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ABSTRACT

Spectral bias, the tendency of neural networks to learn low-frequency features
first, is a well-known issue with many training algorithms for physics-informed
neural networks (PINNs). To overcome this issue, we propose IFeF-PINN, an al-
gorithm for iterative training of PINNs with Fourier-enhanced features. The key
idea is to enrich the latent space using high-frequency components through Ran-
dom Fourier Features. This creates a two-stage training problem: (i) estimate
a basis in the feature space, and (ii) perform regression to determine the coef-
ficients of the enhanced basis functions. For an underlying linear model, it is
shown that the latter problem is convex, and we prove that the iterative training
scheme converges. Furthermore, we empirically establish that Random Fourier
Features enhance the expressive capacity of the network, enabling accurate ap-
proximation of high-frequency PDEs. Through extensive numerical evaluation
on classical benchmark problems, the superior performance of our method over
state-of-the-art algorithms is shown, and the improved approximation across the
frequency domain is illustrated.

1 INTRODUCTION

Capturing high-frequency behavior is central to modeling complex phenomena such as wave prop-
agation, turbulence, and quantum dynamics. Traditional numerical methods, including spectral ap-
proaches (Boyd, 2001), multiscale schemes (Weinan & Engquist, 2003), and oscillatory quadrature
(Iserles & Nørsett, 2005), have achieved notable success but often require problem-specific adapta-
tions or become prohibitively costly in complex or high-dimensional settings.

There is a need for new approximation strategies that capture high-frequency behavior without sac-
rificing stability or tractability. Deep-learning surrogates of differential equations are a promising
alternative, such as Physics-Informed Neural Networks (PINNs), which offer a grid-free alternative
by combining data and physical models within a neural network framework (Raissi et al., 2017).
This paradigm has shown strong performance in solving partial differential equations (PDEs) and
inferring hidden dynamics, benefiting adaptability to complex geometries (Costabal et al., 2024), and
high-dimensional scalability (Hu et al., 2024). Related approaches such as Fourier Neural Operators
(Li et al., 2021) and DeepONet (Lu et al., 2021) further expand its reach. Despite these advances,
PINN methods remain limited by spectral bias—the tendency of neural networks to learn low-
frequency components first—which hinders accurate recovery of oscillatory solutions (Rahaman
et al., 2019; Xu et al., 2025; Lin et al., 2021; Qin et al., 2024).

Several strategies have been proposed to mitigate spectral bias, including weight balancing (Wang
et al., 2021a; Krishnapriyan et al., 2021), resampling (Lau et al., 2024; Tang et al., 2024; Song,
2025), and curriculum or architecture-based approaches (Sirignano & Spiliopoulos, 2018; Waheed,
2022; Chai et al., 2024; Mustajab et al., 2024; Eshkofti & Barreau, 2025; Wang & Lai, 2024). Table 1
summarizes some of the most representative approaches. While effective in certain cases, these
methods remain tied to single-level optimization frameworks, where feature learning and coefficient
fitting are intertwined in neural networks, limiting both robustness and theoretical guarantees.

To address this gap, we draw inspiration from classical numerical PDE solvers, which approximate
solutions using basis functions, and propose a novel neural network architecture and a tailored train-
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Figure 1: Architecture of IFeF-PINN. The first part (in yellow) generates the nominal basis vectors,
which are then extended via γD generating random Fourier features ψD (in green), and a linear
combination of the extended basis (in blue) forms the approximated solution uω,θ.

Table 1: Representative methods for approximating solutions to PDE, highlighting application do-
main, key idea, high-frequency handling (HF), limitations, and optimality.

Method Domain Key Idea HF Limitations / Optimality

Boyd (2001); Iserles &
Nørsett (2005)

Linear Global basis functions
(Fourier, Chebyshev)

+++ Requires regular domains; global
optimum

Weinan & Engquist
(2003)

Multiscale Separate scales and
compute effective dy-
namics

++ Needs clear scale separation,
problem-specific; local optimum

Raissi et al. (2017) Generic NN minimizing physics
+ data loss

- Struggles with high-frequency
components; local optimum

Li et al. (2021); Lu et al.
(2021)

Operator Learn mapping in
Fourier / function space

+ Problem-specific, may require
large networks; local optimum

Chai et al. (2024); Zhao
et al. (2023)

