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Abstract
We study the Gaussian process (GP) bandit prob-
lem, whose goal is to minimize regret under an un-
known reward function lying in some reproducing
kernel Hilbert space (RKHS). The maximum pos-
terior variance analysis is vital in analyzing near-
optimal GP bandit algorithms such as maximum
variance reduction (MVR) and phased elimina-
tion (PE). Therefore, we first show the new upper
bound of the maximum posterior variance, which
improves the dependence of the noise variance
parameters of the GP. By leveraging this result,
we refine the MVR and PE to obtain (i) a nearly
optimal regret upper bound in the noiseless setting
and (ii) regret upper bounds that are optimal with
respect to the RKHS norm of the reward func-
tion. Furthermore, as another application of our
proposed bound, we analyze the GP bandit under
the time-varying noise variance setting, which is
the kernelized extension of the linear bandit with
heteroscedastic noise. For this problem, we show
that MVR and PE-based algorithms achieve noise
variance-dependent regret upper bounds, which
match our regret lower bound.

1. Introduction
The Gaussian process (GP) bandits (Srinivas et al., 2010)
is a powerful framework for sequential decision-making
tasks to minimize regret defined by a black-box reward
function, which belongs to known reproducing kernel
Hilbert space (RKHS). The applications include many fields
such as robotics (Berkenkamp et al., 2021), experimen-
tal design (Lei et al., 2021), and hyperparameter tuning
task (Snoek et al., 2012).

Many existing studies have been conducted to obtain the
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theoretical guarantee for the regret. Established work by
Srinivas et al. (2010) has shown the upper bounds of the
cumulative regret for the GP upper confidence bound (GP-
UCB) algorithm. Furthermore, Valko et al. (2013) have
shown a tighter regret upper bound for the SupKernelUCB
algorithm. Scarlett et al. (2017) have shown the lower bound
of the regret, which implies that the regret upper bound
from (Valko et al., 2013) is near-optimal; that is, the re-
gret upper bound matches the lower bound except for the
poly-logarithmic factor. Then, several studies further tack-
led obtaining a near-optimal GP-bandit algorithm. Vakili
et al. (2021a) have proposed maximum variance reduction
(MVR), which is shown to be near-optimal for the simple re-
gret incurred by the last recommended action. Furthermore,
Li & Scarlett (2022) have shown that phased elimination
(PE) is near-optimal for the cumulative regret. The regret
analysis of MVR and PE heavily depends on the upper
bound for the maximum posterior variance.

We derive the upper bound of the maximum posterior vari-
ance in Section 3, by which we tackle tightening the regret
upper bound in the settings where room for improvement
remains. Our contributions are summarized as follows:

1. In Section 3, we obtain the upper bound of the maxi-
mum posterior variance (Lemma 3.1 and Corollary 3.2).
Our proposed bound is tighter than the existing bound
when the noise variances approach zero.

2. In Section 4, we analyze the GP bandit under the noise-
less setting. We show a novel result that PE achieves
the cumulative regret upper bound that matches the
conjectured lower bound shown by Vakili (2022) un-
der common assumptions in the GP bandit literature.
Furthermore, we prove that MVR achieves the expo-
nentially converging and near-optimal simple regret
upper bounds for squared exponential (SE) and Matérn
kernels, respectively. These results are summarized in
Tables 1–2.

3. In Section 5, we show that the modified PE- and MVR-
style algorithms achieve the near-optimal cumulative
and simple regret upper bounds with respect to the
RKHS norm upper bound of the reward function under
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several conditions. These results are summarized in
Tables 3–5.

4. In Section 6, we analyze the GP-bandit problem with
the non-stationary noise variance, which is the kernel-
ized extension of the linear bandit with heteroscedastic
noise (Zhou et al., 2021). We first study the regret
lower bound. Then, we show that the modified PE- and
MVR-style algorithms achieve the near-optimal cumu-
lative and simple regret upper bounds, respectively. To
our knowledge, our analyses are the first for this set-
ting, though the non-stationary noise is a frequently
faced problem.

1.1. Related Works

The theoretical assumption of the GP bandit is twofold:
Bayesian setting (Srinivas et al., 2010; De Freitas et al.,
2012; Russo & Van Roy, 2014; Scarlett, 2018; Takeno et al.,
2023; 2024) where the reward function follows GPs, and
the frequentist setting, where the reward function lies in a
known RKHS (Srinivas et al., 2010; Chowdhury & Gopalan,
2017; Vakili et al., 2021a; Li & Scarlett, 2022). Although
this paper concentrates on deriving the regret upper bound
for the frequentist setting, our Lemma 3.1 and Corollary 3.2
are versatile and can be applied to the Bayesian setting.

Many GP bandit algorithms have been proposed in the fre-
quentist setting (for example, Srinivas et al., 2010; Valko
et al., 2013; Chowdhury & Gopalan, 2017; Janz et al., 2020;
Vakili et al., 2021a; Li & Scarlett, 2022). Although sev-
eral existing methods (Valko et al., 2013; Janz et al., 2020;
Camilleri et al., 2021; Salgia et al., 2021; Li & Scarlett,
2022) achieve near-optimal regret upper bounds for the or-
dinary GP bandit setting as summarized in (Li & Scarlett,
2022), we develop PE- and MVR-style algorithms due to
their simplicity. On the other hand, although these existing
methods are near-optimal regarding the time horizons, the
optimality regarding the RKHS norm of the reward function
has not been shown as summarized in Tables 3–5.

The regret analyses are also conducted on the noiseless set-
ting (Bull, 2011; Lyu et al., 2019; Vakili, 2022; Salgia et al.,
2024; Kim & Sanz-Alonso, 2024; Flynn & Reeb, 2025). Re-
garding the cumulative regret, we obtained a tighter upper
bound for both SE and Matérn kernels than existing results
without the additional assumption for the reward function
like Assumption 4.2 in (Salgia et al., 2021). Regarding the
simple regret, Kim & Sanz-Alonso (2024) have shown that
the random sampling-based algorithm achieves the known-
best regret upper bound in terms of the expectation regarding
the algorithm’s randomness. Compared with this result, we
show the regret upper bounds that always hold with the de-
terministic MVR-style algorithm. In particular, the regret
upper bound is tighter for the Matérn kernel than that from
(Kim & Sanz-Alonso, 2024). Tables 1–2 summarize the

comparison.

Compared with the regret upper bound, the analysis for the
regret lower bound is limited (Bull, 2011; Scarlett et al.,
2017; Cai & Scarlett, 2021; Vakili, 2022). From these
results, we will confirm the optimality of the GP bandit
algorithms in Sections 4 and 5. In Section 6, our regret
lower bound for the non-stationary noise variance setting
is directly obtained from the proofs of (Bull, 2011; Scarlett
et al., 2017).

The linear bandit with heteroscedastic noise, where the noise
variance is non-stationary with respect to the time horizons,
has been studied (Zhou et al., 2021; Zhang et al., 2021; Kim
et al., 2022; Zhou & Gu, 2022; Zhao et al., 2023). These
studies aim to obtain the noise variance-dependent regret
upper bound, characterized by the sum of noise variances.
To our knowledge, the kernelized extension of this setting
has not been investigated. Furthermore, as discussed in Sec-
tion 6, the direct extension from the linear bandit methods
is not near-optimal.

2. Preliminaries
Problem Setting. Let f : X → R be an unknown reward
function with compact input domain X ⊂ Rd. At each step
t, a learner chooses the query point xt ∈ X ; after that, the
learner observes the corresponding reward yt := f(xt)+ ϵt,
where ϵt is a mean-zero random variable. Under this setup,
the learner’s goal is to minimize the following cumulative
regret RT or the simple regret rT :

RT =
∑
t∈[T ]

f(x∗)− f(xt), (1)

rT = f(x∗)− f(x̂T ), (2)

where [T ] = {1, . . . , T} and x∗ ∈ arg maxx∈X f(x). Fur-
thermore, x̂T ∈ X is the estimated maximizer, which is
returned by the algorithm at the end of step T .

Regularity Assumptions. To construct an algorithm, we
leverage the following assumptions.
Assumption 2.1 (Smoothness of f ). Assume that f be an
element of RKHSHk with bounded RKHS norm ∥f∥Hk

≤
B <∞. Here, Hk and ∥f∥Hk

respectively denote RKHS
and its norm endowed with a known positive definite kernel
k : X × X → R. Furthermore, we assume k(x,x) ≤ 1
holds for all x ∈ X .
Assumption 2.2 (Assumption for noise). The noise se-
quence (ϵt)t∈N+ is mutually independent. Furthermore,
assume that ϵt is a sub-Gaussian random variable with vari-
ance proxy ρt ≥ 0; namely, E[exp(λϵt)] ≤ exp(λ2ρ2t/2)
holds for all λ ∈ R.

In existing works (e.g., Srinivas et al., 2010), Assump-
tion 2.1 is the standard assumption for encoding the smooth-
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Table 1. Comparison between existing noiseless algorithms’ guarantees for cumulative regret and our result. In all algorithms, the
smoothness parameter of the Matérn kernel is assumed to be ν > 1/2. Furthermore, d, ℓ, ν, and B are supposed to be Θ(1) here. “Type”
column shows that the regret guarantee is (D)eterministic or (P)robabilistic. Throughout this paper, the notation Õ(·) represents the order
notation whose poly-logarithmic dependence is ignored.

Algorithm Regret (SE) Regret (Matérn) Type Remark
ν < d ν = d ν > d

GP-UCB
O
(√

T lnd T
)

Õ
(
T

ν+d
2ν+d

)
D(Lyu et al., 2019)

(Kim & Sanz-Alonso, 2024)
Explore-then-Commit N/A Õ

(
T

d
ν+d

)
P(Vakili, 2022)

Kernel-AMM-UCB
O
(
lnd+1 T

)
Õ

(
T

νd+d2

2ν2+2νd+d2

)
D(Flynn & Reeb, 2025)

REDS N/A Õ
(
T

d−ν
d

)
O
(
ln

5
2 T
)

O
(
ln

3
2 T
)

P Assumption for
(Salgia et al., 2024) level-set is required.

PE
O (lnT ) Õ

(
T

d−ν
d

)
O
(
ln2+α T

)
O (lnT ) D α > 0 is an arbitrarily

(our analysis) fixed constant.
Conjectured Lower Bound N/A Ω

(
T

d−ν
d

)
Ω(lnT ) Ω(1) N/A(Vakili, 2022)

ness of the underlying reward function depending on the
kernel. We focus on the following SE kernel kSE and Matérn
kernel kMatérn that are commonly used in the GP bandit:

kSE(x, x̃) = exp

(
−∥x− x̃∥22

2ℓ2

)
,

kMatérn(x, x̃) =

21−ν

Γ(ν)

(√
2ν∥x− x̃∥2

ℓ

)ν

Jν

(√
2ν∥x− x̃∥2

ℓ

)
,

where ℓ > 0 and ν > 0 are the lengthscale and smoothness
parameter, respectively. Furthermore, Γ(·) and Jν denote
Gamma and modified Bessel function, respectively. As-
sumption 2.2 is also common in existing work (e.g., Vakili
et al., 2021a; Li & Scarlett, 2022). In Sections 4–5, we con-
sider the stationary noise variance setting whose variance
proxy ρt is fixed over time, while the non-stationary noise
variance setting that allows the time-dependent variance
proxies ρt in Section 6.

Gaussian Process. GP is a fundamental kernel-based
model that gives both the prediction and its uncertainty
quantification of the underlying function. Let GP(0, k) be
a mean-zero GP whose covariance is characterized by the
kernel function k. In addition, let X := (x1, . . . ,xt) and
y := (y1, . . . , yt)

⊤ be training input and output data of GP,
respectively. Then, under the Bayesian assumption that f
follows the GP prior GP(0, k), the posterior distribution
of f(x) given X and y is defined as Gaussian distribution,

whose mean µΣ(x;X,y) and variance σ2
Σ(x;X) are

µΣ(x;X,y) = k(x,X)⊤(K(X,X) + Σ)−1y,

σ2
Σ(x;X) = k(x,x)

−k(x,X)⊤(K(X,X) + Σ)−1k(x,X),

where K(X,X) := [k(x, x̃)]x,x̃∈X ∈ Rt×t and
K(x,X) = [k(x, x̃)]x̃∈X ∈ Rt respectively represent the
kernel matrix and vector defined by x and X. Furthermore,
Σ ∈ Rt×t is the positive definite variance parameter ma-
trix that defines the noise structure of the observation of GP.
Namely, given the input data X, the corresponding outputs y
is assumed to be given as y = f(X)+ ϵ under the GP mod-
eling, where ϵ ∼ N (0,Σ) and f(X) ∼ N (0,K(X,X)).
We would like to emphasize that the above modeling as-
sumptions (f ∼ GP(0, k) and ϵ ∼ N (0,Σ)) are “fictional”
assumptions that are used only for GP modeling, and are
distinct from Assumptions 2.1 and 2.2.

Maximum Information Gain. The maximum informa-
tion gain (MIG) is the kernel-dependent complexity param-
eter used to characterize the regret and confidence bounds
in the GP bandits. Given the variance parameter matrix
ΣT := diag(λ2

1, . . . , λ
2
T ), the MIG γT (ΣT ) is defined as

γT (ΣT ) = max
X⊂XT

IΣT
(f(X),y), (3)

where IΣT
(f(X),y) := 1

2 ln
det(ΣT+K(X,X))

det(ΣT ) denote the
mutual information between y and f(X), under the
GP modeling assumpsions f(X) ∼ N (0,K(X,X)),
y = f(X) + ϵ, and ϵ ∼ N (0,ΣT ). When ΣT =
λ2IT with some fixed λ > 0 and the identity ma-
trix IT ∈ RT×T , the upper bound of MIG γ(T, λ2)
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is known in several commonly used kernels. For ex-
ample, γT (λ

2IT ) ≤ γ(T, λ2) = O(lnd+1(T/λ2)) and
γT (λ

2IT ) ≤ γ(T, λ2) = O((T/λ2)
d

2ν+d (ln(T/λ2))
2ν

2ν+d )
in SE and Matérn kernels with ν > 1/2, respectively (Vak-
ili et al., 2021b). Furthermore, for general ΣT , we can
see γT (ΣT ) ≤ γT (λ

2
T IT ) with λ2

T = mint∈[T ] λ
2
t from

the data processing inequality (Theorem 2.8.1 of Cover &
Thomas, 2006). We show the proof in Appendix B for
completeness.

