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Abstract001

Evaluating large language models (LLMs)002
poses significant challenges, particularly due to003
issues of data contamination and the leakage of004
correct answers. To address these challenges,005
we introduce ThinkBench, a novel evaluation006
framework designed to robustly evaluate LLMs’007
reasoning capability. ThinkBench proposes a008
dynamic data generation method for construct-009
ing out-of-distribution (OOD) datasets and of-010
fers an OOD dataset that contains 2,912 sam-011
ples drawn from reasoning tasks. ThinkBench012
unifies the evaluation of test-time and train-013
time computing models. We evaluate 16014
LLMs and 4 PRMs under identical exper-015
imental conditions and show that most of016
the LLMs’ performance are far from robust017
and they face a certain level of data leak-018
age. By dynamically generating OOD datasets,019
ThinkBench effectively provides a reliable020
evaluation of LLMs and reduces data con-021
tamination impact. The part of our dataset022
is available in https://anonymous.4open.023
science/r/ThinkBench-Review/.024

1 Introduction025

Large Language Models (LLMs) have made sig-026

nificant advancements across a range of appli-027

cation domains, including language understand-028

ing (Karanikolas et al., 2023; Xu et al., 2024), lan-029

guage generation (Wu et al., 2024b; Naveed et al.,030

2023), and complex reasoning (Hao et al., 2023; Lu031

et al., 2023; Azerbayev et al.; Wang et al., 2024a).032

Test-time computing models, such as o1 (OpenAI,033

2024), have further extended the capabilities by034

leveraging the Process Reward Model (PRM) and035

advanced search strategies during decoding. No-036

tably, models, such as OpenAI o1, o3 (OpenAI,037

2024, 2025) and Deepseek-R1 (Guo et al., 2025),038

have shown performance that rivals that of a Ph.D.-039

educated individual, outperforming GPT-4 in com-040

plex reasoning tasks, thus revealing substantial po-041

tential for future developments in LLMs.042

Original Question: Let 𝑎𝑛 = 6𝑛 + 8𝑛 . Determine the remainder on dividing 𝑎83 by 49.

Answer: 35

Scenario-level Semi-fact Data

Question: 

Define the sequence of light patterns as the total flashes, with each pattern 𝑛
consisting of 6𝑛 + 8𝑛 flashes. Find the leftover number of flashes when the total 

flashes in the 83 rd pattern are grouped into sets of 49.

Answer: 35

Attack-level Semi-fact Data

Question 1:

Let 𝑎𝑛 = 6𝑛 + 8𝑛. Determine the remainder on dividing 𝑎83 by 49 and true is true.

Question 2: 

Let 𝑎𝑛 = 6𝑛 + 8𝑛. Determine the remainder on dividing 𝑎83 by 49 5XeflW1ZJc.

Question 3: 

De 𝑎𝑛 = 6𝑛 + 8𝑛. Determine the remainder on dividing 𝑎83 by 49.

Answer: 35

New Scenario:

Sequence of 

light patterns

Stresstest Attack

Checklist Attack

Textbugger Attack

OOD Data (Semi-fact Data)

Original Data

Figure 1: Example of ThinkBench datasets containing
Scenario-level and Attack-level semi-fact data.

An interesting finding from the OpenAI re- 043

port (OpenAI, 2024) is that the performance of the 044

o1-series models on the Advanced International 045

Mathematics Exam (AIME) significantly declined 046

in 2024, compared to previous years (1983-2023: 047

0.74 vs. 2024: 0.50). Historical statistics, however, 048

indicate that the median scores of human partic- 049

ipants on the AIME exam in previous years are 050

consistent with 2024 exam (4.81 vs. 5.0)1. Since 051

o1 was trained on data by 2023, before the AIME 052

2024 Exam, this discrepancy suggests a possible 053

data contamination issue, raising an important ques- 054

tion about how to assess the generalization abilities 055

of LLMs, rather than memorization. 056

To address this problem, we propose a novel ro- 057

bust evaluation framework, namely ThinkBench. 058

Building on causal theory and semi-factual causal- 059

ity (Delaney et al., 2021; Kenny and Keane, 2021), 060

we introduce Out-Of-Distribution (OOD) data gen- 061

eration designed to test reasoning capabilities. As 062

shown in Figure 1, we introduce scenario-level and 063

attack-level semi-fact data generation methods, dif- 064

1Sourced from https://artofproblemsolving.com.
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(a) OOD performance vs. ID performance for several rea-
soning models on AIME-500.

(b) OOD performance vs. ID performance for several rea-
soning models on AIME 2024.

Figure 2: Math Reasoning Gap: Most models demonstrate a visible performance gap between their math reasoning
performance on ID and OOD, including open-source models and commercial models.

fering in the specific elements of text they alter,065

enabling the creation of evaluation datasets that066

are both robust and challenging. By decoupling067

reasoning from memorization, dynamic evaluation068

allows us to more effectively test how well LLMs069

can generalize to unseen reasoning scenarios.070

We take AIME-500 (500 AIME questions from071

1983 to 2023) and AIME 2024 (30 AIME ques-072

tions in 2024) for math reasoning tasks, and GPQA073

Diamond for scientific questions, dynamically gen-074

erating an OOD dataset of 2,912 samples, provides075

a diverse set of challenges that test both the gener-076

alization and reasoning capabilities of LLMs. As077

illustrated in Figure 2, compared to the original078

datasets, our OOD evaluation set proves to be more079

difficult, resulting in an average performance decay080

of 24.9% and 11.8% across all models on AIME-081

500, and AIME 2024, respectively. This indicates082

that there was indeed some data leakage in AIME083

questions before 2024, highlighting the importance084

of mitigating data contamination for reasoning eval-085

uations. The difference in performance decay be-086

tween AIME-500 and AIME 2024 demonstrates087

that our dynamically constructed OOD data con-088

struction is a convenient and effective method to089

reduce the impact of data contamination.090

Figure 2 also shows that o1 (OpenAI, 2024),091

o3 (OpenAI, 2025), Deepseek-R1 (Guo et al., 2025)092

and s1 (Muennighoff et al., 2025) maintain the093

strongest accuracy among all models. As represen-094

tatives of test-time computing models (Luo et al.,095

2025; Liu et al., 2025), o1, o3, and s1 enhance infer-096

ence performance by increasing computational re-097

sources during testing, contrasting with train-time098

computing models. ThinkBench provides a reason-099

ing benchmark to evaluate both train-time comput- 100

ing models and test-time computing models. 101

In addition to the overall model accuracy, we 102

also explore the impact of various PRMs and their 103

performance under the best-of-n search during de- 104

coding. Fine-grained evaluations show how dif- 105

ferent data generation strategies, such as Math- 106

shepherd (Wang et al., 2024c), influence model 107

outcomes. The performance improves with an in- 108

creased test-time computation budget, further high- 109

lighting the discriminative power of our benchmark 110

and the quality of the data. 111

To our knowledge, we are the first to present a ro- 112

bust dynamic evaluation benchmark for testing rea- 113

soning capability in LLMs (Qin et al., 2024; Huang 114

et al., 2024c; Wang et al., 2024a). In ThinkBench, 115

we provide a convenient and effective OOD data 116

construction method and a high-quality dataset 117

to reduce data contamination impact, effectively 118

evaluating the reasoning ability in both train-time 119

computing models and test-time computing models. 120

Notably, we verify the validation of the test-time 121

scaling law using the dynamic evaluation without 122

data contamination based on ThinkBench. 123

2 Related Work 124

Evaluating Large Language Models. Evaluat- 125

ing LLMs accurately and fairly poses a significant 126

challenge (Chang et al., 2024). Mainstream eval- 127

uation methods include: (1) LLMs-as-a-judge: 128

Benchmarks like AlpacaEval (Li et al., 2023), Pan- 129

daLM (Wang et al., 2023b), MT-Bench (Zheng 130

et al., 2023), and C-Eval (Huang et al., 2024b) use 131

large language models for predefined questions. 132

(2) Humans-as-a-judge: Human evaluation pro- 133
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Table 1: Statistics of reconstructed reasoning datasets
based on three original test datasets, including AIME-
500, AIME 2024, and GPQA Diamond.

