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Abstract

Evaluating large language models (LLMs)
poses significant challenges, particularly due to
issues of data contamination and the leakage of
correct answers. To address these challenges,
we introduce ThinkBench, a novel evaluation
framework designed to robustly evaluate LLMs’
reasoning capability. ThinkBench proposes a
dynamic data generation method for construct-
ing out-of-distribution (OOD) datasets and of-
fers an OOD dataset that contains 2,912 sam-
ples drawn from reasoning tasks. ThinkBench
unifies the evaluation of test-time and train-
time computing models. We evaluate 16
LLMs and 4 PRMs under identical exper-
imental conditions and show that most of
the LLMs’ performance are far from robust
and they face a certain level of data leak-
age. By dynamically generating OOD datasets,
ThinkBench effectively provides a reliable
evaluation of LLMs and reduces data con-
tamination impact. The part of our dataset
is available in https://anonymous.4open.
science/r/ThinkBench-Review/.

1 Introduction

Large Language Models (LLMs) have made sig-
nificant advancements across a range of appli-
cation domains, including language understand-
ing (Karanikolas et al., 2023; Xu et al., 2024), lan-
guage generation (Wu et al., 2024b; Naveed et al.,
2023), and complex reasoning (Hao et al., 2023; Lu
et al., 2023; Azerbayev et al.; Wang et al., 2024a).
Test-time computing models, such as ol (OpenAl,
2024), have further extended the capabilities by
leveraging the Process Reward Model (PRM) and
advanced search strategies during decoding. No-
tably, models, such as OpenAl ol, 03 (OpenAl,
2024, 2025) and Deepseek-R1 (Guo et al., 2025),
have shown performance that rivals that of a Ph.D.-
educated individual, outperforming GPT-4 in com-
plex reasoning tasks, thus revealing substantial po-
tential for future developments in LLMs.

Original Data

Original Question: Let a,, = 6™ + 8™. Determine the remainder on dividing agz by 49.
Answer: 35

OOD Data (Semi-fact Data) @ W

Scenario-level Semi-fact Data Sequence of
Question: light patterns )
Define the sequence of light patterns as the total flashes, with each pattern n
consisting of 6™ + 8" flashes. Find the leftover number of flashes when the total
flashes in the 83 rd pattern are grouped into sets of 49.

Answer: 35

Attack-level Semi-fact Data

Question 1:

Let a,, = 6™ + 8™. Determine the remainder on dividing ags by 49
Question 2:

Let a,, = 6™ + 8™. Determine the remainder on dividing ags by 49
Question 3:

an = 6™ + 8". Determine the remainder on dividing agz by 49.
Answer: 35

Figure 1: Example of ThinkBench datasets containing
Scenario-level and Attack-level semi-fact data.

An interesting finding from the OpenAl re-
port (OpenAl, 2024) is that the performance of the
ol-series models on the Advanced International
Mathematics Exam (AIME) significantly declined
in 2024, compared to previous years (1983-2023:
0.74 vs. 2024: 0.50). Historical statistics, however,
indicate that the median scores of human partic-
ipants on the AIME exam in previous years are
consistent with 2024 exam (4.81 vs. 5.0)!. Since
ol was trained on data by 2023, before the AIME
2024 Exam, this discrepancy suggests a possible
data contamination issue, raising an important ques-
tion about how to assess the generalization abilities
of LLMs, rather than memorization.

To address this problem, we propose a novel ro-
bust evaluation framework, namely ThinkBench.
Building on causal theory and semi-factual causal-
ity (Delaney et al., 2021; Kenny and Keane, 2021),
we introduce Out-Of-Distribution (OOD) data gen-
eration designed to test reasoning capabilities. As
shown in Figure 1, we introduce scenario-level and
attack-level semi-fact data generation methods, dif-

'Sourced from https://artofproblemsolving.com.
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soning models on AIME 2024.
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Figure 2: Math Reasoning Gap: Most models demonstrate a visible performance gap between their math reasoning
performance on ID and OOD, including open-source models and commercial models.

fering in the specific elements of text they alter,
enabling the creation of evaluation datasets that
are both robust and challenging. By decoupling
reasoning from memorization, dynamic evaluation
allows us to more effectively test how well LLMs
can generalize to unseen reasoning scenarios.

We take AIME-500 (500 AIME questions from
1983 to 2023) and AIME 2024 (30 AIME ques-
tions in 2024) for math reasoning tasks, and GPQA
Diamond for scientific questions, dynamically gen-
erating an OOD dataset of 2,912 samples, provides
a diverse set of challenges that test both the gener-
alization and reasoning capabilities of LLMs. As
illustrated in Figure 2, compared to the original
datasets, our OOD evaluation set proves to be more
difficult, resulting in an average performance decay
of 24.9% and 11.8% across all models on AIME-
500, and AIME 2024, respectively. This indicates
that there was indeed some data leakage in AIME
questions before 2024, highlighting the importance
of mitigating data contamination for reasoning eval-
uations. The difference in performance decay be-
tween AIME-500 and AIME 2024 demonstrates
that our dynamically constructed OOD data con-
struction is a convenient and effective method to
reduce the impact of data contamination.

Figure 2 also shows that ol (OpenAl, 2024),
03 (OpenAl, 2025), Deepseek-R1 (Guo et al., 2025)
and s1 (Muennighoff et al., 2025) maintain the
strongest accuracy among all models. As represen-
tatives of test-time computing models (Luo et al.,
2025; Liu et al., 2025), o1, 03, and s1 enhance infer-
ence performance by increasing computational re-
sources during testing, contrasting with train-time
computing models. ThinkBench provides a reason-

ing benchmark to evaluate both train-time comput-
ing models and test-time computing models.

In addition to the overall model accuracy, we
also explore the impact of various PRMs and their
performance under the best-of-n search during de-
coding. Fine-grained evaluations show how dif-
ferent data generation strategies, such as Math-
shepherd (Wang et al., 2024c¢), influence model
outcomes. The performance improves with an in-
creased test-time computation budget, further high-
lighting the discriminative power of our benchmark
and the quality of the data.

To our knowledge, we are the first to present a ro-
bust dynamic evaluation benchmark for testing rea-
soning capability in LLMs (Qin et al., 2024; Huang
et al., 2024c; Wang et al., 2024a). In ThinkBench,
we provide a convenient and effective OOD data
construction method and a high-quality dataset
to reduce data contamination impact, effectively
evaluating the reasoning ability in both train-time
computing models and test-time computing models.
Notably, we verify the validation of the test-time
scaling law using the dynamic evaluation without
data contamination based on ThinkBench.