Maximum Variance Reduction and Phased Elimination.
MVR is the algorithm that sequentially chooses the most
uncertain action xt = argmaxx∈X σ2

Σ(x;X) as shown in
Algorithm 2 in Appendix G. PE is the algorithm that com-
bines MVR and candidate elimination as shown in Algo-
rithm 1 in Appendix G. PE divides the time horizons into
batches with appropriately designed lengths and performs
MVR in each batch. In PE, after each batch, the inputs
whose UCB is lower than the maximum of the lower CB
are eliminated from the candidates. MVR and PE achieve
near-optimal simple and cumulative regret upper bounds,
respectively. Due to their simplicity, we analyze MVR- and
PE-style algorithms.

3. Uniform Upper Bound of Posterior
Variance for Maximum Variance Reduction

In this section, we describe the theoretical core result that
gives a new upper bound of the posterior variance for the
MVR algorithm. Specifically, our result improves the ex-
isting upper bound of posterior variance when decreasing
noise variance parameters.

Lemma 3.1 (General posterior variance upper bound for
MVR). Fix any compact subset X̃ ⊂ X . Then, the follow-
ing two statements hold:

1. Stationary var.: Let (λT )T∈N+ be a non-negative
sequence, and (λ̃T )T∈N+

be a strictly positive se-
quence such that λT ≤ λ̃T . Furthermore, for any
T ∈ N+, t ∈ [T ], define xT,t ∈ X̃ as xT,t ∈
arg maxx∈X̃σ

λ
2
T It−1

(x;XT,t−1), where XT,t−1 =

(xT,1, . . . ,xT,t−1). Then, for any T ∈ {T ∈ N+ |
T/2 ≥ 3γT (λ̃

2
T IT )}, the following inequality holds:

max
x∈X̃

σ
λ
2
T IT

(x;XT,T ) ≤
4

T

√
λ̃2
TTγT (λ̃

2
T IT ). (4)

2. Non-stationary var.: Let (λt)t∈N+
be a non-negative

sequence, and (λ̃t)t∈N+ be a strictly positive sequence
such that λt ≤ λ̃t. Furthermore, for any t ∈ N+, de-
fine xt ∈ X̃ as xt ∈ arg maxx∈X̃σΣt−1(x;Xt−1),
where Xt−1 = (x1, . . . ,xt−1) and Σt−1 =

diag(λ2
1, . . . , λ

2
t−1). Then, for any T ∈ {T ∈ N+ |

T/2 ≥ 4γT (Σ̃T )},

max
x∈X̃

σΣT
(x;XT ) ≤

4

T

√√√√( T∑
t=1

λ̃2
t

)
γT (Σ̃T ), (5)

where Σ̃t = diag(λ̃2
1, . . . , λ̃

2
t ).

To make the above statements explicit, we give the following
corollary for k = kSE and k = kMatérn with the stationary
variance parameter as a special case of Lemma 3.1. The
proof is in Appendix C.

Corollary 3.2. Suppose the assumptions in statement 1 of
Lemma 3.1. Then, the following four statements hold:

1. Suppose k = kSE and fix any α > 0. If λ
2

T =

Ω(exp(−T
1

d+1 ln−α(1 + T ))), Eq. (4) holds with
λ̃2
T = λ

2

T for all T ≥ T , where T <∞ is the constant
that depends on X , α, d, and ℓ.

2. Suppose k = kMatérn with ν > 1/2 and fix any α > 0.
If λ

2

T = Ω(T− 2ν
d (ln(1 + T ))

2ν(1+α)
d ), Eq. (4) holds

with λ̃2
T = λ

2

T for all T ≥ T , where T < ∞ is the
constant that depends on X , α, d, ℓ, and ν.

3. Suppose k = kSE and fix any α > 0 and C > 0. If
∀T ∈ N+, λ

2

T < C exp
(
−T

1
d+1 ln−α(1 + T )

)
(in-

cluding λT = 0), the following inequality holds for all
T ≥ T :

max
x∈X̃

σ
λ
2
T IT

(x;XT,T ) ≤ O

(√
exp

(
−T

1
d+1 ln−α T

))
,

where T < ∞ and the implied constant of the above
inequality depend on X , α, d, C, and ℓ.

4. Suppose k = kMatérn with ν > 1/2 and fix any α > 0

and C > 0. If ∀T ∈ N+, λ
2

T < CT− 2ν
d (ln(1 +

T ))
2ν(1+α)

d (including λT = 0), the following inequal-
ity holds for all T ≥ T :

max
x∈X̃

σ
λ
2
T IT

(x;XT,T ) ≤ O
(
T− ν

d (lnT )
ν(1+α)

d

)
,

(6)
where T < ∞ and the implied constant of the above
inequality depend on X , α, d, C, ℓ, and ν.

In all of the above statements, T increases as decreasing of
α, and T →∞ as α→ 0.
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Comparison with Existing Upper Bound. Here, we com-
pare statement 1 in Lemma 3.1 with the existing upper
bound. By considering the case λ̃2

T = λ
2

T , our result shows

O

(
T−1

√
λ
2

TTγT (λ
2

T IT )

)
upper bound of posterior stan-

dard deviation under the sublinear increasing condition of
MIG so that T/2 ≥ 3γT (λ

2

T IT ) holds. On the other hand,
the existing analysis of MVR1 implies

max
x∈X̃

σ
λ
2
T IT

(x;XT,T )

≤


O

(
1
T

√
λ
2

TTγT (λ
2

T IT )

)
if λ

2

T = Ω(1),

O

(
1
T

√
TγT (λ

2
T IT )

ln
(
1+λ

−2
T

)
)

if λ
2

T = o(1).

(7)

Since λ
2

T ≤ 1/ ln(1 + λ
−2

T ), our analysis improves the
noise parameter dependence on the decreasing regime of
λ
2

T . Furthermore, several recent noiseless GP bandit works
also derive the related result to Lemma 3.1 or Corollary 3.2.
Flynn & Reeb (2025) consider the noiseless setting by rely-
ing on elliptical potential count lemma (Lemma 3.3 below),
and the naive adaptation of their analysis leads2

max
x∈X̃

σ
λ
2
T IT

(x;XT,T )

≤ O

γT (λ
2

T IT )

T
+

√
λ
2

TTγT (λ
2

T IT )

T

 .

In the above equation, the decreasing speed of λ
2

T is more
restricted than that of Corollary 3.2 to obtain the same order
upper bound as Eq. (4). For example, if k = kMatérn and
λ
2

T = Ω(T− 2ν
d (ln(1 + T ))

2ν(1+α)
d ) as with the condition

of statement 4 in Corollary 3.2, the first term γT (λ
2
T IT )
T

dominates the second term since the existing upper bound

of MIG implies γT (λ
2
T IT )
T = Õ(1). Furthermore, Salgia

et al. (2024) derives a similar result to our statement 4 with
a random sampling algorithm instead of MVR. The main
theoretical advantage of our result is that the constant T
depends on the entire input space X instead of the subset
X̃ , while that of (Salgia et al., 2024) has the dependence
on X̃ . This dependence on X̃ raises the requirement of
the additional level-set assumption to apply the PE-style

1Eq. (7) also holds for any algorithm by replacing
maxx∈X̃ σ

λ
2
T IT

(x;XT,T ) with 1
T

∑T
t=1 σλ

2
T IT

(xT,t;XT,t−1).
For example, GP-UCB (Srinivas et al., 2010; Chowdhury &
Gopalan, 2017) and GP-TS (Chowdhury & Gopalan, 2017) use
the upper bound of 1

T

∑T
t=1 σλ

2
T IT

(xT,t;XT,t−1).
2In some settings of λ

2
T , the first term of r.h.s. γT (λ

2
T IT )/T

can be small by putting min
{
γ
(
γT (λ

2
T IT ), λ

2
T

)
, γT (λ

2
T IT )

}
in the first term, instead of γT (λ

2
T IT ). See Lemma 3.3.

algorithm in noiseless feedback (see Assumption 4.2 in
(Salgia et al., 2024)). Furthermore, as described in the
proof sketch below, our proof mainly relies on the simple
extension of the well-known information gain arguments
from (Srinivas et al., 2010), not on the technique of (Salgia
et al., 2024) that involves the theoretical tools from function
approximation literature.

Proof sketch of Lemma 3.1. Here, since statement 2 is
derived as the extension of the proof of statement 1, we only
describe the proof sketch of statement 1 for simplicity. We
leave the full proof, including statement 2, in Appendix C.
Our proof is based on the following two observations:

1. For any index set T ⊂ [T ], maxx∈X̃ σ
λ
2
T IT

(x;XT,T )

can be bounded from above by the average observed
posterior standard deviation on T from the defini-
tion of MVR. Namely, maxx∈X̃ σ

λ
2
T IT

(x;XT,T ) ≤
1

|T |
∑

t∈T σ
λ
2
T It−1

(xT,t;XT,t−1) holds.

2. If we set T = {t ∈ [T ] |
λ̃−1
T σλ̃2

T It−1
(xT,t;XT,t−1) ≤ 1},

σ2
λ̃2
T It−1

(xT,t;XT,t−1)

= λ̃2
T min

{
1, λ̃−2

T σ2
λ̃2
T It−1

(xT,t;XT,t−1)
}

≤ 2λ̃2
T ln

(
1 + λ̃−2

T σ2
λ̃2
T It−1

(xT,t;XT,t−1)
)
.

(8)

for all t ∈ T . We use ∀a ≥ 0,min{1, a} ≤ 2 ln(1+a)
in the last line. By relying on the standard MIG-based
analysis (e.g., Theorem 5.3, 5.4 in (Srinivas et al.,
2010)) and the assumption λT ≤ λ̃T , the above in-
equality implies∑
t∈T

σ
λ
2
T It−1

(xT,t;XT,t−1) ≤ 2

√
λ̃2
TTγT (λ̃

2
T IT ).

(9)

From the above two observations, the remaining interest is
the increasing speed of |T |. We use the following lemma,
which we call elliptical potential count lemma in (Flynn &
Reeb, 2025), as the analogy of elliptical potential arguments
in linear bandits.
Lemma 3.3 (Elliptical potential count lemma, Lemma D.9
in (Flynn & Reeb, 2025)). Fix any T ∈ N+, any se-
quence x1, . . . ,xT ∈ X , and any λ > 0. Set T c as
T c = {t ∈ [T ] | λ−1

σ
λ
2
It−1

(xt;Xt−1) > 1}, where
Xt = (x1, . . . ,xt). Then, the number of elements of T c

satisfies |T c| ≤ min
{
3γ
(
3γT (λ

2
IT ), λ

2
)
, 3γT (λ

2
IT )
}

.

Furthermore, γ(·, ·) is any monotonic upper bound of MIG
defined on R+ × R+, which satisfies ∀T ∈ N+, λ >
0, γT (λ

2IT ) ≤ γ(T, λ2) and ∀λ > 0, T ≥ 1, ϵ ≥
0, γ(T, λ2) ≤ γ(T + ϵ, λ2).
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From the above lemma, we obtain the lower bound of T
as |T | ≥ T − 3γT (λ̃

2
T IT ). Finally, we obtain the desired

result by noting |T | ≥ T/2 holds for any T ∈ {T ∈ N+ |
T/2 ≥ 3γT (λ̃

2
T IT )}.

4. Noiseless Setting
As a first application of our result, we study a noiseless
setting; namely, we focus on the setting where ρt = 0 for all
t ∈ N+ in Assumption 2.2. The following results show our
cumulative and simple regret guarantees for PE and MVR.

Theorem 4.1 (Cumulative Regret Bound for PE.). Suppose
Assumptions 2.1 and 2.2 hold with ρt = 0 for all t ∈ N+.
Furthermore, assume B, d, ℓ, and ν are Θ(1). Then, when
running Algorithm 1 with β1/2 = B, λ = 0, and any fixed
N1 ∈ N+, the following statements hold:

• If k = kSE, RT = O(lnT ).

• If k = kMatérn with ν > 1/2,

RT =


Õ(T

d−ν
d ) if ν < d,

O((lnT )2+α) if ν = d,

O(lnT ) if ν > d.

(10)

Here, α > 0 is an arbitrarily fixed constant.

Theorem 4.2 (Simple Regret Bound for MVR.). Suppose
the same conditions as those of Theorem 4.1. Then, when
running Algorithm 2 with λ = 0, the following statements
hold:

• If k = kSE, rT = O
(
exp

(
− 1

2T
1

d+1 ln−α T
))

.

• If k = kMatérn with ν > 1/2, rT = Õ
(
T− ν

d

)
.

Remark 4.3. The above theorems assume that the learner
can exactly choose xt in the algorithms, which is unrea-
sonable for a continuous domain X . However, a similar
guarantee, which is worse by an additional

√
lnT multi-

plicative factor than the above results, can be obtained by
the existing analysis (Li & Scarlett, 2022) under the addi-
tional Lipschitz assumption for f . Note that such Lipschitz
assumption for f automatically holds under fixed B when
we set k = kSE or k = kMatérn with ν > 1 (Lee et al.,
2022).

The proofs of Theorems 4.1 and 4.2 are respectively derived
by directly following the standard analysis of PE and MVR
with statements 3 and 4 of Corollary 3.2. We describe full
proofs in Appendix D for completeness.

Discussion. As summarized in Tables 1–2, our results are
the same as or superior to the best-known upper bounds in
almost all cases. The only exception is the simple regret

with k = kSE, whose polynomial factor in exponential
gets worse from −(α + 1/d) into −1/(d + 1), compared
to the algorithm of (Kim & Sanz-Alonso, 2024). Roughly
speaking, the numerator of the factor −1/(d + 1) in our
analysis comes from the exponent of the upper bound of
MIG O(lnd+1(T/λ2)). We expect our simple regret has
room of improvement from Õ(exp(−T

1
d+1 ln−α T )) into

Õ(exp(−T 2
d ln−α T )) in future work, since the conjectured

best upper bound of MIG is O(lnd/2(T/λ2)) from the regret
lower bound (Scarlett et al., 2017).

5. Optimal Dependence of RKHS Norm Upper
Bound

As the second application of our result, we consider improv-
ing the existing dependence of RKHS norm upper bound B
in the regret upper bounds.

5.1. Simple Regret

The following theorem shows our results for simple regret.

Theorem 5.1 (Simple Regret Bound for MVR.). Suppose
Assumptions 2.1 and 2.2 hold with ρt = ρ > 0 for all t ∈
N+. Furthermore, assume ρ, d, ℓ, and ν are Θ(1), and X is
finite. Then, when running Algorithm 2 with λ2 = Θ(B−2),
the following statements hold for any fixed α > 0 with
probability at least 1− δ:

• If k = kSE, B = O
(
exp

(
T

1
d+1 ln−α(1 + T )

))
, and

T ≥ T , then, rT = O

(√
lnd+1(TB2)

T

)
. Here, T is

the constant, defined in statement 1 of Corollary 3.2.