Multiscale Network architecture or
training strategy

++ Problem-specific, not robust; local
optimum

Lau et al. (2024); Tang
et al. (2024); Song
(2025)

General Adaptive resampling ++ Computationally expensive, no
convergence guarantees; local
optimum

IFeF-PINN (this work) Generic Iterative training with
extended basis via
Fourier features

+++ Not adapted to resampling, high
memory footprint; Global opti-
mum (for linear PDEs)

ing algorithm. The key idea is to create a feed-forward neural network with three components, as
illustrated in Figure 1. First, the hidden layers hω generate a nominal basis in the latent functional
space. Next, this basis is extended to ψD through Random Fourier Features (RFF, introduced by
Rahimi & Recht (2007)), which may include potentially higher-frequency elements, to span a larger
latent space. Finally, the last linear layer performs regression on these extended basis vectors. The
first and last blocks can be optimized separately, resulting in a two-stage iterative scheme alternat-
ing between latent basis construction and regression on output coefficients. A major feature of this
framework, related to extreme learning machines (Dwivedi & Srinivasan, 2020), is that for linear
differential equations, the regression stage is convex and achieves asymptotic global optimality. Un-
like existing approaches, our method enriches the latent space representation, enabling systematic
capture of high-frequency dynamics while leveraging the strengths of established PINN frameworks.

In this paper, we propose Iterative PINNs with Fourier-Enhanced Features (IFeF-PINN), a novel iter-
ative two-stage training algorithm that mitigates the spectral bias of PINNs in high-frequency prob-
lems while maintaining accurate approximation on standard benchmark PDEs. Our contributions
are threefold: (i) we introduce a flexible building block that augments existing PINNs architectures
with improved high-frequency estimation and demonstrate its universal approximation capabilities;
(ii) we propose an iterative two-stage training algorithm and prove its convergence properties; and
(iii) we validate the approach through extensive simulations on benchmark problems, showing sub-
stantial improvements over existing methods.
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2 BACKGROUND

2.1 PHYSICS-INFORMED NEURAL NETWORKS

PINNs is a deep learning framework that integrates PDEs into the neural network training via the loss
function, enabling data-driven learning with physical constraints (Raissi et al., 2017; Karniadakis
et al., 2021).

Generally, for n > 0, let Ω ⊂ Rn be a bounded domain and W an appropriate Sobolev space of
functions from Ω to R, we consider linear PDEs of the form

F[u](x) = f(x), x ∈ Ω,

B[u](s) = g(s), s ∈ Γ ⊆ ∂Ω,
(1)

where u ∈ W is the solution, F : W → L2(Rn,R) is the linear differential operator, f ∈ L2(Ω,R)
is the source term, B : W → Y(Γ) is the linear boundary/initial operator, g ∈ Y(Γ) specifies the
boundary/initial conditions, where Y(Γ) denotes the appropriate trace space. We assume that this
problem is well-posed and therefore has a unique solution in W .

The objective of PINNs is to approximate the solution u with a feedforward neural network uω ,
where ω denotes the network parameters. Yeonjong et al. (2020) and Sirignano & Spiliopoulos
(2018) analyzed consistency in weak formulations under suitable assumptions, motivating the fol-
lowing continuum loss:

Lλ(uω) =
1

|Γ|

∫
Γ

∥g(s)−B[uω](s)∥2ds+
λ

|Ω|

∫
Ω

∥F[uω](x)∥2dx, (2)

with λ > 0 where, for A a bounded set, |A| denotes its measure. However, this version is not
numerically tractable and, in practice, we use the Monte Carlo approximation

L̂λ(uω) =
1

Nu

Nu∑
i=1

∥g(xiu)−B[uω](x
i
u)∥2 +

λ

Nf

Nf∑
i=1

∥F[uω](xif )∥2, (3)

where {xiu}i=1,...,Nu and {xif}i=1,...,Nf
are uniformly sampled on Γ and Ω, respectively. Finally,

the optimal parameters are found as ω∗ = argminω L̂λ(uω).

2.2 RANDOM FOURIER FEATURES

In this work, we use Random Fourier Features (RFFs) introduced by Rahimi & Recht (2007) to
include high-frequency terms. Grounded on Bochner’s theorem, RFF provides a way to explicitly
construct a feature map that approximates a stationary kernel, enabling the scaling of kernel methods
to large datasets.

