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Can We Debiase Multimodal Large Language Models via
Model Editing?
Anonymous Authors

ABSTRACT
Multimodal large language models (MLLM) have been observed to
exhibit biases originating from their training datasets. Unlike uni-
modal LLMs, biases in MLLMs may stem from interactions between
multiple modalities, which increases the complexity of multimodal
debiasing. Conventional approaches like fine-tuning to alleviate
biases in models are costly and data-hungry. Model editing meth-
ods, which focus on post-hoc modifications of model knowledge,
have recently demonstrated significant potential across diverse ap-
plications. These methods can effectively and precisely adjust the
behavior of models in specific knowledge domains, while minimiz-
ing the impact on the overall performance of the model. However,
there is currently no comprehensive study to drive the application
of model editingmethods in debiasingMLLM and to analyze its pros
and cons. To facilitate research in this field, we define the debiasing
problem of MLLM as an editing problem and propose a novel set of
evaluation metrics for MLLM debias editing. Through various ex-
periments, we demonstrate that: (1) Existing model editing methods
can effectively alleviate biases in MLLM and can generalize well to
semantically equivalent image-text pairs. However, most methods
tend to adversely affect the stability of the MLLM. (2) Compared
to editing the visual modality of the MLLM, editing the textual
modality yields better results in addressing MLLM biases. (3) Model
editing based debiasing method can achieve generalization across
different types of biases.

CCS CONCEPTS
• Computing methodologies→ Artificial intelligence.

KEYWORDS
Multimodal Large Lanugage Model, Multimodal Debiasing, Model
Editing

1 INTRODUCTION
Large language models have emerged as a pivotal and versatile
component in a variety of user-facing language technologies due
to their outstanding performance (Chowdhery et al. [9], OpenAI
[37], Touvron et al. [47], inter alia). Multimodal Large Language
Model (MLLM) takes a step forward from LLM by utilizing powerful
large language models as the brain to perform multimodal tasks
[52]. Specifically, MLLM typically consists of three key elements:
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an LLM-based text encoder as the brain, an image encoder to re-
ceive multimodal information, and a bridge to establish effective
connections from the two encoders (like Perceiver Resampler in
Flamingo [2]). The remarkable emergent capabilities exhibited by
MLLM, such as zero-shot image-to-text generation and OCR-free
math reasoning, are seldom observed within conventional method-
ologies, signifying a potential avenue towards the attainment of
artificial general intelligence[26, 28, 58].

Similar to the LLM, the MLLM still inadvertently and unavoid-
ably acquires biased information embedded within its extensive
corpus, leading to negative stereotypes and social biases encoded
within the model. For instance, the MLLM has shown tendencies
to associate images of white individuals with higher-status cat-
egories. Besides, in ambiguous professional contexts, the MLLM
manifests a predisposition to associate male images with male-
dominated professions (such as doctors, construction workers, etc.)
more than female-dominated professions [15]. Furthermore, the
MLLM evinces biases towards specific demographic groups. For ex-
ample, attributes most associated with Islam and Judaism might en-
compass terms linked to poverty, terrorism, and extremism, which
carry extremely negative connotations [22]. As biased MLLMs are
applied more extensively in the real world, they can generate ex-
tremely detrimental social impacts and result in discriminatory
treatment against the population groups they impact.

Currently, numerous studies are dedicated to the pursuit of con-
structing fair and unbiased neural networks, aiming to ensure eq-
uitable distribution of benefits across diverse segments of society.
These studies can be roughly categorized into threemain paradigms:
(1) Modifying the dataset distribution before training by balancing
groups of samples with and without bias, e.g., via data augmen-
tation [17] or sample synthesis [5, 12, 25]. (2) Strategies based on
model outputs to address fairness issues, namely identifying and
mitigating social biases without the need for further weight opti-
mization or dataset manipulation [48]. (3) Explicitly eliminating the
influence of biases during the model training or inference process
[20, 27, 40]. However, when it comes to mitigating specific biases
in MLLM, such as reducing biases between gender and occupation,
these three paradigms fail to directly generate fair models through
new training stages or optimization processes [3, 16, 50, 51]. Specif-
ically, the first stream of work is often insufficient to produce fair
neural models for MLLM, because even if the data perfectly rep-
resents population distributions, undesirable characteristics such
as societal stereotypes and biases can still be present [39]. The
second stream of work does not truly address the bias encoded in
the MLLM, potentially leading to non-robustness [40]. The third
stream of work typically requires a large amount of training, which,
for MLLM, incurs prohibitively high computational costs due to the
large amounts of parameters. Besides, involving the training pro-
cess can alter the pre-trained weights with no constraints, which
risks losing valuable existing knowledge in the MLLM [14, 21].

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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Therefore, methods for mitigating feature or prediction biases, in-
dependent of the availability of non-biased data, are preferable in
the MLLM.