• If k = kMatérn with ν > 1/2, B =

O
(
T

ν
d ln

−ν(1+α)
d (1 + T )

)
, and T ≥ T , then, rT =

Õ
(
B

d
2ν+dT− ν

2ν+d

)
. Here, T is the constant defined

in statement 2 of Corollary 3.2.

The important point is that the setting of the noise parameter
λ2 = Θ(1/B2) depends on B. We describe the full proof
of the above theorem in Appendix E.
Remark 5.2. If we allow an additional logarithmic factor, we
can eliminate the finiteness assumption of X in Theorem 5.1
by relying on the discretization with 1/T -net as with Re-
mark 4.3. The notable point we have to care about is that the
Lipschitz constant is given as B in the existing result (Lee
et al., 2022). Therefore, the extension of Theorem 5.1 for
continuous domain requires 1/(BT )-net to maintain the or-
der of B, and the resulting regret upper bound suffers from
additional

√
ln(TB) factor, instead of

√
lnT factor derived

from the standard discretizing argument that does not care
the dependence of B (Li & Scarlett, 2022).
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Discussion. In both kernels, the polynomial dependence
of B matches the lower bound in (Scarlett et al., 2017),
while there exists room for improvement in the logarith-
mic factor. On the other hand, there exist some exceptional
cases that Theorem 5.1 does not cover, even though its lower
bound of the simple regret is guaranteed to converge to 0.
For example, when B = Θ(T

ν
d ln−

ν
d T ), the lower bound

of (Scarlett et al., 2017) suggest that some algorithm find
any ϵ-optimal point for sufficiently large T (namely, simple
regret converges to 0), while violating our assumption. As
with the discussion in Section 4, this limitation can be elim-
inated in the future if the upper bound of MIG matches the
conjectured best upper bound.

5.2. Cumulative Regret

The following theorem also shows that the PE algorithm can
achieve optimal dependence of B up to a poly-logarithmic
factor.

Theorem 5.3 (Cumulative Regret Bound for PE.). Suppose
Assumptions 2.1 and 2.2 hold with ρt = ρ > 0 for all t ∈
N+. Furthermore, assume ρ, d, ℓ, and ν are Θ(1), and X is
finite. Then, when running Algorithm 1 with β1/2 = (B +

ρλ−1)
√

2 ln 2|X |(1+log2 T )
δ , λ2 = Θ(B−2), and any fixed

N1 ∈ N+, the following statements hold with probability at
least 1− δ:

• If k = kSE and B = O(
√
T ), then, RT =

O

(
(lnT )

√
T
(
lnd+1(TB2)

)(
ln |X |

δ

))
.

• If k = kMatérn with ν > 1/2 and B =

O

(
T

2ν2+3νd

4d2+4ν2+6νd

)
, then, RT = Õ

(
T

ν+d
2ν+dB

d
2ν+d

)
.

See Appendix E for the proof. In contrast to the analysis of
the MVR, the analysis of PE cannot leverage Corollary 3.2
by setting λ2 = Θ(B−2). Intuitively, this is because the
existence of the common constant T over each batch is not
guaranteed since λ2 depends only on T , not the total step
size of each batch. Due to this limitation, the above result
is proved by leveraging Lemma 3.3 as with the analysis of
(Flynn & Reeb, 2025), instead of using Corollary 3.2. As a
result, the conditions about B are more restricted than those
of Theorem 5.1, due to the fundamental limitation of the
analysis of (Flynn & Reeb, 2025) as previously discussed
in Section 3. For example, if k = kMatérn, the increasing

speed of B = O

(
T

2ν2+3νd

4d2+4ν2+6νd

)
in Theorem 5.3 is more

restricted than B = Õ
(
T

ν
d

)
in Theorem 5.1, regardless

the fact that lower bound (Scarlett et al., 2017) suggest the
sublinear cumulative regret is achievable when B = o(T

ν
d ).

We leave future research to break this limitation.

6. Non-Stationary Variance
As the third application of our result, we consider the non-
stationary variance setting, which falls between a noiseless
and a noisy regime. In this setting, our goal is to quantify the
regret by the cumulative variance proxy VT =

∑
t∈[T ] ρ

2
t .

That is, we aim to construct an algorithm that achieves better
performance than the one for the stationary noise setting if
VT increases sublinearly. While the non-stationary variance
setting has already been studied and motivated in the linear
bandits (Zhou et al., 2021), to our knowledge, no existing
GP-bandits literature exists for this problem. Therefore,
in Appendix J, we describe some potential applications to
motivate non-stationary variance setting in GP-bandits.

By following the existing works (Zhou et al., 2021; Zhang
et al., 2021; Zhou & Gu, 2022), we suppose that the learner
can access true variance proxy ρ2t at the end of step t. We
leave the unknown ρ2t setting for future research. Note that,
as described later, the direct extension of the existing linear
bandit algorithm with non-stationary variance does not lead
to the near-optimal guarantee.

Lower bound. Since the stationary noise problem with
ρ2 = VT /T is subsumed in the non-stationary problem
with the cumulative variance proxy VT , the following lower
bounds are obtained as the corollary of the existing station-
ary variance lower bound (Scarlett et al., 2017) and noiseless
lower bound (Bull, 2011).

Corollary 6.1 (Lower bound for cumulative regret). Let
X be X = [0, 1]d. Furthermore, assume VT = Ω(1) and
VT = O(T 2) with sufficiently small implied constant. Then,
for any algorithm, there exists a GP bandit problem instance
that satisfies Assumptions 2.1 and 2.2 with

∑
t∈[T ] ρ

2
t = VT

and the following two statements:

• If k = kSE, E[RT ] = Ω

(√
VT ln

d
2 T 2

VT

)
.

• If k = kMatérn, E[RT ] = Ω
(
V

ν
2ν+d

T T
d

2ν+d

)
.

Here, we assume B, d, ℓ, and ν are Θ(1).

Corollary 6.2 (Lower bound for simple regret). Let X be
X = [0, 1]d. Furthermore, assume VT = Ω(1). If there
exists an algorithm such that E[rT ] ≤ ϵ hold for all prob-
lem instances that satisfy Assumptions 2.1 and 2.2 with∑

t∈[T ] ρ
2
t = VT , then:

• For k = kSE, the total step size T needs to satisfy

T ≥ Ω

(√
VT

ϵ2 ln
d
2 1

ϵ

)
.

• For k = kMatérn, the total step size T needs to satisfy
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T ≥


Ω

(√
VT

ϵ2

(
1
ϵ

) d
ν

)
if d ≤ 2ν orVT = Ω(T

d−2ν
d ),

Ω
((

1
ϵ

) d
ν

)
if d > 2ν andVT = O(T

d−2ν
d ).

Here, we assume B, d, ℓ, and ν are Θ(1). Furthermore,
ϵ > 0 is a sufficiently small constant.

The lower bound Ω
(
(1/ϵ)

d
ν

)
for kMatérn if d > 2ν and

VT = O(T
d−2ν

d ) in Corollary 6.2 come from (Bull, 2011),
and others come from (Scarlett et al., 2017).

Note that the noiseless lower bound for expected regret
also holds for noisy settings since an expected regret in the
noisy setting can always be reduced to one in the noiseless
setting, whose algorithm randomness is induced by obser-
vation noise. Interestingly, the above simple regret lower
bound indicates that if d > 2ν and VT = O(T

d−2ν
d ), the

non-stationary variance setting may have the same level of
difficulty as that of the noiseless problem. Our VA-MVR
algorithm proposed below justifies this fact by providing a
simple regret upper bound matching the above lower bound.

Algorithm. Algorithms 3 and 4 in Appendix H show
PE and MVR-based algorithms for non-stationary variance
problems, which we call variance-aware PE (VA-PE) and
MVR (VA-MVR), respectively. The algorithms themselves
are the variant of the standard PE or MVR algorithms that
directly set the true variance proxy ρ2t to the noise variance
parameter λ2

t for the heteroscedastic GP model.

Theoretical analysis. The following theorems give the
cumulative and simple regret guarantees for VA-PE and
VA-MVR, respectively.

Theorem 6.3 (Cumulative regret upper bound for VA-PE).
Suppose Assumptions 2.1 and 2.2, and |X | < ∞
holds. Furthermore, assume VT :=

∑
t∈[T ] ρ

2
t =

Ω(1). Then, when running Algorithm 3 with β1/2 =(
B +

√
2 ln 2|X |(1+log2 T )

δ

)
, with probability at least 1−δ,

RT = O

(
(lnT )

√
VT

(
lnd+1 T 2

VT

)(
ln |X |

δ

))
if k = kSE.

Furthermore, if k = kMatérn,

RT =


Õ
(
V

ν
2ν+d

T T
d

2ν+d

)
if d ≤ 2ν,

Õ
(
V

ν
2ν+d

T T
d

2ν+d

)
if d > 2ν, VT = Ω

(
T

d−2ν
d

)
,

Õ
(
T

d−ν
d

)
if d > 2ν, VT = O

(
T

d−2ν
d

)
.

Theorem 6.4 (Simple regret upper bound for VA-MVR).
Suppose Assumptions 2.1 and 2.2, and |X | < ∞ holds.
Furthermore, assume VT = Ω(1). Then, when run-
ning Algorithm 4, with probability at least 1 − δ, rT =

O

(√
VT

T 2

(
lnd+1 T 2

VT

)(
ln |X |

δ

))
if k = kSE. Further-

more, if k = kMatérn,

rT =


Õ
(
V

ν
2ν+d

T T− 2ν
2ν+d

)
if d ≤ 2ν,

Õ
(
V

ν
2ν+d

T T− 2ν
2ν+d

)
if d > 2ν, VT = Ω

(
T

d−2ν
d

)
,

Õ
(
T− ν

d

)
if d > 2ν, VT = O

(
T

d−2ν
d

)
.

In both results, the regret upper bound matches the lower
bound up to the logarithmic factor, except for the cumu-
lative regret guarantee for d > 2ν, VT = O

(
T

d−2ν
d

)
in k = kMatérn. However, note that the resulting regret
Õ
(
T

d−ν
d

)
in this exceptional case matches the conjectured

lower bound (Vakili, 2022); Therefore, as with our simple
regret lower bound, Õ

(
T

d−ν
d

)
upper bound in our analy-

sis has no room for improvement if the conjectured lower
bound in (Vakili, 2022) is true.

Comparison with the stationary setting. When VT =

Θ(T ), our result matches the existing Õ(T
ν+d
2ν+d ) upper

bound for the stationary setting. If we consider the set-
ting that VT increases sublinearly, our algorithm achieves
a smaller regret than the existing stationary lower bounds.
For example, if VT = Θ(1) in k = kSE, the resulting re-
gret becomes logarithmcally increasing regret RT = Õ(1),
while the regret lower bound for stationary variance setting
is Ω̃(

√
T ).

Comparison with the algorithm in heteroscedastic linear
bandits. In heteroscedastic linear bandits, the weighted
OFUL+ algorithm, which is known to achieve nearly opti-
mal regret with UCB-based algorithm construction, is pro-
posed in the known ρ2t setting. We can also consider the ex-
tension of weighted OFUL+ to the GP bandits by construct-
ing a UCB-based score with a heteroscedastic GP model.
We call this extension variance-aware GP-UCB (VA-GP-
UCB), and give the details in Appendix I. However, the re-
gret of VA-GP-UCB becomes strictly worse than VA-PE and
VA-MVR due to the following two reasons: Firstly, as with
the stationary adaptive confidence bound (e.g., Lemma 3.11
in (Abbasi-Yadkori, 2013)), the existing adaptive confidence
bound for heteroscedastic GP-model (Kirschner & Krause,
2018) contains O(

√
γt(Σt)) factor in the confidence width

parameter, which leads to the sub-optimal order of the regret.
Secondly, our analysis of VA-GP-UCB relies on the exten-
sion of the elliptical potential count lemma (Lemma C.1)
to a heteroscedastic GP model, which could result in worse
dependence of the noise variance parameters than that of
Lemma 3.1 (See the discussion in Section 3). To our knowl-
edge, the existing technical tools provide no direct way to
avoid the above two issues.
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Finally, we give the summary of our results for the non-
stationary variance setting in Tables 6–8 in Appendix A.

7. Conclusion
We study the GP-bandit problem with the following three
settings: (i) noiseless observation, (ii) varying RKHS norm,
and (iii) non-stationary variance setting. We first propose
a new uniform upper bound of the posterior standard de-
viation of GP in the MVR algorithm. By leveraging this
upper bound, we refine the regret guarantee of the exist-
ing PE and MVR algorithms. Our derived upper bound
matches the lower bound up to the logarithmic factor in the
aforementioned three settings.
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Table 2. Comparison between existing noiseless algorithms’ guarantees for simple regret and our result. In all algorithms except for
GP-UCB+ and EXPLOIT+, the smoothness parameter of the Matérn kernel is assumed to be ν > 1/2.

Algorithm Regret (SE) Regret (Matérn) Type Remark

GP-EI N/A Õ
(
T−min{1,ν}

d

)
D(Bull, 2011)

GP-EI with ϵ-Greedy N/A Õ
(
T− ν

d

)
P(Bull, 2011)

GP-UCB
O

(√
lnd T
T

)
Õ
(
T− ν

2ν+d
)

D(Lyu et al., 2019)
(Kim & Sanz-Alonso, 2024)

Kernel-AMM-UCB
O
(

lnd+1 T
T

)
Õ

(
T

− νd+2ν2

2ν2+2νd+d2

)
D(Flynn & Reeb, 2025)

GP-UCB+,
O
(
exp

(
−CT

1
d−α

))
O
(
T− ν

d+α
)

P
α > 0 is an arbitrarily

EXPLOIT+ fixed constant.
(Kim & Sanz-Alonso, 2024) C > 0 is some constant.