RFF has been used by Tancik et al. (2020) to tackle spectral bias. The novelty is to extend the input
to the neural network using the RFF mapping

γD(x) =
1√
D

[
cos(2πBDx)
sin(2πBDx)

]
∈ R2D, (4)

where the entries of the matrix BD ∈ RD×n are sampled from a given symmetric distribution.
Wang et al. (2021b) adapted this method to PINNs by using uω from the previous section with 2D
inputs, so that the neural network becomes uω ◦ γD. This new architecture can learn to approximate
the solution from the enriched inputs.

3 PROPOSED METHOD

We leverage the PINNs and RFFs in a novel way. Note first that the PINN training process couples
two roles within a single nonconvex objective: (i) hidden layers hω learn a nonlinear feature basis,
and (ii) a linear regression operator Pθ : hω 7→ h⊤ω θ finds the optimal projection coefficients θ of the
approximated solution onto the feature basis, thereby minimizing the loss L̂λ. This coupling leads
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to PINN pathologies, where gradients from interior residuals can dominate and suppress boundary
terms, and spectral bias drives low-frequency learning first, leaving oscillatory components underfit
and slowing convergence on high-frequency modes (Wang et al., 2021b; 2022).

To overcome this coupling issue, we approximate the solution u to the PDEs in (1) as a linear
combination of basis functions. We thus consider the two problems in isolation: basis generation,
which we will denote as the upper-level problem, and linear regression on the basis functions, which
we will refer to as the lower-level problem.

3.1 THE UPPER-LEVEL PROBLEM: BASIS FUNCTION GENERATION

The initial step for the basis generation is to follow the classical PINN methodology and train a
standard feed-forward neural network with parameters (ω,W ), denoted by

ũω,W (x) =Whω(x), x ∈ Ω,

to minimize ω,W 7→ L̂λ(ũω,W ). This is typically accomplished using a gradient-descent numer-
ical scheme, such as ADAM (Kingma & Ba, 2014), or a more complex second-order solver, like
L-BFGS (Liu & Nocedal, 1989). Then, the neural network hω : Rn → Rp generates a basis
hω ∈ C(R,Rp) of the latent space while W is the projection operator. This initial step serves as a
warm-up for the upper-level problem. Note that ũω,W most likely contains only the low-frequency
components of the original solution. Therefore, the surrogate ũω,W might be an aliased or steady-
state solution of the PDE, and the fit at the boundary points might be poor.

In our approach, the strategy is to apply an RFF mapping to the last hidden layer features hω . This
upgrades the implicit linear kernel on hω to a stationary kernel, such as a radial basis function, in
the adaptive feature space. Since ũ is probably a distorted version of the real solution u, the RFF
extension might bring higher frequency signals that mitigate the spectral bias.

Concretely, we define ψD(x) = γD (hω(x)) = 1√
D

[
cos(2πBDhω(x))
sin(2πBDhω(x))

]
where BD ∈ RD×p is a

constant matrix with entries sampled i.i.d. from N (0, σ2).

3.2 THE LOWER-LEVEL PROBLEM: LINEAR REGRESSION

The linear output layer over hω induces a dot-product kernel in feature space, which can limit expres-
sivity and exacerbate spectral bias toward low frequencies. Applying RFF to hω equips the adaptive
features with a stationary kernel without adding trainable parameters, injecting high-frequency com-
ponents via random projections. Formally speaking, an approximate solution to the PDE in (1) with
θ ∈ R2D becomes

uω,θ(x) = ψD(x)⊤θ, x ∈ Ω. (5)

As we show in Appendix B, since the operators F and B are linear, the loss function L̂λ(uω,θ) is
quadratic in θ:

Llower(θ | ω) := L̂λ(uω,θ) =
1
2 θ

⊤Q(ω)θ + c(ω)⊤θ + b, (6)
where Q and c collect boundary and interior residual terms.
Proposition 1. Assume that λ > 0 and that the rank condition (3) from Appendix B.1 is verified.
ThenQ is positive definite and there is a unique solution to argminθ Llower(θ | ω) = −Q−1(ω)c(ω).

The proof is given in Appendix B.1. The application of the RFF mapping in the last hidden layer
enables the generation of an arbitrary number of basis functions ψD independently of the network’s
width on which we can leverage quadratic programming to get the unique optimal solution. This
would otherwise not be possible because constrained by the basis dimension.