AIME-500 AIME 2024 GPQA Diamond

# Samples of original 500 30 198
Questions’ Avg Len 51.1 60.1 67.7
Choices’ Avg Len - - 27.8
# Samples of OOD 2,000 120 792
Questions’ Avg Len 61.2 70.1 85.2
Choices’ Avg Len - - 25.7

vides comprehensive feedback through expert re-134

views (Ribeiro and Lundberg, 2022; Gao et al.,135

2023). (3) Other benchmarks: Several traditional136

benchmarks employ static datasets to assess models137

across various tasks (Liang et al., 2022; Hendrycks138

et al., 2020, 2021). Our work falls into the third139

category. However, rather than using static data,140

we generate test sets dynamically.141

Robustness of Large Language Models. Eval-142

uating the robustness of LLMs is crucial (Muen-143

nighoff et al., 2025; Guo et al., 2025) for their144

applications across diverse scenarios (Wang et al.,145

2023a; Glazer et al., 2024; Li et al., 2024b). Pre-146

vious studies (Li et al., 2024a), such as OOD-147

GLUE (Yuan et al., 2023), GLUE-X (Yang et al.,148

2023), and ZebraLogic (Lin et al., 2024), focus on149

robustness of non-reasoning models. Additionally,150

Yang et al. (2022) focus on generating OOD data by151

employing semi-fact data augmentation methods.152

Recently, Hosseini et al. (2024) identify reasoning153

gaps in LLMs by evaluating math problem pairs,154

revealing performance disparities in smaller, math-155

specialized models. Wu et al. (2024a) introduce156

cofQA, which targets text-based inference tasks157

using counterfactual data perturbations. Our work158

is similar in assessing general robustness but dif-159

fers from the literature in focusing on reasoning160

tasks, for which OOD tests are more necessary as161

compared to general tasks.162

In addition, existing benchmarks predominantly163

emphasize non-reasoning models (Li et al., 2023;164

Hendrycks et al., 2020; Huang et al., 2024a; Li165

et al., 2024c). For reasoning models, current eval-166

uations often target specific tasks, such as plan-167

ning (Wang et al., 2024b) and rule execution (Gui168

et al., 2024), with limited comprehensive robust-169

ness analyses (Zhong et al., 2024). Unlike these170

work, our benchmark focuses on robustness and171

reasoning with practical applications, offering sta-172

tistically significant insights.173

3 Dynamic Evaluation Benchmark 174

For math reasoning tasks, constructing counterfac- 175

tual data presents challenges in changing a golden 176

answer, which contrasts with commonsense tasks, 177

where reliable sources like Wikipedia can be uti- 178

lized. In contrast, semi-fact data does not need to 179

change a specific answer. As shown in Figure 3, 180

ThinkBench contains two dynamic semi-fact data 181

generation methods, aiming to assess the real rea- 182

soning ability of LLMs: (a) Scenario-level Semi- 183

fact Data (Yang et al., 2023; Zhu et al., 2023a, 2024; 184

Opedal et al., 2024), which changes the scenario 185

for the original reasoning data; (b) Attack-level 186

Semi-fact Data (Zhu et al., 2023b), which uses 187

three attack methods to rephrase the original data. 188

We use generated OOD data to perform dynamic 189

reasoning evaluation on both reasoning models and 190

non-reasoning models. Maintaining core knowl- 191

edge while altering scenarios or expressions, we 192

evaluate whether models can consistently apply 193

learned knowledge across contextual variations. Fi- 194

nally, we can leverage our OOD data to conduct (c) 195

test-time evaluation based on PRMs. 196

3.1 OOD Data Generation 197

Scenario-level Semi-fact Data Generation. The 198

process primarily involves two types of agents: the 199

Rephrasing Agent, which is responsible for trans- 200

forming the original questions and generating new 201

ones, while the Verifier Agent, which is responsible 202

for confirming at each step whether the rephrasing 203

meets the current requirements and whether the 204

rephrasing is valid. 205

There are two Rephrasing Agents. The first gen- 206

erates suitable scenarios for reasoning problems, 207

ensuring that the new scenarios are appropriately 208

transferable concerning the core of the original 209

problem. The second rewrites each part (often at 210

the sentence level) to fit the new scenario while 211

preserving the original meaning. This step-by-step 212

process uses each newly generated part as a refer- 213

ence for subsequent parts. 214

There are three Verifier Agents. The first checks 215

if the core content of the original problem can be 216

effectively transferred to the new scenario. The 217

second evaluates each newly generated part, en- 218

suring it meets three criteria: it conveys the same 219

core meaning as the original, is consistent with pre- 220

viously revised parts, and is correctly adapted to 221

the new scenario. Additionally, an overall Verifier 222

Agent assesses the overall new problem, ensuring 223
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Question: In a hospital setting, where 
maintaining sterility of medical instruments is 
crucial to prevent infections, under what 
circumstances would one use sealed pouches?
Choices:
A: The individual has undergone a colostomy.
B: Directly following surgery.
C: The patient is experiencing either semi-solid 
or fluid discharge.
D: The individual has a urinary diversion.
Answer: A

Question: In a hospital setting, where 
maintaining sterility of medical instruments is 
crucial to prevent infections, under what 
circumstances would one use sealed pouches?
Choices:
A: The individual has undergone a colostomy.
B: Directly following surgery.
C: The patient is experiencing either semi-solid 
or fluid discharge.
D: The individual has a urinary diversion.
Answer: A

(From AIME 2024)
Question: There exist real numbers � and �, both 
greater than 1, such that 
log� (��) = ���� (�4�) = 10. Find ��. 
Answer: 25

Original Test Set
New Scenario 
Generation

Scenario Verifier

Question: Consider two species of plants with 
growth rates represented by real numbers � 
and �, both exceeding 1, such that the growth 
rate of one species raised to the power of the 
other results in the equation 
log� (��) = ���� (�4�) = 10. Determine the 
product of their growth rates, ��. 
Answer: 25

Scenario-level Semi-fact Data
(a) Scenario-level Semi-fact Data Construction 

(From GPQA Diamond)
Question: Which of the following physical 
theories never requires regularization at high 
energies?
Choices:
A: Superstring Theory
B: Classical Electrodynamics
C: Quantum Electrodynamics
D: Quantum Chromodynamics
Answer: A

(From AIME 500)
Question: What is the largest even integer that 
cannot be written as the sum of two odd composite 
numbers?
Answer: 38

New Scenario: 
The concept of 
‘growth rates of 
two different 
species of plants’
 

Step-by-step Rephrase

Stepwise Verifier

Overall 
Verifier

...

...