MVR
O
(
exp

(
− 1

2T
1

d+1 ln−α T
))

Õ
(
T− ν

d

)
D α > 0 is an arbitrarily fixed

(our analysis) constant.
Lower Bound N/A Ω

(
T− ν

d

)
N/A(Bull, 2011)

Table 3. Comparison of expected cumulative regret upper bound between existing noisy algorithms’ guarantees and our result in the
regime where the RKHS norm upper bound B may change along with T . Here, d, ℓ, ν, and the noise level ρ2 are supposed to be Θ(1).
Note that the table below describes the expected regret by setting confidence level δ = 1/T and δ = 1/(TB) in existing PE and our PE,
respectively. The resulting regrets for existing PE and our PE respectively suffer from additional O(

√
lnT ) and O(

√
lnTB2) factors in

the high-probability regret upper bound of PE.
Algorithm Cumulative Regret (SE) Cumulative Regret (Matérn)
GP-UCB

O
(
B
√
T lnd+1 T +

√
T lnd+1 T

)
Õ
(
BT

ν+d
2ν+d + T

2ν+3d
4ν+2d

)
(Srinivas et al., 2010)

Existing PE
O
(
max {B, 1}

√
T lnd+4 T

)
Õ
(
max {B, 1}T

ν+d
2ν+d

)
(Li & Scarlett, 2022)

PE
O

(√
T lnd+2(TB2)(lnT )

)
Õ
(
B

d
2ν+dT

ν+d
2ν+d

)
(our analysis)
Lower bound

Ω

(√
T ln

d
2 (TB2)

)
Ω
(
B

d
2ν+dT

ν+d
2ν+d

)
(Scarlett et al., 2017)

A. Additional Table Summary
We describe the additional table to summarize the results of the existing analysis and ours. Table 2 summarizes the results of
the simple regret upper bounds. Furthermore, Tables 3–5 and Tables 6–8 show the results for the setting of Section 5 and
Section 6, respectively.

B. Monotone Property of MIG
Fix X ⊂ X T . Let y1 and y2 be y1 = f(X) + ϵ1 and y2 = f(X) + ϵ1 + ϵ2, where ϵ1 ∼ N (0,S1), ϵ2 ∼ N (0,S2), and
S1 and S2 are some positive semidefinite matrices. Then, from the definition, f(X) and y2 are conditionally independent
given y1. Therefore, we can see that,

I(f(X);y1) = I(f(X);y1) + I(f(X);y2 | y1)

= I(f(X);y2) + I(f(X);y1 | y2)

≥ I(f(X);y2),

11
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Table 4. Comparison between existing noisy algorithms’ guarantees and our result in the regime where the RKHS norm upper bound B
may change along with T . Here, d, ℓ, ν, and the noise level ρ2 are supposed to be Θ(1). As with Table 3, note that the resulting regret
upper bounds for existing MVR and ours suffer from additional logarithmic factors in high-probability regret upper bound.

Algorithm Simple regret (SE) Simple regret (Matérn)
GP-UCB

O

(
B
√

lnd+1 T
T + lnd+1 T√

T

)
Õ
(
BT− ν

2ν+d + T− 2ν−d
4ν+2d

)
(Srinivas et al., 2010)

Existing MVR
O

(
max {B, 1}

√
lnd+2 T

T

)
Õ
(
max {B, 1}T− ν

2ν+d
)

(Vakili et al., 2021a)
MVR

O

(√
lnd+2(TB2)

T

)
Õ
(
B

d
2ν+dT− ν

2ν+d

)
(our analysis)

Table 5. Comparison of the total time step condition to find the expected ϵ-optimal solution in the regime where the RKHS norm upper
bound B may change along with T . Here, d, ℓ, ν, and the noise level ρ2 are supposed to be Θ(1).

Algorithm Time to simple regret ϵ (SE) Time to simple regret ϵ (Matérn)
GP-UCB

O
(

B2

ϵ2 lnd+1 B
ϵ + 1

ϵ2 ln
2(d+1) 1

ϵ

)
Õ

((
B
ϵ

)2+ d
ν +

(
1
ϵ

) 4ν+2d
d−2ν

)
(if 2ν > d)(Srinivas et al., 2010)

Existing MVR
O

(
max{B2,1}

ϵ2 lnd+2 max{B,1}
ϵ

)
Õ

((
max{B,1}

ϵ

)2+ d
ν

)
(Vakili et al., 2021a)

MVR
O
(

1
ϵ2 ln

d+2 B
ϵ

)
Õ
(

1
ϵ2

(
B
ϵ

) d
ν

)
(our analysis)
Lower bound

Ω
(

1
ϵ2 ln

d
2 B

ϵ

)
Ω
(

1
ϵ2

(
B
ϵ

) d
ν

)
(Scarlett et al., 2017)

where I(·; ·) and I(·; · | ·) are mutual information and conditional mutual information. The above inequality is called
the data processing inequality (Theorem 2.8.1 of Cover & Thomas, 2006). Note that the first and second equalities and
last inequality are obtained by I(f(X);y2 | y1) = 0 from the conditional independent property, the chain rule, and the
non-negativity of the mutual information, respectively. Since this inequality holds for any X ⊂ X T , by setting S1 = λ2

T IT
and S2 = ΣT − λ2

T IT we can obtain maxX⊂XT Iλ2
T IT (f(X);y) ≥ maxX⊂XT IΣT

(f(X);y).

C. Proof of Section 3
C.1. Proof of Lemma 3.1

Proof. Below, we give the proofs for stationary and non-stationary variance parameters separately.

12
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Table 6. Summary of the cumulative regret upper bounds of the naive applications of existing results and our results in the non-stationary
variance setting. Here, d, ℓ, and ν are supposed to be Θ(1). In the table below, ρ2T := maxt∈[T ] ρ

2
t denotes the maximum variance

proxy up to step T . Note that the table below describes the expected regret by setting the confidence level δ = 1/T in PE and VA-PE,
respectively. The resulting regrets suffer from additional O(

√
lnT ) factors in the high-probability regret upper bound of these algorithms.

Algorithm Cumulative Regret (SE) Cumulative Regret (Matérn)

d ≤ 2ν or VT = Ω
(
T

d−2ν
d

)
d < 2ν and VT = O

(
T

d−2ν
d

)
GP-UCB

O

(√
T

ln(1+ρ−2
T )

lnd+1 T
ρ2
T

)
Õ

(√
1

ln(1+ρ−2
T )

ρ
− 2d

2ν+d

T T
2ν+3d
4ν+2d

)
(Srinivas et al., 2010)

PE
O
(
(lnT )3/2

√
T

ln(1+ρ−2
T )

lnd+1 T
ρ2
T

)
Õ

(√
1

ln(1+ρ−2
T )

ρ
− d

2ν+d

T T
ν+d
2ν+d

)
(Li & Scarlett, 2022)

VA-GP-UCB
O
(√

VT lnd+1 T
)

Õ
(
T

2d
2ν+d
√
VT

)
(ours)
VA-PE

O

(
(lnT )3/2

√
VT

(
lnd+1 T 2

VT

))
Õ
(
V

ν
2ν+d

T T
d

2ν+d

)
Õ
(
T

d−ν
d

)
(ours)

Lower bound
Ω

(√
VT ln

d
2 T 2

VT

)
Ω
(
V

ν
2ν+d

T T
d

2ν+d

)
(Corollary 6.1)

Table 7. Summary of the simple regret upper bounds of the naive applications of existing results and our results in non-stationary variance
setting. Here, d, ℓ, and ν are supposed to be Θ(1). In the table below, ρ2T := maxt∈[T ] ρ

2
t denotes the maximum variance proxy up to step

T . As with Table 6, note that the resulting regrets for MVR and VA-MVR suffer from additional logarithmic factors in high-probability
regret upper bound.

Algorithm Simple Regret (SE) Simple Regret (Matérn)

d ≤ 2ν or VT = Ω
(
T

d−2ν
d

)
d > 2ν and VT = O

(
T

d−2ν
d

)
GP-UCB

O

(√
1

T ln(1+ρ−2
T )

lnd+1 T
ρ2
T

)
Õ

(√
1

ln(1+ρ−2
T )

ρ
− 2d

2ν+d

T T− 2ν−d
4ν+2d

)
(Srinivas et al., 2010)

MVR
O
(√

lnT
T ln(1+ρ−2

T )
lnd+1 T

ρ2
T

)
Õ

(√
1

ln(1+ρ−2
T )

ρ
− d

2ν+d

T T− ν
2ν+d

)
(Vakili et al., 2021a)

VA-GP-UCB
O
(√

VT

T lnd+1 T
)

Õ
(
T− 2ν−d

2ν+d
√
VT

)
(ours)

VA-MVR
O

(√
VT

T 2

(
lnd+1 T 2

VT

)
(lnT )

)
Õ
(
V

ν
2ν+d

T T− 2ν
2ν+d

)
Õ
(
T− ν

d

)
(ours)

Stationary variance case. Fix any T ∈ {T ∈ N+ | T/2 ≥ 3γT (λ̃
2
T IT )} and define T ={

t ∈ [T ] | λ̃−1
T σλ̃2

T It−1
(xT,t;XT,t−1) ≤ 1

}
. Then, we have the following if T ≠ ∅:

max
x∈X̃

σ
λ
2
T IT

(x;XT,T ) ≤
1

|T |
∑
t∈T

σ
λ
2
T It−1

(xT,t;XT,t−1) (11)

≤ 1

|T |
∑
t∈T

σλ̃2
T It−1

(xT,t;XT,t−1) (12)

=
1

|T |
∑
t∈T

λ̃T min
{
1, λ̃−1

T σλ̃2
T It−1

(xT,t;XT,t−1)
}

(13)

≤ 1

|T |

√
λ̃2
T |T |

∑
t∈T

min
{
1, λ̃−2

T σ2
λ̃2
T It−1

(xT,t;XT,t−1)
}

(14)

≤ 2

|T |

√√√√λ̃2
TT

∑
t∈[T ]

1

2
ln
(
1 + λ̃−2

T σ2
λ̃2
T It−1

(xT,t;XT,t−1)
)

(15)

≤ 2

|T |

√
λ̃2
TTγT (λ̃

2
T IT ), (16)

13
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Table 8. Summary of the total time step condition to find ϵ-optimal solution in non-stationary variance setting. We only focus on our
algorithms and a lower bound here for simplicity.

Algorithm Time to Simple Regret ϵ (SE) Time to Simple Regret ϵ (Matérn)

d ≤ 2ν or VT = Ω
(
T

d−2ν
d

)
d > 2ν and VT = O

(
T

d−2ν
d

)
VA-GP-UCB

O

(√
VT

ϵ2 lnd+1 VT

ϵ2

)
Õ

((
VT

ϵ2

) 2ν+d
2ν−d

)
(if 2ν > d)(ours)

VA-MVR
O

(√
VT

ϵ2

(
lnd+1 1

ϵ

) (
ln VT

ϵ2

))
Õ
((

VT

ϵ2

) 1
2
(
1
ϵ

) d
2ν

)
Õ
((

1
ϵ

) d
ν

)
(ours)

Lower bound
Ω

(√
VT

ϵ2 ln
d
2 1

ϵ

)
Ω
((

VT

ϵ2

) 1
2
(
1
ϵ

) d
2ν

)
Ω
((

1
ϵ

) d
ν

)
(Corollary 6.2)

where:

• Eq. (11) follows from the fact that σ
λ
2
T IT

(x;XT,T ) ≤ σ
λ
2
T It−1

(xT,t;XT,t−1) holds for all t ∈ [T ], x ∈ X̃ from the
MVR selection rule.

• Eq. (12) follows from the monotonicity of the posterior variance on the noise parameter. Note that λT ≤ λ̃T holds
from the assumption.

• Eq. (13) follows from the definition of T .

• Eq. (14) follows from Schwartz’s inequality.

• Eq. (15) follows from |T | ≤ T and the inequality ∀a ≥ 0,min{1, a} ≤ 2 ln(1 + a).

• Eq. (16) follows from
∑

t∈[T ]
1
2 ln

(
1 + λ̃−2

T σ2
λ̃2
T It−1

(xT,t;XT,t−1)
)
= Iλ̃2

T IT
(f(XT,T ),y) ≤ γT (λ̃

2
T IT ). See, e.g.,

Theorem 5.3 in (Srinivas et al., 2010).

Furthermore, from the condition of T , we have

|T | = T − |T c| (17)

≥ T − 3γT (λ̃
2
T IT ) (18)

≥ T/2, (19)

where the first inequality follows from Lemma 3.3. Combining Eq. (19) with Eq. (16), we obtain the desired result.

Non-stationary variance setting. We start by extending the elliptical potential count lemma to the non-stationary setting.

Lemma C.1 (Elliptical potential count lemma for non-stationary variance setting). Fix any T ∈ N+, any sequence
x1, . . . ,xT ∈ X , and λ1, . . . , λT > 0. Define T c as T c = {t ∈ [T ] | λ−1

t σΣt−1
(xt;Xt−1) > 1}, where

Xt−1 = (x1, . . . ,xt−1) and Σt−1 = diag(λ2
1, . . . , λ

2
t−1). Then, the number of elements of T c satisfies |T c| ≤

min
{
4γ
(
4γT (ΣT ), λ

2
T

)
, 4γT (ΣT )

}
, where λ2

T = mint∈[T ]λ
2
t . Furthermore, γ(·, ·) is any monotonic upper bound of MIG

defined on R+ × R+, which satisfies ∀T ∈ N+, λ > 0, γT (λ
2IT ) ≤ γ(T, λ2) and ∀λ > 0, T ≥ 1, ϵ ≥ 0, γ(T, λ2) ≤

γ(T + ϵ, λ2).

Proof of Lemma C.1. If T c = ∅, the claimed inequality is trivial, so we focus on the case where T c ̸= ∅ hereafter. From

14
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the definition of T c, we have

|T c| =
∑
t∈T c

min
{
1, λ−1

t σΣt−1
(xt;Xt−1)

}
(20)

≤
∑
t∈T c

min
{
1, λ−2

t σ2
Σt−1

(xt;Xt−1)
}

(21)

≤ 4
∑
t∈T c

1

2
ln
(
1 + λ−2

t σ2
Σt−1

(xt;Xt−1)
)

(22)

≤ 4
∑
t∈[T ]

1

2
ln
(
1 + λ−2

t σ2
Σt−1

(xt;Xt−1)
)

(23)

≤ 4γT (ΣT ). (24)

In the above inequalities:

• Eqs. (20) and (21) follows from 1 = min
{
1, λ−1

t σΣt−1(xt;Xt−1)
}
≤ min

{
1, λ−2

t σ2
Σt−1

(xt;Xt−1)
}

, which holds
for all t ∈ T c from the definition of T c.

• Eq. (22) follows from the inequality ∀a ≥ 0,min{1, a} ≤ 2 ln(1 + a).

