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Abstract. Multi-agent reinforcement learning algorithms depend on
quantities of interactions with the environment and other agents to derive
an approximately optimal policy. However, these algorithms may strug-
gle in the complex interactive relationships between agents and tend
to explore the whole observation space aimlessly, which results in high
learning complexity. Motivated by the occasional and local interactions
between multiple agents in most real-world scenarios, in this paper, we
propose a general framework named Discrepancy-Driven Multi-Agent
reinforcement learning (DDMA) to help overcome this limitation. In
this framework, we first parse the semantic components of each agent’s
observation and introduce a proliferative network to directly initialize
the multi-agent policy with the corresponding single-agent optimal pol-
icy, which bypasses the misalignment of observation spaces in differ-
ent scenarios. Then we model the occasional interactions among agents
based on the discrepancy between these two policies, and conduct more
focused exploration on these areas where agents interact frequently. With
the direct initialization and the focused multi-agent policy learning,
our framework can help accelerate the learning process and promote
the asymptotic performance significantly. Experimental results on a toy
example and several classic benchmarks demonstrate that our framework
can obtain superior performance compared to baseline methods.

Keywords: Multi agent · Reinforcement learning · Exploration

1 Introduction

Multi-Agent Reinforcement Learning (MARL) has shown great potential in solv-
ing many real-world problems such as coordination of robot swarm [10] and
autonomous car [1]. However, learning effective policies in such multi-agent sys-
tems remains challenging owing to the complex interactions among agents. These
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dynamical interactions result in two major issues that prevent us from directly
extending classic single-agent reinforcement learning algorithms to the multi-
agent scenarios. One is the scalability problem, which means that the size of the
joint observation-action space grows exponentially with the number of agents.
The other is the non-stationarity problem, which means that the environment
changes dynamically from the individual perspective of each agent owing to the
simultaneous updates of all agents’ policies.

Hence, existing MARL algorithms aim to solve these two problems to learn an
optimal multi-agent policy. Recently the paradigm of Centralized Training with
Decentralized Execution (CTDE) alleviates these two problems by accessing the
global information during training and outputting the decentralized policies con-
ditioned on the agents’ local observation-action histories during execution. Such
design strides a balance between the full centralization and the full decentraliza-
tion. Specially, the multi-agent policy-based algorithms such as MADDPG [15],
COMA [7], MAAC [11] train a centralized critic that takes as inputs the actions
of all agents including the state information and then guide the optimization
of decentralized policies with an actor-critic framework. Value-decomposition
algorithms under this paradigm such as VDN [22], QMIX [19], QTRAN [21],
QPLEX [25] learn a centralized state-action value function that can be factorized
into the individual utility value functions conditioned on the local observation-
action history of each agent, which needs to satisfy the IGM [21] constraint.

While the CTDE-based algorithms have achieved significant performance
in some challenging scenarios such as StarCraft [20], their drawbacks are also
apparent in the complex tasks. They usually require substantial interactions
and trials in the tasks where agents are tightly coupled, which usually results
in high learning complexity. In fact, the interactions between agents usually
happen locally and occasionally in many real-world multi-agent systems, which
means that each agent only needs to take some other agents into consideration
and coordinates with them in some certain observations. In such situation, the
algorithm should focus more on these interactive areas, instead of searching for
the whole observation space aimlessly. Exploiting such properties existing in the
interactions between agents can dramatically promote the learning efficiency of
the CTDE-based algorithms.

