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Abstract

We consider the challenge of AI value alignment with multiple individuals that have
different reward functions and optimal policies in an underlying Markov decision
process. We formalize this problem as one of policy aggregation, where the goal
is to identify a desirable collective policy. We argue that an approach informed
by social choice theory is especially suitable. Our key insight is that social choice
methods can be reinterpreted by identifying ordinal preferences with volumes
of subsets of the state-action occupancy polytope. Building on this insight, we
demonstrate that a variety of methods — including approval voting, Borda count,
the proportional veto core, and quantile fairness — can be practically applied to
policy aggregation.

1 Introduction

Early discussion of AI value alignment had often focused on learning desirable behavior from an
individual teacher, for example, through inverse reinforcement learning [27, 1]. But, in recent
years, the conversation has shifted towards aligning AI models with large groups of people or even
entire societies. This shift is exemplified at a policy level by OpenAI’s “democratic inputs to AI”
program [41] and Meta’s citizens’ assembly on AI governance [8], and at a technical level by the
ubiquity of reinforcement learning from human feedback [30] as a method for fine-tuning large
language models.

We formalize the challenge of value alignment with multiple individuals as a problem that we view as
fundamental — policy aggregation. Our starting point is the common assumption that the environment
can be represented as a Markov decision process (MDP). While the states, actions and transition
functions are shared by all agents, their reward functions — which incorporate values, priorities
or subjective beliefs — may be different. In particular, each agent has its own optimal policy in
the underlying MDP. Our question is this: How should we aggregate the individual policies into a
desirable collective policy?

A naïve answer is to define a new reward function that is the sum of the agents’ reward functions (for
each state-action pair separately) and compute an optimal policy for this aggregate reward function;
such a policy would guarantee maximum utilitarian social welfare. This approach has a major
shortcoming, however, in that it is sensitive to affine transformations of rewards, so, for example, if
we doubled one of the reward functions, the aggregate optimal policy may change. This is an issue
because each agent’s individual optimal policy is invariant to (positive) affine transformations of
rewards, so while it is possible to recover a reward function that induces an agent’s optimal policy by
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observing their actions over time,2 it is impossible to distinguish between reward functions that are
affine transformations of each other. More broadly, economists and moral philosophers have long
been skeptical about interpersonal comparisons of utility [19] due to the lack of universal scale — an
issue that is especially pertinent in our context. Therefore, aggregation methods that are invariant to
affine transformations are strongly preferred.

Our approach. To develop such aggregation methods, we look to social choice theory, which
typically deals with the aggregation of ordinal preferences. To take a canonical example, suppose
agents report rankings over m alternatives. Under the Borda count rule, each voter gives m − k
points to the alternative they rank in the k’th position, and the alternative with most points overall is
selected.

The voting approach can be directly applied to our setting. For each agent, it is (in theory) possible
to compute the value of every possible (deterministic) policy, and rank them all by value. Then,
any standard voting rule, such as Borda count, can be used to aggregate the rankings over policies
and single out a desirable policy. The caveat, of course, is that this method is patently impractical,
because the number of policies is exponential in the number of states of the MDP.

The main insight underlying our approach is that ordinal preferences over policies have a much more
practical volumetric interpretation in the state-action occupancy polytope O. Roughly speaking, a
point in the state-action occupancy polytope represents a (stochastic) policy through the frequency
it is expected to visit different state-action pairs. If a policy is preferred by an agent to a subset of
policies O′, its “rank” is the volume of O′ as a fraction of the volume of O. The “score” of a policy
under Borda count, for example, can be interpreted as the sum of these “ranks” over all agents.

Our results. We investigate two classes of rules from social choice theory, those that guarantee a
notion of fairness and voting rules. By mapping ordinal preferences to the state-action occupancy
polytope, we adapt the different rules to the policy aggregation problem.

The former class is examined in Section 5. As a warm-up we start from the notion of proportional
veto core; it follows from recent work by Chaudhury et al. [7] that a volumetric interpretation of
this notion is nonempty and can be computed efficiently. We then turn to quantile fairness, which
was recently introduced by Babichenko et al. [4]; we prove that the volumetric interpretation of this
notion yields guarantees that are far better than those known for the original, discrete setting, and we
design a computationally efficient algorithm to optimize those guarantees.

The latter class is examined in Section 6; we focus on volumetric interpretations of α-approval
(including the ubiquitous plurality rule, which is the special case of α = 1) and the aforementioned
Borda count. In contrast to the rules studied in Section 5, existence is a nonissue for these voting
rules, but computation is a challenge, and indeed we establish several computational hardness results.
To overcome this obstacle, we implement voting rules for policy aggregation through mixed integer
linear programming, which leads to practical solutions.

Finally, our experiments in Section 7 evaluate the policies returned by different rules based on their
fairness; the results identify quantile fairness as especially appealing. The experiments also illustrate
the advantage of our approach over rules that optimize measures of social welfare (which are sensitive
to affine transformations of the rewards).

2 Related Work

Noothigattu et al. [28] consider a setting related to ours, in that different agents have different reward
functions and different policies that must be aggregated. However, they assume that the agents’ reward
functions are noisy perturbations of a ground-truth reward function, and the goal is to learn an optimal
policy according to the ground-truth rewards. In social choice terms, our work is akin to the typical
setting where subjective preferences must be aggregated, whereas the work of Noothigattu et al.
[28] is conceptually similar to the setting where votes are seen as noisy estimates of a ground-truth
ranking [39, 9, 6].

Chaudhury et al. [7] study a problem completely different from ours: fairness in federated learning.
However, their technical approach served as an inspiration for ours. Specifically, they consider the
proportional veto core and transfer it to the federated learning setting using volumetric arguments, by

2And we assume this is done accurately, in order to focus on the essence of the policy aggregation problem.
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considering volumes of subsets in the space of models. Their proof that the proportional veto core is
nonempty carries over to our setting, as we explain in Section 5.

There is a body of work on multi-objective reinforcement learning (MORL) and planning that uses a
scalarization function to reduce the problem to a single-objective one [32, 21]. Other solutions to
MORL focus on developing algorithms to identify a set of policies approximating the problem’s Pareto
frontier [38]. A line of work more closely related to ours focuses on fairness in sequential decision
making, often taking the scalarization approach to aggregate agents’ preferences by maximizing a
(cardinal) social welfare function, which maps the vector of agent utilities to a single value. Ogryczak
et al. [29] and Siddique et al. [34] investigate generalized Gini social welfare, and Mandal and Gan
[25], Fan et al. [13] and Ju et al. [23] focus on Nash and egalitarian social welfare. Alamdari et al.
[3] study this problem in a non-Markovian setting, where fairness depends on the history of actions
over time, and introduce concepts to assess different fairness criteria at varying time intervals. A
shortcoming of these solutions is that they are not invariant to affine transformations of rewards — a
property that is crucial in our setting, as discussed earlier.