2 Related Work

Evaluating Large Language Models. Evaluat-
ing LLMs accurately and fairly poses a significant
challenge (Chang et al., 2024). Mainstream eval-
uation methods include: (1) LLMs-as-a-judge:
Benchmarks like AlpacaEval (Li et al., 2023), Pan-
daLM (Wang et al., 2023b), MT-Bench (Zheng
et al., 2023), and C-Eval (Huang et al., 2024b) use
large language models for predefined questions.
(2) Humans-as-a-judge: Human evaluation pro-



Table 1: Statistics of reconstructed reasoning datasets
based on three original test datasets, including AIME-
500, AIME 2024, and GPQA Diamond.

AIME-500 AIME 2024 GPQA Diamond

# Samples of original 500 30 198
Questions” Avg Len 51.1 60.1 67.7
Choices” Avg Len - - 27.8
# Samples of OOD 2,000 120 792
Questions’ Avg Len 61.2 70.1 85.2
Choices’ Avg Len - - 25.7

vides comprehensive feedback through expert re-
views (Ribeiro and Lundberg, 2022; Gao et al.,
2023). (3) Other benchmarks: Several traditional
benchmarks employ static datasets to assess models
across various tasks (Liang et al., 2022; Hendrycks
et al., 2020, 2021). Our work falls into the third
category. However, rather than using static data,
we generate test sets dynamically.

Robustness of Large Language Models. Eval-
uating the robustness of LLMs is crucial (Muen-
nighoff et al., 2025; Guo et al., 2025) for their
applications across diverse scenarios (Wang et al.,
2023a; Glazer et al., 2024; Li et al., 2024b). Pre-
vious studies (Li et al., 2024a), such as OOD-
GLUE (Yuan et al., 2023), GLUE-X (Yang et al.,
2023), and ZebralLogic (Lin et al., 2024), focus on
robustness of non-reasoning models. Additionally,
Yang et al. (2022) focus on generating OOD data by
employing semi-fact data augmentation methods.
Recently, Hosseini et al. (2024) identify reasoning
gaps in LLMs by evaluating math problem pairs,
revealing performance disparities in smaller, math-
specialized models. Wu et al. (2024a) introduce
cofQA, which targets text-based inference tasks
using counterfactual data perturbations. Our work
is similar in assessing general robustness but dif-
fers from the literature in focusing on reasoning
tasks, for which OOD tests are more necessary as
compared to general tasks.

In addition, existing benchmarks predominantly
emphasize non-reasoning models (Li et al., 2023;
Hendrycks et al., 2020; Huang et al., 2024a; Li
et al., 2024c¢). For reasoning models, current eval-
uations often target specific tasks, such as plan-
ning (Wang et al., 2024b) and rule execution (Gui
et al., 2024), with limited comprehensive robust-
ness analyses (Zhong et al., 2024). Unlike these
work, our benchmark focuses on robustness and
reasoning with practical applications, offering sta-
tistically significant insights.

3 Dynamic Evaluation Benchmark

For math reasoning tasks, constructing counterfac-
tual data presents challenges in changing a golden
answer, which contrasts with commonsense tasks,
where reliable sources like Wikipedia can be uti-
lized. In contrast, semi-fact data does not need to
change a specific answer. As shown in Figure 3,
ThinkBench contains two dynamic semi-fact data
generation methods, aiming to assess the real rea-
soning ability of LLMs: (a) Scenario-level Semi-
fact Data (Yang et al., 2023; Zhu et al., 2023a, 2024;
Opedal et al., 2024), which changes the scenario
for the original reasoning data; (b) Attack-level
Semi-fact Data (Zhu et al., 2023b), which uses
three attack methods to rephrase the original data.

We use generated OOD data to perform dynamic
reasoning evaluation on both reasoning models and
non-reasoning models. Maintaining core knowl-
edge while altering scenarios or expressions, we
evaluate whether models can consistently apply
learned knowledge across contextual variations. Fi-
nally, we can leverage our OOD data to conduct (c)
test-time evaluation based on PRMs.

3.1 OOD Data Generation

Scenario-level Semi-fact Data Generation. The
process primarily involves two types of agents: the
Rephrasing Agent, which is responsible for trans-
forming the original questions and generating new
ones, while the Verifier Agent, which is responsible
for confirming at each step whether the rephrasing
meets the current requirements and whether the
rephrasing is valid.

There are two Rephrasing Agents. The first gen-
erates suitable scenarios for reasoning problems,
ensuring that the new scenarios are appropriately
transferable concerning the core of the original
problem. The second rewrites each part (often at
the sentence level) to fit the new scenario while
preserving the original meaning. This step-by-step
process uses each newly generated part as a refer-
ence for subsequent parts.

There are three Verifier Agents. The first checks
if the core content of the original problem can be
effectively transferred to the new scenario. The
second evaluates each newly generated part, en-
suring it meets three criteria: it conveys the same
core meaning as the original, is consistent with pre-
viously revised parts, and is correctly adapted to
the new scenario. Additionally, an overall Verifier
Agent assesses the overall new problem, ensuring



Original Test Set —>

{ (a) Scenario-level Semi-fact Data Construction

(From AIME 2024) K :
Question: There exist real numbers and , both ZZ‘: e?::il:]an”o Step-by-step Rephrase
greater than 1, such that
log ( )= (*)=10.Find . @ New Scenario: @ @
Answer: 25 The concept of Question: Consider two species of plants with
---------------- ‘growth rates of —= growth rates represented by real numbers
! (me.AIME 50.0) . 1 two different g and , both CXCC'::dl 1, such that the growth
I Question: What is the largest even integer that scies of plants’ - => —> L= —> i . DA v
. | species of plants rate of one species raised to the power of the
| cannot b'e) written as the sum of two odd composite | Overall other results in the equation
|L 2\.::1325:.38 | = —-> = = Verifier log ( )=  (*)=10. Determine the
R e e T t of their growth rates,
r(From GPQA Diamond) = 2 = FAI(:SVI:'Zr:)ZS eir growthates
! Question: Which of the following physical Scenario Verifier Stepwise Verifier
! theories never requires regularization at high \

Scenario-level Semi-fact Data

I
I
I
energies? 1
I Choices: 1
I A: Superstring Theory |
I B: Classical Electrodynamics
I C: Quantum Electrodynamics !
1 D: Quantum Chromodynamics :

Dynamic Data

N

Generation t

%/ (b) Attack-level Semi-fact Data Construction }\

Multiple Attackers 5 ¢, o) Jevel Semi-fact Data

Dynamic Reasoning Evaluation l

(c) Test-time Scaling Evaluation

Question 1:
] Ix exist real numbers and , both greater than 1,

I I
| Non-Reasoning models I_lJ

/->—>—> Answer;
_— [Py ]>[Pa] 5

such that ()= ( )= .Find
T l—) Question 2:

There exist real numbers and , both greater

~ . — than 1, such that ()= ()=
c - = @ Find  and true is true.
| I I_IJ / \ PB‘;St'“f'N = Question 3:
Reasoning models eriormance rifier There exist real numbers and , both greater
8 Process Reward Verifie than 1, such that ()= ()=
' Model Find  5XelW1ZlJc.
Cmet K Answer: 25 /
~

Figure 3: Overview of ThinkBench framework. Based on the original data, ThinkBench dynamically generates
scenario-level Semi-fact Data (a) and Attack-level Semi-fact Data (b), which can be used to evaluate the robustness
of reasoning models and non-reasoning models. ThinkBench can also serve as a useful tool for Test-time Scaling

Evaluation(c).

it maintains essential consistency with the original
questions, preserving informational content, and is
appropriately constructed within the new scenario.
At every step, outputs from Rephrasing Agents
need to pass the corresponding Verifier Agent’s
checks. If invalid, the process reverts to regen-
eration. The final new problem also needs to be
approved by the Verifier Agent or be regenerated.
For the datasets that contain Choices, similarly,
Rephrase Agent modifies the expressions of cer-
tain options and randomly rearranges their order.
Rephrasing of choices must also pass the Verifier
Agent’s check to ensure the data is valid.
Attack-level Semi-fact Data Generation. We
focus on realistic errors using three methods:

1. TextBugger (character-level) (Li et al., 2019):
This method simulates user input errors by
introducing mistakes or typos within words.

2. CheckList (sentence-level) (Ribeiro et al.,
2020): This approach assesses model robust-
ness by adding irrelevant or redundant sen-
tences to the original text.

3. StressTest (sentence-level) (Naik et al., 2018):
Similar to CheckList, StressTest evaluates
model robustness by incorporating unrelated
or redundant sentences.

These methods reflect common errors such as
typos and extraneous information. They serve as
three Attack Agents. We apply only a single it-
eration of perturbation, avoiding unrealistic error
densities. Attack-level Semi-fact data construction
involves these three Attack Agents and a Verifier
Agent. The Verifier Agent is used to check if it
is consistent with the core aspects of the original
data and ensures that any errors introduced by the
perturbation do not impede overall comprehension.

For an original reasoning problem, we construct
our OOD test by creating one scenario-level semi-
fact data instance and three attack-level semi-fact
data instances. The method for evaluating the
model’s OOD Accuracy for the original data i is as
follows:

3
Acc(O0D) = % (min Acc(A;j) + Acc(Si)) ,

7j=1

1
where Acc(A;;) denotes the accuracy of perfor-
mance for the j-th attack-level semi-data, with
j = 1,2,3. Acc(S) represents the accuracy of

performance for the scenario-level semi-data S.
Semi-fact Data Construction. As shown in Fig-
ure 3, Scenario-level semi-fact data is constructed
as follows: The original query, “There exist real
numbers z and y, both greater than 1, such that



log,, (v*) = 10gy(:r34y) = 10. Find zy.” is trans-
formed step-by-step within a new scenario “The
concepts of growth rates of two different species of
plants” into “Consider two species of plants with
growth rates represented by real numbers x and
y, both exceeding 1, such that the growth rate of
one species raised to the power of the other results
in the equation log, (y*) = logy(x4y) = 10. De-
termine the product of their growth rates, xy.”The
Verifier Agent then checks the rephrased question
to ensure that the rephrased question is in a reason-
able scenario and the rephrased expression does
not alter the core topic of the question.

For Attack-level semi-fact data, TextBugger in-
jects character-level noise (e.g., replacing “There”
with “Ix”), while CheckList and StressTest ap-
pend syntactically valid but irrelevant suffixes (e.g.,
“5XeflW1ZJc” and “true is true”) to the problem
statement. The Verifier Agent also needs to ensure
the validity of this rephrased version.

3.2 Data Analysis

We construct three OOD semi-fact datasets from
the following datasets to evaluate the model’s rea-
soning ability: AIME-500 (extracted from Year
of 1983 - 2023) and AIME 2024 (Year of 2024).
The AIME dataset is designed to challenge the
most talented high school mathematics students
in the United States. The original test component
of AIME-500 consists of 500 questions extracted
from the original dataset (Zheng et al., 2021) while
AIME 2024 contains 30 examples included in the
exam for 2024. GPQA Diamond. Originating
from the GPQA Diamond datasetk (Rein et al.,
2023) which tests scientific questions. These origi-
nal datasets are in English, publicly available, and
permitted for research.

Statistics Analysis. Table 1 shows the analy-
sis of three dynamically constructed datasets. For
Out-Of-Distribution (OOD) test, the sample size
is four times as the original due to each original
instance being transformed into one Scenario-level
and three Attack-level Semi-fact Data entries. This
augmentation allows for a thorough OOD evalu-
ation of model performance. The OOD test data
exhibits a length comparable to that of the original
test data, indicating that both Scenario-level and
Attack-level Semi-fact data, derived through part-
by-part or attack-based modifications respectively,
preserve the model’s comprehension of the ques-
tion’s core elements. This construction effectively
incorporates legitimate semantic information that

rephrases the question without altering its answer.

This approach helps distinguish models that rely
on memorization rather than reasoning by high-
lighting the differences between OOD and ID data.

Human Evaluation. To verify whether the dy-
namically constructed data, deemed legitimate by
the model, also corresponds to the correct answers
from a human perspective, we further design a hu-
man evaluation. Specifically, we use all samples
from AIME 2024 for evaluation which has 30 sam-
ples. We provide a detailed explanation of the
annotation guidelines to 3 undergraduate students
proficient in mathematics and pay them $2.5 per en-
try for manual annotation. The result of the human
evaluation shows that the questions and answers for
the 30 corresponding Scenario-level Semi-fact data
and Attack-level Semi-fact data were 100% aligned.
This indicates that the constructed Semi-fact test is
100% legitimate in the sampled results.

4 Experiments

We conduct experiments to verify the effectiveness
of our proposed dynamic OOD data construction
method and analyze the differentiated performance
and robustness of various LLMs.

4.1 Setup

We use the datasets in Section 3.2 for our ex-
periment across two test sets: (1) the origi-
nal test set, (2) the OOD test set. We con-
duct evaluations on various models, including o1-
preview (OpenAl, 2024), ol-mini (OpenAl, 2024),
03-mini (OpenAl, 2025), GPT-40 (Achiam et al.,
2023), Deepseek-V3 (Liu et al., 2024), Deepseek-
R1 (Guo et al., 2025), S1.1-32B (Muennighoff
etal., 2025), LLAMAZ3.1-70B and 8B (Dubey et al.,
2024), Gemma2 (both 9B and 27B) (Riviere et al.,
2024), Mistral-7B (Jiang et al., 2023), Mixtral-
8x7B (Jiang et al., 2024), Qwen2.5-72B-IT (Yang
et al., 2024), and Qwen2.5-Math-72B-IT (Yang
et al., 2024). All models were configured with a
temperature setting of 0.7 and used the pass@1
metric in a single test run.