...

applied?
Question 2: In what situation are closed pouches 
applied and true is true?
Question 3: In what situation are closed pouches 
applied 5XeflW1ZJc?
Choices:
A: The patient has a semi-formed or liquid output.
B: The patient has a colostomy.
C: In the immediate post-operative period.
D: The patient has a urostomy.
Answer: B

Question 1: At each situation are closed pouches 
applied?
Question 2: In what situation are closed pouches 
applied and true is true?
Question 3: In what situation are closed pouches 
applied 5XeflW1ZJc?
Choices:
A: The patient has a semi-formed or liquid output.
B: The patient has a colostomy.
C: In the immediate post-operative period.
D: The patient has a urostomy.
Answer: B

Multiple Attackers

Question 1: 
Ix exist real numbers � and �, both greater than 1, 
such that ���� (��) =���� (���) = ��. Find ��.
Question 2: 
There exist real numbers � and �, both greater 
than 1, such that ���� (��) =���� (���) = ��. 
Find �� and true is true.
Question 3: 
There exist real numbers � and �, both greater 
than 1, such that ���� (��) =���� (���) = ��. 
Find �� 5XeflW1ZJc.
Answer: 25

Attack-level Semi-fact Data

(b) Attack-level Semi-fact Data Construction 

Verifier

Train-time compute modelTrain-time compute modelNon-Reasoning models

Train-time compute modelTrain-time compute modelReasoning models

Problem

P1i P2i

P1j P2j

Answeri

Answerj

Best-of-N 
Performance

…

…

(c) Test-time Scaling Evaluation

Computation Budget

Process Reward 
Model

Dynamic Data 
Generation

Dynamic Reasoning Evaluation

Figure 3: Overview of ThinkBench framework. Based on the original data, ThinkBench dynamically generates
scenario-level Semi-fact Data (a) and Attack-level Semi-fact Data (b), which can be used to evaluate the robustness
of reasoning models and non-reasoning models. ThinkBench can also serve as a useful tool for Test-time Scaling
Evaluation(c).

it maintains essential consistency with the original224

questions, preserving informational content, and is225

appropriately constructed within the new scenario.226

At every step, outputs from Rephrasing Agents227

need to pass the corresponding Verifier Agent’s228

checks. If invalid, the process reverts to regen-229

eration. The final new problem also needs to be230

approved by the Verifier Agent or be regenerated.231

For the datasets that contain Choices, similarly,232

Rephrase Agent modifies the expressions of cer-233

tain options and randomly rearranges their order.234

Rephrasing of choices must also pass the Verifier235

Agent’s check to ensure the data is valid.236

Attack-level Semi-fact Data Generation. We237

focus on realistic errors using three methods:238

1. TextBugger (character-level) (Li et al., 2019):239

This method simulates user input errors by240

introducing mistakes or typos within words.241

2. CheckList (sentence-level) (Ribeiro et al.,242

2020): This approach assesses model robust-243

ness by adding irrelevant or redundant sen-244

tences to the original text.245

3. StressTest (sentence-level) (Naik et al., 2018):246

Similar to CheckList, StressTest evaluates247

model robustness by incorporating unrelated248

or redundant sentences.249

These methods reflect common errors such as 250

typos and extraneous information. They serve as 251

three Attack Agents. We apply only a single it- 252

eration of perturbation, avoiding unrealistic error 253

densities. Attack-level Semi-fact data construction 254

involves these three Attack Agents and a Verifier 255

Agent. The Verifier Agent is used to check if it 256

is consistent with the core aspects of the original 257

data and ensures that any errors introduced by the 258

perturbation do not impede overall comprehension. 259

For an original reasoning problem, we construct 260

our OOD test by creating one scenario-level semi- 261

fact data instance and three attack-level semi-fact 262

data instances. The method for evaluating the 263

model’s OOD Accuracy for the original data i is as 264

follows: 265

Acc(OOD) =
1

2

(
3

min
j=1

Acc(Aij) + Acc(Si)

)
,

(1) 266

where Acc(Aij) denotes the accuracy of perfor- 267

mance for the j-th attack-level semi-data, with 268

j = 1, 2, 3. Acc(S) represents the accuracy of 269

performance for the scenario-level semi-data S. 270

Semi-fact Data Construction. As shown in Fig- 271

ure 3, Scenario-level semi-fact data is constructed 272

as follows: The original query, “There exist real 273

numbers x and y, both greater than 1, such that 274
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logx(y
x) = logy(x