Recently, model editing [11, 32–34] involves post-training ad-
justments to alter the factual knowledge stored in the model, has
shown potential in addressing these issues. The objective of model
editing is to modify a model’s behavior in specific knowledge do-
mains effectively and targetedly, thereby enabling it to generate
more accurate and relevant outputs while ensuring the stability
of its overall performance. Moreover, a series of studies have be-
gun applying model editing methods to specific downstream tasks,
such as editing personality [30], natural language inference [1],
etc. Besides, Yan et al. [49] formulate social debiasing as an editing
problem, and employ various model editing methods on unimodal
LLMs for bias mitigation. It indicates that existing model editing
methods can effectively preserve knowledge and mitigate biases in
unimodal LLMs.

However, unlike editing knowledge in the unimodal LLM, in the
case of the MLLM, biased outputs stem from the synergistic effects
of various modalities. For example, biased outputs may originate
not only from LLM but also from human-like errors involving
image information, such as misunderstandings or misrecognition
(e.g., color blindness or color weakness can affect color recognition
in images). Consequently, exploring how to employ model editing
techniques to eliminate biases present in the MLLM is a worthwhile
field of inquiry.

To facilitate research in this area, we conduct a comprehensive
study on model editing based debiasing methods for the MLLM.
Specifically, following Yan et al. [49] and Cheng et al. [7], we first
expand the prior evaluation principles of model editing to multi-
modal debiasing settings, including Reliability, Generality and
Locality. Then, according to these evaluation principles, we fur-
ther construct a benchmark for model editing in MLLM debiasing,
which includes two subtasks: Visual Question Answering (VQA)
and Image Captioning (IC). In more detail, for the reliability evalu-
ation, we first conduct rigorous data filtering, selecting data that
performed poorly for MLLM to create dedicated reliable debiasing
editing datasets. For the generality evaluation, we divide it into text
and multimodal generality, and use OpenAI’s gpt-3.5-turbo-instruct
and Stable Diffusion [41] to generate rephrased text and rephrased
images. For the locality evaluation, similar to generality, we par-
tition it into text and multimodal locality to assess the stability of
MLLM across both text and multimodal datasets.

By utilizing two widely-used MLLM models, BLIP-2 [26] and
MiniGPT-4 [58], we conduct a comprehensive debiasing assessment
on a range of model editing methods, such as SERAC [35] and
in-context knowledge editing [55]. Experimental results indicate
that debiasing editing methods for MLLM are effective in reducing
model biases, with most methods achieving edit success rates close
to 100%. However, some of these methods come at the expense of
sacrificing other aspects of MLLM capabilities. Besides, we examine
how debiasing editing, when applied individually to the textual and
visual module of MLLM, affects model biases. The results indicate
that editing the textual module within MLLM is more effective
in comparison to editing the visual module. Additionally, we also
analyze the performance of multimodal model editing methods

on specific biases and whether they could achieve generalization
across bias types.

In summary, the primary contributions of this work are:

(1) To our best knowledge, we take the first step to explore the
influence of editing on the internal biases within the MLLM.

(2) We introduce a novel benchmark for debiasing editing in
MLLM, which can be used for evaluating the reliability, local-
ity, and generality of model editing based debiasing methods
via the image captioning task and the visual question an-
swering task.

(3) We further investigate the impact of editing various mod-
ules of MLLM on biases within the model, and explore the
generality of MLLM debiasing editing across different types
of biases.

2 RELATEDWORK
2.1 Multimodal Large Language Models
In recent years, significant progress has been made in the devel-
opment of large language models, achieving remarkable emergent
abilities by expanding both data and model sizes. While LLMs
have shown surprising zero/few-shot inference performance across
many natural language processing tasks, they inherently lack the
ability to understand visual information since they can only under-
stand text. Meanwhile, large vision foundation models have made
rapid progress in visual perception. As a complement, LLMs and
visual models have converged towards each other, giving rise to
the new domain of Multimodal Large Language Models (MLLM).
The introduction of the MLLM paradigm has alleviated the sub-
stantial computational costs incurred by the ever-expanding scale
of models and datasets during traditional multimodal model train-
ing. Building upon the foundations of LLMs and visual foundation
models, MLLMs can accept inputs from multiple senses, enabling
more flexible interactions with users. Additionally, MLLMs more
accurately reflect how humans perceive the world. Furthermore,
as a more comprehensive task solver, compared to LLMs, MLLMs
typically support a broader range of tasks. The debut of GPT-4
(Vision) [37] and Gemini has left a remarkable impression on the
understanding and generation abilities of multimodal (MM) mod-
els, igniting a research frenzy in MM-LLM. Initially, research on
MLLMs primarily focused on multimodal content understanding
(e.g., visual question answering) and text generation (e.g., image-to-
text comprehension), exemplified models like BLIP-2 [26], LLaVA
[28], MiniGPT-4 [58]. Later, the functionality of Multimodal LLMs
is expanded to support specific modality outputs (e.g., image-text
output), exemplified models like GILL [24], MiniGPT-5 [56]. In this
paper, we study the biases of MLLMs in image captioning and visual
question answering tasks, using BLIP-2 OPT and MiniGPT-4 as our
base models.