3.3 THE GLOBAL BI-LEVEL PROBLEM

Combining the results from the two previous subsections, we get the following formulation that
decouples basis learning (upper-level) from linear regression (lower-level):

ω⋆(θ) = argmin
ω

L̂λ(uω,θ) := argmin
ω

Lupper(ω | θ),

θ⋆(ω) = argmin
θ

L̂λ(uω,θ) := argmin
θ

Llower(θ | ω).
(7)
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The classical bi-level optimization framework (Bard, 1991) proposes the following three-step nu-
merical method: (i) sample w0, θ0 randomly; (ii) solve the upper-level problem ω+ = ω⋆(θ0);
(iii) solve the lower-level problem θ+ = θ⋆(ω+). The final parameters (ω+, θ+) are the optimal
solutions to the bi-level optimization.

Algorithm 1 IFeF-PINN for linear PDEs
Initialize network parameter w0, θ0 and B
for k from 0 to Nepoch do

Formulate extended RFF basis ψD

Lower update: θk+1 = −Q(ωk)
−1c(ωk)

Upper update:
ωk+1 = ωk − η∇ωLupper(ωk | θk+1)

end for
return ωNepoch

, θ⋆(ωNepoch
)

However, this approach does not consider a warm
start and is not particularly adapted to a learning
problem. For better approximation capabilities, we
propose an iterative scheme. We warm start using a
vanilla PINN pre-training to get an initial value ω0

for the weights of the basis generator. Then we com-
pute θi+1 = θ∗(wi) before performing a one-step
gradient-descent on ωi to minimize Lupper(ωi | θi+1)
to get ωi+1. This leads to Algorithm 1. The conver-
gence of this numerical scheme and the approxima-
tion capabilities of the new neural network architec-
ture are studied in the next section.
Remark 1 (Relation to deep kernel learning). In deep kernel learning, we use a neural network to
learn a nonlinear feature transformation, and a Gaussian process is defined over the resulting feature
space using a traditional kernel function. This enables learning a flexible, data-driven kernel that
combines the expressiveness of deep learning with the uncertainty estimation of Gaussian processes
(Wilson et al., 2016). However, to the best of the authors’ knowledge, learning a Gaussian process
with a nonlinear PDE prior is not yet possible (Jidling et al., 2017); we propose a solution in this
case.
Remark 2 (On the warm start). Pre-training a standard PINN for several hundred epochs provides
initial network parameters for basis generation. This is necessary for homogeneous PDEs to prevent
convergence to u ≡ 0, since standard initialization yields near-zero outputs that trivially minimize
the lower-level problem. For non-homogeneous PDEs, the source term prevents this issue.

3.4 EXTENSION TO NONLINEAR PDES

Algorithm 2 IFeF-PINN for nonliear PDEs
Initialize network parameter w0, θ0 and B
for k from 0 to Nepoch do

Formulate extended RFF basis ψD

Lower update:
if k mod Nlower = 0 then
θk+1 ≈ argmin

θ
Llower(ωk | θk)

else
θk+1 = θk

end if
Upper update:
ωk+1 = ωk − ηω∇ωLupper(ωk | θk+1)

end for
return ωNepoch

, θ⋆(ωNepoch
)

For nonlinear PDEs, the physics residual term
λ
Nf

∑Nf

i=1 ∥F[uω,θ](x
i
f )∥2 becomes nonlinear in θ,

making the lower-level problem Llower(θ | ω) non-
convex and lacking a closed-form solution. We
therefore replace the exact solution in Proposition 1
with gradient descent to find an approximate local
minimizer when the Second-Order Sufficient Con-
dition (SOSC) holds, i.e., when the gradient van-
ishes and the Hessian is positive definite. The com-
plete update is given in Algorithm 2. For computa-
tional efficiency, we update θ to a local minimizer
every Nlower epochs. For initialization, we can ei-
ther warm start only the network parameters ω via
standard PINN pre-training as in the linear case, or
initialize both ω and θ jointly via end-to-end training
as discussed in Section 6.4.1.