4y) = 10. Find xy.” is trans-275

formed step-by-step within a new scenario “The276

concepts of growth rates of two different species of277

plants” into “Consider two species of plants with278

growth rates represented by real numbers x and279

y, both exceeding 1, such that the growth rate of280

one species raised to the power of the other results281

in the equation logx(y
x) = logy(x

4y) = 10. De-282

termine the product of their growth rates, xy.”The283

Verifier Agent then checks the rephrased question284

to ensure that the rephrased question is in a reason-285

able scenario and the rephrased expression does286

not alter the core topic of the question.287

For Attack-level semi-fact data, TextBugger in-288

jects character-level noise (e.g., replacing “There”289

with “Ix”), while CheckList and StressTest ap-290

pend syntactically valid but irrelevant suffixes (e.g.,291

“5XeflW1ZJc” and “true is true”) to the problem292

statement. The Verifier Agent also needs to ensure293

the validity of this rephrased version.294

3.2 Data Analysis295

We construct three OOD semi-fact datasets from296

the following datasets to evaluate the model’s rea-297

soning ability: AIME-500 (extracted from Year298

of 1983 - 2023) and AIME 2024 (Year of 2024).299

The AIME dataset is designed to challenge the300

most talented high school mathematics students301

in the United States. The original test component302

of AIME-500 consists of 500 questions extracted303

from the original dataset (Zheng et al., 2021) while304

AIME 2024 contains 30 examples included in the305

exam for 2024. GPQA Diamond. Originating306

from the GPQA Diamond datasetk (Rein et al.,307

2023) which tests scientific questions. These origi-308

nal datasets are in English, publicly available, and309

permitted for research.310

Statistics Analysis. Table 1 shows the analy-311

sis of three dynamically constructed datasets. For312

Out-Of-Distribution (OOD) test, the sample size313

is four times as the original due to each original314

instance being transformed into one Scenario-level315

and three Attack-level Semi-fact Data entries. This316

augmentation allows for a thorough OOD evalu-317

ation of model performance. The OOD test data318

exhibits a length comparable to that of the original319

test data, indicating that both Scenario-level and320

Attack-level Semi-fact data, derived through part-321

by-part or attack-based modifications respectively,322

preserve the model’s comprehension of the ques-323

tion’s core elements. This construction effectively324

incorporates legitimate semantic information that325

rephrases the question without altering its answer. 326

This approach helps distinguish models that rely 327

on memorization rather than reasoning by high- 328

lighting the differences between OOD and ID data. 329

Human Evaluation. To verify whether the dy- 330

namically constructed data, deemed legitimate by 331

the model, also corresponds to the correct answers 332

from a human perspective, we further design a hu- 333

man evaluation. Specifically, we use all samples 334

from AIME 2024 for evaluation which has 30 sam- 335

ples. We provide a detailed explanation of the 336

annotation guidelines to 3 undergraduate students 337

proficient in mathematics and pay them $2.5 per en- 338

try for manual annotation. The result of the human 339

evaluation shows that the questions and answers for 340

the 30 corresponding Scenario-level Semi-fact data 341

and Attack-level Semi-fact data were 100% aligned. 342

This indicates that the constructed Semi-fact test is 343

100% legitimate in the sampled results. 344

4 Experiments 345

We conduct experiments to verify the effectiveness 346

of our proposed dynamic OOD data construction 347

method and analyze the differentiated performance 348

and robustness of various LLMs. 349

4.1 Setup 350

We use the datasets in Section 3.2 for our ex- 351

periment across two test sets: (1) the origi- 352

nal test set, (2) the OOD test set. We con- 353

duct evaluations on various models, including o1- 354

preview (OpenAI, 2024), o1-mini (OpenAI, 2024), 355

o3-mini (OpenAI, 2025), GPT-4o (Achiam et al., 356

2023), Deepseek-V3 (Liu et al., 2024), Deepseek- 357

R1 (Guo et al., 2025), S1.1-32B (Muennighoff 358

et al., 2025), LLAMA3.1-70B and 8B (Dubey et al., 359

2024), Gemma2 (both 9B and 27B) (Rivière et al., 360

2024), Mistral-7B (Jiang et al., 2023), Mixtral- 361

8x7B (Jiang et al., 2024), Qwen2.5-72B-IT (Yang 362

et al., 2024), and Qwen2.5-Math-72B-IT (Yang 363

et al., 2024). All models were configured with a 364

temperature setting of 0.7 and used the pass@1 365

metric in a single test run. 366

4.2 Results 367

ThinkBench. The overall results of ThinkBench 368

are shown in Table 2. We observe that all mod- 369

els exhibit a certain degree of performance decline 370

when evaluated on the original dataset versus the 371

OOD dataset. This decay in performance can be 372

attributed to the fact that the models have encoun- 373

tered, to some extent, the original dataset. Notably, 374
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Figure 4: The performance gap between ID and OOD test on AIME-500 and AIME 2024. “ID performance” and
“OOD performance” represent the accuracy of LLMs in solving problems on the AIME-500 and AIME 2024’s
original test and OOD test, respectively.

the performance gap between ID (Original) and375

OOD in AIME 2024 for most models is much376

smaller than the performance gap in AIME-500,377

which demonstrates the data leakage in AIME data378

before 2024. The existing dataset (Li et al., 2024a;379

Glazer et al., 2024) is insufficient to reveal the380

aforementioned phenomenon.381

We also observe that models with fewer param-382

eters generally perform worse and are less robust383

than those with more parameters, especially within384

the Llama 3.1 model family. As the parameter385

count increases, both performance and robustness386

improve significantly, consistent with scaling laws.387

Thus, the number of parameters is crucial for en-388

suring robustness.389

4.2.1 Math Reasoning390

Figure 2 presents a comparative analysis of the391

performance of various LLMs on the AIME-500392

and AIME 2024 dataset, specifically contrasting393

their performance on the original ID data with394

that on OOD data. The results on the original set395

are mainly consistent with previous work (Glazer396

et al., 2024; Li et al., 2024b). Notably, the dashed397

line at a 45-degree angle from the origin signifies,398

where a robust model exhibits nearly equivalent399

performance on both OOD and ID data. These400

two datasets primarily evaluate mathematical rea-401

soning and logical capabilities, featuring relatively402

complex problem types.403

AIME-500 vs. AIME 2024. It is evident that404

o1 series models, o3, Deepseek-R1, and s1 exhibit405

a small decline in performance on the latest 2024406

AIME. Moreover, the performance gap between 407

OOD and ID is markedly larger on AIME-500 for 408

nearly all models, including the o1 series, com- 409

pared to the OOD and ID gap observed on AIME 410

2024. Specifically, the o1-preview shows a perfor- 411

mance gap of -3.3% on AIME 2024 and -11.2% on 412

AIME-500, while the o1-mini model exhibits a gap 413

of +5.8% and -12.8%, respectively. The most ad- 414

vanced reasoning models – o3-mini, Deepseek-R1 415

and s1.1-32B – show the same phenomenon. This 416

indicates that there was indeed some degree of data 417

leakage in questions before 2024. 418

Ideally, a robust model that has genuinely 419

learned to apply knowledge for reasoning should 420

not exhibit significant performance degradation 421

when the expression and scenario of a question 422

change, provided that the core knowledge being 423

assessed remains the same. Additionally, s1.1-32B 424

shows a significant gap in AIME-500 ID-OOD per- 425

formance. One possible explanation for its low 426

robustness is the limited amount of data used for 427

training. Furthermore, most models fall below the 428

dashed line, indicating a decline in performance 429

when transitioning to OOD data. This phenomenon 430

reveals their limitations in generalizing to previ- 431

ously unseen complex mathematical problems. 432

ID vs. OOD. Figure 4b and Figure 4a illustrates 433

the percentage difference in performance between 434

OOD and ID for various models on the AIME 2024 435

and AIME-500. Certain models, such as o3-mini, 436

Deepseek-R1, and o1-series models distinguish 437

themselves by achieving relatively high accuracy 438

on both the original and OOD datasets. They also 439
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Table 2: Reasoning performance. We report performance on OOD data of different models on three datasets that
we dynamically construct. Each performance value represents the accuracy in solving problems from the dataset.
The accuracy of performance on OOD is calculated through Equation 1. The term “Gap” denotes the percentage
decrease in performance on Semi-fact data tests compared to the original test performance.

AIME 2024 AIME-500 GPQA Diamond
AVG Gap (%)

Original OOD Gap (%) Original OOD Gap (%) Original OOD Gap (%)

o1-preview 0.500 0.484 -3.3 0.742 0.659 -11.2 0.684 0.638 -6.8 -7.1
o1-mini 0.567 0.600 5.8 0.864 0.753 -12.8 0.592 0.564 -4.7 -3.9
o3-mini 0.767 0.717 -6.5 0.922 0.834 -9.5 0.727 0.710 -2.4 -6.1
Deepseek-R1 0.800 0.750 -6.3 0.920 0.828 -10.0 0.747 0.682 -8.7 -8.3
GPT-4o 0.133 0.100 -24.8 0.278 0.197 -29.1 0.495 0.447 -9.8 -21.2
Deepseek-V3 0.367 0.333 -9.3 0.528 0.429 -18.8 0.581 0.530 -8.8 -12.3

Mixtral-8x7B-IT-v0.1 0.000 0.000 - 0.012 0.006 -50.0 0.168 0.163 -3.0 -17.7
Qwen2.5-72B-IT 0.200 0.184 -8.3 0.432 0.341 -21.1 0.536 0.487 -9.1 -12.8
Qwen2.5-Math-72B-IT 0.267 0.217 -18.9 0.536 0.430 -19.8 0.449 0.416 -7.5 -15.4
LLAMA3.1-70B-IT 0.200 0.167 -16.5 0.424 0.318 -25.0 0.388 0.383 -1.3 -14.3

s1.1-32B 0.533 0.517 -3.0 0.752 0.574 -23.7 0.525 0.508 -3.3 -10.0
Gemma-2-27B-IT 0.033 0.017 -50.0 0.062 0.045 -27.4 0.291 0.281 -3.6 -27.0
Gemma-2-9B-IT 0.000 0.000 - 0.032 0.021 -34.4 0.214 0.189 -11.9 -15.4
LLAMA3.1-8B-IT 0.000 0.017 - 0.132 0.087 -34.1 0.204 0.179 -12.5 -15.5
Phi-3-mini-4k-IT 0.000 0.000 - 0.046 0.026 -43.5 0.224 0.192 -14.5 -19.3
LLAMA3.2-3B-IT 0.033 0.033 0.0 0.122 0.087 -28.7 0.153 0.161 4.9 -7.9