2.2 Multimodal Debiasing
Recent studies have found that multimodal models exhibit biases
originating from their training datasets. Utilizing biased multimodal
models in real-world applications may result in adverse conse-
quences. Therefore, addressing the societal biases present in MLLM
and mitigating their negative impacts in the application process
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Figure 1: Illustration of MLLM (e.g., BLIP-2 OPT) debiasing editing. MLLM can be divided into visual and textual modules. The
debiasing editing of MLLM involves applying multimodal model editing methods to these modules, increasing the probability
of unbiased knowledge in image-text pairs to mitigate biases present in the model.

are essential prerequisites for future exploration and deployment
of MMLM. Strategies to mitigate bias in MLLMs can be classified
based on various stages of the model workflow: (1) Preprocessing
techniques are designed to detect and eliminate biases and unfair-
ness in the dataset early on, by modifying the distribution of the
dataset [6, 12, 36, 50]. (2) Optimization methods during training
include generating fair models for specific tasks using a single opti-
mization algorithm and conducting new training stages to rectify
existing biased models [3, 20, 27, 38, 40, 46, 50]. (3) Post-processing
techniques mainly entail adjusting model outputs to mitigate bias
and unfairness, aiming to detect and eliminate social biases without
directly accessing the model itself, thus without needing additional
weight optimization or dataset manipulation [13, 42, 48]. However,
how to effectively mitigate biases in pre-trained MLLMs while min-
imizing disruption to model capabilities and performance remains
extensively unexplored.

2.3 Model Editing
LLMs have demonstrated extraordinary abilities in understand-
ing and generating text. The continuous dynamic update of world
knowledge necessitates ongoing updates to LLMs to correct out-
dated information or integrate new knowledge, ensuring their sus-
tained relevance. Furthermore, many applications also require con-
tinual adjustments to the model to address defects or errors present
within it. Therefore, how to efficiently and lightly modify LLMs in
real time has garnered increasing attention. Recently, model editing
techniques for LLMs have seen significant development [18, 44, 53].

Model editing methods are designed to quickly and precisely mod-
ify LLMs, allowing them to generate more accurate and pertinent
outputs. These methods can be broadly classified into two main
types: intrinsic methods, which involve modifying the model archi-
tecture or parameters to edit the intrinsic knowledge of the model,
and extrinsic methods, which resort to external knowledge to ad-
just the model input or output space. Intrinsic methods require the
model to modify its own parameters to master new knowledge. The
conventional method of updating knowledge involves fine-tuning
the model, which requires a considerable amount of computational
resources. Besides, fine-tuning often leads to catastrophic forgetting
and overfitting. Apart from fine-tuning methods, some approaches
have tried to use knowledge-specific methods to modify the model
weights, which can be divided into two categories: meta-learning
[11, 19, 45] and location-then edit [29, 32, 33]. The former doesn’t
directly update the model’s weights but teaches a hyper-network to
learn the changes Δ𝑊 of the model. The latter explores howmodels
store knowledge, based on some mechanisms derived from LLMs,
to locate the storage position of knowledge and then edit specific
areas. It also adopts causal analysis methods to detect which part
of the hidden state is more important. This direct editing of model
parameters provides a more persistent solution for changing the
model’s behavior. However, further research is needed due to the
unclear mechanisms of LLMs. Extrinsic methods learn represen-
tations of new knowledge and merge this information with the
representations of the original model. Very recently, Cheng et al.
[7] extended model editing from single-modal to multimodal and
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demonstrated some effectiveness. Based on this, we select several
model editing methods suitable for multimodal tasks to explore the
impact of multimodal debiasing editing on multimodal model bias.

3 DEBIASING MLLM VIA MODEL EDITING
Our goal is to conduct a comprehensive analysis of multimodal
model debiasing editing. In this section, we first introduce the task
definition of MLLM edit in section §3.1. Subsequently, we propose
three metrics for evaluating MLLM debiasing editing in section §3.2.
Based on these three metrics, we detail the construction process of
our dataset in section §3.3. Finally, we introduce the MLLMs (§3.4)
and baseline methods (§3.5) utilized in our experiments.

3.1 Preliminary: MLLM Editing
Model editing methods are primarily used for knowledge editing.
The purpose of model editing is to modify a model into a new one,
covering some of the original knowledge to achieve the desired
output while preserving the integrity of the model’s other knowl-
edge. Let 𝜃 denote a MLLM, with 𝜃𝑣𝑖𝑠𝑖𝑜𝑛 and 𝜃𝑡𝑒𝑥𝑡 representing its
visual and textual components, respectively. Specifically, given an
image input 𝑖𝑚𝑔 and a text prompt input 𝑡𝑒𝑥𝑡 , an editing method
𝑓 edits the multimodal MLLM’s output from original output 𝑦𝑜 to
the target output 𝑦𝑒 .

𝑦𝑜 = argmax
𝑦

(𝑝 (𝑦 |𝑖𝑚𝑔, 𝑡𝑒𝑥𝑡 ;𝜃 ))

𝜃𝑒 = 𝑓 (𝜃,𝑦𝑜 , 𝑦𝑒 )
(1)

where we refer 𝜃𝑒 as the model after edit. Therefore, for MLLM, a
successful model editing should modify the model’s knowledge to
produce the desired output 𝑦𝑒 .