4 THEORETICAL ANALYSIS

4.1 CONVERGENCE PROPERTIES OF THE BI-LEVEL ALGORITHM

We establish convergence by showing that the optimal lower-level solution θ⋆(ω) is Lipschitz con-
tinuous with respect to the upper-level parameters ω, which ensures a well-defined Lipschitz hyper-
gradient for gradient descent on the upper level.
Proposition 2 (Lipschitz Continuity of the Solution Map). Let the lower-level problem be a strongly
convex QP problem parameterized by ω. Assume that the mappings ω 7→ Q(ω) and ω 7→ c(ω) are
locally Lipschitz continuous, and that the smallest eigenvalue of Q(ω) is uniformly bounded below

5
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by µQ > 0 on any compact set of ω. Then, the optimal solution map θ⋆(ω) is also locally Lipschitz
continuous with respect to ω.

The detailed proof is provided in Appendix C.2.This also holds in the nonlinear PDE cases, when
the SOSC is satisfied, the local minimizer θ⋆(ω) retains Lipschitz continuity and differentiability
in a neighborhood of ω. Consequently, the hypergradient is L-smooth, which we leverage in our
convergence analysis.
Theorem 1 (Convergence to a stationary point). Assume that 1) the functions Q and c are continu-
ously differentiable with respect to ω, the upper-level loss Lupper is continuously differentiable with
respect to both θ and ω; 2) The lower-level problem is µ-strongly convex; 3) the objective function
Lupper(· | θ) is bounded below and its hypergradient is L-smooth.

Then, the sequence of iterates {ωk}∞k=0 generated by the gradient descent algorithm with a constant
step size η ∈ (0, 2/L) converges to a stationary point of Lupper(· | θ).

The assumptions made are classical in learning problems and are a direct consequence of the struc-
ture of the bi-level framework. A formula for the hypergradient is derived via the Implicit Function
Theorem in Appendix C.1, showing it as a composition of smooth functions. Its Lipschitz continuity
is then guaranteed by the Lipschitz continuity of the solution map θ⋆ established in Proposition 2.

4.2 UNIVERSAL APPROXIMATION CAPABILITIES

To analyze the expressiveness of the RFF-augmented features, we show that the hypothesis class
is not less expressive than linear readouts over the last hidden layer features. The necessary func-
tion spaces for this analysis are defined with comprehensive foundational definitions and proofs in
Appendix D.
Definition 1. The feature space Hf and the composite RFF function space HRFF are defined as:

Hf :=
{
g | g(x) = hω(x)

⊤θ, θ ∈ Rp
}
, HRFF :=

{
g | g(x) = ψD(x)⊤θ, θ ∈ R2D

}
, (8)

where ψD = γD ◦ hω denotes the vector of composite RFF features defined in Equation 4.

We will show that HRFF strictly contains Hf , and thus defines a more expressive hypothesis class.
The argument constructs a bridge between the two spaces using a reproducing kernel Hilbert space.
Theorem 2. Let f be any target function in L2(Ω,R). The projection error (see Definition 3 in
D.1) achievable by the composite RFF Function Space HRFF is no greater than the projection error
achieved by the original Feature Space Hf when the number of RFF features D goes to infinity.

The proof is given in Appendix D.2. This result establishes a powerful theoretical assurance that RFF
embedding offers better approximation capabilities. Theorem 2 yields the universal approximation
corollary presented below, the proof of which is given in Appendix D.2.1
Corollary 1 (Universal approximation). The projection error of the solution u to equation 1 onto
HRFF can be made as small as desired, provided enough neurons and RFF features D.

5 RELATED WORK

Weight-balancing strategies These methods adapt the physics weight λ in equation 3 during
training. For instance, (Wang et al., 2021a) dynamically updates λ to balance the gradients of
data and physics losses, while the NTK framework (Jacot et al., 2018; Krishnapriyan et al., 2021)
enforces equal decay rates, theoretically recovering high-frequency solutions. Primal–dual methods
(Goemans & Williamson, 1997; Barreau & Shen, 2025) instead compute λ from the PDE residual.
Although simple to implement, these approaches offer weak convergence guarantees and remain
tied to single-level optimization. Nonetheless, they are complementary to our framework and could
be integrated as weight-balancing strategies within the upper-level problem.