exhibit minimal OOD performance degradation,440

signifying strong generalization capabilities and441

robustness to distributional changes.442

4.2.2 Science Questions443

Figures 6 show ID-OOD performance on GPQA444

Diamond dataset. The distribution of model perfor-445

mance points indicates that most models are more446

dispersed on this graph, suggesting that the diffi-447

culty of the GPQA Diamond dataset is less than448

that of AIME-500 and AIME 2024.449

Models such as Mixtral-8x7B-Instruct-v0.1 and450

LLAMA3.2-3B-IT demonstrate relatively low ac-451

curacy levels. Notably, LLAMA3.2-3B-IT shows452

a 4.9% improvement in OOD performance com-453

pared to its ID performance on the bar chart. This454

phenomenon can be attributed to the model’s inher-455

ently poor performance. For the difficult questions456

in the GPQA Diamond dataset, the model seems457

to resort to random guessing, resulting in an ac-458

curacy that fails to reach the 25% level expected459

from random guessing. Consequently, the OOD460

performance reflecting a higher accuracy than ID461

is a result of the same guessing strategy employed462

for both ID and OOD questions.463

5 Analysis and Discussion464

In this section, we present a detailed analysis of the465

OOD robustness of reasoning and non-reasoning466

models. We aim to address several open research467

questions that are fundamental to building efficient468

reasoning models. 469

RQ1: Do reasoning models deliver the signifi- 470

cant performance and robustness improvements 471

claimed in their reports? 472

Overall, the o1-series models, along with o3, 473

Deepseek-R1, and s1, demonstrate strong perfor- 474

mance in complex logical reasoning tasks, such 475

as AIME and GPQA Diamond, on the original 476

datasets. Despite a general performance drop from 477

ID to OOD across various datasets, these mod- 478

els maintain notable robustness. Their improved 479

performance, consistent with the claims in their 480

reports (OpenAI, 2024, 2025; Guo et al., 2025; 481

Muennighoff et al., 2025), suggests that these ad- 482

vancements are reliable. 483

Notably, on AIME-500 and AIME 2024, while 484

o3-mini and Deepseek-R1 exhibit a larger ID-OOD 485

performance gap than o1-preview, they still achieve 486

the highest absolute performance in the OOD set- 487

ting. This superior mathematical reasoning capabil- 488

ity is likely due to their exposure to a larger corpus 489

of mathematical problems during training, enhanc- 490

ing their problem-solving abilities. On GPQA Dia- 491

mond, o3-mini and Deepseek-R1 also achieve the 492

highest performance, underscoring their general 493

reasoning advantages. 494

RQ2: Is there a possibility of data leakage in the 495

original datasets for AIME-500? 496

Analyzing the ID-OOD performance gap, as de- 497

picted in Figures 2, reveals a notable difference 498

between AIME 2024 and AIME-500. While the 499
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(b) Performance on AIME-500 OOD data.

Figure 5: Test-time Scaling Law. We show that the model’s performance increases on the OOD dataset with the
test-time computation budget increases using Qwen2.5-Math-7B-IT as the policy model, along with several PRMs.

Table 3: Performance comparison of different process
reward models using Qwen2.5-Math-7B-IT under the
Best-of-256 test. All methods utilize Qwen2.5-Math-
7B-IT as the base model. Qwen2.5-Math-7B-IT’s per-
formance represents majority vote (Maj@256) results,
while other methods are based on PRMs.

AIME 2024 AIME-500

Original OOD Original OOD

Qwen2.5-Math-7B-IT (Maj@256) 0.167 0.133 0.524 0.464

+Math-Shepherd 0.233 0.233 0.528 0.458
+OpenR 0.233 0.200 0.526 0.472
+Skywork 0.200 0.233 0.582 0.500
+Qwen 0.300 0.300 0.538 0.476

gap between ID and OOD performance is rela-500

tively small for AIME 2024, AIME-500 consis-501

tently shows a larger gap. This observation sug-502

gests that a significant portion of the models may503

have encountered similar AIME-500 data during504

training. Given that AIME data prior to 2024 was505

publicly available, we posit that data leakage is506

likely for most models.507

RQ3: Can our OOD dataset serve as a test-time508

computation benchmark?509

Based on our analysis, the AIME-500, AIME510

2024, and GPQA Diamond datasets present signifi-511

cant challenges and possess strong discriminative512

power. As shown in Figure 5, model performance513

improves with increased test-time computation, un-514

derscoring the quality of our data. The upward515

trend and variation among the five lines indicate516

the dataset’s ability to differentiate model perfor-517

mance during test-time computation.518

Furthermore, Table 3 presents results from 256519

inferences using Qwen2.5-Math-7B-IT to evalu-520

ate different PRMs. For AIME 2024, OOD per- 521

formance shows slight variations compared to ID 522

across PRMs. However, for AIME-500, all PRMs 523

experience a notable decline in OOD performance, 524

suggesting possible exposure to similar problems 525

before 2024, and thus indicating data leakage. In 526

contrast, AIME 2024 data appears largely unseen 527

by the models in terms of the low-level perfor- 528

mance decay. Our methodology provides valuable 529

insights into assessing robust LLM reasoning. The 530

dynamic generation capability allows model valida- 531

tion, preventing exploitation or overfitting, which 532

can serve as an effective benchmark for facilitating 533

future research on test-time computation. 534

6 Conclusion 535

We presented ThinkBench, a first robust dynamic 536

evaluation benchmark for testing reasoning capa- 537

bility in LLMs, unifying the reasoning models and 538

non-reasoning models evaluation. ThinkBench of- 539

fers dynamic data generation to evaluate the out-of- 540

distribution of models through various math reason- 541

ing, and science questions samples. Experiments 542

over AIME-500, AIME 2024, and GPQA Diamond 543

indicate that while reasoning models represented 544

by o1 and o3 consistently demonstrate relatively 545

strong robustness, most LLMs fall short of robust 546

performance. Experiments on ThinkBench high- 547

light the importance of eliminating data contami- 548

nation, especially in reasoning tasks where golden 549

answers are prone to leakage. ThinkBench offers 550

an effective solution to mitigate data leakage issues 551

during reasoning evaluation. In the future, we will 552

study more factors of robust reasoning models. 553

8



Limitations554

While ThinkBench presents a systematic dynamic555

OOD data generation framework that uniquely de-556

couples reasoning robustness from memorization557

biases, it still has some limitations. First, while558

it supports MMLU, the evaluation predominantly559

focuses on mathematical and scientific reasoning560

tasks (e.g., AIME, GPQA), lacking diversity in561

reasoning types such as social reasoning. Second,562

due to cost constraints, Scenario-level semi-fact563

generation adopts a single-path rephrasing strategy564

instead of hierarchical multi-scenario branching,565

limiting OOD diversity. Future work needs to con-566

sider expanding task coverage and integrating tree-567

structured generation for richer scenario variations.568
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A Appendix 926