𝑦𝑒 = argmax
𝑦

(𝑝 (𝑦 |𝑖𝑚𝑔, 𝑡𝑒𝑥𝑡 ;𝜃𝑒 )) (2)

Following Cheng et al. [7], the requirements for model editing
should also meet the criterion of Generality and Locality. The gen-
eralization capability of the MLLM is reflected in the ability of the
modified MLLM 𝜃𝑒 to yield the target output 𝑦𝑒 for any rephrased
images and text. The locality metrics for model editing in MLLM
aim to minimize any unforeseen side effects on the broader knowl-
edge base of MLLM caused by model editing, ensuring the stability
of the model. Specifically, MLLM should also satisfy that for any
broader knowledge 𝑡𝑒𝑥𝑡 and 𝑖𝑚𝑔, the modified model’s output re-
mains consistent with the output of the original model, as described
by the following:

argmax
𝑦

(𝑝 (𝑦 |𝑖𝑚𝑔, 𝑡𝑒𝑥𝑡 ;𝜃𝑒 )) = argmax
𝑦

(𝑝 (𝑦 |𝑖𝑚𝑔, 𝑡𝑒𝑥𝑡 ;𝜃 ))

∀(𝑖𝑚𝑔, 𝑡𝑒𝑥𝑡)
(3)

3.2 Task Definition on MLLM Debiasing Editing
In this section, we formulate the MLLM debias editing task, focus-
ing on pairs of biased and unbiased sentences associated with im-
ages. Considering an image-text pair (𝑖𝑚𝑔, 𝑡𝑒𝑥𝑡,𝑦more, 𝑦less), where
𝑦more is a more stereotypical biased sentence compared to 𝑦less. We
argue that an MLLM exhibits bias towards this image-text pair if
the likelihood of MLLM tends to prefer the biased sentence.

𝑝 (𝑦more |𝑖𝑚𝑔, 𝑡𝑒𝑥𝑡 ;𝜃𝑒 ) > 𝑝 (𝑦less |𝑖𝑚𝑔, 𝑡𝑒𝑥𝑡 ;𝜃𝑒 ) (4)

To attain a fairer MLLM, we can choose to decrease the likelihood of
𝑦more or increase the likelihood of 𝑦less. For model editing, increas-
ing the likelihood of 𝑦less is evidently a more feasible approach.
Building upon the aforementioned premise, we propose the fol-
lowing three metrics for the comprehensive evaluation of MLLM
debiasing editing.
Reliability. Reliability measure serves to evaluate the bias level of
the model following modification. Specifically, it assesses whether
the modified MLLM 𝜃𝑒 satisfies the following condition.

𝑝 (𝑦more |𝑖𝑚𝑔, 𝑡𝑒𝑥𝑡 ;𝜃𝑒 ) < 𝑝 (𝑦less |𝑖𝑚𝑔, 𝑡𝑒𝑥𝑡 ;𝜃𝑒 ) (5)

Generality. Merely debiasing individual image-text pairs is insuf-
ficient for the model debias editing process. We expect a fair MLLM
should not only achieve debiasing effects on the original image-text
pairs but also on their equivalent inputs (e.g., rephrased sentences
or rephrased images), implying a degree of generalization ability in
the model’s debiasing process. To address this issue, we introduce
two generalization sub-metrics. The first one is T-Generality.

𝑝 (𝑦more |𝑖𝑚𝑔, 𝑡𝑒𝑥𝑡𝑟 ;𝜃𝑒 ) < 𝑝 (𝑦less |𝑖𝑚𝑔, 𝑡𝑒𝑥𝑡𝑟 ;𝜃𝑒 ) (6)

where 𝑡𝑒𝑥𝑡𝑟 presents the rephrased textual prompt in IC task and the
rephrased question in VQA task. It evaluates whether the likelihood
of unbiased sentences generated by the edited MLLM, under the
conditions of unchanged images and rephrased text, surpasses the
likelihood of biased sentences. Besides, the second sub-metrics we
proposed is V-Generality.

𝑝 (𝑦more |𝑖𝑚𝑔𝑟 , 𝑡𝑒𝑥𝑡 ;𝜃𝑒 ) < 𝑝 (𝑦less |𝑖𝑚𝑔𝑟 , 𝑡𝑒𝑥𝑡 ;𝜃𝑒 ) (7)

where 𝑖𝑚𝑔𝑟 presents the rephrased image. It evaluates if the like-
lihood of 𝑦less in the edited MLLM, with rephrased images and
original text prompt, exceeds the likelihood of 𝑦more.
Locality. In order to uphold model stability, it is essential to mini-
mize the extent to which model editing affects the overall knowl-
edge capabilities of the model. We utilize the concept of Locality to
quantify this capability of the MLLM. Since most of the knowledge
in MLLM is inherited from LLM, maintaining the stability of LLM is
crucial. Thus, we design a T-Localitymetric to evaluate the impact
of model editing on LLM stability, as below:

