better reshape the nonlinear lower-level problem is a promising direction. Second, the method is
sensitive to resampling because the bi-level objective depends strongly on minima found on a fixed
dataset. These two non-trivial extensions are left for future work.
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