• Eq. (24) follows from
∑

t∈[T ]
1
2 ln

(
1 + λ−2

t σ2
Σt−1

(xt;Xt−1)
)

= IΣT
(f(XT ),y) ≤ γT (ΣT ). This is a direct

extension of Theorem 5.3 in (Srinivas et al., 2010) and is proved explicitly in the proof of Proposition 1 in (Makarova
et al., 2021).

Here, we set t1, . . . , t|T c| ∈ [T ] as the elements of T c, which are indexed in the increasing order. Furthermore, for
all i ∈ [|T c|], let us respectively define x̃i, X̃i, λ̃t, and Σ̃i as x̃i = xti , X̃i = (xt1 , . . . ,xti), λ̃i = λti , and Σ̃i =
diag(λ2

t1 , . . . , λ
2
ti). Then, from Eq. (22), we also have the following inequality:

|T c| ≤ 4
∑
t∈T c

1

2
ln
(
1 + λ−2

t σ2
Σt−1

(xt;Xt−1)
)

(25)

≤ 4

|T c|∑
t=1

1

2
ln
(
1 + λ̃−2

t σ2
Σ̃t−1

(x̃t; X̃t−1)
)

(26)

≤ 4γ|T c|

(
Σ̃|T c|

)
(27)

≤ 4γ

(
|T c|, min

t∈[|T c|]
λ̃2
t

)
(28)

≤ 4γ
(
4γT (ΣT ), λ

2
T

)
. (29)

The second inequality follows from the fact that the posterior variance has the monotonicity on data; namely,
σ2
Σti−1

(xti ;Xti−1) ≤ σ2
Σ̃i−1

(x̃i; X̃i−1) holds since the input data X̃i−1 is included in Xti−1.

The remaining proof is given by following the proof strategy under the stationary variance setting using Lemma C.1. Here,
fix any T ∈ {T ∈ N+ | T/2 ≥ 4γT (Σ̃T )} and define T =

{
t ∈ [T ] | λ̃−1

t σΣ̃t−1
(xt;Xt−1) ≤ 1

}
. Then, as with the proof

15
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in the stationary variance setting, we have:

max
x∈X̃

σΣT
(x;XT ) ≤

1

|T |
∑
t∈T

σΣt−1
(xt;Xt−1) (30)

≤ 1

|T |
∑
t∈T

σΣ̃t−1
(xt;Xt−1) (31)

=
1

|T |
∑
t∈T

λ̃t min
{
1, λ̃−1

t σΣ̃t−1
(xt;Xt−1)

}
(32)

≤ 1

|T |

√√√√(∑
t∈T

λ̃2
t

)∑
t∈T

min
{
1, λ̃−2

t σ2
Σ̃t−1

(xt;Xt−1)
}

(33)

≤ 2

|T |

√√√√√
∑

t∈[T ]

λ̃2
t

∑
t∈T

1

2
ln
(
1 + λ̃−2

t σ2
Σ̃t−1

(xt;Xt−1)
)

(34)

≤ 2

|T |

√√√√√
∑

t∈[T ]

λ̃2
t

 ∑
t∈[T ]

1

2
ln
(
1 + λ̃−2

t σ2
Σ̃t−1

(xt;Xt−1)
)

(35)

≤ 2

|T |

√√√√√
∑

t∈[T ]

λ̃2
t

 γT (Σ̃T ). (36)

Furthermore, from Lemma C.1 and the condition of T , we have

|T | = T − |T c| (37)

≥ T − 4γT (Σ̃T ) (38)
≥ T/2. (39)

Combining the above inequality with Eq. (36), we obtain the desired result.

C.2. Proof of Corollary 3.2

Proof. We describe the proof for each statement separately.

Statement 1. From the assumption, ∀T ∈ N+, λ
2

T ≥ C exp
(
−T

1
d+1 ln−α(1 + T )

)
holds for some constant C > 0.

Furthermore, since k = kSE, there exist constant C > 0 such that γT (λ
2

T IT ) ≤ C lnd+1(T/λ
2

T ). Here, C depends on ℓ and
d. Then,

γT (λ
2

T IT ) ≤ C lnd+1
(
TC−1 exp

(
T

1
d+1 ln−α(1 + T )

))
(40)

≤ C lnd+1
(
exp

(
C̃T

1
d+1 ln−α(1 + T )

))
(41)

= TCC̃d+1 (ln(1 + T ))
−α(d+1)

, (42)

where C̃ > 0 is a constant that satisfies TC−1 exp
(
T

1
d+1 ln−α(1 + T )

)
≤ exp

(
C̃T

1
d+1 ln−α(1 + T )

)
for all T ∈ N+.

Here, note that C̃ may depend on d, α, and C. Since CC̃d+1 (ln(1 + T ))
−α(d+1) → 0 as T → 0, there exists a

constant T such that T/2 ≥ 3TCC̃d+1 (ln(1 + T ))
−α(d+1) holds for all T ≥ T . Furthermore, such constant T satisfies

∀T ≥ T , T/2 ≥ 3γT (λ
2

T IT ) from Eq. (42). Therefore, for any T ≥ T , Eq. (7) holds from Lemma 3.1 with λ̃2
T = λ

2

T .

Statement 2. From the assumption, ∀T ∈ N+, λ
2

T ≥ CT− 2ν
d ln

2ν(1+α)
d (1 + T ) holds for some constant C > 0.

Furthermore, since k = kMatérn with ν > 1/2, there exist constant C > 0 such that γT (λ
2

T IT ) ≤ C(T/λ
2

T )
d

2ν+d ln
2ν

2ν+d (1+
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T/λ
2

T ). Here, C depends on ℓ, ν, and d. Then,

γT (λ
2

T IT ) ≤ CC− d
2ν+dT

(
ln−

2ν
2ν+d (1+α)(1 + T )

)
ln

2ν
2ν+d

(
1 + C−1T

2ν+d
d ln−

2ν(1+α)
d (1 + T )

)
(43)

≤ CC− d
2ν+dT

(
ln−

2ν
2ν+d (1+α)(1 + T )

)
ln

2ν
2ν+d

(
Ĉ(1 + T )

2ν+d
d

)
(44)

≤ CC− d
2ν+d C̃T ln−

2να
2ν+d (1 + T ), (45)

where Ĉ > 0 is a constant that satisfies 1 + C−1T
2ν+d

d ln−
2ν(1+α)

d (1 + T ) ≤ Ĉ(1 + T )
2ν+d

d for all T ∈ N+. Furthermore,
C̃ > 0 is a constant that satisfies ln

2ν
2ν+d

(
Ĉ(1 + T )

2ν+d
d

)
≤ C̃ ln

2ν
2ν+d (1 + T ) for all T ∈ N+. Here, note that Ĉ and C̃ may

depend on d, α, and ν, but are the constants under the condition that d, α, and ν are fixed. Since CC− d
2ν+d C̃ ln−

2να
2ν+d (1 +

T ) → 0 as T → 0, there exists a constant T such that T/2 ≥ 3CC− d
2ν+d C̃T ln−

2να
2ν+d (1 + T ) holds for all T ≥ T .

Furthermore, such constant T satisfies ∀T ≥ T , T/2 ≥ 3γT (λ
2

T IT ) from Eq. (45). Therefore, for any T ≥ T , Eq. (7) holds
from Lemma 3.1 with λ̃2

T = λ
2

T .

Statements 3 and 4. For statement 3, we set λ̃2
T = C exp

(
−T

1
d+1 ln−α(1 + T )

)
. Then, following the same argument

as the proof of statement 1 in Corollary 3.2, we confirm that γT (λ̃2
T IT ) = o(T ), and the quantity min{T ∈ N+ | ∀t ≥

T, t/2 ≥ 3γt(λ̃
2
tIt)} is bounded from above by some finite constant T that depends on d, α, and C. Furthermore, from

γT (λ̃
2
T IT ) = o(T ) and the definition of λ̃T , we can evaluate the order of the r.h.s. in Eq. (4) as

4

T

√
λ̃2
TTγT (λ̃

2
T IT ) ≤ O

(√
exp

(
−T

1
d+1 ln−α T

))
. (46)

We also obtain the result for statement 4 by setting λ̃2
T as λ̃2

T = CT− 2ν
d (lnT )

2ν(1+α)
d and calculating the explicit value of

r.h.s. in Eq. (4).

D. Proof in Section 4
D.1. Proof of Theorem 4.1

Lemma D.1 (Deterministic confidence bound for noiseless setting, Lemma 11 in (Lyu et al., 2019) or Proposition 1 in
(Vakili et al., 2021a)). Suppose Assumptions 2.1, 2.2 with ∀t ∈ N+, ρt = 0 hold. Then, for any sequence3 (xt)t∈N+ on X ,
the following event holds:

∀t ∈ N+, ∀x ∈ X , |f(x)− µλ2It(x;Xt,ft)| ≤ Bσλ2It(x;Xt), (47)

where λ = 0, Xt = (x1, . . . ,xt), and ft = (f(x1), . . . , f(xt))
⊤.

The proof of Theorem 4.1 follows by using Lemma D.1 and Lemma 3.2 in the standard PE analysis.

Proof of Theorem 4.1. Fix any α > 0 and set T as the constant defined in statements 3 or 4 of Corollary 3.2. Furthermore,
let i ∈ N+ be the first batch index such that Ni ≥ T holds. In both kernels, the cumulative regret before the start of batch

i+1 is bounded from above by max{8BT, 2BN1} due to ∥f∥∞ ≤ ∥f∥Hk
≤ B, Ni < 2T , and

∑i−1
i=1 Ni ≤ Ni if N1 < T .

3Strictly speaking, the input (xt)t∈N+ is required to have no duplication to guarantee the existence of the inverse gram matrix. In all
of our algorithms, such events only occur when the algorithm finds the maximizer x∗, which leads to subsequent instantaneous regrets of
0, and our upper bounds trivially hold. Therefore, we suppose that such events do not occur in our proof.
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Next, for any i-th batch with i ≥ i+ 1, we have

Ni∑
j=1

f(x∗)− f(x
(i)
j ) ≤

Ni∑
j=1

ucbi−1(x
∗)− lcbi−1(x

(i)
j ) (48)

=

Ni∑
j=1

lcbi−1(x
∗)− ucbi−1(x

(i)
j ) + 2β1/2σλ2INi−1

(x
(i)
j ;X

(i−1)
Ni−1

) + 2β1/2σλ2INi−1
(x∗;X

(i−1)
Ni−1

)

(49)

≤
Ni∑
j=1

lcbi−1(x
∗)− max

x∈Xi−1

lcbi−1(x) + 4B max
x∈Xi−1

σλ2INi−1
(x;X

(i−1)
Ni−1

) (50)

≤ 4BNi max
x∈Xi−1

σλ2INi−1
(x;X

(i−1)
Ni−1

), (51)

where Eq. (48) follows from the definition of β1/2 and Lemma D.1. Furthermore, Eq. (50) follows from x
(i)
j ,x∗ ∈ Xi−1.

For SE kernel. From statement 3 in Corollary 3.24, we have

4BNi max
x∈Xi−1

σλ2INi−1
(x;X

(i)
Ni−1

) ≤ 8BNi−1

√
C1 exp

(
−N

1
d+1

i−1 ln−α Ni−1

)
(52)

≤ 8BC2. (53)

In the above inequalities, C1, C2 ∈ (0,∞) are the constant that may depend on d, ℓ, and α. The existence of C2 is

guaranteed by t

√
exp

(
−t

1
d+1 ln−α t

)
→ 0. Since the total number of batches is bounded from above by 1 + log2 T , we

have

RT ≤ max{8BT, 2BN1}+ 8BC2 log2 T = O(lnT ). (54)

For Matérn kernel. From statement 4 in Corollary 3.2, we have

4BNi max
x∈Xi−1

σλ2INi−1
(x;X

(i)
Ni−1

) ≤ 8BC1N
d−ν
d

i−1 ln
ν
d (1+α) Ni−1, (55)

with some constant C1 ∈ (0,∞) that depends on d, ν, ℓ, and α. When d > ν, we have 8BC1N
d−ν
d

i−1 ln
ν
d (1+α) Ni−1 ≤

8BC1T
d−ν
d ln

ν
d (1+α) T ; therefore,

RT ≤ max{8BT, 2BN1}+ 8BC1T
d−ν
d

(
ln

ν
d (1+α) T

)
(log2 T ) = Õ

(
T

d−ν
d

)
. (56)

When d = ν, we have 8BC1N
d−ν
d

i−1 ln
ν
d (1+α) Ni−1 ≤ 8BC1 ln

1+α T ; hence,

RT ≤ max{8BT, 2BN1}+ 8BC1

(
ln1+α T

)
(log2 T ) = O

(
ln2+α T

)
. (57)

Finally, when d < ν, we have 8BC1N
d−ν
d

i−1 ln
ν
d (1+α) Ni−1 ≤ 8BC2 for some constant C2 ∈ (0,∞); therefore,

RT ≤ max{8BT, 2BN1}+ 8BC2 (log2 T ) = O (lnT ) . (58)

4The application of Lemma 3.1 requires the compactness of the potential maximizers, which is verified by the continuity of ucbi(·)
under kSE and kMatérn.
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D.2. Proof of Theorem 4.2

Proof. If T ≥ T , from Lemma D.1, we have

f(x∗)− f(x̂T ) ≤ µλ2IT (x
∗;XT ,fT ) +Bσλ2IT (x

∗;XT )− µλ2IT (x̂T ;XT ,fT ) +Bσλ2IT (x̂T ;XT ) (59)
≤ 2Bmax

x∈X
σλ2IT (x;XT ), (60)

where the last line follows from the definition of x̂T .

For SE kernel. From statement 3 in Corollary 3.2 and ∥f∥∞ ≤ B, we have

rT ≤

{
2B if T < T ,

2BC1 exp
(
− 1

2T
1

d+1 ln−α T
)

if T ≥ T ,
(61)

Here, C1 ∈ (0, 1) is the implied constant in Corollary 3.2. From the above inequality, ∀T ∈ N+ \ {1}, rT ≤
BC2 exp

(
− 1

2T
1

d+1 ln−α T
)

holds for sufficiently large constant C2 ∈ (0,∞), which depends on C1, T , α, and d.

Note that T and C1 are the constant that only depends α, d, ℓ, and ν. This implies rT = O
(
exp

(
− 1

2T
1

d+1 ln−α T
))

.