Our work is closely related to the pluralistic alignment literature, aiming to develop AI systems
that reflect the values and preferences of diverse individuals [35, 10]. Alamdari et al. [2] propose a
framework in reinforcement learning in which an agent learns to act in a way that is considerate of
the values and perspectives of humans within a particular environment. Concurrent work explores
reinforcement learning from human feedback (RLHF) from a social choice perspective, where the
reward model is based on pairwise human preferences, often constructed using the Bradley-Terry
model [5]. Zhong et al. [42] consider the maximum Nash and egalitarian welfare solutions, and
Swamy et al. [36] propose a method based on maximal lotteries due to Fishburn [14].

3 Preliminaries

For t ∈ N, let [t] = {1, 2, . . . , t}. For a closed set S, let ∆(S) denote the probability simplex over the
set S. We denote the dot product of two vectors as ⟨x, y⟩ =

∑d
i=1 xi · yi for x, y ∈ Rd. A halfspace

in Rd determined by w ∈ Rd and b ∈ R is the set of points satisfying {x ∈ Rd | ⟨x,w⟩ ⩽ b}. A
polytope O ⊆ Rd is the intersection of a finite number of halfspaces, i.e., a convex subset of the
d-dimensional space Rd determined by a set of linear constraints {x | Ax ⩽ b} where A ∈ Rk·d is a
matrix of coefficients of k linear inequalities and b ∈ Rk.

3.1 Multi-Objective Markov Decision Processes

A multi-objective Markov decision process (MOMDP) is a tuple defined as M = ⟨S,A,P, R1, . . . ,
Rn⟩ for the average-reward case and ⟨S, dinit,A,P, R1, . . . , Rn, γ⟩ for the discounted-reward case,
where S is a finite set of states, A is a finite set of actions, and P : (S ×A)→ ∆(S) is the transition
probability distribution. P(st, at, st+1) is the probability of transitioning to state st+1 by taking
action at in st. For i ∈ [n], Ri : S ×A → R is the reward function of the ith agent, the initial state
is sampled from dinit ∈ ∆(S), and γ ∈ (0, 1] is the discount factor.

A (Markovian) policy π(a|s) is a probability distribution over the actions a ∈ A given the state s ∈ S .
A policy is deterministic if at each state s one action is selected with probability of 1, and otherwise
it is stochastic. The expected average return of agent i for a policy π and the expected discounted
return of agent i for a policy π are defined over an infinite time horizon as

Javg
i (π) = lim

T→∞

1

T
Eπ,P

[∑T

t=1
Ri(st, at)

]
, Jγ

i (π) = (1−γ)Eπ,P

[∑∞

t=1
γtRi(st, at)|s1∼dinit

]
where the expectation is over the state-action pairs at time t based on both the policy π and the
transition function P .
Definition 1 (state-action occupancy measure). Let Pt

π be the probability measure over states at time
t under policy π. The state-action occupancy measure for state s and action a is defined as

davgπ (s, a) = lim
T→∞

1

T
E
[∑T

t=1
Pt
π(s)π(a|s)

]
, dγπ(s, a) = (1− γ)E

[∑∞

t=1
γtPt

π(s)π(a|s)
]
.

For both the average and discounted cases, we can rewrite the expected return as the dot product
of the state-action occupancy measures and rewards, that is, Ji(π) =

∑
(s,a) dπ(s, a) · Ri(s, a) =
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⟨dπ, Ri⟩. In addition, the policy can be calculated given the occupancy measure as π(a|s) =
dπ(s, a)/(

∑
a dπ(s, a)) if

∑
a dπ(s, a) > 0, and π(a|s) = 1/|A| otherwise.

Definition 2 (state-action occupancy polytope [31, 40]). For a MOMDP M in the average-reward
case, the space of valid state-action occupancies is the polytope

Oavg =

{
davgπ | davgπ ⩾ 0,

∑
s,a

davgπ (s, a) = 1,
∑
a

davgπ (s, a) =
∑
s′,a′

P(s′, a′, s)davgπ (s′, a′),∀s ∈ S
}
.

We similarly define this polytope for the discounted-reward case in Appendix A.

A mechanism receives a MOMDP and aggregates the agents’ preferences into a policy. An economical
efficiency axiom in the social choice literature is that of Pareto optimality.
Definition 3 (Pareto optimality). For a MOMDP M and ϵ ⩾ 0, a policy π is ϵ-Pareto optimal if there
does not exist another policy π′ such that Ji(π′) ⩾ Ji(π) + ϵ for all i ∈ N , with strict inequality for
at least one agent. For ϵ = 0, we simply call such policies Pareto optimal.

We call a mechanism Pareto optimal if it always returns a Pareto optimal policy. In special cases where
all agents unanimously agree on an optimal policy, Pareto optimality implies that the mechanism will
return one such policy. We discuss Pareto optimal implementations of all mechanisms in this work.

3.2 Voting and Social Choice Functions

In the classical social choice setting, we have a set of n agents and a set C of m alternatives. The
preferences of voter i ∈ [n] is represented as a strict ordering over the alternatives σi : [m] → C
equal to σi(1) ≻i σi(2) ≻i . . . ≻i σi(m), where c1 ≻i c2 denotes agent i prefers c1 over c2 for
c1, c2 ∈ C. A (possibly randomized) voting rule aggregates agents’ preferences and returns an
alternative or a distribution over the alternatives as the collective decision.

Positional Scoring Rules. A positional scoring rule with scoring vector s⃗ = (s1, . . . , sm) such that
s1 ⩾ s2 ⩾ . . . ⩾ sm works as follows. Each agent gives a score of s1 to their top choice, a score
of s2 to their second choice, and so on. The votes are tallied and an alternative with the maximum
total score is selected. A few of the well-known positional scoring rules are: Plurality: (1, 0, . . . , 0),
Borda: (m− 1,m− 2, . . . , 1, 0), k-approval: (1, . . . , 1, 0, . . . , 0) with k ones.

4 Occupancy Polytope as the Space of Alternatives

In a MOMDP M , each agent i incorporates their values and preferences into their respective reward
function Ri. Agent i prefers π over π′ if and only if π achieves higher expected return, Ji(π) > Ji(π

′),
and is indifferent between two policies π and π′ if and only if Ji(π) = Ji(π

′). As discussed before,
given a state-action occupancy measure dπ in the state-action occupancy polytope O, we can recover
the corresponding policy π. Therefore, we can interpret O as the domain of all possible alternatives
over which the n agents have heterogeneous weak preferences (with ties). Agent i prefers dπ to dπ′

in O if and only if they prefer π to π′. We study the policy aggregation problem through this lens;
specifically, we design or adapt voting mechanisms where the (continuous) space of alternatives is O
and agents have weak preferences over them determined by their reward functions Ri.