4.2 Results

ThinkBench. The overall results of ThinkBench
are shown in Table 2. We observe that all mod-
els exhibit a certain degree of performance decline
when evaluated on the original dataset versus the
OQD dataset. This decay in performance can be
attributed to the fact that the models have encoun-
tered, to some extent, the original dataset. Notably,
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Figure 4: The performance gap between ID and OOD test on AIME-500 and AIME 2024. “ID performance” and
“O0D performance” represent the accuracy of LLMs in solving problems on the AIME-500 and AIME 2024’s

original test and OOD test, respectively.

the performance gap between ID (Original) and
OOD in AIME 2024 for most models is much
smaller than the performance gap in AIME-500,
which demonstrates the data leakage in AIME data
before 2024. The existing dataset (Li et al., 2024a;
Glazer et al., 2024) is insufficient to reveal the
aforementioned phenomenon.

We also observe that models with fewer param-
eters generally perform worse and are less robust
than those with more parameters, especially within
the Llama 3.1 model family. As the parameter
count increases, both performance and robustness
improve significantly, consistent with scaling laws.
Thus, the number of parameters is crucial for en-
suring robustness.

4.2.1 Math Reasoning

Figure 2 presents a comparative analysis of the
performance of various LLMs on the AIME-500
and AIME 2024 dataset, specifically contrasting
their performance on the original ID data with
that on OOD data. The results on the original set
are mainly consistent with previous work (Glazer
et al., 2024; Li et al., 2024b). Notably, the dashed
line at a 45-degree angle from the origin signifies,
where a robust model exhibits nearly equivalent
performance on both OOD and ID data. These
two datasets primarily evaluate mathematical rea-
soning and logical capabilities, featuring relatively
complex problem types.

AIME-500 vs. AIME 2024. It is evident that
ol series models, 03, Deepseek-R1, and s1 exhibit
a small decline in performance on the latest 2024

AIME. Moreover, the performance gap between
OOD and ID is markedly larger on AIME-500 for
nearly all models, including the ol series, com-
pared to the OOD and ID gap observed on AIME
2024. Specifically, the ol-preview shows a perfor-
mance gap of -3.3% on AIME 2024 and -11.2% on
AIME-500, while the o1-mini model exhibits a gap
of +5.8% and -12.8%, respectively. The most ad-
vanced reasoning models — 03-mini, Deepseek-R1
and s1.1-32B — show the same phenomenon. This
indicates that there was indeed some degree of data
leakage in questions before 2024.

Ideally, a robust model that has genuinely
learned to apply knowledge for reasoning should
not exhibit significant performance degradation
when the expression and scenario of a question
change, provided that the core knowledge being
assessed remains the same. Additionally, s1.1-32B
shows a significant gap in AIME-500 ID-OOD per-
formance. One possible explanation for its low
robustness is the limited amount of data used for
training. Furthermore, most models fall below the
dashed line, indicating a decline in performance
when transitioning to OOD data. This phenomenon
reveals their limitations in generalizing to previ-
ously unseen complex mathematical problems.

ID vs. OOD. Figure 4b and Figure 4a illustrates
the percentage difference in performance between
OOD and ID for various models on the AIME 2024
and AIME-500. Certain models, such as 03-mini,
Deepseek-R1, and ol-series models distinguish
themselves by achieving relatively high accuracy
on both the original and OOD datasets. They also



Table 2: Reasoning performance. We report performance on OOD data of different models on three datasets that
we dynamically construct. Each performance value represents the accuracy in solving problems from the dataset.
The accuracy of performance on OOD is calculated through Equation 1. The term “Gap” denotes the percentage
decrease in performance on Semi-fact data tests compared to the original test performance.

AIME 2024 AIME-500 GPQA Diamond AVG Gap (%)
Original OOD Gap (%) Original OOD Gap (%) Original OOD Gap (%)

ol-preview 0.500 0.484 -33 0.742  0.659 -11.2 0.684  0.638 -6.8 -7.1

ol-mini 0.567  0.600 5.8 0.864  0.753 -12.8 0.592  0.564 -4.7 -39
03-mini 0.767  0.717 -6.5 0.922 0.834 -9.5 0.727  0.710 24 -6.1

Deepseek-R1 0.800  0.750 -6.3 0.920  0.828 -10.0 0.747  0.682 -8.7 -8.3

GPT-40 0.133  0.100  -24.8 0.278  0.197 -29.1 0.495  0.447 -9.8 -21.2
Deepseek-V3 0.367  0.333 9.3 0.528  0.429 -18.8 0.581  0.530 -8.8 -12.3
Mixtral-8x7B-I1T-v0.1 0.000  0.000 - 0.012  0.006  -50.0 0.168  0.163 -3.0 -17.7
Qwen2.5-72B-IT 0.200 0.184 -8.3 0.432  0.341 211 0.536  0.487 9.1 -12.8
Qwen2.5-Math-72B-IT  0.267  0.217 -18.9 0.536 0430 -19.8 0449 0416 -1.5 -15.4
LLAMAS3.1-70B-IT 0.200  0.167 -16.5 0424  0.318 -25.0 0.388  0.383 -1.3 -14.3
s1.1-32B 0.533  0.517 -3.0 0.752 0574  -23.7 0.525  0.508 -3.3 -10.0
Gemma-2-27B-IT 0.033  0.017 -50.0 0.062  0.045 274 0291  0.281 -3.6 -27.0
Gemma-2-9B-IT 0.000  0.000 - 0.032  0.021 -34.4 0214 0.189 -11.9 -15.4
LLAMA3.1-8B-IT 0.000  0.017 - 0.132  0.087 -34.1 0.204  0.179 -12.5 -15.5
Phi-3-mini-4k-IT 0.000  0.000 - 0.046  0.026  -43.5 0.224  0.192 -14.5 -19.3
LLAMA3.2-3B-IT 0.033  0.033 0.0 0.122  0.087 -28.7 0.153  0.161 4.9 -7.9

exhibit minimal OOD performance degradation,
signifying strong generalization capabilities and
robustness to distributional changes.

4.2.2 Science Questions

Figures 6 show ID-OOD performance on GPQA
Diamond dataset. The distribution of model perfor-
mance points indicates that most models are more
dispersed on this graph, suggesting that the diffi-
culty of the GPQA Diamond dataset is less than
that of AIME-500 and AIME 2024.

Models such as Mixtral-8x7B-Instruct-v0.1 and
LLAMAS3.2-3B-IT demonstrate relatively low ac-
curacy levels. Notably, LLAMA3.2-3B-IT shows
a 4.9% improvement in OOD performance com-
pared to its ID performance on the bar chart. This
phenomenon can be attributed to the model’s inher-
ently poor performance. For the difficult questions
in the GPQA Diamond dataset, the model seems
to resort to random guessing, resulting in an ac-
curacy that fails to reach the 25% level expected
from random guessing. Consequently, the OOD
performance reflecting a higher accuracy than ID
is a result of the same guessing strategy employed
for both ID and OOD questions.