𝑝 (𝑦 |𝑡𝑒𝑥𝑡 ;𝜃𝑒 ) = 𝑝 (𝑦 |𝑡𝑒𝑥𝑡 ;𝜃 ) (8)

Given that Visual block can transform images into vector repre-
sentations and collaborate with natural language text during the
encoding process, efforts should also be made to minimize the influ-
ence of model editing on Visual block. We define the M-locality
as:

𝑝 (𝑦 |𝑖𝑚𝑔, 𝑡𝑒𝑥𝑡 ;𝜃𝑒 ) = 𝑝 (𝑦 |𝑖𝑚𝑔, 𝑡𝑒𝑥𝑡 ;𝜃 ) (9)

3.3 Debiasing Benchmark Construction
The dataset that we construct includes two sub-tasks: Image-Caption
(IC) and Visual Question Answering (VQA). The former task aims
to enable the MLLM to comprehend the visual content of images
and generate answers based on textual questions about the image.
The latter task focuses on arming the MLLMwith the ability to com-
prehend the visual content of images and subsequently generate
natural language captions for them. As mentioned in section §3.2,
the content of each example in both sub-tasks datasets is denoted
as (𝑖𝑚𝑔, 𝑡𝑒𝑥𝑡,𝑦more, 𝑦less).
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Table 1: The number of different bias types in the Reliability
dataset for the Image Caption task.

Bias type Age Gender Race Profession Religion

Number 680 2262 3026 631 44

3.3.1 Reliability Dataset Construction. As shown in Equation 4, to
benchmark our experiments, we need to construct image-text pairs
containing the biased and unbiased sentences (𝑖𝑚𝑔, 𝑡𝑒𝑥𝑡,𝑦more, 𝑦less).
The foundational data for our IC task is derived from VLStereoSet
[57] and PATA dataset[43]. The former is a dataset containing bi-
ases related to Gender, Profession, Race, and Religion. It comprises
a total of 1,028 image-text pairs, with images that are categorized
as either stereotypical or anti-stereotypical. The latter is a dataset
containing biases related to gender and racial labels as well as two
age group labels (young and old). It consists of 24 scenes, each
containing between 100 and 400 images, for a total of 4,934 images.
As this dataset provides a set of generic biased and unbiased tex-
tual captions for each scenario, with a significantly larger number
of images than captions, to ensure dataset diversity and prevent
caption redundancy, for each image, we randomly select a bias type
and then randomly select a sentence from the corresponding biased
or unbiased caption set. In summary, our image captioning task
encompasses five kinds of bias: gender, race, profession, religion,
and age. The size of the proposed dataset is 6643, and the quantities
of each bias type are as shown in Table 1.

The foundational data for our VQA task originates from the
PAIRS dataset [15]. The PAIRS dataset comprises a collection of
artificially generated human images, which are highly similar in
terms of background and visual content, yet differ in aspects of
gender and race. Given the ambiguity in background and visual
context within the PAIRS dataset, interpretations of a subject’s
occupation, social standing, or intention can differ. Therefore, to
obtain a biased dataset tailored to a specific model, we utilize MLLM
to compute the probabilities of different labels in image-text pairs,
selecting the answers having lower likelihoods as our targets for
debias editing.

3.3.2 Generality Dataset Construction. Following the generality
metric mentioned in section §3.2, we have introduced two forms
of generality evaluation datasets for the MLLM. The process of
constructing a general dataset is illustrated in Figure 2.
Textual Generality Dataset. Benefiting from the exceptional per-
formance and remarkable problem-solving capabilities of the LLM,
we can instruct the LLM to generate rephrased textual inputs by
specifying task instructions. Therefore, for the VQA task, we utilize
gpt-3.5-turbo-instruct to rewrite questions from the dataset. In the
context of the IC task, we adopt a manually created template with
20 prompts to replace the original random prompts, inspired by
Cheng et al. [7]. The concrete prompts of the IC task can be found
in the Appendix.
Visual Generality Dataset. Diffusion models, based on the for-
ward diffusion stage and the reverse diffusion stage, are a class of
deep generative models that have achieved significant success in
the field of image generation in recent years [10]. Stable Diffusion

Figure 2: Construction Process of the Generality Dataset.

[41] is a latent text-to-image diffusion model capable of generating
natural, high-quality images given textual input. We use Stable Dif-
fusion to generate reinterpreted images. Specifically, for the IC task,
we use captions in section §3.3.1 to generate reinterpreted images.
For the VQA task, we leverage the prompts utilized in the PAIRS
dataset for image generation to create our reinterpreted images.

3.3.3 Locality Dataset Construction. In order to ensure the stabil-
ity of the MLLM, efforts should be made to mitigate the impact
of model edits on the performance of the MLLM across broader
knowledge domains. Similar to section §3.3.2, we construct two
forms of datasets to evaluate the Locality of the MLLM.
Textual Locality Dataset. As the core of MLLM knowledge, LLM
occupies a significant proportion of the parameters in MLLM. In
order to gauge the stability of the LLM, we employ the Natural
Questions (NQ) dataset [23] utilized in MEND. For the evaluation
of locality, we calculate the KL divergence using the outputs of the
MLLM before and after model editing, to facilitate constraints on
model editing. To further quantify the stability of the model, the
proportion of instances maintaining a top-1 status is calculated.
Multimodal Locality Dataset. MLLM functions through the mu-
tual collaboration of LLM and the text module. Therefore, validating
the impact of model edits on the overall performance of the Multi-
modal LLM is also crucial. We utilize a simple dataset, OK-VQA [31],
to serve as a measure of the locality for the MLLM. Our evaluation
approach to multimodal data is similar to textual locality.