Affine transformation and reward normalization. A particular benefit of this interpretation, as
mentioned before, is that all positive affine transformations of the reward functions, i.e., aRi + b
for all a ∈ R⩾0 and b ∈ R, yield the same weak ordering over the polytope. Hence, we can
assume without loss of generality that Ji(π) ∈ [0, 1]. Further, we can ignore agents that are
indifferent between all policies, i.e., minπ Ji(π) = maxπ Ji(π), and normalize reward functions
Ri ← Ri−minπ Ji(π)

maxπ Ji(π)−minπ Ji(π)
such that minπ Ji(π) = 0 and maxπ Ji(π) = 1. The relative ordering

of the policies does not change since for all points dπ ∈ O we have
∑

s,a dπ(s, a) = 1.

Volumetric definitions. A major difference between voting over a continuous space of alternatives
and the classical voting setting is that the domain of alternatives is infinite and not all voting
mechanisms can be directly applied to the policy aggregation problem. In particular, various voting
rules require reasoning about the rank of an alternative or the size of some subset of alternatives. For
instance, the Borda count of an alternative c over a finite set of alternatives is defined as the number
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(or fraction) of candidates ranked below c. In the continuous setting, for almost all of the mechanisms
that we discuss later, we use the measure or volume of a subset of alternatives to refer to their size.
For a measurable subset O′ ⊆ O, let vol(O′) denote its measure. The ratio vol(O′)/vol(O) is the
fraction of alternatives that lie in O′. A probabilistic interpretation is that for a uniform distribution
over the polytope O, vol(O′)/vol(O) denotes the probability that a policy uniformly sampled from
O lies in O′. We can also define the expected return distribution of an agent over O as a random
variable that maps a policy to its expected return, i.e., one that maps dπ ∈ O to ⟨dπ, Ri⟩. The pdf
and cdf of this r.v. is defined below.
Definition 4 (expected return distribution). For a MOMDP M and v ∈ R, the expected return
distribution of agent i ∈ [n] is defined as

fi(v) =
1

vol(O)

∫
x∈O

δ(v − ⟨x,Ri⟩) dx, Fi(v) =

∫ v

x=−∞
fi(x) dx =

vol(O ∩ {⟨x,Ri⟩ ⩽ v})
vol(O)

,

where fi and Fi are the pdf and cdf of the expected return distribution and δ(·) is the Dirac delta
function indicating v = ⟨x,Ri⟩.

A useful observation about fi, the pdf, is that it is unimodal, i.e., increasing up to its mode mode(fi) ∈
argmaxv∈R fi(v) and decreasing afterwards, which follows from the Brunn–Minkowski inequality
[17]. Since fi (pdf) is the derivative of Fi (cdf), the unimodality of fi implies that Fi is a convex
function in (−∞,mode(fi)] and concave in [mode(fi),∞).

In our algorithms, we use a subroutine that measures the volume of a polytope, which we denote by
vol-comp({Ax ⩽ b}). Dyer et al. [12] designed a fully polynomial time randomized approximation
scheme (FPRAS) for computing the volume of polytopes. We report the running time of algorithms
in terms of the number of calls to this oracle.

5 Fairness in Policy Aggregation

In this section, we utilize the volumetric interpretation of the state-action occupancy polytope to
extend fairness notions from social choice to policy aggregation, and we develop algorithms to
compute stochastic policies provably satisfying these notions.

5.1 Proportional Veto Core

The proportional veto core was first proposed by Moulin [26] in the classical social choice setting
with a finite set of alternatives where agents have full (strict) rankings over the alternatives. For
simplicity, suppose the number of alternatives m is a multiple of n. The idea of the proportional veto
core is that x% of the agents should be able to veto x% of the alternatives. More precisely, for an
alternative c to be in the proportional veto core, there should not exist a coalition S that can “block” c
using their proportional veto power of |S|/n. S blocks c if they can unanimously suggest m(1− |S|/n)
candidates that they prefer to c. For instance, if c is in the proportional veto core, it cannot be the
case that a coalition of 60% of the agents unanimously prefer 40% of the alternatives to c.

Chaudhury et al. [7] extended this notion to a continuous domain of alternatives in the federated
learning setting. We show that such an extension also applies to policy aggregation.
Definition 5 (proportional veto core). Let ϵ ∈ (0, 1/n). For a coalition of agents S ⊆ [n], let
veto(S) = |S|/n be their veto power. A point dπ ∈ O is blocked by a coalition S if there exists a
subset O′ ⊆ O of measure vol(O′)/vol(O) ⩾ 1− veto(S) + ϵ such that all agents in S prefer all
points inO′ to dπ , i.e., dπ′ ≻i dπ for all dπ′ ∈ O′ and i ∈ S. A point dπ is in the ϵ-proportional veto
core if it is not blocked by any coalition.

A candidate in the proportional veto core satisfies desirable properties that are extensively discussed
in prior work [26, 7, 24, 22]. It is worth mentioning that any candidate in the ϵ-proportional veto
core, besides the fairness aspect, is also economically efficient as it satisfies ϵ-Pareto optimality. This
holds since the grand coalition S = [n] can veto any ϵ-Pareto dominated alternative.

Moulin [26] proved that the proportional veto core is nonempty in the discrete setting and Chaudhury
et al. [7] proved it for the continuous setting. The following result is a corollary of Theorem 1 of
Chaudhury et al. [7].
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ALGORITHM 1: Seq. ϵ-Prop. Veto Core [7]

O0 ← O, δ ← 1
n
− ϵ

n+1

for i = 1 to n do
Using binary search find v∗i ∈ [0, 1] s.t.
vol(Oi−1 ∩ {⟨x,Ri⟩ ⩽ v∗i }) ≈ δ · vol(O)
Oi ← Oi−1 ∩ {⟨x,Ri⟩ ⩾ v∗i }

return a welfare maximizing point dπ ∈ On

ALGORITHM 2: ϵ-Max Quantile Fairness
Procedure q-quantile-feasible(q):
Oq ← {x ∈ O | ⟨x,Ri⟩ ⩾ F−1

i (q), i ∈ [n]}
ifOq is a feasible linear program then return
True else return False

Using binary search find maximum q ∈ [0, 1] s.t.
q-quantile-feasible() is feasible

return a welfare maximizing point dπ ∈ Oq

Theorem 1. Let ϵ ∈ (0, 1/n). For a policy aggregation problem, the ϵ-proportional veto core is
nonempty. Furthermore, such policies can be found in polynomial time using O(log(1/ϵ)) many calls
per agent to vol-comp.