A.1 Process Reward Models 927

In the past, language model training primar- 928

ily used Outcome-based Reinforcement Models 929

(ORM) (Wang et al., 2024a). A foundational ex- 930

ample is the ORM-based model by Cobbe et al. 931

(2021), which focuses on training evaluators to as- 932

sess the correctness of answers, providing crucial 933

feedback. Meanwhile, the Process Reward Model 934

(PRM) aims to provide stepwise rewards, offer- 935

ing fine-grained supervision. DeepMind (Uesato 936

et al., 2022) supervises both reasoning steps and 937

final results, while OpenAI (Lightman et al., 2023) 938

introduces PRM800K, a human-annotated dataset, 939

emphasizing step verification. Li et al. (2022) en- 940

hance result reliability with evaluator models and 941

majority voting. Yu et al. (2024) improve reason- 942

ing through reinforcement learning with outcome 943

and process supervision. The Generative Reward 944

Model (GenRM)(Zhang et al., 2024) allows rich 945

interaction between evaluators and generators, re- 946

flecting a demand for sophisticated process super- 947

vision. Recent work (Zheng et al., 2024) offers 948

a benchmark for evaluating error identification in 949

mathematical reasoning, fostering scalable over- 950

sight research. As a supplement, we propose a 951

dynamic benchmark for testing reasoning capabil- 952

ity in LLMs with the help of PRMs. 953

A.2 Process Reward Models on Test-time 954

Computation Budget 955

A.2.1 Settings 956

To comprehensively conduct the test-time scaling 957

evaluation for the various PRMs on AIME 2024 958

and AIME-500, we employ these PRMs: 959

(1) Math-Shepherd-PRM: The scoring mecha- 960

nism employed in Math-Shepherd is essential for 961

understanding the performance of reasoning steps. 962

In this framework, the token “kn” is used to indi- 963

cate the position where the step score is predicted. 964

A “+” token represents a good step, one that con- 965

tributes positively towards reaching the correct an- 966

swer, while a “-” token signals a bad step. Notably, 967

during the training of PRMs, the loss is computed 968

only at positions marked with “kn”. The PRM de- 969

noted as (P × S → R+), assigns a score to each 970

reasoning step s. The model is typically trained 971

using the following binary cross-entropy loss func- 972
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Table 4: Performance on Scenario-level semi-fact data and Attack-level semi-fact data. Each performance value
represents the accuracy in solving problems from the dataset. The accuracy of performance on attack-level semi-
factual data is determined by computing the minimum accuracy across three different attacks.

AIME 2024 AIME-500

Original OOD (Scenario) OOD (Attack) Original OOD (Scenario) OOD (Attack)

o1-preview 0.500 0.500 0.467 0.742 0.638 0.680
o1-mini 0.567 0.600 0.600 0.864 0.756 0.750
o3-mini 0.767 0.667 0.767 0.922 0.848 0.820
Deepseek-R1 0.800 0.733 0.767 0.920 0.816 0.840
GPT-4o 0.133 0.100 0.100 0.278 0.204 0.190
Deepseek-V3 0.367 0.333 0.333 0.528 0.438 0.420

Mixtral-8x7B-IT-v0.1 0.000 0.000 0.000 0.012 0.000 0.012
Qwen2.5-72B-IT 0.200 0.167 0.200 0.432 0.290 0.392
Qwen2.5-Math-72B-IT 0.267 0.233 0.200 0.536 0.360 0.500
LLAMA3.1-70B-IT 0.200 0.167 0.167 0.424 0.244 0.392

s1.1-32B 0.533 0.500 0.478 0.752 0.654 0.494
Gemma-2-27B-IT 0.033 0.033 0.000 0.062 0.028 0.062
Gemma-2-9B-IT 0.000 0.000 0.000 0.032 0.016 0.026
LLAMA3.1-8B-IT 0.000 0.033 0.000 0.132 0.074 0.100
Phi-3-mini-4k-IT 0.000 0.000 0.000 0.046 0.024 0.028
LLAMA3.2-3B-IT 0.033 0.033 0.033 0.122 0.066 0.108

tion:973

LPRM =
K∑
i=1

ysi log rsi + (1− ysi) log(1− rsi),

(2)974

where ysi represents the ground-truth label of975

the i-th reasoning step si, rsi is the sigmoid output976

score predicted by the PRM for step si, and K is the977

total number of reasoning steps in a given solution978

s. To estimate the quality of each reasoning step,979

two methods are employed: hard estimation (HE)980

and soft estimation (SE). In HE, a step is considered981

good if it contributes to reaching the correct answer982

a∗, as defined by:983

yHE
si =

{
1, if ∃aj ∈ A, aj = a∗

0, otherwise.
(3)984

In contrast, SE estimates the quality of a step985

based on the frequency with which it leads to the986

correct answer across multiple attempts:987

ySEsi =

∑N
j=1 I(aj = a∗)

N
, (4)988

where I(aj = a∗) is an indicator function that989

returns 1 if the j-th attempt aj equals the correct990

answer a∗, and N is the total number of attempts.991

Once the labels for each reasoning step are ob-992

tained, the PRM is trained using the cross-entropy993

loss function to optimize the model’s ability to994

correctly classify each step as either good or bad995

((Wang et al., 2024c)).996

(2) OpenR-PRM: The Problem Resolution 997

Model (PRM) computes a score, denoted as pt, 998

based on the current problem q and the sequence 999

of solution steps up to time t, represented as 1000

[x1, . . . , xt]. This approach allows for a precise and 1001

detailed analysis of the solution process, helping 1002

identify errors as they occur, as noted by (Lightman 1003

et al., 2023). The main goal of PRMs is to assess 1004

whether the solution process is on track, with a 1005

score yt calculated to represent the correctness of 1006

the solution at step t, ranging from 0 to 1. This 1007

score is given by yt = PRM(q, x1, x2, . . . , xt). 1008

During training, the model is framed as a next- 1009

token prediction task, where labels are assigned 1010

as correct or incorrect, represented by positive 1011

(+) or negative (-) tokens. After training, OpenR 1012

uses the PRM to evaluate the correctness of each 1013

solution step during inference, assigning a score 1014

rPRMt to each step. Two strategies are employed 1015

to compute a final score: the PRM-Min strategy, 1016

which selects the minimum score among all steps, 1017

v = min{rPRMt}Tt=0, and the PRM-Last strategy, 1018

which takes the score of the final step, v = rPRMT
. 1019

PRMs function as dense verifiers, providing strong 1020

feedback that can significantly enhance the overall 1021

solution process ((Wang et al., 2024a)). 1022

(3) Skywork-PRM: We evaluate Skywork o1 1023

Open-PRM-Qwen-2.5-7B (o1 Team, 2024), which 1024

Extends the capabilities of the 1.5B model by scal- 1025

ing up to handle more demanding reasoning tasks, 1026

pushing the boundaries of AI reasoning. 1027
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(4) Qwen-PRM: We evaluate 7B version of1028