5 Analysis and Discussion

In this section, we present a detailed analysis of the
OOD robustness of reasoning and non-reasoning
models. We aim to address several open research
questions that are fundamental to building efficient

reasoning models.

RQ1: Do reasoning models deliver the signifi-
cant performance and robustness improvements
claimed in their reports?

Overall, the ol-series models, along with 03,
Deepseek-R1, and s1, demonstrate strong perfor-
mance in complex logical reasoning tasks, such
as AIME and GPQA Diamond, on the original
datasets. Despite a general performance drop from
ID to OOD across various datasets, these mod-
els maintain notable robustness. Their improved
performance, consistent with the claims in their
reports (OpenAl, 2024, 2025; Guo et al., 2025;
Muennighoff et al., 2025), suggests that these ad-
vancements are reliable.

Notably, on AIME-500 and AIME 2024, while
03-mini and Deepseek-R1 exhibit a larger ID-OOD
performance gap than ol-preview, they still achieve
the highest absolute performance in the OOD set-
ting. This superior mathematical reasoning capabil-
ity is likely due to their exposure to a larger corpus
of mathematical problems during training, enhanc-
ing their problem-solving abilities. On GPQA Dia-
mond, 03-mini and Deepseek-R1 also achieve the
highest performance, underscoring their general
reasoning advantages.

RQ2: Is there a possibility of data leakage in the
original datasets for AIME-500?

Analyzing the ID-OOD performance gap, as de-
picted in Figures 2, reveals a notable difference
between AIME 2024 and AIME-500. While the
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Figure 5: Test-time Scaling Law. We show that the model’s performance increases on the OOD dataset with the
test-time computation budget increases using Qwen2.5-Math-7B-IT as the policy model, along with several PRMs.

Table 3: Performance comparison of different process
reward models using Qwen2.5-Math-7B-IT under the
Best-of-256 test. All methods utilize Qwen2.5-Math-
7B-IT as the base model. Qwen2.5-Math-7B-IT’s per-
formance represents majority vote (Maj@256) results,
while other methods are based on PRMs.

AIME 2024 AIME-500
Original OOD  Original OOD
Qwen2.5-Math-7B-IT (Maj@256) 0.167 0.133 0.524 0.464
+Math-Shepherd 0.233 0.233 0.528 0.458
+OpenR 0.233 0.200  0.526 0.472
+Skywork 0.200  0.233 0.582 0.500
+Qwen 0.300  0.300  0.538 0.476

gap between ID and OOD performance is rela-
tively small for AIME 2024, AIME-500 consis-
tently shows a larger gap. This observation sug-
gests that a significant portion of the models may
have encountered similar AIME-500 data during
training. Given that AIME data prior to 2024 was
publicly available, we posit that data leakage is
likely for most models.

RQ3: Can our OOD dataset serve as a test-time
computation benchmark?

Based on our analysis, the AIME-500, AIME
2024, and GPQA Diamond datasets present signifi-
cant challenges and possess strong discriminative
power. As shown in Figure 5, model performance
improves with increased test-time computation, un-
derscoring the quality of our data. The upward
trend and variation among the five lines indicate
the dataset’s ability to differentiate model perfor-
mance during test-time computation.

Furthermore, Table 3 presents results from 256
inferences using Qwen2.5-Math-7B-IT to evalu-

ate different PRMs. For AIME 2024, OOD per-
formance shows slight variations compared to ID
across PRMs. However, for AIME-500, all PRMs
experience a notable decline in OOD performance,
suggesting possible exposure to similar problems
before 2024, and thus indicating data leakage. In
contrast, AIME 2024 data appears largely unseen
by the models in terms of the low-level perfor-
mance decay. Our methodology provides valuable
insights into assessing robust LLM reasoning. The
dynamic generation capability allows model valida-
tion, preventing exploitation or overfitting, which
can serve as an effective benchmark for facilitating
future research on test-time computation.

6 Conclusion

We presented ThinkBench, a first robust dynamic
evaluation benchmark for testing reasoning capa-
bility in LLMs, unifying the reasoning models and
non-reasoning models evaluation. ThinkBench of-
fers dynamic data generation to evaluate the out-of-
distribution of models through various math reason-
ing, and science questions samples. Experiments
over AIME-500, AIME 2024, and GPQA Diamond
indicate that while reasoning models represented
by ol and 03 consistently demonstrate relatively
strong robustness, most LLMs fall short of robust
performance. Experiments on ThinkBench high-
light the importance of eliminating data contami-
nation, especially in reasoning tasks where golden
answers are prone to leakage. ThinkBench offers
an effective solution to mitigate data leakage issues
during reasoning evaluation. In the future, we will
study more factors of robust reasoning models.



Limitations

While ThinkBench presents a systematic dynamic
OOD data generation framework that uniquely de-
couples reasoning robustness from memorization
biases, it still has some limitations. First, while
it supports MMLU, the evaluation predominantly
focuses on mathematical and scientific reasoning
tasks (e.g., AIME, GPQA), lacking diversity in
reasoning types such as social reasoning. Second,
due to cost constraints, Scenario-level semi-fact
generation adopts a single-path rephrasing strategy
instead of hierarchical multi-scenario branching,
limiting OOD diversity. Future work needs to con-
sider expanding task coverage and integrating tree-
structured generation for richer scenario variations.
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A Appendix

A.1 Process Reward Models

In the past, language model training primar-
ily used Outcome-based Reinforcement Models
(ORM) (Wang et al., 2024a). A foundational ex-
ample is the ORM-based model by Cobbe et al.
(2021), which focuses on training evaluators to as-
sess the correctness of answers, providing crucial
feedback. Meanwhile, the Process Reward Model
(PRM) aims to provide stepwise rewards, offer-
ing fine-grained supervision. DeepMind (Uesato
et al., 2022) supervises both reasoning steps and
final results, while OpenAl (Lightman et al., 2023)
introduces PRM800K, a human-annotated dataset,
emphasizing step verification. Li et al. (2022) en-
hance result reliability with evaluator models and
majority voting. Yu et al. (2024) improve reason-
ing through reinforcement learning with outcome
and process supervision. The Generative Reward
Model (GenRM)(Zhang et al., 2024) allows rich
interaction between evaluators and generators, re-
flecting a demand for sophisticated process super-
vision. Recent work (Zheng et al., 2024) offers
a benchmark for evaluating error identification in
mathematical reasoning, fostering scalable over-
sight research. As a supplement, we propose a
dynamic benchmark for testing reasoning capabil-
ity in LLMs with the help of PRMs.