However, modeling the interactions among agents accurately still remains
intractable owing to the simultaneous updates of all agents’ policies. Recent
works [4,12] learn the reward dynamics of the multi-agent environment and
distinguish the interactions through detecting the changes in the received imme-
diate or long-term rewards. But these methods may fail owing to the inaccurate
approximated reward model, which usually needs sufficient prior knowledge or
complete search of the environment. In addition, some works [11,13] implicitly
characterize the interactions between agents in real time through the attention
mechanism. But such redundant networks and tedious optimizations may fur-
ther increase the learning complexity of the algorithms. In this paper, we solve
this problem by proposing several structural and learning novelties.
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To simplify the multi-agent policy learning and reduce the high learning
complexity of CTDE-based algorithms, we propose a general framework named
Discrepancy-Driven Multi-Agent reinforcement learning (DDMA). In this frame-
work, we first (1) initialize the multi-agent policy directly with a pre-learned
single-agent optimal policy derived from an auxiliary single-agent scenario as
previous works [4,12], then (2) recognize the dynamical interactions between
agents through measuring the discrepancy between the updating multi-agent
policy and the single-agent optimal policy. In detail, we propose an interaction
detector to quantify this discrepancy. This detector can be used to recognize the
interactive areas where current agent is more likely to be influenced by other
agents. Accordingly, as shown in Fig. 1, we conduct more focused multi-agent
policy learning in these interactive areas, instead of exploring and learning in the
whole observation space aimlessly and costly. In addition, we parse the seman-
tic components of the agents’ observations and further introduce a proliferative
network to achieve the direct initialization from the pre-learned single-agent opti-
mal policy to the multi-agent policy, which can solve the terrible misalignment
of observation spaces in different scenarios. Under the direct initialization and
the focused multi-agent policy learning, DDMA can help accelerate the learning
process and promote the asymptotic performance significantly.

focused learning
policy initialization

Fig. 1. Under the multi-agent policy initialized by
the corresponding single-agent optimal policy, the
agent (the red car) should conduct more focused
multi-agent policy learning in the collision area (the
red rectangle with dashed line).

In order to demonstrate
the effectiveness of DDMA,
we evaluate it in a toy
example and three classic
multi-agent scenarios under
Multi-agent Particle Environ-
ment (MPE) [16]. Experimen-
tal results demonstrate that
DDMA can achieve faster
learning and better asymp-
totic performance compared
to baseline methods. In addi-
tion, by ablation studies, we
confirm that DDMA indeed
promotes the learning effi-
ciency with the direct initialization and the focused multi-agent policy learning.

In summary, the primary contributions of this paper are listed as follows: (1)
Inspired by the pre-training mechanism, we introduce a proliferative network
to directly initialize the multi-agent policy with the pre-learned single-agent
optimal policy, which solves the misalignment of observation spaces in different
scenarios. (2) In order to further improve the learning efficiency, we introduce
an interaction detector to characterize the interactions between agents, and con-
duct more focused multi-agent policy learning in these interactive areas. (3)
Experimental results highlight that DDMA can achieve superior performance
compared to other algorithms. Ablation study further verifies the effectiveness
of our algorithm.
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2 Related Work

There exist many works devoting to reducing the high learning complexity rooted
in MARL, such as transfer learning [3–5,12,24], curriculum learning [6,17,27]
and game abstraction [13,26,29]. In this section, we briefly describe these meth-
ods and detail some related algorithms.

Transfer Learning. Transfer learning tries to improve the algorithm’s learn-
ing efficiency through extracting and reusing some task-relevant knowledge. In
MARL problem, some works focus on the knowledge transfer between agents,
such as LeCTR [18], SEAC [2] and MAPTF [28]. Other works about the sparse-
interaction problem learn to transfer knowledge from the corresponding single-
agent scenario to the multi-agent scenario, where CQ-Learning [4] identifies the
interactive areas through detecting changes in the received immediate rewards
and conducts the multi-agent policy learning only in these areas selectively, as
well as expanding the state representations. Then NSR [12] extends it to more
difficult scenarios through detecting the changes in the long-term rewards. In this
paper, we don’t try to let agents choose whether to utilize the pre-learned knowl-
edge or learn. Instead, our proliferative network structure shown in Sect. 4.1 can
directly initialize the multi-agent policy with the pre-learned single-agent opti-
mal policy, which makes us free from the negative transfer during learning.