For Matérn kernel. From statement 4 in Corollary 3.2, we have

rT ≤

{
2B if T < T ,

2BC1T
− ν

d ln
ν
d (1+α) T if T ≥ T ,

(62)

Here, C1 ∈ (0, 1) is the implied constant in Corollary 3.2. From the above inequality, ∀T ∈ N+ \ {1}, rT ≤
BC2T

− ν
d ln

ν
d (1+α) T holds for sufficiently large constant C2 ∈ (0,∞), which depends on C1, T , α, d, and ν. This

implies rT = Õ
(
T− ν

d

)
.

E. Proof in Section 5
E.1. Proof of Theorem 5.3

Lemma E.1 (Non-adaptive confidence bound for noisy setting, Theorem 1 in (Vakili et al., 2021a)). Fix any T ∈ N+,
δ ∈ (0, 1), λ2 > 0, and suppose Assumptions 2.1, 2.2 with ∀t ∈ N+, ρt = ρ ≥ 0. Furthermore, assume X is finite. Then, if
the input sequence (xt)t∈[T ] is independent of the noise sequence (ϵt)t∈[T ], the following event holds with probability at
least 1− δ:

∀x ∈ X , |f(x)− µλ2It(x;XT ,yT )| ≤

(
B +

ρ

λ

√
2 ln

2|X |
δ

)
σλ2IT (x;XT ), (63)

where XT = (x1, . . . ,xT ) and yT = (y1, . . . , yT )
⊤.

Proof of Theorem 5.3. From Lemma E.1 and the union bound, the following event holds with probability at least 1− δ:

∀i ∈ [QT ],∀x ∈ X , lcbi(x) ≤ f(x) ≤ ucbi(x), (64)

where QT ∈ N+ denotes the total batch size of PE. Note that QT ≤ 1+ log2 T holds. Hereafter, we assume the above event
holds.
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First, the cumulative regret at the first batch is bounded from above by 2BN1. Next, for any i-th batch with i ≥ 2, we have

Ni∑
j=1

f(x∗)− f(x
(i)
j ) ≤

Ni∑
j=1

ucbi−1(x
∗)− lcbi−1(x

(i)
j ) (65)

=

Ni∑
j=1

lcbi−1(x
∗)− ucbi−1(x

(i)
j ) + 2β1/2σλ2INi−1

(x
(i)
j ;X

(i−1)
Ni−1

) + 2β1/2σλ2INi−1
(x∗;X

(i−1)
Ni−1

)

(66)

≤
Ni∑
j=1

lcbi−1(x
∗)− max

x∈Xi−1

lcbi−1(x) + 4B max
x∈Xi−1

σλ2INi−1
(x;X

(i−1)
Ni−1

) (67)

≤ 4Niβ
1/2 max

x∈Xi−1

σλ2INi−1
(x;X

(i−1)
Ni−1

). (68)

From the definition of β1/2 and λ2 = C/B2 for some constant C > 0, the above inequality implies

Ni∑
j=1

f(x∗)− f(x
(i)
j ) ≤ 4NiB

(
1 + C−1/2ρ

√
2 ln

2|X |(1 + log2 T )

δ

)
max

x∈Xi−1

σλ2INi−1
(x;X

(i−1)
Ni−1

). (69)

Here, let us define T and T c as T = {j ∈ [Ni−1] | λ−1σλ2Ij−1
(xj ;X

(i−1)
j−1 ) ≤ 1} and T c = [Ni−1] \ T , respectively.

From elliptical potential count lemma (Lemma 3.3), we have

|T c| ≤ min
{
3γ
(
3γNi−1

(λ2INi−1
), λ2

)
, 3γNi−1

(λ2INi−1
)
}
. (70)

Furthermore, from the definition of T , we have the following inequality as with the Eqs. (12)–(16):∑
j∈T

σλ2Ij−1
(xj ;X

(i−1)
j−1 ) ≤

√
λ2Ni−1γNi−1(λ

2INi−1). (71)

Then, regarding the maximum of the posterior standard deviation, we have the following from the above inequalities:

max
x∈Xi−1

σλ2INi−1
(x;X

(i−1)
Ni−1

) (72)

≤ 1

Ni−1

∑
j∈[Ni−1]

σλ2Ij−1
(xj ;X

(i−1)
j−1 ) (73)

≤ 1

Ni−1

|T c|+
∑
j∈T

σλ2Ij−1
(xj ;X

(i−1)
j−1 )

 (74)

≤ 1

Ni−1

[
min

{
3γ
(
3γNi−1

(λ2INi−1
), λ2

)
, 3γNi−1

(λ2INi−1
)
}
+ 2
√

λ2Ni−1γNi−1
(λ2INi−1

)
]

(75)

≤ 1

Ni−1

[
min

{
3γ
(
3γT (λ

2IT ), λ
2
)
, 3γT (λ

2IT )
}
+ 2
√

λ2TγT (λ2IT )
]
, (76)

where the first inequality follows from the definition of the MVR-selection rule, and the second inequality follows from
σλ2Ij−1

(xj ;X
(i−1)
j−1 ) ≤ k(xj ,xj) ≤ 1. Combining the above inequality with Eq. (68) and QT ≤ (1 + log2 T ), we have

RT ≤ 2BN1 + 8(1 + log2 T )β
1/2
[
min

{
3γ
(
3γT (λ

2IT ), λ
2
)
, 3γT (λ

2IT )
}
+ 2
√
λ2TγT (λ2IT )

]
. (77)

For SE kernel. Note that λ2 = Θ(1/B2), B = O(
√
T ), and γ(t, λ2) = O(lnd+1(t/λ2)). Since

3γT (λ
2IT ) = O(lnd+1(TB2)), we obtain min

{
3γ
(
3γT (λ

2IT ), λ
2
)
, 3γT (λ

2IT )
}

= O(lnd+1(TB2)). Furthermore,

from
√
λ2TγT (λ2IT ) = O

(√
T

B

√
lnd+1(TB2)

)
, min

{
3γ
(
3γT (λ

2IT ), λ
2
)
, 3γT (λ

2IT )
}
+ 2

√
λ2TγT (λ2IT ) =
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O

(√
T

B

√
lnd+1(TB2)

)
when B = O(

√
T ). Hence, by noting β1/2 = Θ

(
B
√
ln |X |

δ

)
and B = O(

√
T ), we have

RT ≤ O

(
max

{
B, (lnT )

√
T
(
lnd+1(TB2)

)(
ln
|X |
δ

)})
(78)

= O

(
(lnT )

√
T
(
lnd+1(TB2)

)(
ln
|X |
δ

))
. (79)

For Matérn kernel. Note that λ2 = Θ(1/B2), B = O

(
T

2ν2+3νd

4d2+4ν2+6νd

)
, and γ(t, λ2) = Õ

(
(t/λ2)

d
2ν+d

)
. Furthermore,

we can see that

2ν2 + 3νd

4d2 + 4ν2 + 6νd
≤ ν

d
⇔2ν2d+ 3νd2 ≤ 4νd2 + 4ν3 + 6ν2d

⇔0 ≤ νd2 + 4ν3 + 4ν2d

⇔0 ≤ ν(d+ 2ν)2.

Thus, from B = O

(
T

2ν2+3νd

4d2+4ν2+6νd

)
, we can obtain B = O

(
T

ν
d

)
. Then, 3γT (λ

2IT ) = Õ
(
(TB2)

d
2ν+d

)
,√

λ2TγT (λ2IT ) = Õ
(
T

ν+d
2ν+dB− 2ν

2ν+d

)
, and 3γ

(
3γT (λ

2IT ), λ
2
)
= Õ

(
T (

d
2ν+d )

2

(B2)
d(2ν+2d)

(2ν+d)2

)
. Therefore, for the

second term of Eq. (77), we see that

8(1 + log2 T )β
1/2
[
min

{
3γ
(
3γT (λ

2IT ), λ
2
)
, 3γT (λ

2IT )
}
+ 2
√

λ2TγT (λ2IT )
]

(80)

= Õ

(
β1/2

[
min

{
T (

d
2ν+d )

2

(B2)
d(2ν+2d)

(2ν+d)2 , (TB2)
d

2ν+d

}
+ T

ν+d
2ν+dB− 2ν

2ν+d

])
. (81)

Note that, if B = Θ
(
T

ν
d

)
, then T (

d
2ν+d )

2

(B2)
d(2ν+2d)

(2ν+d)2 = Θ(T ) and (TB2)
d

2ν+d = Θ(T ). Therefore,

if B = O
(
T

ν
d

)
, T (

d
2ν+d )

2

(B2)
d(2ν+2d)

(2ν+d)2 = O
(
(TB2)

d
2ν+d

)
since d

2ν+d < d(2ν+2d)
(2ν+d)2 . Thus, Eq. (81) is

Õ

(
β1/2

[
T (

d
2ν+d )

2

(B2)
d(2ν+2d)

(2ν+d)2 + T
ν+d
2ν+dB− 2ν

2ν+d

])
. Then, we can see that

T (
d

2ν+d )
2

(B2)
d(2ν+2d)

(2ν+d)2

T
ν+d
2ν+dB− 2ν

2ν+d

= T
d2−2ν2−3νd−d2

(2ν+d)2 B
4dν+4d2+4ν2+2νd

(2ν+d)2 (82)

= T
−2ν2−3νd

(2ν+d)2 B
4d2+4ν2+6νd

(2ν+d)2 . (83)

Therefore, if B = O

(
T

2ν2+3νd

4d2+4ν2+6νd

)
, then T (

d
2ν+d )

2

(B2)
d(2ν+2d)

(2ν+d)2 = O
(
T

ν+d
2ν+dB− 2ν

2ν+d

)
. Thus, from the assumption

B = O

(
T

2ν2+3νd

4d2+4ν2+6νd

)
, T (

d
2ν+d )

2

(B2)
d(2ν+2d)

(2ν+d)2 = O
(
T

ν+d
2ν+dB− 2ν

2ν+d

)
. Hence, Eq. (81) is Õ

(
β1/2T

ν+d
2ν+dB− 2ν

2ν+d

)
=

Õ
(
T

ν+d
2ν+dB

d
2ν+d

)
because of β1/2 = Θ

(
B
√
ln |X |

δ

)
. Therefore, we have

RT = Õ
(
max

{
B, T

ν+d
2ν+dB

d
2ν+d

})
. (84)

Furthermore, noting that B = Θ
(
T

ν+d
2ν

)
⇔ B = Θ

(
T

ν+d
2ν+dB

d
2ν+d

)
, since ν+d

2ν = 1
2 + d

2ν > 2ν2+3νd
4d2+4ν2+6νd , we see

B = O
(
T

ν+d
2ν+dB

d
2ν+d

)
. Consequently, we have

RT = Õ
(
T

ν+d
2ν+dB

d
2ν+d

)
. (85)
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E.2. Proof of Theorem 5.1

Proof. From Lemma E.1, we have the following with probability at least 1− δ:

f(x∗)− f(x̂T ) ≤ µλ2IT (x
∗;XT ,yT ) + β1/2σλ2IT (x

∗;XT )− µλ2IT (x̂T ;XT ,yT ) + β1/2σλ2IT (x̂T ;XT ) (86)

≤ 2β1/2 max
x∈X

σλ2IT (x;XT ) (87)

= 2B

(
1 + ρ

√
2 ln

2|X |
δ

)
max
x∈X

σλ2IT (x;XT ). (88)

Here, when k = kSE, note that the condition B = O(exp(T
1

d+1 ln−α(1 + T ))) implies λ2 = O(exp(− 1
2T

1
d+1 ln−α(1 +

T ))). Therefore, in the SE kernel, from statement 1 in Corollary 3.2, we have the following inequality for any T ≥ T .

rT ≤ 8

(
1 + ρ

√
2 ln

2|X |
δ

)√
C lnd+1(TB2)

T
= O

√ lnd+1(TB2)

T

 , (89)

where C > 0 is the implied constant of the upper bound of MIG. As for the Matérn kernel, leveraging statement 2 in
Corollary 3.2 by noting the condition of B, we have

rT ≤
8

T

(
1 + ρ

√
2 ln

2|X |
δ

)√
CB

2d
2ν+dT

2(ν+d)
2ν+d ln

2ν
2ν+d (TB2) = Õ

(
B

d
2ν+dT− ν

2ν+d

)
, (90)

for any T ≥ T .

F. Proof in Section 6
F.1. Proof of Theorem 6.3

Lemma F.1 (Non-adaptive confidence bound for non-stationary variance setting, extension of Theorem 1 in (Vakili et al.,
2021a)). Fix any T ∈ N+, δ ∈ (0, 1), any non-negative sequence (λt)t∈N+

, and suppose Assumptions 2.1 and 2.2 with
ρt ≤ λt. Furthermore, assume X is finite. Then, if the input sequence (xt)t∈[T ] is independent of the noise sequence
(ϵt)t∈[T ], the following event holds with probability at least 1− δ:

∀x ∈ X , |f(x)− µΣT
(x;XT ,yT )| ≤

(
B +

√
2 ln

2|X |
δ

)
σΣT

(x;XT ), (91)

where XT = (x1, . . . ,xT ), yT = (y1, . . . , yT )
⊤, and ΣT = diag(λ2

1, . . . , λ
2
T ).

Proof. The proof almost directly follows by replacing the original Proposition 1 in (Vakili et al., 2021a). Let ZT (x) be
ZT (x)

⊤ = k(x,XT )
⊤(K(XT ,XT ) + ΣT )

−1. Then, following the proof of Proposition 1 in (Vakili et al., 2021a), we
obtain its extension as

σ2
ΣT

(x;XT ) = sup
f :∥f∥Hk

≤1

(
f(x)−ZT (x)

⊤fT

)2
+ ∥ZT (x)∥2ΣT

, (92)

where fT = (f(x1), . . . , f(xT ))
⊤ and ∥ZT (x)∥ΣT

= ZT (x)
⊤ΣTZT (x). Next, we consider replacing Proposition 1

with Eq. (92) in the original proof of Theorem 1 in (Vakili et al., 2021a). As with the original proof, we decompose
|f(x)− µΣT

(x;XT ,yT )| into two terms:

|f(x)− µΣT
(x;XT ,yT )| ≤ |f(x)−ZT (x)

⊤fT |+ |ZT (x)
⊤ϵT |, (93)

where ϵT = (ϵ1, . . . , ϵT )
⊤. The first term of r.h.s. is bounded from above as

|f(x)−ZT (x)
⊤fT | = B

∣∣∣∣f(x)B
−ZT (x)

⊤
(
fT

B

)∣∣∣∣ ≤ BσΣT
(x;XT ). (94)
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The last inequality follows from Eq. (92) since ∥f(·)/B∥Hk
≤ 1 holds by Assumption 2.1. Regarding the second term,

ZT (x)
⊤ϵT is the sub-Gaussian random variable from the independence assumption between (xt)t∈[T ] and (ϵt)t∈[T ], and

its concentration inequality is obtained by evaluating the upper bound of the moment generating function. By following the
proof of Theorem 1 in (Vakili et al., 2021a), we have

E
[
exp(ZT (x)

⊤ϵT )
]
≤ exp

(
∥ZT (x)∥2diag(ρ2

1,...,ρ
2
t )

2

)
(95)

≤ exp

(∥ZT (x)∥2ΣT

2

)
(96)

≤ exp

(
σ2
ΣT

(x;XT )

2

)
, (97)

where the second inequality follows from the assumption ρt ≤ λt, and the third inequality follows from Eq. (92). The
above upper bound for the moment-generating function implies the following concentration inequality for any x ∈ X from
Chernoff-Hoeffding inequality:

P

(
|ZT (x)

⊤ϵT | ≤
√

2 ln
2

δ
σΣT

(x;XT )

)
≥ 1− δ. (98)

Finally, we obtain the desired result by combining Eq. (93) with Eqs. (94), (98), and the union bound.