Qwen-PRM (Zhang et al., 2025). This is a pro-1029

cess reward model designed to offer feedback on1030

the quality of reasoning and intermediate steps in1031

mathematical problems. It is part of the Qwen2.5-1032

Math series and has shown impressive performance1033

in identifying errors in reasoning processes.1034

As shown in Figure 5, the model’s performance1035

improves on the AIME 2024 OOD and AIME-1036

500 OOD dataset as the test-time computation1037

budget increases and the best-of-N performance1038

of each reward model varies as a function of N.1039

Since majority voting is known to be a strong base-1040

line((Lewkowycz et al., 2022; Wang et al., 2022)),1041

we also include this method as a point of compari-1042

son. We compared a series of PRM methods and1043

then observed the performance changes of various1044

PRM methods as N increased.1045

Skywork-PRM and Qwen-PRM achieve rela-1046

tively high performance across all computation1047

budgets. OpenR shows moderate performance, im-1048

proving steadily with increasing N, but its improve-1049

ment rate is slower compared to Skywork-PRM1050

and Qwen-PRM. Majority Voting mainly underper-1051

forms other methods, even with increased compu-1052

tation budgets, showing limited scalability. The1053

possible underlying reasons are these: (1)Model-1054

specific Capabilities: The superior performance of1055

Skywork-PRM and Qwen-PRM may result from1056

their advanced mechanisms for aggregating or uti-1057

lizing the increased number of solutions, likely1058

benefiting from better exploration of the solution1059

space or more robust voting schemes. (2)Algo-1060

rithmic Limitations: The suboptimal performance1061

of Majority Voting suggests its inability to effec-1062

tively utilize additional solutions. (3)Dataset Com-1063

plexity: The AIME 2024 OOD dataset and AIME-1064

500 OOD dataset likely require nuanced reasoning1065

and adaptability, favoring methods like Skywork-1066

PRM and Qwen-PRM that can better handle out-1067

of-distribution (OOD) generalization tasks. Thus,1068

the results highlight the importance of adopting1069

advanced techniques that can efficiently utilize in-1070

creased test-time computation budgets. Methods1071

like Skywork-PRM and Qwen-PRM demonstrate1072

superior scaling behavior, suggesting their robust-1073

ness and adaptability in solving complex problems.1074
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B ThinkBench on Language 1075

Understanding 1076

As illustrated in Figure 7, we also present the 1077

results of dynamically constructing 570 MMLU 1078

OOD data using ThinkBench. There is a signifi- 1079

cant performance gap between Out-Of-Distribution 1080

(OOD) and In-Distribution (ID) data across differ- 1081

ent models. The o1-preview model demonstrates 1082

superior performance on this knowledge-intensive 1083

dataset. Furthermore, reasoning models like o1- 1084

preview and o1-mini exhibit greater robustness 1085

compared to non-reasoning models such as GPT- 1086

4o. 1087

C Case Study 1088

Table 5, Table 6 and Table 7 show the case of differ- 1089

ent models tackling ThinkBench, including ques- 1090

tion, choices, answer in Original set and OOD set, 1091

and responses from models. 1092

Through the provided example in Table 5, we 1093

observe that our dynamic construction transforms 1094

the original question into a new question, with the 1095

options also being rephrased and reordered. Our 1096

benchmark reduces the likelihood of models achiev- 1097

ing high scores through rote memorization. In the 1098
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Original Question: Carruthers approaches questions about the moral standing of nonhuman animals from the perspective
of which of the following moral theories?
Original Choices: A: consequentialism B: Kantianism C: virtue ethics D: contractualism
Original Answer: D
OOD Question (Scenario-level Semi-fact Question): In his exploration of ethical frameworks, Carruthers considers
various moral theories before honing in on a particular approach to evaluate the moral status of nonhuman animals. From
which moral theory does Carruthers analyze the ethical significance of these animals?
OOD Choices: A: ethics of character B: contractualism C: outcomes-based ethics D: Kantianism
OOD Answer: B

GPT-4o on Original:
Peter Carruthers is known for approaching questions about
the moral standing of nonhuman animals from the perspec-
tive of contractualism. Contractualism is a moral theory
that determines moral principles based on what rational
agents would agree upon as part of a social contract. Car-
ruthers argues that nonhuman animals do not have direct
moral standing within contractualism because they are not
capable of participating in the contract-making process.
Therefore, the correct answer is D.

Llama3.1-70B-IT on Original:
Carruthers approaches questions about the moral standing
of nonhuman animals from the perspective of contractu-
alism. Contractualism is a moral theory that emphasizes
the importance of mutual agreements and contracts in de-
termining moral obligations. In the context of nonhuman
animals, contractualism would suggest that animals have
moral standing because they are capable of participating in
a “contract” or social agreement with humans, even if it is
not a formal or explicit one. The correct answer is D.

GPT-4o on OOD:
Carruthers is known for utilizing Kantianism as a framework
for evaluating the moral status of nonhuman animals. This
approach emphasizes the importance of rationality and moral
agency, aligning with Kantian ethical principles. Therefore, the
correct answer is D.

Llama3.1-70B-IT on OOD:
Based on the information provided, the correct answer is C:
outcomes-based ethics.

Table 5: Case Study on MMLU 570.

responses from GPT-4o and Llama3.1-70B-IT, it1099

is evident that while both models correctly answer1100

the original question, they fail to provide correct re-1101

sponses to the corresponding OOD data. Both mod-1102

els provide detailed analyses and correct answers to1103

the original test data. However, for the OOD data,1104

Llama3.1-70B-IT does not offer a detailed analysis1105

and instead directly gives an incorrect answer. Al-1106

though GPT-4o conducts some analysis, it confuses1107

the concepts of “Kantianism” and “contractualism”,1108

even mixing them up during the reasoning process,1109

ultimately leading to an incorrect answer.1110

C.1 Instruction for Human Annotation1111

This task involves checking if the modified ques-1112

tion and the original answer are consistent. Follow1113

the steps below: (1) Read the questions and the1114

original answer: Carefully read the modified ques-1115

tion, the original question, and the original answer.1116

(2) Identify Key Changes: Note any changes in1117

numbers, operations, or conditions between the1118

original and modified questions. (3) Verify Consis-1119

tency: Check if the original answer is consistent1120

with the modified question. Mark as “Consistent”1121

if it does, otherwise mark it as “Inconsistent”.1122
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Original Question: There exist real numbers x and y, both greater than 1, such that logx(y
x) = logy(x

4y) = 10. Find xy.
Original Answer: 25
OOD Question (Scenario-level Semi-fact Question): Consider two species of plants with growth rates represented by real
numbers x and y, both exceeding 1, such that the growth rate of one species raised to the power of the other results in the
equation logx(y

x) = logy(x
4y) = 10. Determine the product of their growth rates, xy.

OOD Answer: 25

GPT-4o on Original:

logx(y
x) = 10

logy(x
4y) = 10

We’ll solve for xy. Starting with the first equation:

logx(y
x) = 10

This can be rewritten using the logarithm power rule:

x logx y = 10

Thus,

logx y =
10

x

The base change formula logx y = log y
log x

gives us:

log y

log x
=

10

x

So,

log y =
10

x
log x

Now, for the second equation:

logy(x
4y) = 10

This expands to:

4y logy x = 10

Thus,

logy x =
10

4y
=

5

2y

The base change formula logy x = log x
log y

gives us:

log x

log y
=

5

2y

So,

log x =
5

2y
log y

Now substitute log y from the first equation into this:

log x =
5

2y
× 10

x
log x

Simplifying,

log x =
50

2xy
log x

Cancel log x from both sides (assuming log x ̸= 0):

1 =
50

2xy

Thus,
2xy = 50

So,
xy = 25

The value of xy is 25.