We refer the reader to the paper of Chaudhury et al. [7] for the complete proof, and provide a
high-level description of Algorithm 1, which finds a point in the proportional veto core. Algorithm 1
iterates over the agents and lets the ith agent “eliminate” roughly 1/n · vol(O) of the remaining space
of alternatives. That is, agent i finds the hyperplane Hi = {⟨x,Ri⟩ ⩽ v∗i } such that its intersection
with Oi−1 (the remaining part of O at the ith iteration) has a volume of approximately vol(O)/n.
This value, for each agent, can be found by doing a binary search over v∗i to a precision of [v∗i − ϵ, v∗i ]
by O(log(1/ϵ)) calls to the volume estimating subroutine vol-comp.3

Pareto optimality. We briefly discuss why Algorithm 1 is Pareto optimal. During the ith iteration, the
space of policies is contracted by adding a linear constraint of the form Ji(π) ⩾ v∗i . If the returned
welfare-maximizing policy π (derived from dπ) is Pareto dominated by another policy π′, then π′

would satisfy all these linear constraints as Ji(π′) ⩾ Ji(π) ⩾ v∗i with the earlier inequality being
strict for at least one agent. Therefore, dπ′ ∈ On and π′ achieves a higher social welfare, which is a
contradiction. The same argument can be used to establish the Pareto optimality of other mechanisms
discussed later; each of these mechanisms searches for a policy that satisfies certain lower bounds on
agents’ utilities, from which a welfare-maximizing, Pareto optimal policy can be selected.

5.2 Quantile Fairness

Next, we consider an egalitarian type of fairness based on the occupancy polytope, building on very
recent work by Babichenko et al. [4] in the discrete setting; surprisingly, we show that it is possible
to obtain stronger guarantees in the continuous setting.

Babichenko et al. [4] focus on the fair allocation of a set of m indivisible items among n agents, where
each item must be fully allocated to a single agent. They quantify the extent an allocation A is fair to
an agent i by the fraction of allocations over which i prefers A (note that the number of all discrete
allocations is nm). In other words, if one randomly samples an allocation, the fairness is measured
by the probability that A is preferred to the random allocation. An allocations is q-quantile fair for
q ∈ [0, 1] if all agents consider this allocation among their top q-quantile allocations. Babichenko
et al. [4] aim to find a universal value of q such that for any fair division instance, a q-quantile fair
allocation exists. They make an interesting connection between q-quantile fair allocations and the
Erdős Matching Conjecture, and show under the assumption that the conjecture holds, (1/2e)-quantile
fair allocations exist for all instances.4

We ask the same question for policy aggregation, and again, a key difference is that our domain
of alternatives is continuous. The notion of q-quantile fairness extends well to our setting. Agents
assess the fairness of a policy π based on the fraction of the occupancy polytope (i.e., the set of all
policies) to which they prefer π, or equivalently, the probability that they prefer the chosen policy to
a randomly sampled policy.

Definition 6 (q-quantile fairness). For a MOMDP M and q ∈ [0, 1], a policy π is q-quantile fair if for
every agent i ∈ [n], π is among i’s top q-fraction of policies, vol(O∩{⟨x,Ri⟩ ⩽ Ji(π)}) ⩾ q·vol(O).

3It is important to check the non-emptyness of the search space Oi as an over-estimation of v∗i could lead to
an empty feasible region.

4This result is for arbitrary monotone valuations. For additive valuations, they show 0.14
e

-quantile fair
allocations always exist without any assumptions.
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We show that a (1/e)-quantile fair policy always exist and that this ratio is tight; note that this bound
is twice as good as that of Babichenko et al. [4], and it is unconditional. We prove this by making
a connection to an inequality due to Grünbaum [17]. The centroid of a polytope P is defined as
centroid(P ) =

∫
x∈P

x dx∫
x∈P

1 dx
.

Lemma 1 (Grunbaum’s Inequality). Let P be a polytope and w a direction in Rd. For the halfspace
H = {x | ⟨w, x− centroid(P )⟩ ⩾ 0}, it holds that

1

e
⩽

(
d

d+ 1

)d

⩽
vol(P ∩H)

vol(P )
⩽ 1−

(
d

d+ 1

)d

⩽ 1− 1

e
,

Furthermore, this is tight for the n-dimensional simplex.
Theorem 2. For every MOMDP M , there always exist q-quantile fair policy where q = ( ℓ−1

ℓ )ℓ−1

and ℓ = |S| · |A|. Note that q ⩾ 1
e ≈ 36.7%. Furthermore, this bound is tight: For any ℓ, there is an

instance with a single state and ℓ actions where no q-quantile fair policy exists for any q > ( ℓ−1
ℓ )ℓ−1.

Proof. First, we show that the centroid of the occupancy polytope c = centroid(O) is q-quantile fair
policy for the aformentioned q. Since O is a subset of the (n− 1)-simplex (see Definition 2), O has
a nonzero volume in some lower dimensional space ℓ′ ⩽ |S| · |A| − 1. By invoking Grunbaum’s
inequality (Lemma 1) with wi being equal to Ri projected to the ℓ′-dimensional subspace for all
agents i ∈ [n], we have that vol(O ∩ Hi) ⩾ ( ℓ′

ℓ′+1 )
ℓ′ · vol(O) where Hi = {⟨x − c, wi⟩ ⩾ 0} =

{⟨x,Ri⟩ ⩾ Ji(c)}. Since ℓ′ ⩽ ℓ− 1, we have ( ℓ′

ℓ′+1 )
ℓ′ ⩾ ( ℓ−1

ℓ )ℓ−1, which completes the proof.

To show tightness, take a MOMDP with a single state S = {s}— hence a constant transition
function P(·) = s— and ℓ actions A = {a1, . . . , aℓ} and ℓ agents. The reward function of agent
i is Ri(s, ai) = 1 and 0 otherwise. The state-action occupancy polytope of this MOMDP is the
(ℓ− 1)-dimensional simplex O = {

∑
a dπ(s, a) = 1, dπ ∈ R1×ℓ

⩾0 }. Take any point in dπ ∈ O. There
exists at least one agent i that has Ji(dπ) = dπ(s, ai) ⩽ 1

ℓ . Take the halfspace Hi = {⟨x,Ri⟩ ⩾ 1
ℓ }.

Observe that Hi ∩O is equivalent to a smaller (ℓ− 1)-dimensional simplex {
∑

a dπ(s, a) = 1− 1
ℓ }

which has volume of vol
(
(1− 1

ℓ )O
)
=

(
ℓ−1
ℓ

)ℓ−1
vol(O). Therefore, vol(O∩Hi)

vol(O) =
(
ℓ−1
ℓ

)ℓ−1
.