Proof of Theorem 6.3. From Lemma F.1 and the union bound, the confidence bound is valid with probability at least 1− δ.
Hereafter, From the assumption VT = Ω(1), we have the constant C > 0 such that VT ≥ C. Below, we prove each
statement of the theorem separately based on the setting of the kernel.

For k = kSE. Let us set T as T = min{T ∈ N+ | ∀t ≥ T, t/2 ≥ 4γt(Ct−1It)}. Note that the constant T is well-defined,
since γt(Ct−1It) = O(lnd+1 t2) = o(t). Furthermore, let i ∈ N+ be the first batch index such that Ni ≥ T holds. Then,
the cumulative regret before the start of (i+ 1)-th batch is bounded from above by max{8BT, 2BN1}. Next, we consider
the cumulative regret after the start of (i+ 1)-th batch. We apply statement 2 of Lemma 3.1 with the following arguments:

1. Set λ̃(i)
j as

(
λ̃
(i)
j

)2
= max

{(
λ
(i)
j

)2
, VT

Ni

}
. Then, we have

(
λ̃
(i)
j

)2
≥ VT /Ni ≥ C/Ni. Furthermore, we set

Σ̃
(i)
Ni

= diag

((
λ̃
(i)
1

)2
, . . . ,

(
λ̃
(i)
Ni

)2)
.

2. From the above lower bound of λ̃(i)
j , we have γNi

(
Σ̃

(i)
Ni

)
≤ γNi(CN−1

i INi), which implies Ni/2 ≥ 4γNi(Σ̃
(i)
Ni

) if

Ni ≥ T . Therefore, applying statement 2 of Lemma 3.1, we have

max
x∈Xi

σ
Σ

(i)
Ni

(x;X
(i)
Ni

) ≤ 4

Ni

√√√√√
 Ni∑

j=1

(
λ̃
(i)
j

)2 γNi

(
Σ̃

(i)
Ni

)
for all i ≥ i. (99)

The equation inside the square root in r.h.s. of Eq. (99) can be bounded from above further as Ni∑
j=1

(
λ̃
(i)
j

)2 γNi

(
Σ̃

(i)
Ni

)
≤

 Ni∑
j=1

(
ρ
(i)
j

)2
+

Ni∑
j=1

VT

Ni

 γNi

(
Σ̃

(i)
Ni

)
(100)

≤ 2VT γNi

(
VT

Ni
INi

)
(101)

≤ 2VT γT

(
VT

T
IT

)
(102)

≤ O

(
VT lnd+1 T 2

VT

)
. (103)
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Since ρ
(i)
j = λ

(i)
j , the total cumulative regret is bounded from above with probability at least 1− δ as

RT =
∑
i≤i

Ni∑
j=1

f(x∗)− f(x
(i)
j ) +

∑
i>i

Ni∑
j=1

f(x∗)− f(x
(i)
j ) (104)

≤ max{8BT, 2BN1}+ 4β1/2
∑
i>i

Ni max
x∈Xi−1

σ
Σ

(i−1)
Ni−1

(x;X
(i−1)
Ni−1

) (105)

≤ max{8BT, 2BN1}+ 32β1/2
∑
i>ĩ

√√√√√
Ni−1∑

j=1

(
λ̃
(i−1)
j

)2 γNi−1

(
Σ̃

(i−1)
Ni−1

)
(106)

≤ max{8BT, 2BN1}+O

β1/2(1 + log2 T )

√
VT lnd+1 T 2

VT

 (107)

≤ O

(
(lnT )

√
VT

(
lnd+1 T 2

VT

)(
ln
|X |
δ

))
, (108)

where the first inequality follows from the standard analysis of the PE (e.g., Eqs. (65)–(68)) with Lemma F.1. Furthermore,
the second inequality uses the fact that the total number of batches is at most 1 + log2 T .

For k = kMatérn. The proof is almost the same as that of the SE kernel, while we need to introduce the additional lower
bound to set λ̃(i)

j . Let us set T as T = min{T ∈ N+ | ∀t ≥ T, t/2 ≥ 4γt(λ
2

tIt)}, where we set λ
2

t = t−
2ν
d ln

2ν(1+α)
d (1+ t)

here, where α > 0 is any fixed constant. Next, set λ̃(i)
j as

(
λ̃
(i)
j

)2
= max

{(
λ
(i)
j

)2
, VT

Ni
, λ

2

Ni

}
. Then, as with the proof for

the case k = kSE, the following statement holds from statement 2 of Lemma 3.1:

max
x∈Xi

σ
Σ

(i)
Ni

(x;X
(i)
Ni

) ≤ 4

Ni

√√√√√
 Ni∑

j=1

(
λ̃
(i)
j

)2 γNi

(
Σ̃

(i)
Ni

)
for all i ≥ i, (109)

where i ∈ N+ is the first batch index such that Ni ≥ T holds. Furthermore, Ni∑
j=1

(
λ̃
(i)
j

)2 γNi

(
Σ̃

(i)
Ni

)
≤

 Ni∑
j=1

(
ρ
(i)
j

)2
+

Ni∑
j=1

VT

Ni
+

Ni∑
j=1

λ
2

Ni

 γNi

(
Σ̃

(i)
Ni

)
(110)

≤
(
2VT +Niλ

2

Ni

)
γNi

(
Σ̃

(i)
Ni

)
. (111)

In the above inequality, we can see that γNi

(
Σ̃

(i)
Ni

)
≤ γNi

(
VT

Ni
INi

)
≤ γT

(
VT

T IT
)
. Furthermore, if VT /Ni ≥ λ

2

Ni
, then,

2VT +Niλ
2

Ni
≤ 3VT , which implies√√√√√

 Ni∑
j=1

(
λ̃
(i)
j

)2 γNi

(
Σ̃

(i)
Ni

)
≤

√
3VT γT

(
VT

T
IT

)
= Õ

(
V

ν
2ν+d

T T
d

2ν+d

)
. (112)

On the other hand, γNi

(
Σ̃

(i)
Ni

)
≤ γNi

(
λ
2

Ni
INi

)
also holds. If VT /Ni ≤ λ

2

Ni
, then, 2VT + Niλ

2

Ni
≤ 3Niλ

2

Ni
, which

implies√√√√√
 Ni∑

j=1

(
λ̃
(i)
j

)2 γNi

(
Σ̃

(i)
Ni

)
≤
√
3Niλ

2

Ni
γNi

(
λ
2

Ni
INi

)
= Õ

(
N

d−ν
d

i

)
≤

{
Õ(1) if d ≤ ν,

Õ
(
T

d−ν
d

)
if d > ν.

(113)
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Therefore, since T
d

2ν+d ≥ T
d−ν
d if d ≤ 2ν and VT = Ω(1), we have√√√√√

 Ni∑
j=1

(
λ̃
(i)
j

)2 γNi

(
Σ̃

(i)
Ni

)
=

Õ
(
V

ν
2ν+d

T T
d

2ν+d

)
if d ≤ 2ν,

Õ
(
max

{
V

ν
2ν+d

T T
d

2ν+d , T
d−ν
d

})
if d > 2ν.

(114)

Hence, as with Eq. (104) of the proof for k = kSE, with probability at least 1− δ, we have

RT ≤ 8BT + 16β1/2(1 + log2 T )

√√√√√
 Ni∑

j=1

(
λ̃
(i)
j

)2 γNi

(
Σ̃

(i)
Ni

)
(115)

=

Õ
(
V

ν
2ν+d

T T
d

2ν+d

)
if d ≤ 2ν,

Õ
(
max

{
V

ν
2ν+d

T T
d

2ν+d , T
d−ν
d

})
if d > 2ν.

(116)

Here, VT = O(T
d−2ν

d ) implies V
ν

2ν+d

T T
d

2ν+d = O(T
d−ν
d ), and VT = Ω(T

d−2ν
d ) implies vise versa; therefore, by combining

the condition VT = Ω(1), we have

RT =


Õ
(
V

ν
2ν+d

T T
d

2ν+d

)
if d ≤ 2ν,

Õ
(
V

ν
2ν+d

T T
d

2ν+d

)
if d > 2ν and VT = Ω

(
T

d−2ν
d

)
,

Õ
(
T

d−ν
d

)
if d > 2ν and VT = O

(
T

d−2ν
d

)
.

(117)

F.2. Proof of Theorem 6.4

Proof. Set β1/2 =

(
B +

√
2 ln 2|X |

δ

)
. From Lemma F.1, with probability at least 1− δ, we have

f(x∗)− f(x̂T ) ≤ µΣT
(x∗;XT ,yT ) + β1/2σΣT

(x∗;XT )− µΣT
(x̂T ;XT ,yT ) + β1/2σΣT

(x̂T ;XT ) (118)

≤ 2β1/2 max
x∈X

σΣT
(x;XT ). (119)

We first consider the case where k = kSE. Let us respectively define T , λ̃t, Σ̃T as T = min{T ∈ N+ | ∀t ≥ T, t/2 ≥
4γt(Ct−1It)}, λ̃2

t = max{λ2
t , VT /T}, and Σ̃T = diag(λ̃2

1, . . . , λ̃
2
T ). Here, C > 0 is the constant such that VT ≥ C.

Note that the existence of C is guaranteed by the assumption VT = Ω(1). Then, as with the arguments of the proof of
Theorem 6.3,

max
x∈X

σΣT
(x;XT ) ≤

4

T

√√√√( T∑
t=1

λ̃2
t

)
γT

(
Σ̃T

)
for all T ≥ T. (120)

From the definition of λ̃t, the above inequality implies, for all T ≥ T ,

f(x∗)− f(x̂T ) ≤
8β1/2

T

√√√√( T∑
t=1

λ̃2
t

)
γT

(
Σ̃T

)
(121)

≤ 8β1/2

T

√√√√( T∑
t=1

ρ2t +

T∑
t=1

VT

T

)
γT

(
Σ̃T

)
(122)

≤ 8β1/2

T

√
2VT γT

(
VT

T
IT

)
(123)

= O

(√
VT

T 2

(
lnd+1 T 2

VT

)(
ln
|X |
δ

))
. (124)
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Next, when k = kMatérn, we set T , λ̃t, Σ̃T as T = min{T ∈ N+ | ∀t ≥ T, t/2 ≥ 4γt(λ
2

tIt)}, λ̃2
t = max{λ2

t , VT /T, λ
2

T },
and Σ̃T = diag(λ̃2

1, . . . , λ̃
2
T ), respectively. Here, λ

2

t = t−
2ν
d ln

2ν(1+α)
d (1 + t), where α > 0 is any fixed constant. Then, as

with the arguments of the proof of Theorem 6.3, statement (120) also holds for k = kMatérn. Therefore,

f(x∗)− f(x̂T ) ≤
8β1/2

T

√√√√( T∑
t=1

λ̃2
t

)
γT

(
Σ̃T

)
(125)

≤ 8β1/2

T

√(
2VT + Tλ

2

T

)
γT

(
Σ̃T

)
. (126)

As with the proof of Theorem 6.3, considering the two cases: VT /T ≥ λ
2

T or not, we obtain

√(
2VT + Tλ

2

T

)
γT

(
Σ̃T

)
=

Õ
(
V

ν
2ν+d

T T
d

2ν+d

)
if VT

T ≥ λ
2

T ,

Õ
(
T

d−ν
d

)
if VT

T < λ
2

T .
(127)

Therefore, we have
f(x∗)− f(x̂T ) = Õ

(
max

{
T− ν

d , V
ν

2ν+d

T T− 2ν
2ν+d

})
. (128)

Finally, since VT = O(T
d−2ν

d ) implies V
ν

2ν+d

T T− 2ν
2ν+d = O(T− ν

d ), and VT = Ω(1), we have

f(x∗)− f(x̂T ) =


Õ
(
V

ν
2ν+d

T T− 2ν
2ν+d

)
if d ≤ 2ν,

Õ
(
V

ν
2ν+d

T T− 2ν
2ν+d

)
if d > 2ν and VT = Ω

(
T

d−2ν
d

)
,

Õ
(
T− ν

d

)
if d > 2ν and VT = O

(
T

d−2ν
d

)
.

(129)

G. Pseudo Code of PE and MVR
Algorithms 1 and 2 show the pseudo-code of PE and MVR, respectively. In the PE algorithm, we denote x

(i)
j , y(i)j , and ϵ

(i)
j

as the selected query point, observed output, and the observation noise at step j on i-th batch, respectively.

H. Pseudo Code of VA-PE and VA-MVR
Algorithms 3 and 4 show the pseudo-code of VA-PE and VA-MVR described in Section 6, respectively.

I. VA-GP-UCB Algorithm
We consider the GP-UCB-based algorithm as the extension of the variance-aware UCB-style algorithms (Zhou et al., 2021;
Zhang et al., 2021; Zhou & Gu, 2022) in linear bandits.

Algorithm. Algorithm 5 shows the pseudo-code of VA-GP-UCB algorithm. Overall, the algorithm construction is almost
the same as the GP-UCB algorithm with a heteroscedastic GP model. The only difference is the application of the lower
threshold ζ > 0 for the variance parameter (Line 7 in Algorithm 5). Intuitively, such a lower threshold has a role in
preventing an explosion of the MIG in the first term of the elliptical potential count lemma (Lemma C.1) in the analysis.
Note that such a lower threshold is also leveraged in the existing variance-aware UCB-style algorithms (Zhou et al., 2021;
Zhang et al., 2021; Zhou & Gu, 2022). We believe this algorithm construction is the most natural kernelized extension of the
methods proposed in (Zhou et al., 2021; Zhang et al., 2021; Zhou & Gu, 2022).