3.4 Multimodal Large Language Models
BLIP-2. BLIP-2 [26] utilizes a frozen training image encoder and a
frozen large-scale language model for visual-language pretraining.
It employs a lightweight querying Transformer between the image
encoder and the LLM, which utilizes a set of learnable query vectors
to extract visual features from the frozen image encoder. BLIP-2
bridges the gap between the twomodalities by training the querying
Transformer only, serving as a general and efficient pretraining
strategy. It can achieve state-of-the-art performance in a range of
vision-language tasks. We opt for BLIP-2 OPT as our base model,
which comprises a visual module consisting of ViT-L and an LLM
module composed of the OPT model [54].
MiniGPT-4. MiniGPT-4 [58] is a powerful visual language model
similar to BLIP-2, leveraging frozen visual encoders and frozen
vicuna [8]. MiniGPT-4 adds a projection layer to align the encoded
visual features with the Vicuna model (language model). The visual
features are extracted by the pre-trained VIT-G/14 in MiniGPT-4.
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Table 2: Main results of multimodal model debias editing. Reliability denotes the probability that biases are correctly modified
after editing. T-generality and V-generality represent the generality of multimodal models in text and multimodal domains.
T-locality and M-locality refer to the stability of multimodal modes in text and multimodal domains.

Image Captioning Visual Question Answering

Method Reliability T-Generality V-generality T-Locality M-Locality Reliability T-Generality V-generality T-Locality M-Locality

BLIP-2 OPT

Base Model 0.00 0.00 0.00 100.0 100.0 0.00 0.00 0.00 100.0 100.0
FT-L 71.69 72.61 70.08 57.31 10.25 54.19 51.61 53.55 62.83 11.68
FT-V 81.35 80.67 69.05 100.0 7.11 63.87 64.52 61.29 100.0 5.37
IKE 99.77 98.73 99.54 12.11 2.96 100.0 100.0 100.0 15.76 2.74
SERAC 98.85 98.73 98.50 99.98 10.32 100.0 100.0 100.0 100.0 2.58
KE 76.30 74.23 78.13 95.24 69.16 89.03 84.52 89.67 98.68 76.07
MEND 100.0 100.0 100.0 95.94 73.52 96.77 96.77 96.77 99.05 89.97

MiniGPT-4

Base Model 84.01 82.54 76.92 100.0 15.00 83.23 53.55 73.55 100.0 12.74
FT-L 76.56 76.44 76.07 74.06 19.10 72.26 62.58 72.90 72.03 16.98
FT-V 84.01 82.54 76.92 100.0 15.00 83.23 53.55 73.55 100.0 12.74
IKE 97.07 98.17 95.97 15.61 4.45 98.71 100.0 99.36 15.65 4.26
SERAC 98.34 98.13 98.41 98.69 13.21 100.0 100.0 100.0 100.0 2.13
KE 89.87 88.89 89.74 98.69 69.18 92.26 90.32 90.32 98.70 76.99
MEND 100.0 100.0 100.0 98.95 83.41 96.13 96.13 89.68 99.36 83.54

3.5 Baselines
Webenchmark sixmodel editingmethods, detailed as follows. These
methods can be categorized into two distinct phases based on how
human knowledge is acquired: (a) intrinsic methods, editing in-
trinsic knowledge of the model. (b) extrinsic methods, merging
the knowledge into the model. [53]. The former learns represen-
tations of new knowledge and merges this information with the
representations of the original model, including FT-L, FT-V, KE, and
MEND. The latter requires the model to learn knowledge of its own
parameters and autonomously master this knowledge, including
IKE and SERAC.
Finetuning (FT-L and FT-V). Fine-tuning is a traditional method
that involves updating model parameters to enable the model to
learn target-specific knowledge. However, fine-tuning all parame-
ters of a multimodal LLM is computationally expensive. Following
Cheng et al. [7], we employ two model fine-tuning strategies. One
approach is to fine-tune the last layer of the language model, de-
noted as FT-L, while another is to fine-tune the vision block of the
multimodal LLM, which is represented as FT-V. Taking BLIP-2 OPT
as an example, we fine-tune the parameters of the 31st decoder
layer of the OPT model and the Q-former model, respectively.
In-Context Knowledge Editing (IKE). In-context Learning (ICL)
is a new capability that emerged in LLMs, where language mod-
els are used to perform downstream tasks without the need for
parameter updates [4]. In-context knowledge Editing (IKE) [55]
helps the model generate reliable factual edits by constructing
three types of demonstrations (copy, update, and retain). It first
constructs a demonstration set 𝐶 = {𝑐1, . . . , 𝑐𝑘 } consisting of the
training dataset. Before injecting factual knowledge 𝑓 , it guides
the model to generate appropriate answers by retrieving the most
relevant demonstrations from the training set based on cosine simi-
larity. The primary goal of IKE in knowledge editing is to maximize
𝑝 (𝑦∗ | 𝑥, 𝑓 ,𝐶;𝜃 ) when prompt 𝑥 is within the editing scope of the
target prompt.