The centroid of the occupancy polytope, as per Theorem 2, attains a worst-case measure of quantile-
fairness. However, the centroid policy can be highly suboptimal as it disregards the preferences of
the agents involved. For instance, there could exist a 99%-quantile fair policy. To this end, we take
an egalitarian approach and aim to find a q-quantile fair policy with the maximum q.

Max quantile fair algorithm. Algorithm 2 searches for the optimal value q∗, for which a q∗-quantile
fair policy exists, and gets close to q∗ by a binary search. To perform the search, we need a subroutine
that checks, for a given value of q, if a q-quantile fair policy exists. Suppose we have the q-quantile
expected return F−1

i (q) for all i, that is, the expected return amount vi such that Fi(vi) = q. Then,
the problem of existence of a q-quantile fair policy is equivalent to the feasibility of the linear
program {x ∈ O | ⟨x,Ri⟩ ⩾ F−1

i (q), i ∈ [n]}, which can be solved in polynomial time. Importantly,
after finding a good approximation of q, there can be infinitely many policies that are q-quantile
fair and there are various ways to select the final policy after finding the value q. As mentioned
earlier, a desirable efficiency property is Pareto optimality; to satisfy it, one can return the policy that
maximizes the sum of agents’ expected returns among the ones that are q-quantile fair. Finally, to
calculate F−1

i (q), we can again use binary search to get δ close to the value vi for which Fi(vi) = q
using O(log 1/δ) calls to vol-comp. The discussion above is summarized below.

Proposition 3. Assuming an optimal oracle for F−1
i , Algorithm 2 finds a q-quantile fair policy that

is ϵ close to the optimal value in polynomial time with O(log(1/ϵ)) per agent calls to the oracle. A
δ-approximation to F−1

i (q) can be computed using O(log(1/δ)) calls to vol-comp.

6 Policy Aggregation with Voting Rules

In this section, we adapt existing voting rules from the discrete setting to policy aggregation and
discuss their computational complexity.
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ALGORITHM 3: α-Approvals MILP

compute F−1
i (α) for all i ∈ [n]

solve the mixed integer linear program
max

∑
i∈[n]

ai

s.t. ai · F−1
i (α) ⩽ ⟨dπ, Ri⟩ ∀i ∈ [n]

dπ ∈ O, ai ∈ {0, 1} ∀i ∈ [n]

return a Pareto optimal policy subject
to max α-approval {i | ai = 1}

ALGORITHM 4: ϵ-Borda count MILP
compute F−1

i (kϵ) for all i ∈ [n] and k ∈ [ 1
ϵ
]

solve the mixed integer linear program
max

∑
i∈[n]

∑
k∈[1/ϵ]

ai,k · (Fi(kϵ)− Fi((k − 1)ϵ))

s.t. ai,k · kϵ ⩽ ⟨dπ, Ri⟩ ∀i ∈ [n]

dπ ∈ O, ai,k ∈ {0, 1}, ∀i ∈ [n], k ∈ [1/ϵ]

return a Pareto optimal policy subject to max Borda score

Plurality. The plurality winner is the policy that achieves the maximum number of plurality votes
or “approvals,” where agent i approves a policy π if it achieves their maximum expected return
Ji(π) = maxπ′ Ji(π

′) = 1. Hence the plurality winner is a policy in argmaxπ
∑

i∈[n] I[Ji(π) = 1].
This formulation does not require the volumetric interpretation. However, in contrast to the discrete
setting where one can easily count the approvals for all candidates, we show that solving this problem
in the context of policy aggregation is not only NP-hard, but hard to approximate up to factor of a
1/n1/2−ϵ. We establish the hardness of approximation by a reduction from the maximum independent
set problem [20]; we defer the proof to Appendix B.
Theorem 4. For any fixed ϵ ∈ (0, 1), there is no polynomial-time 1

n1/2−ϵ -approximation algorithm
for the maximum plurality score unless P = NP.

Nevertheless, we can compute plurality in practice, as we discuss below.

α-approval. We extend the k-approval rule using the volumetric interpretation of the occupancy
polytope, similarly to the q-quantile fairness definition. For some α ∈ [0, 1], agents approve a policy
π if its return is among their top α fraction of O, i.e., Fi(Ji(π)) ⩾ α. The α-approval winner is
a policy that has the highest number of α-approvals, so it is in argmaxπ

∑
i∈[n] I[Fi(Ji(π)) ⩾ α].

Note that plurality is equivalent to 1-approval. It is worth mentioning that there can be infinitely many
policies that have the maximum approval score and, to avoid a suboptimal decision, one can return a
Pareto optimal solution among the set of α-approval winner policies.

Theorem 2 shows that for α ⩽ 1/e, there always exists a policy that all agents approve, and by
Proposition 3 such policies can be found in polynomial time, assuming access to an oracle for
volumetric computations. Therefore, the problem of finding an α-approval winner is “easy” for
α ∈ (0, 1/e). In sharp contrast, for α = 1— namely, plurality — Theorem 4 gives a hardness of
approximation. The next theorem shows the hardness of computing α-approval for α ∈ (7/8, 1] via a
reduction from the MAX-2SAT problem. We defer the proof to Appendix B.
Theorem 5. For α ∈ (7/8, 1], computing a policy with the highest α-approval score is NP-hard.
This even holds for binary reward vectors and when every Fi has a closed form.

Given the above hardness result, to compute the α-approval rule, we turn to mixed-integer linear
programming (MILP). Algorithm 3 simply creates n binary variables for each agent i indicating
whether i α-approves the policy, i.e., Fi(Ji(π)) ⩾ α which is equivalent to Ji(π) ⩾ F−1

i (α). To
encode the expected return requirement for agent i to approve a policy as a linear constraint, we
precompute F−1

i (α). This can be done by a binary search similar to Algorithm 2. Importantly,
Algorithm 3 has one binary variable per agent and only n constraints which is key to its practicability.

Borda count. The Borda count rule also has a natural definition in the continuous setting. In the
discrete setting, the Borda score of agent i for alternative c is the number of alternatives c′ such that
c ≻i c

′. In the continuous setting, Fi(Ji(π)) indicates the volume of the occupancy polytope to which
agent i prefers π. The Borda count rule then selects a policy among argmaxπ

∑
i∈[n] Fi(Ji(π)).

The computational complexity of the Borda count rule remains an interesting open question, though
we make progress on two fronts.5 First, we identify a sufficient condition under which we can find an
approximate max Borda count policy using convex optimization in polynomial time. Second, similar
to Algorithm 3, we present a MILP to approximate the Borda count rule in Algorithm 4.