A.2 Process Reward Models on Test-time
Computation Budget

A.2.1 Settings

To comprehensively conduct the test-time scaling
evaluation for the various PRMs on AIME 2024
and AIME-500, we employ these PRMs:

(1) Math-Shepherd-PRM: The scoring mecha-
nism employed in Math-Shepherd is essential for
understanding the performance of reasoning steps.
In this framework, the token “kn” is used to indi-
cate the position where the step score is predicted.
A “+” token represents a good step, one that con-
tributes positively towards reaching the correct an-
swer, while a “-” token signals a bad step. Notably,
during the training of PRMs, the loss is computed
only at positions marked with “kn”. The PRM de-
noted as (P x S — R™), assigns a score to each
reasoning step s. The model is typically trained
using the following binary cross-entropy loss func-
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Table 4: Performance on Scenario-level semi-fact data and Attack-level semi-fact data. Each performance value
represents the accuracy in solving problems from the dataset. The accuracy of performance on attack-level semi-
factual data is determined by computing the minimum accuracy across three different attacks.

AIME 2024 AIME-500
Original OOD (Scenario) OOD (Attack) Original OOD (Scenario) OOD (Attack)

ol-preview 0.500 0.500 0.467 0.742 0.638 0.680
ol-mini 0.567 0.600 0.600 0.864 0.756 0.750
03-mini 0.767 0.667 0.767 0.922 0.848 0.820
Deepseek-R1 0.800 0.733 0.767 0.920 0.816 0.840
GPT-40 0.133 0.100 0.100 0.278 0.204 0.190
Deepseek-V3 0.367 0.333 0.333 0.528 0.438 0.420
Mixtral-8x7B-I1T-v0.1 0.000 0.000 0.000 0.012 0.000 0.012
Qwen2.5-72B-IT 0.200 0.167 0.200 0.432 0.290 0.392
Qwen2.5-Math-72B-1T 0.267 0.233 0.200 0.536 0.360 0.500
LLAMA3.1-70B-IT 0.200 0.167 0.167 0.424 0.244 0.392
s1.1-32B 0.533 0.500 0.478 0.752 0.654 0.494
Gemma-2-27B-IT 0.033 0.033 0.000 0.062 0.028 0.062
Gemma-2-9B-IT 0.000 0.000 0.000 0.032 0.016 0.026
LLAMAZ3.1-8B-IT 0.000 0.033 0.000 0.132 0.074 0.100
Phi-3-mini-4k-IT 0.000 0.000 0.000 0.046 0.024 0.028
LLAMA3.2-3B-IT 0.033 0.033 0.033 0.122 0.066 0.108

tion: (2) OpenR-PRM: The Problem Resolution

K Model (PRM) computes a score, denoted as py,

Lrry = Z ys, log s, + (1 — ys.) log(1 — ry.) based on the current problem g and the sequence

- Si Si S5 Si /> . :
] of solution steps up to time ¢, represented as
(2)  [x1,...,x¢]. This approach allows for a precise and

where y;, represents the ground-truth label of
the ¢-th reasoning step s;, 75, is the sigmoid output
score predicted by the PRM for step s;, and K is the
total number of reasoning steps in a given solution
s. To estimate the quality of each reasoning step,
two methods are employed: hard estimation (HE)
and soft estimation (SE). In HE, a step is considered
good if it contributes to reaching the correct answer
a*, as defined by:

L,
0,

ifEiaj S A,aj =a*

otherwise.

HE _

Ysi 3)

In contrast, SE estimates the quality of a step
based on the frequency with which it leads to the
correct answer across multiple attempts:

N
SE _ Zj:1

Si

I(a; = a*)
N ; 4)

where I(a; = a*) is an indicator function that
returns 1 if the j-th attempt a; equals the correct
answer a*, and NV is the total number of attempts.
Once the labels for each reasoning step are ob-
tained, the PRM is trained using the cross-entropy
loss function to optimize the model’s ability to
correctly classify each step as either good or bad
((Wang et al., 2024c)).
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detailed analysis of the solution process, helping
identify errors as they occur, as noted by (Lightman
et al., 2023). The main goal of PRMs is to assess
whether the solution process is on track, with a
score y; calculated to represent the correctness of
the solution at step ¢, ranging from O to 1. This
score is given by y; = PRM(q, z1,22,...,x¢).
During training, the model is framed as a next-
token prediction task, where labels are assigned
as correct or incorrect, represented by positive
(+) or negative (-) tokens. After training, OpenR
uses the PRM to evaluate the correctness of each
solution step during inference, assigning a score
rpRry, to each step. Two strategies are employed
to compute a final score: the PRM-Min strategy,
which selects the minimum score among all steps,
v = min{rppra, } iy, and the PRM-Last strategy,
which takes the score of the final step, v = rpras,..
PRMs function as dense verifiers, providing strong
feedback that can significantly enhance the overall
solution process ((Wang et al., 2024a)).

(3) Skywork-PRM: We evaluate Skywork ol
Open-PRM-Qwen-2.5-7B (o1 Team, 2024), which
Extends the capabilities of the 1.5B model by scal-
ing up to handle more demanding reasoning tasks,
pushing the boundaries of Al reasoning.



(4) Qwen-PRM: We evaluate 7B version of
Qwen-PRM (Zhang et al., 2025). This is a pro-
cess reward model designed to offer feedback on
the quality of reasoning and intermediate steps in
mathematical problems. It is part of the Qwen2.5-
Math series and has shown impressive performance
in identifying errors in reasoning processes.

As shown in Figure 5, the model’s performance
improves on the AIME 2024 OOD and AIME-
500 OOD dataset as the test-time computation
budget increases and the best-of-N performance
of each reward model varies as a function of N.
Since majority voting is known to be a strong base-
line((Lewkowycz et al., 2022; Wang et al., 2022)),
we also include this method as a point of compari-
son. We compared a series of PRM methods and
then observed the performance changes of various
PRM methods as N increased.