SERAC. SERAC [35] consists of an editing memory, a small auxil-
iary classifier, and a counterfactual model. It stores edited informa-
tion in explicit memory rather than directly in themodel parameters.
The classifier determines whether the user’s input falls within the
scope of explicit memory. If the classifier identifies relevant editing
examples associated with the input, it combines this example with
the input and forwards it to the counterfactual model for prediction.
Knowledge Editor (KE). KE [11] trains a hyper-network with con-
strained optimization. When predicting related to edits knowledge,
it utilizes the trained hyper-network to predict weight updates dur-
ing testing. KE can modify facts without affecting other knowledge
and achieves high computational efficiency.
Model EditorNetworkswithGradientDecomposition (MEND).
MEND [34] is an approach that learns to transform the original fine-
tuning gradients into more targeted parameter updates. Specifically,
MEND applies the rank-1 decomposition to partition the model into
two rank-1 matrices, from which it can compute Δ𝑊 , significantly
reducing the number of parameters. MEND trains a model editing
network with gradient decomposition using the training dataset,
which comprises edit example (𝑦e, 𝑦e), locality example 𝑦loc and
generality example (𝑦′e, 𝑦′e).

4 EXPERIMENTS
In this section, we investigate how MLLM editing methods at the
dataset level impact the overall bias and performance of MLLMs on
Image Captioning and Visual Question Answering tasks in section
§4.1. We use Reliability, Generality, and Locality as our evaluation
metrics, following the discussion in section §3.2. On this basis, we
delve deeper into the effects of modifying various parts of MLLMs
on reducing bias in Section §4.2. Furthermore, we explore whether
editing aimed at one type of bias (e.g., gender) can be generalized
to another type of unseen bias (e.g., occupation) in Section §4.3. Be-
sides, we also conduct experiments in the sequential editing setting,
where the MLLM is tasked with editing a series of knowledge items.
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Figure 3: Cases of Multimodal model debias editing. The column chart in each part is the probabilities of sentence pairs
𝑦𝑚𝑜𝑟𝑒 , 𝑦𝑙𝑒𝑠𝑠 before and after model alterations

We analyze the debiasing effects of various model editing methods
across batch sizes of (1, 4, 16, 64), with the results available in the
Appendix.

4.1 Results on MLLM Debiasing
In this part, we employ two MLLMs, BLIP-2 OPT and MiniGPT-4, to
analyze the debiasing effects of six baselines on MLLMs in the im-
age captioning task and visual question answering task. The main
results are shown in the Table 2. We perform an analysis of the
experimental results based on Reliability, Generality and Locality,
respectively.
Reliability. From the results, we can observe that the performance
of all model editing methods, like IKE, SERAC, KE and MEND, sur-
passes that of the base model as well as the fine-tuning of partial
parameters methods: FT-V and FT-L. We can also observe that cer-
tain model editing techniques, such as IKE, SERAC, and MEND,
can achieve close to 100% debiasing effects. This demonstrates the
effectiveness of model editing methods in debiasing the MLLM.
Additionally, we found that although simple fine-tuning of partial
parameters of MLLMs struggles to correct the outputs of MLLMs
[7], these fine-tuning methods still exhibit some effectiveness in
bias reduction.
Locality. Fine-tuning and model editing methods are valuable for
effectively mitigating biases in MLLMs. Nonetheless, these meth-
ods have exerted a certain adverse effect on the overall knowledge
stability of MLLMs. Taking fine-tuning methods as an example, we

observe that fine-tuning can lead to substantial changes in the orig-
inal model (e.g., the T-locality and M-locality of FT-L in BLIP-2 OPT
decreased to 57.31% and 10.25%, respectively), which may be attrib-
uted to catastrophic forgetting during model fine-tuning, resulting
in the loss of other knowledge. This phenomenon is particularly
evident in multimodal datasets. For example, the M-locality of FT-V
and FT-L methods in BLIP-2 OPT decreased to 7.11% and 10.25%,
respectively. Furthermore, although model editing techniques, like
IKE and SERAC, which are based on external knowledge storage,
have been successful in modifying model outputs, their lack of
constraints on multimodal knowledge has resulted in poor perfor-
mance in M-locality. Besides, IKE exhibits a significant decrease
in performance in T-locality. This can be attributed to IKE lacking
robust constraint mechanisms for in-context learning, which af-
fects the model’s responses to other broader knowledge. It’s worth
noting that meta-learning methods (i.e., KE, MEND) have shown
promising results in reliability, while having the least impact on
the performance of MLLM’s M-locality.
Generality. The results indicate that multimodal model editing
methods tend to exhibit superior generality in both textual and
visual generality datasets for MLLM debiasing. All methods at-
tained accuracy rates exceeding 50% on both T-Generality and
V-Generality. For editing methods based on external knowledge
storage, their superior reliability and generality in multimodal de-
biasing can be attributed to sacrifices in locality. These methods
modify the model’s input and output by associating with external
knowledge, without enabling the model to master new knowledge.
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Figure 4: Results of debias editing in LLM and VisualModules

It is worth noting that most model editing methods perform better
on T-generality and V-generality compared to fine-tuning.