Resampling strategies A second line of work reduces the gap between the true loss Lλ and its
sampled counterpart L̂λ. Examples include NTK-informed sampling (Lau et al., 2024), adversarial
sampling (Tang et al., 2024), and reinforcement learning (Song, 2025). While effective in reducing
approximation error, these methods do not explicitly target spectral bias, which is the focus of our
proposed method.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Curriculum learning strategies Finally, new architectures and training schedules aim to bet-
ter capture high-frequency components. Attention mechanisms (Sirignano & Spiliopoulos, 2018),
multi-stage networks (Howard et al., 2025; Waheed, 2022; Chai et al., 2024; Mustajab et al., 2024;
Eshkofti & Barreau, 2025; Wang & Lai, 2024), or finite-basis approximation (Moseley et al., 2023)
have shown improved multi-scale resolution. However, their complexity often makes training slow
and delicate, and they still lack dedicated optimization algorithms.

6 NUMERICAL EXPERIMENTS

Objective. In this section, we describe comprehensive experiments that establish four main ad-
vantages of IFeF-PINN. First, improved approximation over PINNs and SOTA variants on low-
frequency PDEs. Second, higher accuracy on high-frequency and multi-scale linear PDEs, where
standard PINNs typically show failure modes. Third, our framework exhibits strong generalization
capabilities when integrated with advanced PINN variants. Finally, a spectrum analysis experiment
demonstrates that our proposed method improves the network fitting accuracy for high-frequency
signals.

Experiment setup. We will use four PDEs, namely the 2D Helmholtz equation (low and high
frequency), 1D convection equation (low and high frequency), 1D convection-diffusion equation,
and the viscous Burgers’ equation. The baseline methods are Vanilla PINNs, NTK (Wang et al.,
2022), PINNsformer (Zhao et al., 2023), and Physics-Informed Gaussians (PIG) (Kang et al., 2024),
keeping their default settings for a fair comparison. Additional experimental comparisons with Mul-
tiple Fourier Features (MFF) (Wang et al., 2021b) are provided in Appendix G.1. For simplicity, we
set λ = 0.01 for the Vanilla PINNs in Equation 3. Detailed hyperparameters for our proposed
methods are in Appendix E. For low-frequency 2D Helmholtz and low-frequency 1D convection
equations, we adopt the uniform sampling strategy settings of Zhao et al. (2023). For the viscous
Burgers’ equation, we follow the setup of Raissi et al. (2019). For the high-frequency Helmholtz
equation, we employ Latin hypercube sampling (McKay et al., 2000) to improve domain cover-
age. We evaluate two variants of our framework: IFeF (Vanilla training) and IFeF-PD (primal-dual
weight-balancing proposed by Barreau & Shen (2025)). PDE definitions, datasets, and network ar-
chitectures are provided in Appendix F. We measure the relative L2-error after convergence, defined
as ∥upred−ureal∥2

∥ureal∥2
. Each method is run five times with independent random seeds, with the best predic-

tions for each approach. All models are implemented in PyTorch and trained on a single NVIDIA
GeForce RTX 4090 GPU. The code for all benchmarks will be released on GitHub upon acceptance.
Computational aspects are evaluated in Appendix G.2.

6.1 RESULTS ON BENCHMARK PDES

We begin with three popular low-frequency benchmark PDEs: 2D Helmholtz equation, 1D convec-
tion equation, and the viscous Burgers’ equation. Figure 2 summarizes relative L2-errors across
baseline methods; boxplots display medians and IQRs, and red diamonds denote means. Additional
prediction and absolute error maps are provided in Appendix G.

Figure 2: Boxplot of relative L2-errors (log10 scale) for all methods on three low-frequency bench-
marks with median, inter-quartile range (IQR), and mean (red diamonds).
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Across all these problems, our proposed method attains the lowest median errors with reduced vari-
ability. On Helmholtz, IFeF-PD achieves the best relative L2 error of 3.5 × 10−5. On convection,
IFeF achieves the best error of 4.3 × 10−5. Even in the nonlinear case of Burgers’ equation, IFeF
obtains the lowest median error. In addition, we conducted an ablation study where we discarded
the RFF basis extension but performed a similar iterative two-step optimization process, obtaining
results that were similar but slightly better than those of the Vanilla PINN (1.4923 × 10−2 rela-
tive L2-error) on the low-frequency convection problem. Figure 3 presents the predictions for the
low-frequency 2D Helmholtz case. On a logarithmic scale, the gap between IFeF-PINN and other
methods is consistent with the box plot summaries. These results highlight the strong approximation
capability of the proposed method, especially for linear equations, underscoring its robustness for
solving diverse PDEs.