GPT-4o on OOD:
Step 1: Solve the first equation
The first equation is:

logx(y
x) = 10

This implies:
yx = x10

Step 2: Solve the second equation
The second equation is:

logy(x
4y) = 10

This implies:
x4y = y10

Step 3: Express y in terms of x from the first equation
From yx = x10, we can express y as:

y = x10/x

Step 4: Substitute y in the second equation
Substitute y = x10/x into the second equation x4y = y10:

x4(x10/x) = (x10/x)10

Simplifying the right side:

x4(x10/x) = x100/x

Step 5: Equate the exponents
Since the bases are the same, equate the exponents:

4 · x10/x =
100

x

Step 6: Solve for x
Rearrange and simplify:

4x10/x · x = 100

4x1+10/x = 100

x1+10/x = 25

Step 7: Solve for x using trial and error or numerical meth-
ods
Let z = 1 + 10

x
, so xz = 25. We need to find x such that:

z = 1 +
10

x
and xz = 25

By trial and error or numerical methods, you can find that
x = 5 satisfies the equation.
Step 8: Find y

Now, substitute x = 5 back into y = x10/x:

y = 510/5 = 52 = 25

Step 9: Calculate the product xy
Finally, calculate the product:

xy = 5 · 25 = 125

Thus, the product of their growth rates is 400.

Table 6: Case Study on AIME 2024.
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Original Question: cyclohexanone is treated with LDA at low temperature, followed by benzaldehyde. the reaction mixture
is then acidified, forming product 1. 1 is then treated with an excess of diethylaminosulfur trifluoride, forming product 2.
what is the structure of prodcut 2?
Original Choices: A: ((R)-((R)-2,2-difluorocyclohexyl)fluoromethyl)benzene B: (S)-2-((R)-
fluoro(phenyl)methyl)cyclohexan-1-one C: (2R)-1-fluoro-2-((S)-fluoro(phenyl)methyl)cyclohexan-1-ol D: ((S)-
((R)-2,2-difluorocyclohexyl)fluoromethyl)benzene
Original Answer: A
OOD Question (Scenario-level Semi-fact Question): In the realm of organic synthesis, understanding the behavior
of reagents under various conditions is crucial for designing effective synthetic routes. Let’s consider a scenario where
cyclohexanone, a common ketone, is reacted with lithium diisopropylamide (LDA), a strong base, at reduced temperature
to form an enolate, which is then treated with benzaldehyde. This reaction typically forms an aldol product, which, upon
acidification, yields a compound known as product 1. Further exploring the reactivity of such aldol products, if this product 1
is treated with an excess of diethylaminosulfur trifluoride, a reagent known for its ability to affect sulfur-based modifications
in organic molecules, what would be the structure of the resulting product 2?
OOD Choices: A: ((S)-((R)-2,2-difluorocyclohexyl)fluoromethyl)benzene B: ((R)-((R)-2,2-
difluorocyclohexyl)fluoromethyl)benzene C: (2R)-1-fluoro-2-((S)-fluoro(phenyl)methyl)cyclohexan-1-ol D: (S)-2-
((R)-fluoro(phenyl)methyl)cyclohexan-1-one
OOD Answer: B

o1-preview on Original:
To solve this problem, let’s break down the reactions step by step. **First Reaction:** Cyclohexanone is treated with LDA
(Lithium Diisopropylamide) at low temperature. LDA is a strong, non-nucleophilic base that deprotonates the most accessible
α-hydrogen to form the kinetic enolate. In cyclohexanone, both α-carbons are equivalent due to symmetry, so the enolate forms
at one of these positions. The enolate then attacks benzaldehyde in an aldol addition reaction. The nucleophilic carbon of the
enolate adds to the electrophilic carbonyl carbon of benzaldehyde, forming a new carbon-carbon bond. After protonation, this
gives a β-hydroxy ketone (product 1). **Second Reaction:** Product 1, the β-hydroxy ketone, is treated with an excess of
diethylaminosulfur trifluoride (DAST). DAST is a fluorinating agent that can convert alcohols to alkyl fluorides and ketones to
geminal difluorides. In this case, DAST converts: - The hydroxyl group at the β-position into a fluorine atom. - The ketone group
into a geminal difluoride. The overall result is a cyclohexane ring with: - Two fluorine atoms attached to C1 (from the ketone
conversion). - A fluorine atom and a benzyl group attached to C2 (from the hydroxyl conversion). This gives us a product where:
- C1 is now a difluoromethylene group (CF2). - C2 has a fluorine and a benzyl group, with specific stereochemistry retained from
the initial aldol addition. Considering the stereochemistry: - The initial aldol addition creates a new chiral center at C2. Since the
starting materials are achiral and no chiral catalysts are used, a racemic mixture is formed. - The DAST reaction retains the
configuration at C2 when converting the hydroxyl group to fluorine. - The former carbonyl carbon (C1) becomes a new chiral
center after forming the geminal difluoride. From the options provided, option **A** corresponds to the product formed: -
**Option A:** ((R)-((R)-2,2-difluorocyclohexyl)fluoromethyl)benzene This option indicates that: - The cyclohexane ring has
two fluorines at C2 (now numbered as C1 in the name), making it a 2,2-difluorocyclohexyl group. - There is a fluoromethyl group
attached to benzene, corresponding to the fluorine and benzyl group at C2. - Both chiral centers have the **R** configuration,
matching the stereochemistry of the reactions. Thus, the correct answer is: A

o1-preview on OOD:
To solve this problem, let’s systematically break down each step of the reaction and understand the transformations that occur.
**Step 1: Formation of the Aldol Product (Product 1)** 1. **Formation of the Enolate Ion:** Cyclohexanone is treated with
lithium diisopropylamide (LDA), a strong, non-nucleophilic base. LDA deprotonates the α-carbon of cyclohexanone, forming
the enolate ion. 2. **Aldol Addition Reaction:** The enolate ion is nucleophilic at the α-carbon and attacks the electrophilic
carbonyl carbon of benzaldehyde. This forms a new carbon-carbon bond between the α-carbon of cyclohexanone and the
carbonyl carbon of benzaldehyde. 3. **Acidification:** The alkoxide formed after the addition is protonated upon acidification,
yielding a β-hydroxy ketone. The **structure of Product 1** is therefore a cyclohexanone ring with a hydroxyl group (OH)
and a phenyl group (C6H5) attached to the same carbon (the α-carbon). This gives us **2-hydroxy-2-phenylcyclohexanone**.
**Step 2: Reaction with Diethylaminosulfur Trifluoride (DAST)** DAST is a fluorinating agent known to convert alcohols to
alkyl fluorides (with inversion of configuration) and carbonyl groups to gem-difluorides. However, under standard conditions,
ketones are less reactive than alcohols towards DAST, and selective fluorination of the alcohol can occur. In this case, when
Product 1 is treated with excess DAST: 1. **Fluorination of the Alcohol:** The hydroxyl group is converted to a fluorine atom
with inversion of configuration. This transforms the chiral center at the α-carbon (which was R or S in the aldol product) into the
opposite configuration due to the inversion during the SN2-like process. 2. **Ketone Retention:** The ketone group remains
largely unreacted under these conditions because ketones are less reactive towards DAST compared to alcohols, especially
in the presence of steric hindrance and electronic effects from adjacent groups (like the phenyl group). Thus, **Product 2**
is **2-((R)-fluoro(phenyl)methyl)cyclohexan-1-one**, where the hydroxyl group has been replaced by a fluorine atom, and
the configuration at the chiral center has inverted compared to Product 1. **Matching with the Given Options:** Option D
corresponds exactly to this structure: - **(S)-2-((R)-fluoro(phenyl)methyl)cyclohexan-1-one** This indicates that the final
product has: - A cyclohexanone ring (ketone at position 1) - A fluorine atom and a phenyl group attached to the same carbon at
position 2 - Specific stereochemistry indicating the inversion at the α-carbon Therefore, **Option D is the correct answer**.D.

Table 7: Case Study on GPQA.
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