5We suspect the problem to be NP-hard since the objective resembles a summation of “sigmoidal” functions
over a convex domain, which is known to be NP-hard [37].
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The first is based on the observation in Section 4 that Fi is concave in range [mode(fi),∞). We
assume that the max Borda count policy π appears in the concave portion of all agents, i.e., Ji(π) ⩾
mode(fi) for all i ∈ [n]. Then, the problem becomes a maximization of the concave objective
max

∑
i Fi(⟨dπ, Ri⟩) over the convex domain {dπ ∈ O | ⟨dπ, Ri⟩ ⩾ mode(fi),∀i ∈ [n]}.

Second, Algorithm 4 is a MILP that finds an approximate max Borda count policy. As a pre-
processing step, we estimate Fi for each agent i separately. We measure Fi for the fixed expected
return values of {ϵ, 2ϵ, . . . , 1− ϵ, 1}. This accounts for 1/ϵ oracle calls to vol-comp per agent. Then,
for the MILP, we introduce 1/ϵ binary variables for each agent indicating their ϵ-rounded return
levels, i.e., ai,k = 1 iff ⟨dπ, Ri⟩ ⩾ kϵ for k ∈ [1/ϵ]. The MILP then searches for an occupancy
measure dπ ∈ O with maximum total Borda score among the ϵ-rounded expected return vectors (see
Appendix C for more details).

Finally, we make a novel connection between q-quantile fairness and Borda count in Theorem 6.
We defer the proof to Appendix B. A corollary of Theorems 2 and 6 is that the policy returned by
ϵ-max quantile fair algorithm (Algorithm 2) achieves a (1/e− ϵ) multiplicative approximation of the
maximum Borda score.

Theorem 6. A q-quantile fair policy is a q-approximation of the maximum Borda score.

7 Experiments

Environment. We adapt the dynamic attention allocation environment introduced by D’Amour et al.
[11]. We aim to monitor several sites and prevent potential incidents, but limited resources prevent
us from monitoring all sites at all times; this is inspired by applications such as food inspection
and pest control 6. There are m = 5 warehouses and each can be in 3 different stages: normal
(norm), risky (risk) and incident (inc). There are |S| = 3m states containing all possible stages of all
warehouses. In each step, we can monitor at most one site, so there are m+ 1 actions, where action
m+ 1 is no operation and action i ⩽ m is monitoring warehouse i. There are n agents; each agent
i has a list ℓi of warehouses that they consider valuable and a reward function Ri. In each step t,
Ri(st, at) = − I[at ⩽ m]−

∑
j∈ℓi

ρiwj · I[st,j = inc ∧ at ̸= j], where wj ∈ {100, 150, · · · , 250}
denotes the penalty of an incident occurring in warehouse j, ρi is the scale of penalties for agent
i which is sampled from {0.25, 0.5, · · · , n}, and −1 is the cost of monitoring. In each step, if we
monitor warehouse j, its stage becomes normal. If not, it changes from norm to risk and from risk to
inc with probabilities pj,risk and pj,inc, and stays the same otherwise. Probabilities are sampled i.i.d.
uniformly from [0.5, 0.8]. The state transitions P is the product of the warehouses’ stage transitions.

Rules. We compare the outcomes of policy aggregation with different rules: max-quantile, Borda,
α-approval (α = 0.9, 0.8), egalitarian (maximize minimum return) and utilitarian (maximize sum of
returns). We sample 5 · 105 random policies based on which we fit a generalized logistic function to
estimate the cdf of the expected return distribution Fi (Definition 4) for every agent. The policies for
α-approval voting rules are optimized with respect to maximum utilitarian welfare. The egalitarian
rule finds a policy that maximizes the expected return of the worst-off agent, then optimizes for the
second worst-off agent, and so on. The implementation details of Borda count are in Appendix D.

Results. In Figure 1, we report the normalized expected return of agents as Ji(π)−minπ Ji(π)
maxπ′ Ji(π′)−minπ′′ Ji(π′′)

(sorted from lowest to highest) which are averaged over 10 different environment and agents instances.
We observe that the utilitarian and egalitarian rules are sensitive to the different agents’ reward scales
and tend to perform unfairly. The utilitarian rule achieves the highest utilitarian welfare by almost
ignoring one agent. The egalitarian rule achieves higher return for the worst-off agents compared
to the utilitarian rule, but still yields an inequitable outcome. The max-quantile rule tends to return
the fairest outcomes with similar normalized returns for the agents. The Borda rule, while not a fair
rule by design, tends to find fair outcomes which are slightly worse than the max-quantile rule. The
α-approval rule with max utilitarian completion tends to the utilitarian rule as α→ 0 and to plurality
as α→ 1. Importantly, although not shown in the plots, the plurality rule ignores almost all agents
and performs optimally for a randomly selected agent.

In addition to the fine-grained utility distributions, in Table 1, we report two aggregate mea-
sures based on agents’ utilities: (i) the Gini index, a statistical measure of dispersion defined

6The code for the experiments is available at https://github.com/praal/policy-aggregation.
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(b) 5 symmetric agents, one per warehouse

Figure 1: Comparison of policies optimized by different rules in two different scenarios based on the
normalized expected return for agents. The bars, grouped by rule, correspond to agents sorted based
on their normalized expected return. The error bars show the standard error of the mean.

5 symmetric agents, one per warehouse 10 agents, random subsets of warehouses

Rules Gini index Nash welfare Gini index Nash welfare
egalitarian 0.2864± 0.0295 0.2208± 0.0717 0.2126± 0.0209 0.4655± 0.0581

utilitarian 0.4392± 0.0094 0.0502± 0.0174 0.2020± 0.0182 0.5736± 0.0471

80%-approvals 0.1233± 0.0047 0.5186± 0.0051 0.1352± 0.0037 0.6741± 0.0200

90%-approvals 0.0793± 0.0056 0.5286± 0.0053 0.1257± 0.0034 0.6746± 0.0211

Borda 0.0225± 0.0024 0.5356± 0.0062 0.1029± 0.0083 0.6801± 0.0261

max-quantile 0.0188± 0.0022 0.5355± 0.0062 0.0625± 0.0067 0.6474± 0.0232

Table 1: Comparison of policies optimized by different rules in two scenarios based on Gini index
and Nash welfare based on their normalized expected return averaged. We report the mean and the
standard error.

as
∑

i∈N

∑
j∈N |Ji(π)−Jj(π)|

2n
∑

i∈N Ji(π)
— where a lower Gini index indicates a more equitable distribution, and

(ii) the Nash welfare, defined as the geometric mean of agents’ utilities
(∏

i∈N Ji(π)
)1/n

— where
a higher Nash welfare is preferable. We observe a similar trend as above, where utilitarian and
egalitarian rules perform worse across both metrics. For the other four rules, the Nash welfare scores
are comparable in both scenarios, with Borda showing slightly better performance. The Gini index,
however, highlights a clearer distinction among the rules, with max-quantile performing better.