Curriculum Learning. Curriculum learning considers first learning in the sim-
ple environments then conducting the final policy learning in the original multi-
agent environment based on the pre-learned knowledge. In multi-agent curricu-
lum reinforcement learning, DyMA-CL [27] introduces three kinds of knowledge
transfer ways between the curriculum tasks with different number of agents. And
it solves the misalignment of observation spaces in different tasks through aggre-
gating information about others by GNN, which promises the direct initialization
from pre-learned policy to the current policy. Although GAS [6] can implicitly
create curriculum tasks through restricting available action space of each agent
in different stages, the choices of action spaces in each curriculum stage matters
and the final policy learned may be sub-optimal. Usually, curriculum learning
and transfer learning are tightly coupled and are combined implicitly in related
researches.

Game Abstraction. Game abstraction mainly attempts to reduce the scale of
Markov Game, such as Mean Field MARL [29], G2ANet [13] and RODE [26].
Mean-field theory averages effects from neighboring agents to reduce the learning
complexity of each agent, which enables efficient multi-agent policy learning in
the large-scale scenarios. G2ANet models the interactive relationships between
agents through a two-stage attention network structure. Such combination of
hard and soft attention network can indicate the interactive strengths between all
pair-wise agents and remove some humble correlations. RODE pre-defines several
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roles based on the action-effect-based clustering, then conducts the hierarchical
multi-agent policy learning.

3 Preliminary

In this section, we formalize the multi-agent task in our work and briefly review
some concepts of reinforcement learning.

3.1 Partially Observable Stochastic Game

In this paper, we focus on Partially Observable Stochastic Game < N,S,A, R, P,
O,Z, γ >, where S is the state space and A = {A1 × A2 × . . . × An} represents
the joint action space of all agents. At each time step t, each agent i ∈ N receives
its partial observation oi

t ∈ Zi according to the observation function O(st, i) and
selects action ai

t ∈ Ai, forming a joint action at . Then the environment will
transit to the next state st+1 according to the transition function P (st+1|st,at),
and provide each agent with its reward ri

t+1 according to the reward function
R(st,at , i). Each agent i conditions its policy πi on its own observation-action
history τ i. The value function of all agents’ joint policy π = (π1, π2, ..., πn) to
agent i at state s is defined as: V i

π (s) = Eπ [
∑∞

k=0 γkri
t+k+1|st = s], where γ is

the discount factor and each agent aims to maximize its own value function.

3.2 Reinforcement Learning

In single-agent RL, value-based algorithms define the state-action value func-
tion Q(s, a) = Eπ[

∑∞
k=0 γkrt+k+1|st = s, at = a] and state value function

V (s) = Eπ[
∑∞

k=0 γkrt+k+1|st = s], which both can be updated according to the
bellman equation. Then the optimal action can be derived by the greedy policy
a∗ = argmaxaQ(s, a). In contrast, policy-based algorithms directly optimize the
policy instead of evaluating the value function. Furthermore, actor-critic algo-
rithms combine the former two, which guide the update of the actor according
to the critic. In multi-agent RL, agents can utilize a MARL algorithm to learn
approximately optimal policies to adapt to the multi-agent scenarios.

4 Method

In this section, we introduce our framework DDMA to promote the multi-agent
policy learning. We first describe how our method efficiently transfer the pre-
learned knowledge. Then how we model the interactions among agents and con-
duct the focused multi-agent policy learning will be stated.
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4.1 Initialization of the Multi-agent Policy

In contrast to the prior works that decide when transfer should occur [4,12],
we propose to directly initialize the multi-agent policy with the corresponding
single-agent optimal policy. The intuition behind this is that there exist similar
situations between the single-agent scenario and the multi-agent scenario, as
well as strong correlations between the policies in them. For example, when one
company wants to train a group of UAV transport formations, it first put only
one UAV into the target environment to learn some basic skills such as takeoff,
landing and so on, which corresponds to the single-agent version of the target
multi-agent scenario. After mastering these primary skills, each UAV can learn
to coordinate with others and adapt to the multi-agent scenario more efficiently.