4.2 Effects of Debiasing Editing on Different
Components in the MLLM

In this part, We further analyze the impact of editing different
regions of the MLLM on the debiasing effects of the model. MLLM
can be divided into the visual module and the textual module. We
conduct debiasing editing separately on these two modules. For
BLIP-2 OPT, we respectively conduct debiasing editing on the Q-
former and OPT components to analyze their impact on the model
bias. Similarly, we edit the last few layers of the 𝑙𝑙𝑎𝑚𝑎𝑝𝑟𝑜 𝑗 and
the vicuna model in MiniGPT-4. We experiment with three model
editing methods, namely FT, MEND and KE, which allow specified
editing areas. The results in Figure 4 illustrate our findings using
BLIP-2 OPT on the IC task.

Based on the results, it’s apparent that, for the majority of meth-
ods, debiasing editing the LLM module yields better results com-
pared to debiasing editing the Vision module. We argue that this
outcome may be attributed to the architecture design of the MLLM,
as modifying the vision block only affects the input of the Q-former
to the LLM, while directly modifying the parameters of the LLM
component can directly impact the model’s output. Also, in the
MLLM, the LLM component comprises a larger proportion of pa-
rameters, which has a more significant impact on the performance
and knowledge representation of the MLLM. Moreover, we notice
that adjusting the vision block still leads to some enhancement,
suggesting that future efforts could focus on refining editing across
various modules.

4.3 Generalizing Across Bias Types
In this section, we explore whether conducting model editing on
a certain bias (e.g., Gender) could generalize to other biases (e.g.,
Profession). We utilize the image captioning task and filter out the
religious bias types with fewer instances, focusing on four types

Table 3: Generalization across different bias types in Multi-
modal LLMs. The best performance is highlighted in bold.

Edit Method Eval

RACE GENDER AGE PROFESSION

Race

FT-L 80.09 50.44 45.46 35.56
FT-V 81.14 57.83 51.95 26.67
IKE 99.15 96.52 100.0 100.0
SERAC 98.70 79.22 84.42 88.31
KE 84.32 66.52 71.43 46.67
MEND 100.0 100.0 100.0 100.0

GENDER

FT-L 46.82 88.70 48.05 36.67
FT-V 52.75 90.44 50.65 27.78
IKE 99.36 96.96 100.0 96.67
SERAC 74.03 98.70 67.53 87.01
KE 57.63 92.17 62.34 43.33
MEND 100.0 100.0 100.0 100.0

AGE

FT-L 42.59 39.13 100.0 30.00
FT-V 41.10 46.09 98.70 31.11
IKE 99.58 98.70 100.0 98.89
SERAC 32.47 46.75 100.0 45.46
KE 47.78 69.57 88.98 48.89
MEND 64.20 80.44 98.70 15.56

PROFESSION

FT-L 36.23 30.87 36.36 66.67
FT-V 41.31 41.74 35.07 57.78
IKE 99.79 100.0 100.0 98.89
SERAC 71.43 64.94 63.64 93.51
KE 47.67 47.39 44.16 74.44
MEND 99.79 99.13 98.70 100.0

of biases: Race, Gender, Age, and Profession. We use BLIP-2 OPT
as the baseline model. The results are shown in the Table 3. It is
evident that all methods achieve a debiasing effect of over 30%
across different biases, further demonstrating the potential of using
editing methods to address biases in MLLMs. It is noteworthy that
IKE and MEND exhibit remarkably strong generalizations when
applied to other biases. MEND even achieves 100% correct debiasing
on Gender and Race, which may attributed to the ample training
data (as shown in Table 1) available, which enables the MEND
method to better train the hyper-network required for updating
MLLM parameters. Figure 3 illustrates successful and unsuccessful
cases of model editing across different types of biases in IC and
VQA tasks.

5 CONCLUSION
In this paper, we conduct a comprehensive analysis of the pros and
cons of model editing in the problem of debiasing the MLLM. After
proposing a new set of evaluation metrics for debias editing in the
MLLM, we evaluate methods that support both internal and exter-
nal editing of the MLLM. We conduct an analysis of the potential
and challenges of debias editing in the MLLM regarding single-edit
and sequential-edit approaches. Moreover, we investigate the in-
fluence of different modules within the MLLM on model editing.
Additionally, we examine the generalization ability of debias editing
in MLLM across various biases. The results indicate that employing
model editing methods to mitigate bias in the MLLM achieves a
result that is barely satisfactory. Future work could explore varying
degrees of attention to different modalities within the MLLM.
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