Skywork-PRM and Qwen-PRM achieve rela-
tively high performance across all computation
budgets. OpenR shows moderate performance, im-
proving steadily with increasing N, but its improve-
ment rate is slower compared to Skywork-PRM
and Qwen-PRM. Majority Voting mainly underper-
forms other methods, even with increased compu-
tation budgets, showing limited scalability. The
possible underlying reasons are these: (1)Model-
specific Capabilities: The superior performance of
Skywork-PRM and Qwen-PRM may result from
their advanced mechanisms for aggregating or uti-
lizing the increased number of solutions, likely
benefiting from better exploration of the solution
space or more robust voting schemes. (2)Algo-
rithmic Limitations: The suboptimal performance
of Majority Voting suggests its inability to effec-
tively utilize additional solutions. (3)Dataset Com-
plexity: The AIME 2024 OOD dataset and AIME-
500 OOD dataset likely require nuanced reasoning
and adaptability, favoring methods like Skywork-
PRM and Qwen-PRM that can better handle out-
of-distribution (OOD) generalization tasks. Thus,
the results highlight the importance of adopting
advanced techniques that can efficiently utilize in-
creased test-time computation budgets. Methods
like Skywork-PRM and Qwen-PRM demonstrate
superior scaling behavior, suggesting their robust-
ness and adaptability in solving complex problems.
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B ThinkBench on Language
Understanding

As illustrated in Figure 7, we also present the
results of dynamically constructing 570 MMLU
OOD data using ThinkBench. There is a signifi-
cant performance gap between Out-Of-Distribution
(OOD) and In-Distribution (ID) data across differ-
ent models. The ol-preview model demonstrates
superior performance on this knowledge-intensive
dataset. Furthermore, reasoning models like ol-
preview and ol-mini exhibit greater robustness
compared to non-reasoning models such as GPT-
4o.

C Case Study

Table 5, Table 6 and Table 7 show the case of differ-
ent models tackling ThinkBench, including ques-
tion, choices, answer in Original set and OOD set,
and responses from models.

Through the provided example in Table 5, we
observe that our dynamic construction transforms
the original question into a new question, with the
options also being rephrased and reordered. Our
benchmark reduces the likelihood of models achiev-
ing high scores through rote memorization. In the



Original Question: Carruthers approaches questions about the moral standing of nonhuman animals from the perspective

of which of the following moral theories?

Original Choices: A: consequentialism B: Kantianism C: virtue ethics D: contractualism

Original Answer: D

OOD Question (Scenario-level Semi-fact Question): In his exploration of ethical frameworks, Carruthers considers
various moral theories before honing in on a particular approach to evaluate the moral status of nonhuman animals. From
which moral theory does Carruthers analyze the ethical significance of these animals?

OOD Choices: A: ethics of character B: contractualism C: outcomes-based ethics D: Kantianism

OOD Answer: B

GPT-40 on Original:

Peter Carruthers is known for approaching questions about
the moral standing of nonhuman animals from the perspec-
tive of contractualism. Contractualism is a moral theory
that determines moral principles based on what rational
agents would agree upon as part of a social contract. Car-
ruthers argues that nonhuman animals do not have direct
moral standing within contractualism because they are not
capable of participating in the contract-making process.
Therefore, the correct answer is D.

Llama3.1-70B-IT on Original:

Carruthers approaches questions about the moral standing
of nonhuman animals from the perspective of contractu-
alism. Contractualism is a moral theory that emphasizes
the importance of mutual agreements and contracts in de-
termining moral obligations. In the context of nonhuman
animals, contractualism would suggest that animals have
moral standing because they are capable of participating in
a “contract” or social agreement with humans, even if it is
not a formal or explicit one. The correct answer is D.

GP1-40 on OOD:

Carruthers is known for utilizing Kantianism as a framework

for evaluating the moral status of nonhuman animals. This
approach emphasizes the importance of rationality and moral
agency, aligning with Kantian ethical principles. Therefore, the

correct answer is D.

Llama3.1-70B-IT on OOD:
Based on the information provided, the correct answer is C:
outcomes-based ethics.

Table 5: Case Study on MMLU 570.

responses from GPT-40 and Llama3.1-70B-IT, it
is evident that while both models correctly answer
the original question, they fail to provide correct re-
sponses to the corresponding OOD data. Both mod-
els provide detailed analyses and correct answers to
the original test data. However, for the OOD data,
Llama3.1-70B-IT does not offer a detailed analysis
and instead directly gives an incorrect answer. Al-
though GPT-40 conducts some analysis, it confuses
the concepts of “Kantianism” and “contractualism”,
even mixing them up during the reasoning process,
ultimately leading to an incorrect answer.

C.1 Instruction for Human Annotation

This task involves checking if the modified ques-
tion and the original answer are consistent. Follow
the steps below: (1) Read the questions and the
original answer: Carefully read the modified ques-
tion, the original question, and the original answer.
(2) Identify Key Changes: Note any changes in
numbers, operations, or conditions between the
original and modified questions. (3) Verify Consis-
tency: Check if the original answer is consistent
with the modified question. Mark as “Consistent”
if it does, otherwise mark it as “Inconsistent”.
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Original Question: There exist real numbers x and y, both greater than 1, such that log,, (y*) = logy(m4y) = 10. Find zy.
Original Answer: 25

OOD Question (Scenario-level Semi-fact Question): Consider two species of plants with growth rates represented by real
numbers = and y, both exceeding 1, such that the growth rate of one species raised to the power of the other results in the
equation log,, (y*) = logy(x4y) = 10. Determine the product of their growth rates, zy.

OOD Answer: 25

- GPT-40 on OOD:
GPT-40 on Original: Step 1: Solve the first equation
. The first equation is:
log,,(y") = 10

log, (") = 10 log,(y") = 10

We’ll solve for xy. Starting with the first equation: This implies:

lo ") =10
g=(v") Step 2: Solve the second equation

This can be rewritten using the logarithm power rule: The second equation is:

zlog, y = 10 log, (z*") = 10

Thus, This implies:

4 10
¥ =y

10
log, y = =
Step 3: Express y in terms of « from the first equation

The base change formula log, y = %ziz gives us: From y” = ', we can express y as:
logy 10 y=z'"
logz =
Step 4: Substitute y in the second equation
So, Substitute y = 2'%/% into the second equation ¥ = y'°:

lo. —Elo T
8Y = T g I4(z10/1) _ (Ilo/x)lo

Now, for the second equation:
Simplifying the right side:
log, (z**) = 10
. x4(mlo/’”) — p100/z
This expands to:
Step 5: Equate the exponents

4ylog, x =10 Since the bases are the same, equate the exponents:

Thus, 100

10 5 4. 210" =
= X

1 =—=—
og, T 3y

Step 6: Solve for
Rearrange and simplify:

log «
logy

The base change formula log,, © = gives us:

logz _ 5 421%® . 2 = 100

logy 2y

421H197% = 100
21H10/E _ or

So,

5
logx = 5 logy
Y Step 7: Solve for x using trial and error or numerical meth-
Now substitute log y from the first equation into this: ods
Let z = 1+ 12, so 2 = 25. We need to find z such that:

x

5 10
logx = — x —logx
2y

Simplifying,
By trial and error or numerical methods, you can find that
x = 5 satisfies the equation.

Step 8: Find y

Now, substitute z = 5 back into y = =

50
logx = — logx
2zy

Cancel log x from both sides (assuming log x # 0): 10/z.

- 50 10/5 2
- @ y=>5 =5"=125
Thus, Step 9: Calculate the product xy
2xy = 50 Finally, calculate the product:
So, 2y =5-25=125
Ty = 25

The value of zy is 25. Thus, the product of their growth rates is 400.