However, the misalignment of observation spaces in the single-agent scenario
and the multi-agent scenario obstructs this direct initialization (we assume the
same action space in these two scenarios). To overcome this limitation, we parse
the semantic components of the agent’s observation in the multi-agent scenario
and accordingly introduce a novel proliferative policy network, which can sim-
plify the structure of the multi-agent policy compared to GNN, attention net-
works [14,27] and avoid the tricky trade-off between the original policy learning
and the extra policy distillation [12].

Fig. 2. The semantic components of the agent’s
observation in the single-agent scenario and the
multi-agent scenario.

As shown in Fig. 2, the only
difference between the multi-
agent scenario and the single-
agent scenario lies in the emer-
gence of other agents. Accord-
ingly, we parse the agent i’s obser-
vation oi in the multi-agent sce-
nario into three semantic com-
ponents: the agent’s individual
information oi

self , the agent’s cog-
nition towards the environment
such as the entities oi

env and
the cognition to all other agents
oi

others such as the relative distances. The former two components make up the
agent’s observation in the corresponding single-agent scenario. Here we assume
the same action space in these two scenarios. As for the inconsistency of action
spaces, we can also parse the semantic actions through mapping them to a latent
space, and new actions can be approximated according to their neighboring
latent representations.

Based on this parse, we introduce the proliferative policy network, as shown
in Fig. 3 4. Considering that the agent’s observation oi only contains [oi

self , oi
env]

in the single-agent scenario, the single-agent optimal policy takes as inputs these
two parts. When the other agents emerge in the multi-agent scenario, oi

others also
emerges in the agent’s observation, besides the [oi

self , oi
env] existing in the single-

agent scenario. Therefore, we decompose the actor in the multi-agent policy into
two parts: (1) the main network that deals with [oi

self , oi
env] and (2) the prolifer-
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Fig. 3. The structure of the actor network. In the actor of the multi-agent policy, the
main network deals with [oiself , o

i
env] and the proliferative network embeds [oiothers].

The main network can be initialized directly with the actor of the pre-learned single-
agent optimal policy.

ative network that embeds [oi
others]. Similarly, we also decompose the centralized

critic into: (1) the main network that deals with [oi
self , oi

env, ai] and (2) the pro-
liferative network that embeds [o−i

self , o−i
env, a−i], where −i represents the other

agents except agent i. Note that we remove oi
others and o−i

others from the central-
ized critic’s inputs oi, o−i to derive a more compact global state representation.

Fig. 4. The structure of the critic network. In the centralized critic of the multi-
agent policy, the main network deals with [oiself , o

i
env, a

i] and the proliferative network
embeds [o−i

self , o
−i
env, a

−i]. Similarly, the main network can be initialized directly with
the critic of the pre-learned single-agent optimal policy.

Furthermore, we connect the proliferative network to the final layer of the
main network. Specially, we use the element-wise summation of the outputs of
the proliferative network and the outputs of the penultimate layer of the main
network as the inputs of the final layer in the main network. Through such
combination of these two networks, we can directly initialize the main network
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in the multi-agent policy with the pre-learned single-agent optimal policy that
is composed of only the same main network. Then the proliferative network can
help update the whole policy through tracking other agents’ information.

4.2 Focused Learning of the Multi-agent Policy

While each agent can benefit from this direct initialization owing to the loss-
less knowledge transfer, it may not coordinate with other agents well. In such
situation, the agent should gradually adapt to the multi-agent scenario through
updating its policy with a large number of interactive data. And current MARL
algorithms usually force each agent to search for the whole observation space
aimlessly and costly, which will result in high learning complexity.