Figure 3: Low-frequency Helmholtz equation prediction solution (up) and absolute error on a log10
scale (bottom) of baseline methods.

6.2 MITIGATING THE SPECTRAL BIAS

To evaluate challenging cases of spectral bias, we study the failure modes of PINNs on high-
frequency and multi-scale PDEs, where vanilla PINNs typically struggle to learn rapidly oscillatory
or widely separated frequency components. In particular, we study the high-frequency Helmholtz
and convection equations, as well as a multi-scale convection-diffusion equation. Table 2 presents
the mean and standard deviation of the relative L2-errors over baselines applied to these problems.
Additional prediction and absolute error maps are provided in Appendix G.

Baseline
Helmholtz

(a1 = a2 = 100)
Convection
(β = 200)

Convection-Diffusion
(klow = 4π, khigh = 60π)

Vanilla - 0.9024 (0.0239) 0.0501 (0.0030)
PINNsformer - 1.2278 (0.2010) 0.0525 (0.0001)
NTK - 0.8685 (0.0318) 0.0526 (0.0001)
PIG 1.6884 (0.2775) 1.0009 (0.0003) 0.0560 (0.0010)
IFeF 0.0156 (0.0055) 0.0027 (0.0010) 0.0009 (0.0003)
IFeF-PD 0.0092 (0.0031) 0.0025 (0.0005) 0.0010 (0.0002)

Table 2: Average relative L2-error with corresponding standard deviation for each baseline on three
high-frequency PDEs. A dash ’-’ denotes that the baseline failed to converge.

Figure 4 depicts the high-frequency Helmholtz solutions and the corresponding log-scale absolute
errors. In the considered scenarios, all baselines exhibit clear failure modes. We also conducted a
similar ablation study as described in the previous section, removing the RFF basis extension, and
the training did not converge for both the high-frequency Helmholtz and convection equations. In
contrast, the proposed IFeF-PINN method effectively mitigates the spectral bias of neural networks.
Moreover, when combined with the primal-dual method to adaptively balance the physics-based
loss, our method achieves accurate solutions even under very high frequencies, which illustrates the
flexibility of the proposed framework in incorporating advanced learning methods. A similar result
holds for the multi-scale convection-diffusion equation in Figure 4 in Appendix G, clearly showing
that only IFeF-PINN succeeds in learning both low and high frequency components of the solution.
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Figure 4: High-frequency Helmholtz equation prediction solution (up) and absolute error in log
scale (bottom) of baseline methods.

In contrast, all baselines suffer from the spectral bias failure mode, where models prioritize learning
low-frequency components and tend to ignore the high-frequency components.

6.3 SPECTRUM ANALYSIS

To quantitatively demonstrate our method’s ability to mitigate spectral bias, we employ the Fast
Fourier transform to analyze the frequency-domain distribution of the network’s prediction. We
conduct a spectrum analysis similar to Rahaman et al. (2019), designing a challenging multi-
scale convection equation with an initial condition composed of a superposition of ten sinusoids
of different frequencies and unit amplitude. More details of the setup are in Appendix F.2.

Figure 5: Prediction of the network spec-
trum with an increasing number of Fourier
features. The x-axis represents frequency,
and the colorbar shows the normalized mag-
nitude of the predicted solution at t = 0. The
colorbar is scaled accordingly from 0 to 1.

During analysis, we compare the performance of
Vanilla PINNs against models where the basis is ex-
tended with a varying number of random Fourier
features and carry out a one-step solution of the
lower-level objective in Equation 6. No additional
training is performed for the upper-level problem.

We compute the magnitude of their discrete Fourier
transform at frequencies ki, denoted as |f̃ki |. Fig-
ure 5 presents the average normalized magnitudes
|f̃ki|
Ai

over five independent runs. The results clearly
illustrate the spectral bias of Vanilla PINNs, which
struggle to accurately capture high-frequency com-
ponents. In contrast, by extending the network’s ba-
sis through RFF, the network can fit high-frequency
signals much more effectively, even without the sub-
sequent bi-level training procedure of IFeF-PINN. Furthermore, we observe that increasing the num-
ber of random features enhances the network’s ability to approximate high-frequency components,
confirming the effectiveness of our basis extension strategy.