Theoretical analysis for VA-GP-UCB.
Lemma I.1 (Adaptive confidence bound in non-stationary variance, e.g., Lemma 7 in (Kirschner & Krause, 2018)). Fix any
strictly positive sequence (λt)t∈N+ and define Σt as Σt = diag(λ2

1, . . . , λ
2
t ). Suppose Assumptions 2.1 and 2.2 holds with
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Algorithm 1 Phased Elimination (PE)

Require: Confidence width parameter β1/2 > 0, initial batch size N1, noise variance parameter λ2 ≥ 0.
1: Initialize the potential maximizer X1 ← X .
2: for i = 1, 2, . . . do
3: X

(i)
0 = ∅.

4: for j = 1, . . . , Ni do
5: x

(i)
j ← arg maxx∈Xi

σλ2Ij−1
(x;X

(i)
j−1).

6: Observe y
(i)
j = f

(
x
(i)
j

)
+ ϵ

(i)
j .

7: X
(i)
j ← [x

(i)
m ]m∈[j].

8: end for
9: y(i) ←

[
y
(i)
j

]
k∈[Ni]

.

10: Calculate lcbi(·) and ucbi(·) as

lcbi(x) = µλ2INi
(x;X

(i)
Ni

,y(i))− β1/2σλ2INi
(x;X

(i)
Ni

),

ucbi(x) = µλ2INi
(x;X

(i)
Ni

,y(i)) + β1/2σλ2INi
(x;X

(i)
Ni

).

11: Xi+1 ←
{
x ∈ Xi

∣∣∣∣ ucbi(x) ≥ max
x̃∈Xi

lcbi(x̃)
}

.

12: Update the batch size Ni+1 ← 2Ni.
13: end for

Algorithm 2 Maximum Variance Reduction (MVR)
Require: Noise variance parameter λ2 ≥ 0.

1: X0 = ∅.
2: for t = 1, 2, . . . , T do
3: xt ← arg maxx∈Xσλ2It−1

(x;Xt−1).
4: Observe yt and construct data Xt := [xj ]j∈[t].
5: end for
6: Return the estimated solution x̂T := arg maxx∈Xµλ2IT (x;XT ;yT ), where yT = [yt]t∈[T ].

ρt ≤ λt. Then, for any algorithm, the following event holds with probability at least 1− δ:

∀t ∈ N+, ∀x ∈ X , |µΣt−1
(x;Xt−1,yt−1)− f(x)| ≤

(
B +

√
2γt(Σt) + 2 ln

1

δ

)
σΣt−1

(x;Xt−1). (130)

Lemma I.2 (General regret bound of VA-GP-UCB). Fix any ζ > 0 and δ ∈ (0, 1). Suppose Assumptions 2.1 and 2.2 hold.

Then, when running Algorithm 5 with β
1/2
t = B +

√
2γt(Σt) + 2 ln 1

δ , the following two statements hold with probability
at least 1− δ:

• The cumulative regret RT of VA-GP-UCB satisfies

RT ≤ 2Bmin
{
4γ
(
4γT (ΣT ), ζ

2
)
, 4γT (ΣT )

}
+ 4β

1/2
T

√
(VT + ζ2T ) γT (ΣT ). (131)

• The simple regret rT of VA-GP-UCB satisfies

rT ≤
2B

T
min

{
4γ
(
4γT (ΣT ), ζ

2
)
, 4γT (ΣT )

}
+

4β
1/2
T

T

√
(VT + ζ2T ) γT (ΣT ) (132)

In the above upper bound, the estimated solution x̂T is defined as x̂T = xt̃ with t̃ ∈ arg maxt∈[T ]lcbt(xt). Here,

lcbt(xt) is defined as lcbt(xt) = µΣt−1(xt;Xt−1,yt−1)− β
1/2
t σΣt−1(xt;Xt−1).
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Algorithm 3 Variance-aware phased elimination (VA-PE)

Require: Confidence width parameter β1/2 > 0, finite input set X , initial batch size N1 ∈ N+.
1: Initialize the potential maximizer X1 ← X .
2: for i = 1, 2, . . . do
3: X

(i)
0 = ∅, Σ(i)

0 = ∅.
4: for j = 1, . . . , Ni do
5: x

(i)
j ← arg maxx∈Xi

σ
Σ

(i)
j−1

(x;X
(i)
j−1).

6: Observe y
(i)
j = f

(
x
(i)
j

)
+ ϵ

(i)
j .

7: Obtain the variance proxy
(
ρ
(i)
j

)2
.

8:
(
λ
(i)
j

)2
←
(
ρ
(i)
j

)2
.

9: X
(i)
j ← [x

(i)
m ]m∈[j], Σ

(i)
j ← diag

((
λ
(i)
1

)2
, . . . ,

(
λ
(i)
j

)2)
10: end for
11: y(i) ←

[
y
(i)
j

]
k∈[Ni]

.

12: Calculate lcbi(·) and ucbi(·) as

lcbi(x) = µ
Σ

(i)
Ni

(
x;X

(i)
Ni

,y(i)
)
− β1/2σ

Σ
(i)
Ni

(
x;X

(i)
Ni

)
,

ucbi(x) = µ
Σ

(i)
Ni

(
x;X

(i)
Ni

,y(i)
)
+ β1/2σ

Σ
(i)
Ni

(
x;X

(i)
Ni

)
.

13: Xi+1 ←
{
x ∈ Xi

∣∣∣∣ ucbi(x) ≥ max
x̃∈Xi

lcbi(x̃)
}

.

14: Update the batch size Ni+1 ← 2Ni.
15: end for

Algorithm 4 Variance-aware maximum variance reduction (VA-MVR)
Require: Finite input set X .

1: X0 = ∅, Σ0 = ∅.
2: for t = 1, 2, . . . , T do
3: xt ← arg maxx∈XσΣt−1

(x;Xt−1).
4: Observe yt, and obtain the variance proxy ρ2t .
5: Construct data Xt := [xj ]j∈[t].
6: λ2

t ← ρ2t , Σt ← diag(λ2
1, . . . , λ

2
t ).

7: end for
8: Return the estimated solution x̂T := arg maxx∈XµΣT

(x;XT ;yT ), where yT = [yt]t∈[T ].

Proof. From the construction of λ2
t in Algorithm 5 and the definition of β1/2, the event (130) holds with probability at least

1− δ. Hereafter, we suppose the event (130) holds. Furthermore, we set T = {t ∈ [T ] | λ−1
t σΣt−1(xt;Xt−1) ≤ 1} and

T c = {t ∈ [T ] | λ−1
t σΣt−1(xt;Xt−1) > 1}.
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Cumulative regret upper bound. We decompose RT as RT =
∑

t∈T f(x∗) − f(xt) +
∑

t∈T c f(x∗) − f(xt), and
consider the upper bound of each term separately. First, the first term satisfies∑

t∈T
f(x∗)− f(xt) ≤ 2

∑
t∈T

β
1/2
t σΣt−1

(x;Xt−1) (133)

≤ 2β
1/2
T

∑
t∈T

σΣt−1
(x;Xt−1) (134)

≤ 4β
1/2
T

√√√√√
∑

t∈[T ]

λ2
t

 γT (ΣT ) (135)

≤ 4β
1/2
T

√
(VT + ζ2T ) γT (ΣT ), (136)

where the first inequality follows from the event (130) and the UCB-selection rule of xt, and the third inequality follows
from the same arguments as Eqs. (32)–(36). Regarding the second term, from the extension of the elliptical potential count
lemma (Lemma C.1), we have∑

t∈T c

f(x∗)− f(xt) ≤ 2B|T c| (137)

≤ 2Bmin
{
4γ
(
4γT (ΣT ), ζ

2
)
, 4γT (ΣT )

}
. (138)

From Eqs. (135) and (138), we obtain the desired result.

Simple regret upper bound. From the definition of x̂T , for any t ∈ T , we have

f(x∗)− f(x̂T ) ≤ ucbt(xt)− lcbt̃(xt̃) (139)
≤ ucbt(xt)− lcbt(xt) (140)

≤ 2β
1/2
T σΣt−1(x;Xt−1). (141)

Furthermore, for any t ∈ T c, we have f(x∗)− f(x̂T ) ≤ 2B. By taking the average of the above inequalities, we have

f(x∗)− f(x̂T ) ≤
1

T

[∑
t∈T

2β
1/2
T σΣt−1(x;Xt−1) +

∑
t∈T c

2B

]
(142)

≤
4β

1/2
T

T

√
(VT + ζ2T ) γT (ΣT ) +

2B

T
min

{
4γ
(
4γT (ΣT ), ζ

2
)
, 4γT (ΣT )

}
. (143)

Theorem I.3 (Regret bound of VA-GP-UCB for k = kSE and k = kMatérn.). Let us assume the same setting as that of
Lemma I.2. Furthermore, suppose VT = Ω(1). Then, the following statements hold with probability at least 1− δ,

• If k = kSE, by setting ζ2 as ζ2 = 1/T , we have

RT = O
(√

VT lnd+1 T
)

and rT = O

(√
VT

T 2
lnd+1 T

)
. (144)

• If k = kMatérn, by setting ζ2 as ζ2 = 1/T , we have

RT = Õ
(
T

2d
2ν+d

√
VT

)
and rT = Õ

(
T− 2ν−d

2ν+d

√
VT

)
. (145)

Proof. When k = kSE, γT (ΣT ) = O
(
lnd+1 T

ζ2

)
= O

(
lnd+1 T 2

)
and 4β

1/2
T

√
(VT + ζ2T ) γT (ΣT ) =

O
(
γT (ΣT )

√
VT

)
= O

(√
VT lnd+1 T 2

)
. By noting VT = Ω(1), we obtain

RT = O
(√

VT lnd+1 T
)

(146)
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Algorithm 5 Variance-aware Gaussian process upper confidence bound (VA-GP-UCB)

Require: Confidence width parameter β1/2
t > 0, lower threshod ζ > 0 of variance parameters.

1: X0 = ∅, y0 = ∅, Σ0 = ∅.
2: for t = 1, . . . , T do
3: Compute ucbt(x) := µΣt−1(x;Xt−1,yt−1) + β1/2σΣt−1(x;Xt−1).
4: xt ← arg maxx∈Xucbt(x).
5: Observe yt = f (xt) + ϵt.
6: Obtain the variance proxy ρ2t ≥ 0.
7: λ2

t ← max
{
ρ2t , ζ

2
}

.
8: Xt ← [xm]m∈[t], Σt ← diag

(
λ2
1, . . . , λ

2
t

)
.

9: end for

from Lemma I.2.

When k = kMatérn, γT (ΣT ) ≤ γT (ζ
2IT ) = Õ

((
T
ζ2

) d
2ν+d

)
= Õ

(
T

2d
2ν+d

)
, γ

(
4γT (ΣT ), ζ

2
)

=

Õ
(
T (

d
2ν+d )

2

(ζ2)−
d

2ν+d−(
d

2ν+d )
2)

= Õ

(
T

[
2( d

2ν+d )
2
+ d

2ν+d

])
, and 4β

1/2
T

√
(VT + ζ2T ) γT (ΣT ) = O

(
γT (ΣT )

√
VT

)
=

Õ
(
T

2d
2ν+d
√
VT

)
. By noting VT = Ω(1), we can conclude the following from Lemma I.2:

RT = Õ
(
T

2d
2ν+d

√
VT

)
. (147)

Finally, by comparing the upper bound of rT and RT in Lemma I.2, we can also confirm that the simple regret bounds are
followed by multiplying 1/T to the above cumulative regret upper bounds.

Remark I.4. In Theorem I.3, we suppose that the learner does not have prior knowledge about VT before running the
algorithm. On the other hand, if we assume the learner knows VT , the regret upper bound in Theorem I.3 can be smaller
by setting the lower threshold ζ2 depending on VT . Specifically, when k = kMatérn, the setting ζ2 = VT /T improves the
polynomial dependence of VT .

J. Potential Applications for Non-Stationary Variance Setting in GP-Bandits
In this section, we discuss potential applications for the non-stationary variance setting in GP-bandits.

• Reinforcement Learning: The existing variance dependent algorithms in linear bandits (Zhou et al., 2021; Zhang
et al., 2021; Zhou & Gu, 2022; Zhao et al., 2023) motivates the non-stationary variance setting as one of the online
reinforcement learning problems. Specifically, Zhou et al. (2021) consider the regret minimization problem under a
specific Markov decision process (MDP), which is called linear mixture MDP, and subsumes the linear bandit problem
when the length of the horizon is 1. In the decision-making under linear mixture MDP, Zhao et al. (2023) show the
algorithm with variance-dependent regret guarantees. If we assume the linear mixture MDP whose feature map of
the transition probability is infinite-dimensional and induced by some kernel function, the kernelized extension of the
setting of the existing works (Zhou et al., 2021; Zhang et al., 2021; Zhao et al., 2023) is naturally derived. Extensions
in such a reinforcement learning setting are an interesting direction for our future research.

• Experimental Design: In scientific experiments, the observation noise level of the result of the experiment may
vary over time. Specifically, the observation noise level can increase over extended periods due to factors such as
environmental fluctuations, material degradation, or systematic drifts in measurement instruments. For example, such
factors in measurement accuracy have been observed in studies of chemical analysis (Hickstein et al., 2018).

• Stationary Setting with Heteroscedastic Variance: Kirschner & Krause (2018) consider the heteroscedastic variance
setting where the variance proxy ρ2(xt) may depend on the selected input xt. If we apply our algorithm to a
heteroscedastic setting, the resulting regret of our non-stationary variance algorithm is quantified by the cumulative
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variance proxy VT =
∑T

t=1 ρ
2(xt) of the selected inputs5. The further precise quantification of the increasing

speed of VT in this setting requires an additional structural assumption about ρ2(·). For example, we expect VT is
increasing sublinearly with our algorithm design of xt if there exists a unique maximizer x∗, and ρ2(x)→ ρ2(x∗) (as
x→ x∗) and ρ2(x∗) = 0 holds. We believe this research direction is an interesting application of our analysis to the
heteroscedastic setting.

5Our VA-GP-UCB algorithm can be applied in the same conditionally sub-Gaussian assumption as used in (Kirschner & Krause, 2018)
(Eq. (1) in (Kirschner & Krause, 2018)). On the other hand, VA-PE and VA-MVR algorithms require a more restricted independence
assumption that the noise sequence (ϵt) is conditionally independent given the MVR input sequence.
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