Motivated by the occasional and local interactions between multiple agents in
most real-world scenarios, we propose to model the interactions between agents
and conduct more focused multi-agent policy learning in these interactive areas
but a little in the other areas. Through focusing more on these interactive areas
where rewards explicitly differ from the ones in the single-agent scenario, each
agent can conduct steeper policy update in the corresponding observations to
adapt to the multi-agent scenario, but only deviate slightly from the initialization
of its policy in other areas that have similar rewards. Therefore, we can promote
the learning efficiency through such adaptive and focused learning.

Specially, we characterize the dynamical interactions between agents through
measuring the discrepancy between the multi-agent policy and the pre-learned
single-agent optimal policy. The intuition behind this is that the initialized multi-
agent policy will gradually diverge from its initialized version in some obser-
vations where agent following the pre-learned single-agent optimal policy may
receive penalties owing to ignoring other agents. Based on this phenomenon,
the discrepancy between the multi-agent policy and the pre-learned single-agent
optimal policy will emerge in those areas where the interactions occur under all
agents’ current policies. Therefore, we use this discrepancy to evaluate whether
the current agent is influenced by others under the current policies.

We first introduce how to measure the discrepancy between these two policies.
DDMA trains a centralized critic that takes as inputs all agents’ observations
and actions when training, then updates the decentralized actor according to
this critic, which follows the CTDE paradigm. Based on this centralized critic,
the discrepancy between the multi-agent policy and the pre-learned single-agent
optimal policy for agent i in observation oi can be obtained according to:

Di(oi) = DKL[πi
multi(a

i|oi, o−i, a−i)||πi
single(a

i|oi)], (1)

where:

πi
multi(a

i|oi, o−i, a−i) =
ekQi

multi(o
i
self ,oi

env,ai,o−i
self ,o−i

env,a−i)

∑
a′ ∈Ai ekQi

multi(o
i
self ,oi

env,a′ ,o−i
self ,o−i

env,a−i)
, (2)

πi
single(a

i|oi) =
ekQi

single(o
i
self ,oi

env,ai)

∑
a′ ∈Ai ekQi

single(o
i
self ,oi

env,a′ )
. (3)
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Note that we derive the Boltzmann policy according to the centralized Q-
values instead of directly using the output of the actor network. This is because
that the critic can characterize the long-term influence induced by the environ-
mental rewards through bellman update compared to the actor which is updated
under the supervision of the critic.

In order to achieve better generalization over the whole observation space, we
then introduce an interaction detector for each agent to model this discrepancy,
which takes each agent’s observation as inputs and predicts whether the agent
is influenced by other agents in the current observation. This detector is trained
in the form of a binary classifier, whose loss can be written as:

Ldetec = CrossEntropy(pi
detec(o

i), label(oi)), (4)

where label(oi) is set to 0 when Di(oi) < τ i else 1, and pi
detec(o

i) refers to
the output of this interaction detector. We set the threshold τ i as some certain
percentile of all Di(oi) in the buffer (sixty in the code).

Finally, based on this detector model, we conduct more focused multi-agent
policy learning in the interactive areas, instead of searching for the whole obser-
vation space aimlessly and costly. In detail, we equip each agent i with two
exploration policies for environments with discrete and continuous action spaces
respectively, which can induce the focused exploration in the areas with high
interactive strengths, based on the predictions pi

detec(o
i).

The exploration policy for environments with continuous action spaces is
defined as:

ui
e(τ

i) = ui(τ i|θi) + α ∗ |max(0, pi
detec(o

i) − 0.5)| ∗ N (0, 1), (5)

where α is the decay rate, ui is the actor with parameters θi and N (0, 1) repre-
sents the noise sampled from a standard normal distribution. We approximately
calculate πi

single, π
i
multi through sampling several actions from the continuous

action space. With this exploration policy, we add adaptive noise to the outputs
of the actor to achieve more focused policy learning.

The exploration policy for environments with discrete action spaces is defined
as:

π(ui
e|τ i) =

⎧
⎨

⎩

1 − min(ε + max(0,pi
detec(o

i)−0.5)√
T

, 1) if ui
e = ui,∗

min(ε + max(0,pi
detec(o

i)−0.5)√
T

, 1) if ui
e �= ui,∗,

(6)

where T is the environment step, ui,∗ is the optimal action under the current
policy and ε is the random probability.