6.4 ABLATION STUDIES

In this section, we present experiments to demonstrate the effects of two-stage training in IFeF-PINN
and the number of Fourier-enhanced features and the Gaussian sampling parameter σ.

6.4.1 END-TO-END TRAINING

To validate the necessity of two-stage training in IFeF-PINN, we conduct an end-to-end ablation
where both network parameters ω and coefficients θ are jointly optimized. We keep the approxi-
mation in Equation 5 but incorporate θ as learnable parameters alongside ω, and directly minimize
L̂λ(uω,θ) without the two-stage training. Unlike IFeF-PINN where θ is always optimal under current
features ψD(x), θ is randomly initialized and updated simultaneously with ω, losing the optimality
guarantee. Table 3 presents the results for low- and high-frequency Helmholtz and Burgers’ equa-
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tions. This ablation validates the necessity of two-stage training, as IFeF-PINN significantly out-
performs end-to-end training in linear PDEs through guaranteed lower-level optimality of θ, while
showing modest improvements in nonlinear PDEs where the lower-level becomes non-convex.

Ablation
Helmholtz

(a1 = 1, a2 = 4)
Helmholtz

(a1 = a2 = 100)
Viscous Burgers

(ν = 0.01
π )

End-to-End 0.0088(0.0006) - 0.0049(0.0009)

IFeF 0.0003(0.0003) 0.0156(0.0055) 0.0024(0.0011)

IFeF-PD 0.00005(0.00002) 0.0092(0.0031) 0.0033(0.0004)

Table 3: Average relative L2-error with corresponding standard deviation for end-to-end training
and IFeF-PINN on three benchmarks. A dash ’-’ denotes that the baseline failed to converge.

6.4.2 HYPERPARAMTER ABLATION

We conduct an ablation on two key hyperparameters in IFeF-PINN: the number of Fourier features
D and the Gaussian sampling parameter σ. We evaluate their impact on performance using the low-
and high-frequency Helmholtz equations, with results shown in Table 4. The ablation shows that too
few features reduce expressivity while excessive features cause overfitting and may break the rank
condition discussed in Appendix B.1. For σ, larger values are essential for high-frequency problems
discussed in Tancik et al. (2020); Wang et al. (2021b). Low-frequency problems are robust to both
hyperparameters, while high-frequency problems are sensitive, especially to σ.

Helmholtz (a1 = 1, a2 = 4)

D (σ = 1) 100 400 800 1200 3000
Rel. L2 error 5.5× 10−4 2.1× 10−4 3.2× 10−4 5.7× 10−4 4.5× 10−4

σ (D = 800) 2 1 0.5 0.2 0.1
Rel. L2 error 4.0× 10−4 3.2× 10−4 5.5× 10−4 3.3× 10−4 1.5× 10−3

Helmholtz (a1 = a2 = 100)

D (σ = 1) 800 1200 1600 2400 3000
Rel. L2 error 7.11× 10−2 5.40× 10−2 3.09× 10−2 1.56× 10−2 2.22× 10−2

σ (D = 2400) 20 10 5 1 0.2
Rel. L2 error 4.6× 10−3 3.0× 10−3 5.7× 10−3 1.56× 10−2 1.05× 10−1

Table 4: Average relative L2-error for hyperparameter ablation forD and σ on Helmholtz equations.

7 CONCLUSION

In this paper, we introduce IFeF-PINN, a novel iterative training method for Fourier-enhanced Fea-
tures PINNs. By augmenting the network with Random Fourier Features mapping as a basis exten-
sion with the bi-level problem, IFeF-PINN mitigates the spectral bias problem of standard PINNs
when capturing the high-frequency and multi-scale components during training. Experimental re-
sults demonstrate that IFeF-PINN consistently outperforms advanced baselines across various sce-
narios, including popular low-frequency benchmarks and handling high-frequency and multi-scale
PDEs. Furthermore, it has strong flexibility when integrating with different training strategies for
PINNs.

Despite its strengths, IFeF-PINN faces challenges when extended to nonlinear PDEs. For nonlinear
PDEs, the lower-level problem becomes nonconvex, precluding a one-step solve and requiring itera-
tive two-stage gradient descent updates that can stall in local minima. Advancing principled bi-level
optimization techniques to better handle the nonlinear lower-level problem remains a promising
direction for future work.
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