Table 6: Case Study on AIME 2024.
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Original Question: cyclohexanone is treated with LDA at low temperature, followed by benzaldehyde. the reaction mixture
is then acidified, forming product 1. 1 is then treated with an excess of diethylaminosulfur trifluoride, forming product 2.
what is the structure of prodcut 2?

Original Choices: A: ((R)-((R)-2,2-difluorocyclohexyl)fluoromethyl)benzene B: (S)-2-((R)-
fluoro(phenyl)methyl)cyclohexan-1-one C: (2R)-1-fluoro-2-((S)-fluoro(phenyl)methyl)cyclohexan-1-ol D: ((S)-
((R)-2,2-difluorocyclohexyl)fluoromethyl)benzene

Original Answer: A

OOD Question (Scenario-level Semi-fact Question): In the realm of organic synthesis, understanding the behavior
of reagents under various conditions is crucial for designing effective synthetic routes. Let’s consider a scenario where
cyclohexanone, a common ketone, is reacted with lithium diisopropylamide (LDA), a strong base, at reduced temperature
to form an enolate, which is then treated with benzaldehyde. This reaction typically forms an aldol product, which, upon
acidification, yields a compound known as product 1. Further exploring the reactivity of such aldol products, if this product 1
is treated with an excess of diethylaminosulfur trifluoride, a reagent known for its ability to affect sulfur-based modifications
in organic molecules, what would be the structure of the resulting product 2?

(010))) Choices: A: ((S)-((R)-2,2-difluorocyclohexyl)fluoromethyl)benzene B: (R)-((R)-2,2-
difluorocyclohexyl)fluoromethyl)benzene C: (2R)-1-fluoro-2-((S)-fluoro(phenyl)methyl)cyclohexan-1-ol D: (S)-2-
((R)-fluoro(phenyl)methyl)cyclohexan-1-one

OOD Answer: B

ol-preview on Original:

To solve this problem, let’s break down the reactions step by step. **First Reaction:** Cyclohexanone is treated with LDA
(Lithium Diisopropylamide) at low temperature. LDA is a strong, non-nucleophilic base that deprotonates the most accessible
a-hydrogen to form the kinetic enolate. In cyclohexanone, both a-carbons are equivalent due to symmetry, so the enolate forms
at one of these positions. The enolate then attacks benzaldehyde in an aldol addition reaction. The nucleophilic carbon of the
enolate adds to the electrophilic carbonyl carbon of benzaldehyde, forming a new carbon-carbon bond. After protonation, this
gives a 3-hydroxy ketone (product 1). **Second Reaction:** Product 1, the S-hydroxy ketone, is treated with an excess of
diethylaminosulfur trifluoride (DAST). DAST is a fluorinating agent that can convert alcohols to alkyl fluorides and ketones to
geminal difluorides. In this case, DAST converts: - The hydroxyl group at the S-position into a fluorine atom. - The ketone group
into a geminal difluoride. The overall result is a cyclohexane ring with: - Two fluorine atoms attached to C1 (from the ketone
conversion). - A fluorine atom and a benzyl group attached to C2 (from the hydroxyl conversion). This gives us a product where:
- C1 is now a difluoromethylene group (CF2). - C2 has a fluorine and a benzyl group, with specific stereochemistry retained from
the initial aldol addition. Considering the stereochemistry: - The initial aldol addition creates a new chiral center at C2. Since the
starting materials are achiral and no chiral catalysts are used, a racemic mixture is formed. - The DAST reaction retains the
configuration at C2 when converting the hydroxyl group to fluorine. - The former carbonyl carbon (C1) becomes a new chiral
center after forming the geminal difluoride. From the options provided, option **A** corresponds to the product formed: -
**Option A:** ((R)-((R)-2,2-difluorocyclohexyl)fluoromethyl)benzene This option indicates that: - The cyclohexane ring has
two fluorines at C2 (now numbered as C1 in the name), making it a 2,2-difluorocyclohexyl group. - There is a fluoromethyl group
attached to benzene, corresponding to the fluorine and benzyl group at C2. - Both chiral centers have the **R** configuration,
matching the stereochemistry of the reactions. Thus, the correct answer is: A

ol-preview on OOD:

To solve this problem, let’s systematically break down each step of the reaction and understand the transformations that occur.
**Step 1: Formation of the Aldol Product (Product 1)** 1. **Formation of the Enolate Ion:** Cyclohexanone is treated with
lithium diisopropylamide (LDA), a strong, non-nucleophilic base. LDA deprotonates the a-carbon of cyclohexanone, forming
the enolate ion. 2. **Aldol Addition Reaction:** The enolate ion is nucleophilic at the c-carbon and attacks the electrophilic
carbonyl carbon of benzaldehyde. This forms a new carbon-carbon bond between the a-carbon of cyclohexanone and the
carbonyl carbon of benzaldehyde. 3. **Acidification:** The alkoxide formed after the addition is protonated upon acidification,
yielding a B-hydroxy ketone. The **structure of Product 1** is therefore a cyclohexanone ring with a hydroxyl group (OH)
and a phenyl group (CsHs) attached to the same carbon (the a-carbon). This gives us **2-hydroxy-2-phenylcyclohexanone**.
**Step 2: Reaction with Diethylaminosulfur Trifluoride (DAST)** DAST is a fluorinating agent known to convert alcohols to
alkyl fluorides (with inversion of configuration) and carbonyl groups to gem-difluorides. However, under standard conditions,
ketones are less reactive than alcohols towards DAST, and selective fluorination of the alcohol can occur. In this case, when
Product 1 is treated with excess DAST: 1. **Fluorination of the Alcohol:** The hydroxyl group is converted to a fluorine atom
with inversion of configuration. This transforms the chiral center at the a-carbon (which was R or S in the aldol product) into the
opposite configuration due to the inversion during the SN2-like process. 2. **Ketone Retention:** The ketone group remains
largely unreacted under these conditions because ketones are less reactive towards DAST compared to alcohols, especially
in the presence of steric hindrance and electronic effects from adjacent groups (like the phenyl group). Thus, **Product 2**
is **2-((R)-fluoro(phenyl)methyl)cyclohexan-1-one**, where the hydroxyl group has been replaced by a fluorine atom, and
the configuration at the chiral center has inverted compared to Product 1. **Matching with the Given Options:** Option D
corresponds exactly to this structure: - **(S)-2-((R)-fluoro(phenyl)methyl)cyclohexan-1-one** This indicates that the final
product has: - A cyclohexanone ring (ketone at position 1) - A fluorine atom and a phenyl group attached to the same carbon at
position 2 - Specific stereochemistry indicating the inversion at the c-carbon Therefore, **Option D is the correct answer**.D.

Table 7: Case Study on GPQA.
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