8 Discussion

We conclude by discussing some of the limitations of our approach. A first potential limitation is
computation. When we started our investigation of the policy aggregation problem, we were skeptical
that ordinal solutions from social choice could be practically applied. We believe that our results
successfully lay this initial concern to rest. However, additional algorithmic advances are needed
to scale our approach beyond thousands of agents, states, and actions. Additionally, an interesting
future direction is to apply these rules within continuous state or action spaces, as well as in online
reinforcement learning setting where the environment remains unknown.

A second limitation is the possibility of strategic behavior. The Gibbard-Satterthwaite Theorem [16,
33] precludes the existence of “reasonable” voting rules that are strategyproof, in the sense that
agents cannot gain from misreporting their ordinal preferences; we conjecture that a similar result
holds for policy aggregation in our framework. However, if reward functions are obtained through
inverse reinforcement learning, successful manipulation would be difficult: an agent would have to
act in a way that the learned reward function induces ordinal (volumetric) preferences leading to a
higher-return aggregate stochastic policy. This separation between the actions taken by an agent and
the preferences they induce would likely alleviate the theoretical susceptibility of our methods to
strategic behavior.
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A State-action Occupancy Polytope for Discounted Reward

Definition 7 (State-action Occupancy Polytope for discounted-reward [31, 40]). For a MOMDP M
in the discounted-reward case, the space of valid state-action occupancies is the polytope

Oγ =

{
dγπ | dγπ ⩾ 0,

∑
a

dγπ(s, a) = (1− γ)dinit(s) + γ
∑
s′,a′

P(s′, a′, s)dγπ(s′, a′),∀s ∈ S
}

B Proofs of Section 6

We define a fully connected MOMDP as a MOMDP M where for every pair of states s, s′ ∈ S and
any action a ∈ A, P(s, a, s′) = 1

|S| . In all the hardness proofs, we create a fully connected MOMDP.
For such MOMDPs, it is not difficult to observe that the state-action occupancy polytope, for both
the average and discounted reward, is equivalent to {dπ |

∑
a dπ(s, a) =

1
|S| ,∀s ∈ S} for both the

discounted and average reward case. Furthermore,

π(a|s) = dπ(s, a)∑
a′∈A dπ(s, a′)

= |S| · dπ(s, a) (1)

B.1 Proof of Theorem 4

Proof of Theorem 4. We show hardness of approximation by a approximation-preserving reduction
from the maximum independent set (MIS) problem.

Definition 8 (maximum independent set (MIS)). For a graph G = (V,E) with vertex set V and edge
set E ⊆ 2(

V
2), the maximum independent set (MIS) of G is the maximum subset of vertices V ′ ⊆ V

such that there are no edges between any pair of vertices v1, v2 ∈ V ′.

Theorem 7 (Håstad [20]). For any fixed ϵ ∈ (0, 1), there is no polynomial-time 1
n1/2−ϵ -approximation

algorithm for the MIS problem unless P = NP, and no 1
n1−ϵ -approximation algorithm unless

ZPP = NP.

Construction of MOMDP. Let G = ([n], E) be a graph for which we want to find the maximum
independent set. Create a fully connected MOMDP M with |E| states {se}, one per edge e ∈ E.
There are only two actions A = {a1, a2}. In state se of edge e = (e1, e2), performing action a1 and
a2 correspond to e1 and e2 respectively. We create n agents where agent i corresponds to vertex i.
The reward function of agent i for state se and action ak for k ∈ {1, 2} is defined as

Ri(se, ak) =

{
1, if ek = i,

0, o.w.

In other words, the reward functions encode the set of edges incident to vertex i.

Correctness of reduction. A policy π is optimal for agent i iff for all the edges incident to i the action
corresponding to i is selected with probability 1. If a policy π is considered optimal by two agents i
and i′, then e = (i, i′) /∈ E, since at state se either π(a1|s) = 1 or π(a2|s) = 1. Therefore, the set of
agents that consider a policy optimal corresponds to an independent set in G. Furthermore, take any
independent set V ′ ⊆ [n]. Let π be the policy that for each edge e selects the action corresponding
to the vertex in V ′ and, if no such vertices exist, select one arbitrarily. This policy is well defined
since V ′ is an independent set and there are no edges with both vertices from V ′. Policy π is optimal
for agents of V ′ since at each state their favourite action is selected. Thus, we have an equivalence
between the maximum independent set of G and the plurality winner policy of M . Therefore, the
hardness of approximation follows from Theorem 7.

B.2 Proof of Theorem 5

Proof of Theorem 5. We reduce the MAX-2SAT problem to finding an α-approval policy for α ∈
(7/8, 1].

For two Boolean variables x1 and x2, we denote the disjunction (i.e., logical or) of two variables by
x1 ∨ x2 and the negation of x1 by ¬x1.
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Figure 2: The effective state-action occupancy polytope of agents and their expected return distribu-
tion.

Definition 9 (maximum 2-satisfiability (MAX-2SAT)). Given a set of m Boolean variables
{x1, . . . xm} and a set of n 2-literal disjunction clauses {C1, . . . , Cn}, the goal of the maximum
2-satifiability problem (MAX-2SAT) is to find the maximum number of clauses that can be satisfied
together by an assignment ϕ : {xj}j∈[n] → {True,False}.

Garey et al. [15] showed that the MAX-2SAT problem is NP-hard.

Construction of MOMDP. For an instance of the MAX-2SAT problem, let {C1, . . . , Cn} be a
set of m 2-literal disjunction clauses over n variables {x1, . . . xm}. We create a fully connected
MOMDP M with m states — state sj representing variable xj . There are only two actions, aTrue
and aFalse which at state sj correspond to setting variable xj to True and False respectively. This
way, a policy π(aTrue|sj) can be interpreted as the probability of setting the variable xj to True,
subject to π(aTrue|sj) = 1− π(aFalse|sj).
Agents and reward function. We introduce some notation before introducing the agents and their
reward function. Take a clause Ci = ci,1 ∨ ci,2 where ci,k ∈ {xj ,¬xj}j∈[m] for k ∈ [2]. By
combining the former relation with the mapping of xj and ¬xj to state-action pairs (sj , aTrue) and
(sj , aFalse) respectively, we define λ : {ci,1, ci,2} → S ×A. For every ci,k, λ(ci,k) is the state-action
pair that evaluates ci,k to True when selected with probability one. Now, we are ready to introduce
the agents. For each clause Ci, we create 3 agents per clause as follows:

• Agent agi,1 with a reward function that is 1 for λ(ci,1) and λ(ci,2) and zero otherwise. An
optimal policy of this agent selects the two state-action pairs with probability one, which
can be interpreted as ci,1 ← True and ci,2 ← True that implies Ci = True.