Finally, DDMA drives agents to explore more in these interactive areas
through these two exploration policies. Under this motivation, agents can con-
duct steeper policy update in the corresponding observations and adapt to the
dynamical multi-agent scenario quickly.
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4.3 Training

Now we briefly state the alternate updates of the interaction detector and the
multi-agent policy. When learning the multi-agent policy, we freeze the detector
and add extra exploration to the current action selection according to the explo-
ration policies above. Similarly, when the detector is updated, the multi-agent
policy learning is paused. Such optimization can guarantee stability and behaves
like a Generative Adversarial Network (GAN) [9]. Interestingly, the interaction
detector acts like a discriminator, which aims to find out the current most-likely
interactive areas under all agents’ current multi-agent policies. On the contrary,
the multi-agent policy plays the role of the generator, which updates itself to
change the interactive probabilities in all areas and misleads the delayed-updated
detector. Owing to such adversarial relationship between these two components,
DDMA can achieve the adaptive policy update in different areas according to
the interaction detector and agents can adapt to the multi-agent scenario quickly
based on such focused policy learning process.

5 Experiments

For the environment with discrete action space, We design Collision Corridor to
illustrate our method comprehensively. As for the environment with continuous
action space, we evaluate our method in three classic multi-agent scenarios under
Multi-agent Particle Environment: Cooperative Navigation, Predator and Prey,
and Individual Defense, where Individual Defense is constructed ourselves.

Below we will describe these environments briefly and show the superior
performance of our method compared to other baselines. In addition, we also
conduct some ablation studies to decide the effectiveness of each component.

5.1 Collision Corridor

We start with Collision Corridor to answer the following two questions: (1)
Whether this algorithm can conduct more focused policy learning? (2) Can the
interaction detector characterize the interactions between agents approximately?

Environments. As shown in Fig. 6 (a), each autonomous car starts in a corner
and the goal is to arrive at the diagonal corner. A dangerous collision will occur
when both cars try to pass through the corridor hidden in the obstacles, resulting
in −10 penalty. Both cars will receive +30 reward if they all succeed in arriving
at their target corners.

Baselines. In such situation with discrete actions, We compare DDMA with
the state-of-the-art VDN and QMIX, as well as MAPG. We regard the original
policy gradient algorithm [23] with a centralized critic as MAPG, and we achieve
DDMA based on it.
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Fig. 5. (a) The experimental result in Collision Corridor. The result is averaged over
four random seeds and we only show the average owing to the discrete reward setting.
(b) The visitation heatmap shows the total visitation number of both cars in all areas
during training.

Results. Figure 5 (a) exhibits the average rewards per agent of all algorithms.
It’s obvious that DDMA outperforms other baselines and converges faster, owing
to the direct initialization and the focused multi-agent policy learning (owing to
the less effort in pre-training the single-agent optimal policy, we don’t consider
it here). On the contrary, VDN and QMIX struggle to learn the policy through
quantities of aimless trials. Even MAPG fails to solve this task, which further
demonstrates the effectiveness of DDMA. Also, we present a heatmap to show
the visitation number of both agents in all areas during training, which is shown
in Fig. 5 (b). We observe that the agents always wander around the corridor to
learn to coordinate with each other to avoid the collision, which demonstrates
that the interaction detector indeed encourages the focused multi-agent policy
learning in these interactive areas.

Fig. 6. (a) The final learned policies of two cars. The red line is the policy of car 1 and
the green line is the policy of car 2. (b) The interaction strength predictions of car 1,
where red lines represent the routes of car 1. (Color figure online)

In addition, we further analyze the effect of the interaction detector in some
areas from the viewpoint of the upper left agent in Fig. 6 (b). Considering all
agents’ current policies shown in Fig. 6 (a), we notice that this agent tends to
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recognize areas near the corridor and near its own target corner as the interactive
areas. It is the collisions between agents in the corridor and the environmental
setting that agents only receive the final reward after they both arrive at their
goals respectively that produces such judgment, which verifies the effectiveness
of the interaction detector in DDMA.