• Agent agi,2 with a reward function that is 1 for λ(ci,1) and λ(¬ci,2) — note the negation.
This is another assignment of variables, ci,1 ← True and ci,2 ← False, that implies
Ci ← True.

• Similarly, the reward function of agi,3 is 1 for λ(¬ci,1) and λ(ci,2) (which again implies
Ci ← True).

For ease of exposition, and by a slight abuse of notation, in the rest of the proof we use π to refer to
the occupancy measure. From Equation (1) we have |S| · dπ(s, a) = π(a|s) and the α-approval rule
is invariant to affine transformation. Therefore, we let Ji(π) = ⟨π,R⟩.
Expected return distribution. The expected return of agent agi,1 for a policy π is π(λ(ci,1)) +
π(λ(ci,2)). For conciseness, let v1 = π(λ(ci,1)), v2 = π(λ(ci,2)). Then, the cdf is

Fagi,1
(v) =

∫ v

v1=0

∫ v

v2=0

I[v1 + v2 ⩽ v] · dv1 dv2 =

{
v2

2 for v ∈ [0, 1],

1− (2−v)2

2 for v ∈ [1, 2].

See Figure 2 for a visualization. The cdf of all other agents have the same form. For each of the 3n
agents above, their maximum expected return is 2.
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Rounding a policy. Observe that Fi(3/2) = 7/8. For agent agi,1 to α-approve a policy for
α ∈ (7/8, 1], they require a utility (strictly) more than 3/2 = F−1

agi,1
(7/8). The fact that v1, v2 ∈ [0, 1]

in addition to v1 + v2 > 3/2, implies that v1 > 1/2 and v2 > 1/2. Therefore, if a policy π is
α-approved by agent agi,1, we have π(λ(ci,1)) > 1/2 and π(λ(ci,2)) > 1/2. Further, observe that
for at most one of the three agents {agi,k}k∈[3] the condition of Jagi,k

(π) > 3/2 may hold as every
pair of the agent disagree on one literal.

We round such a policy π to an assignment ϕ by letting ϕ(xj) ← True if π(aTrue|sj) > 1
2 and

ϕ(xj) ← False otherwise. If an agent in {agi,k}k∈[3] α-approves π, then Ci is satisfied by the
assignment ϕ. Therefore, we have that OPTα ⩽ OPTMAX−2SAT, where OPTα is the maximum
feasible number of α-approvals among all policies and OPTMAX−2SAT is the maximum number of
clauses that can be satisfied among all assignments.

Next, we show OPTMAX−2SAT ⩽ OPTα by deriving a policy π that gets OPTMAX−2SAT α-
approvals based on the optimal assignment for OPTMAX−2SAT by simply letting π(aTrue|sj) = 1
iff ϕ(xi) = True. If ϕ satisfies a clause Ci, then for the agent ag ∈ {agi,k}k∈[3] that matches the
literal assignments of ϕ for Ci, we have Jag(π) = 2, which is an optimal, i.e., 1-approval, policy for
ag. For the other two agents for Ci, Jag(π) = 1 which gets a return less than their required utility
of 3/2 for an α-approval. Therefore, we have that OPTMAX−2SAT = OPTα and the hardness of
computation follows from our reduction.

B.3 Proof of Theorem 6

Proof of Theorem 6. The Borda count of a policy is defined as Borda(π) =
∑

i∈[n] Fi(Ji(π)). Since
Fi(v) ∈ [0, 1], maxπ

∑
i∈[n] Fi(Ji(π)) ⩽ n. From Definition 6, for a q-quantile fair policy πq, we

have Fi(Ji(πq)) ⩾ q, for all i ∈ [n]. Therefore,
∑

i∈[n] Fi(Ji(πq)) ⩾ qn and we have

Borda(πq)

maxπ Borda(π)
⩾

qn

n
⩾ q.

C A Note on Algorithm 4

Here, we expand on Algorithm 4. As mentioned before, in the pre-processing step, for every agent i,
we measure Fi(kϵ) for k ∈ [1/ϵ] via 1/ϵ calls to vol-comp. Let J(π) = (J1(π), . . . , Jn(π)) be the
(expected) return vector. Importantly, our MILP approximates the Borda score of a return vector r by
its ϵ-rounded-down return vector rϵ = (⌊ri/ϵ⌋ · ϵ | i ∈ [n]). Therefore, the MILP finds a policy that
has a Borda count which is at least as high as the maximum Borda count among ϵ-rounded return
vectors. This is not necessarily equivalent to a (1− ϵ) approximation of the max Borda count.

D Experimental Details

Experiments are all done on an AMD EPYC 7502 32-Core Processor with 258GiB system memory.
We use Gurobi [18] to solve LPs and MILPs.

Running time. All our voting rules has a running time of less than ten minutes on the constructed
MOMDPs of 35 = 243 states, 6 actions, and 10 agents. The most resource extensive task of our
experiments was sampling 5 · 105 random policies and computing the expected return for every agent
which is a standard task. For each instance, we did this in parallel with 20 processes in a total running
time of less than 2 hours per instance.

Implementation details of Borda count rule. After fitting a generalized logistic function for
Fi based on the expected return of sampled policies, we find the value mode(fi), and check the
existence of a policy by solving a linear program that achieves a expected return of mode(fi) for all
agents. Next, to utilize Gurobi LP solvers, we approximate the concave function Fi by a set of linear
constraints that form a piecewise linear concave approximation of Fi. Therefore, our final program
for an approximate Borda count rule is simply an LP.
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will be specifically instructed to not penalize honesty concerning limitations.
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referenced.
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Justification: The experimental details are provided in the experiments section and appendix.
Guidelines:
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whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
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the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
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parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We describe all the essential details for reproducing the results.
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• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Yes. They are included in the plots, and the results are reported based on the
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• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
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• The method for calculating the error bars should be explained (closed form formula,
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than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).
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Answer: [Yes]
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the paper conforms with it in every respect.
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• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts
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societal impacts of the work performed?
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
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being used as intended and functioning correctly, harms that could arise when the
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from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
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feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
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Answer: [NA]

Justification: We do not use any types of data or models that have the potential for misuse.
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• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
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Justification: We cite the optimization tools utilized in our code.
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• The answer NA means that the paper does not use existing assets.
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URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of
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has curated licenses for some datasets. Their licensing guide can help determine the
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
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Answer: [NA]
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• The answer NA means that the paper does not release new assets.
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submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: We do not experiment with human subjects.
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• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
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or other labor should be paid at least the minimum wage in the country of the data
collector.
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such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
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