5.2 MPE Scenarios

After illustrating our method granularly in Collision Corridor, we further eval-
uate it in more complex scenarios under Multi-Agent Particle Environment.

Environments. Here we choose Cooperative Navigation, Predator and Prey
and Individual Defense as the test scenarios.1

Baselines. In the situations with continuous action spaces, we choose MAD-
DPG [15], MAAC [11], G2ANet [13] and Noisy-MADDPG [8] as the baselines.

Fig. 7. (a), (b), (c) are the experimental results in Cooperative Navigation, Predator
and Prey and Individual Defense respectively. (d) is the ablation experimental results
in Cooperative Navigation. All results are averaged over four random seeds.

Results. Figure 7 (a) (b) (c) show the performance comparison against base-
lines. We can observe that DDMA outperforms baselines significantly in the for-
mer two scenarios. In detail, in Cooperative Navigation and Predator and Prey,
DDMA begins with pretty performance owing to the initialization. What’s more,
DDMA learns faster and achieves significant performance, benefiting from the
focused learning brought by the selective exploration. On the contrary, MAAC,
G2ANet and other baselines still suffer from redundant and aimless policy learn-
ing, even getting trapped in the sub-optimal solutions.

In Individual Defense, DDMA behaves similarly as other baselines, which is
owing to little interactions existing between agents. In this situation, each good
agent pays more attention to approaching its own target landmark itself, ignoring
the little collisions with other good agents owing to the low probabilities. Even
the independent learner will adapt to this scenario well. What’s more, this exper-
imental results verify that DDMA essentially produces the interaction-driven
multi-agent policy learning, and it will degrade into an independent learner when
there is little interactions between agents.
1 Please refer to https://github.com/chaobiubiu/DDMA for more details.

https://github.com/chaobiubiu/DDMA
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5.3 Ablation Study

To further demonstrate the effectiveness of each component in our method, we
compare DDMA with extra baselines: (1) DDMA-E. We derive this baseline
by removing the interaction detector’s learning from vanilla DDMA, which can
test the influence brought by this discriminator-like detector. (2) DDMA-N.
This baseline only considers conducting the focused multi-agent policy learning
through the interaction detector, regardless of the direct initialization from the
single-agent optimal policy to the multi-agent policy, which can highlight the
contribution from this fine initialization.

As shown in Fig. 7 (d), although the interaction detector drives much explo-
ration, DDMA-N converges slowly owing to the lack of transferred knowledge.
Similarly, benefiting from the superior initialization, DDMA-E can converge
quickly but to a sub-optimal policy, which may result from the confused and
aimless multi-agent policy learning. On the contrary, the vanilla DDMA can
converge faster and achieve better performance due to the advantages existing
in its all components.

In summary, these experiments demonstrate that DDMA indeed promotes
the learning efficiency through the direct initialization and the focused pol-
icy learning. Drawing supports from these two factors mostly, DDMA can
achieve superior performance in complex multi-agent tasks compared to other
algorithms.

6 Conclusion

In this paper, we propose DDMA to alleviate the high learning complexity inher-
ent in the multi-agent policy learning, through the direct initialization and the
focused policy learning. Our approach has several benefits. It is simple and does
not introduce any complex network structures. It is natural to extend the pre-
learned single-agent optimal policy to further conduct the focused multi-agent
policy learning instead of only initialization. Lastly, DDMA can be applied to
any multi-agent situations with discrete or continuous action spaces.

Simplifying the tedious multi-agent policy learning matters mostly in MARL.
We make a simple attempt to achieve it. We believe that MARL can be applied
to some real scenarios by such way and we will continue to reduce the high
learning complexity of MARL in future works.
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